
Machine Learning 2/3
Lecture 08

Computer Vision for Geosciences

2021-04-30

1 / 54

Table of Contents

1. Big picture

2. Classification based on features
1. overview
2. linear decision boundary: toy example
3. non-linear decision boundary: k-NN algorithm

3. Feature extraction (dimension reduction)
1. PCA

2 / 54

Table of Contents

1. Big picture

2. Classification based on features
1. overview
2. linear decision boundary: toy example
3. non-linear decision boundary: k-NN algorithm

3. Feature extraction (dimension reduction)
1. PCA

3 / 54

Big picture

Pinpoint “hot” words

AI
Artificial Intelligence
broad concept, whereby machine mimics human behaviour

ML
Machine Learning (a.k.a. Statistical Learning, Classical Learning)
subset of AI which uses statistical methods
(features are designed by the user)

DL
Deep Learning (a.k.a. Modern Machine Learning)
subset of ML, which uses multi-layered neural networks
(features are learned by the network)

ML: lectures 07, 08 (today), 09
DL: lectures 10, 11, 12

4 / 54

Big picture

Pinpoint “hot” words

AI
Artificial Intelligence
broad concept, whereby machine mimics human behaviour

ML
Machine Learning (a.k.a. Statistical Learning, Classical Learning)
subset of AI which uses statistical methods
(features are designed by the user)

DL
Deep Learning (a.k.a. Modern Machine Learning)
subset of ML, which uses multi-layered neural networks
(features are learned by the network)

ML: lectures 07, 08 (today), 09
DL: lectures 10, 11, 12

5 / 54

Big picture

Pinpoint “hot” words

AI
Artificial Intelligence
broad concept, whereby machine mimics human behaviour

ML
Machine Learning (a.k.a. Statistical Learning, Classical Learning)
subset of AI which uses statistical methods
(features are designed by the user)

DL
Deep Learning (a.k.a. Modern Machine Learning)
subset of ML, which uses multi-layered neural networks
(features are learned by the network)

ML: lectures 07, 08 (today), 09
DL: lectures 10, 11, 12

6 / 54

Big picture

Pinpoint “hot” words

AI
Artificial Intelligence
broad concept, whereby machine mimics human behaviour

ML
Machine Learning (a.k.a. Statistical Learning, Classical Learning)
subset of AI which uses statistical methods
(features are designed by the user)

DL
Deep Learning (a.k.a. Modern Machine Learning)
subset of ML, which uses multi-layered neural networks
(features are learned by the network)

ML: lectures 07, 08 (today), 09
DL: lectures 10, 11, 12

7 / 54

Big picture

Machine Learning is a huge (and growing) field!

ML

DL

source 8 / 54

https://noeliagorod.com/2019/05/21/machine-learning-for-everyone-in-simple-words-with-real-world-examples-yes-again/

Big picture

Machine Learning is a huge (and growing) field!

ML

DL

source 9 / 54

https://noeliagorod.com/2019/05/21/machine-learning-for-everyone-in-simple-words-with-real-world-examples-yes-again/

Big picture

Machine Learning is a huge (and growing) field!

ML

DL

source 10 / 54

https://noeliagorod.com/2019/05/21/machine-learning-for-everyone-in-simple-words-with-real-world-examples-yes-again/

Big picture

What we will introduce in the ML lectures:

Machine
Learning

Supervised Learning Unsupervised Learning

I Learning algorithm is presented inputs and desired outputs:
training data D = (in, out)

I Goal: learn a general rule f that maps inputs to outputs
f (in) = out

⇒ Regression task: out is a continuous number
e.g. linear regression, polynomial regression

⇒ Classification task: out is a nominal number (class label)
e.g. kNN, SVM, Logistic Regression

I No training data is given to the learning algorithm

I Goal: find structure data, discover hidden patterns, learn
features

⇒ Dimension reduction, e.g. PCA
→ also used to craft features

⇒ Clustering task, e.g. K-means

11 / 54

Table of Contents

1. Big picture

2. Classification based on features
1. overview
2. linear decision boundary: toy example
3. non-linear decision boundary: k-NN algorithm

3. Feature extraction (dimension reduction)
1. PCA

12 / 54

Classification based on features
1. overview

Classification task

• Goal:
Learn the mapping between low level features,
and high level information (e.g. semantic classes)

NB: “features” is here used in a broad sense, not the
“descriptors” introduced in lecture 06 (e.g. HOG,
SIFT)

• Steps:
1. features extraction (e.g. handcrafted, PCA)
2. learning algorithm (e.g. SVM)

Input
(e.g. satellite image)

Feature extraction
(e.g. handcrafted, PCA)

Learning Algorithm
(e.g. SVM)

Output (classification)
(e.g. land-use:

forest, urban, lake, etc.)

13 / 54

Classification based on features
2. linear decision boundary: toy example

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)
⇒ representation of input data in 2D feature space
⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces
⇒ classify data based on linear decision boundary
⇒ perceptron: y = sign(wT x + b)

• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

NB: Support Vector Machine (SVM)
can be used to find the best decision boundary
(i.e. which maximizes distance to data points)

→ next lecture!

14 / 54

https://en.wikipedia.org/wiki/Sign_function

Classification based on features
2. linear decision boundary: toy example

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)

⇒ representation of input data in 2D feature space
⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces
⇒ classify data based on linear decision boundary
⇒ perceptron: y = sign(wT x + b)

• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

NB: Support Vector Machine (SVM)
can be used to find the best decision boundary
(i.e. which maximizes distance to data points)

→ next lecture!

15 / 54

https://en.wikipedia.org/wiki/Sign_function

Classification based on features
2. linear decision boundary: toy example

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)
⇒ representation of input data in 2D feature space

⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces
⇒ classify data based on linear decision boundary
⇒ perceptron: y = sign(wT x + b)

• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

NB: Support Vector Machine (SVM)
can be used to find the best decision boundary
(i.e. which maximizes distance to data points)

→ next lecture!

16 / 54

https://en.wikipedia.org/wiki/Sign_function

Classification based on features
2. linear decision boundary: toy example

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)
⇒ representation of input data in 2D feature space
⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces
⇒ classify data based on linear decision boundary
⇒ perceptron: y = sign(wT x + b)

• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

NB: Support Vector Machine (SVM)
can be used to find the best decision boundary
(i.e. which maximizes distance to data points)

→ next lecture!

17 / 54

https://en.wikipedia.org/wiki/Sign_function

Classification based on features
2. linear decision boundary: toy example

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)
⇒ representation of input data in 2D feature space
⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces

⇒ classify data based on linear decision boundary
⇒ perceptron: y = sign(wT x + b)

• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

NB: Support Vector Machine (SVM)
can be used to find the best decision boundary
(i.e. which maximizes distance to data points)

→ next lecture!

18 / 54

https://en.wikipedia.org/wiki/Sign_function

Classification based on features
2. linear decision boundary: toy example

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)
⇒ representation of input data in 2D feature space
⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces
⇒ classify data based on linear decision boundary

⇒ perceptron: y = sign(wT x + b)
• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

NB: Support Vector Machine (SVM)
can be used to find the best decision boundary
(i.e. which maximizes distance to data points)

→ next lecture!

19 / 54

https://en.wikipedia.org/wiki/Sign_function

Classification based on features
2. linear decision boundary: toy example

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)
⇒ representation of input data in 2D feature space
⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces
⇒ classify data based on linear decision boundary
⇒ perceptron: y = sign(wT x + b)

• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

NB: Support Vector Machine (SVM)
can be used to find the best decision boundary
(i.e. which maximizes distance to data points)

→ next lecture!

20 / 54

https://en.wikipedia.org/wiki/Sign_function

Classification based on features
2. linear decision boundary: toy example

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)
⇒ representation of input data in 2D feature space
⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces
⇒ classify data based on linear decision boundary
⇒ perceptron: y = sign(wT x + b)

• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

NB: Support Vector Machine (SVM)
can be used to find the best decision boundary
(i.e. which maximizes distance to data points)

→ next lecture!

21 / 54

https://en.wikipedia.org/wiki/Sign_function

Classification based on features
3. non-linear decision boundary: k-NN algorithm

What if this linear separability does not exists? (courtesy of Andreas Ley & Ronny Hänsch)

• Problem:
⇒ feature space often not linearly separable

⇒ needs non-linear decision boundary

• Classification algorithm:
⇒ k-Nearest-Neighbors (KNN)

1. take random data points in the training dataset
2. for a sample find the k (e.g. 5) closest data points in

the training dataset
3. look at the neighbor labels, return/assign the mode
4. decision boundary can be designed as probability

meshgrids

22 / 54

Classification based on features
3. non-linear decision boundary: k-NN algorithm

What if this linear separability does not exists? (courtesy of Andreas Ley & Ronny Hänsch)

• Problem:
⇒ feature space often not linearly separable
⇒ needs non-linear decision boundary

• Classification algorithm:
⇒ k-Nearest-Neighbors (KNN)

1. take random data points in the training dataset
2. for a sample find the k (e.g. 5) closest data points in

the training dataset
3. look at the neighbor labels, return/assign the mode
4. decision boundary can be designed as probability

meshgrids

23 / 54

Classification based on features
3. non-linear decision boundary: k-NN algorithm

What if this linear separability does not exists? (courtesy of Andreas Ley & Ronny Hänsch)

• Problem:
⇒ feature space often not linearly separable
⇒ needs non-linear decision boundary

• Classification algorithm:
⇒ k-Nearest-Neighbors (KNN)

1. take random data points in the training dataset
2. for a sample find the k (e.g. 5) closest data points in

the training dataset
3. look at the neighbor labels, return/assign the mode
4. decision boundary can be designed as probability

meshgrids

24 / 54

Classification based on features
3. non-linear decision boundary: k-NN algorithm

What if this linear separability does not exists? (courtesy of Andreas Ley & Ronny Hänsch)

• Problem:
⇒ feature space often not linearly separable
⇒ needs non-linear decision boundary

• Classification algorithm:
⇒ k-Nearest-Neighbors (KNN)

1. take random data points in the training dataset

2. for a sample find the k (e.g. 5) closest data points in
the training dataset

3. look at the neighbor labels, return/assign the mode
4. decision boundary can be designed as probability

meshgrids

25 / 54

Classification based on features
3. non-linear decision boundary: k-NN algorithm

What if this linear separability does not exists? (courtesy of Andreas Ley & Ronny Hänsch)

• Problem:
⇒ feature space often not linearly separable
⇒ needs non-linear decision boundary

• Classification algorithm:
⇒ k-Nearest-Neighbors (KNN)

1. take random data points in the training dataset
2. for a sample find the k (e.g. 5) closest data points in

the training dataset

3. look at the neighbor labels, return/assign the mode
4. decision boundary can be designed as probability

meshgrids

26 / 54

Classification based on features
3. non-linear decision boundary: k-NN algorithm

What if this linear separability does not exists? (courtesy of Andreas Ley & Ronny Hänsch)

• Problem:
⇒ feature space often not linearly separable
⇒ needs non-linear decision boundary

• Classification algorithm:
⇒ k-Nearest-Neighbors (KNN)

1. take random data points in the training dataset
2. for a sample find the k (e.g. 5) closest data points in

the training dataset
3. look at the neighbor labels, return/assign the mode

4. decision boundary can be designed as probability
meshgrids

27 / 54

Classification based on features
3. non-linear decision boundary: k-NN algorithm

What if this linear separability does not exists? (courtesy of Andreas Ley & Ronny Hänsch)

• Problem:
⇒ feature space often not linearly separable
⇒ needs non-linear decision boundary

• Classification algorithm:
⇒ k-Nearest-Neighbors (KNN)

1. take random data points in the training dataset
2. for a sample find the k (e.g. 5) closest data points in

the training dataset
3. look at the neighbor labels, return/assign the mode
4. decision boundary can be designed as probability

meshgrids

28 / 54

Classification based on features
3. non-linear decision boundary: k-NN algorithm

kNN examples

simple case

k = 1k = 5k = 25

hard case

k = 1k = 5k = 25

29 / 54

Classification based on features
3. non-linear decision boundary: k-NN algorithm

kNN examples

simple case

k = 1

k = 5k = 25 hard case

k = 1

k = 5k = 25

30 / 54

Classification based on features
3. non-linear decision boundary: k-NN algorithm

kNN examples

simple casek = 1

k = 5

k = 25 hard casek = 1

k = 5

k = 25

31 / 54

Classification based on features
3. non-linear decision boundary: k-NN algorithm

kNN examples

simple casek = 1k = 5

k = 25

hard casek = 1k = 5

k = 25

32 / 54

Table of Contents

1. Big picture

2. Classification based on features
1. overview
2. linear decision boundary: toy example
3. non-linear decision boundary: k-NN algorithm

3. Feature extraction (dimension reduction)
1. PCA

33 / 54

Feature extraction (dimension reduction)
1. PCA

Feature extraction:
⇒ handcrafting features is nice, but can we do better?

⇒ find a space where samples from different classes are well separable

Input
(e.g. satellite image)

Feature extraction
(e.g. handcrafted, PCA)

Learning Algorithm
(e.g. SVM)

Output (classification)
(e.g. land-use)

34 / 54

Feature extraction (dimension reduction)
1. PCA

Feature extraction:
⇒ handcrafting features is nice, but can we do better?
⇒ find a space where samples from different classes are well separable

Input
(e.g. satellite image)

Feature extraction
(e.g. handcrafted, PCA)

Learning Algorithm
(e.g. SVM)

Output (classification)
(e.g. land-use)

35 / 54

Feature extraction (dimension reduction)
1. PCA

Feature extraction:
⇒ Principal Component Analysis (PCA) → represent data in a space that best describes the data variation

EX: intuitive representation of PCA (video):
How to take a picture to capture the most information about the teapot?

36 / 54

https://www.youtube.com/watch?v=BfTMmoDFXyE

Feature extraction (dimension reduction)
1. PCA

Feature extraction:
⇒ Principal Component Analysis (PCA) → represent data in a space that best describes the data variation

EX: intuitive representation of PCA (video):
How to take a picture to capture the most information about the teapot?

37 / 54

https://www.youtube.com/watch?v=BfTMmoDFXyE

Feature extraction (dimension reduction)
1. PCA

Feature extraction:
⇒ Principal Component Analysis (PCA) → represent data in a space that best describes the data variation

EX: intuitive representation of PCA (video):
How to take a picture to capture the most information about the teapot?

38 / 54

https://www.youtube.com/watch?v=BfTMmoDFXyE

Feature extraction (dimension reduction)
1. PCA

Feature extraction:
⇒ Principal Component Analysis (PCA) → represent data in a space that best describes the data variation

EX: intuitive representation of PCA (video):
How to take a picture that captures the most information about the teapot?

1st principal component
= 1st “eigen vector”

(longest axis)

2nd principal component
= 2nd “eigen vector”

(2nd longest axis ⊥ to 1st axis)

39 / 54

https://www.youtube.com/watch?v=BfTMmoDFXyE

Feature extraction (dimension reduction)
1. PCA

Feature extraction:
⇒ Principal Component Analysis (PCA) → represent data in a space that best describes the data variation

EX: intuitive representation of PCA (video):
How to take a picture that captures the most information about the teapot?

1st principal component
= 1st “eigen vector”

(longest axis)

2nd principal component
= 2nd “eigen vector”

(2nd longest axis ⊥ to 1st axis)
40 / 54

https://www.youtube.com/watch?v=BfTMmoDFXyE

Feature extraction (dimension reduction)
1. PCA

Feature extraction:
⇒ Principal Component Analysis (PCA) → represent data in a space that best describes the data variation

⇒ PCA can be used to reduce data dimensions → will reduce computational load of the classifier

41 / 54

Feature extraction (dimension reduction)
1. PCA

PCA toy example (inspired by this post)

We have several wine bottles in our cellar, described by different features: alcohol, color, etc.
However many features will measure related properties, and so will be redundant.

⇒ PCA allows to summarize each wine with fewer characteristics
⇒ reduce data dimensions

⇒ PCA does not select some features and discards others,
instead it defines new features (using linear combinations of available features)

which will best represent wine variability

How?

42 / 54

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

Feature extraction (dimension reduction)
1. PCA

PCA toy example (inspired by this post)

We have several wine bottles in our cellar, described by different features: alcohol, color, etc.
However many features will measure related properties, and so will be redundant.

⇒ PCA allows to summarize each wine with fewer characteristics
⇒ reduce data dimensions

⇒ PCA does not select some features and discards others,
instead it defines new features (using linear combinations of available features)

which will best represent wine variability

How?

43 / 54

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

Feature extraction (dimension reduction)
1. PCA

PCA toy example (inspired by this post)

We have several wine bottles in our cellar, described by different features: alcohol, color, etc.
However many features will measure related properties, and so will be redundant.

⇒ PCA allows to summarize each wine with fewer characteristics
⇒ reduce data dimensions

⇒ PCA does not select some features and discards others,
instead it defines new features (using linear combinations of available features)

which will best represent wine variability

How?

44 / 54

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

Feature extraction (dimension reduction)
1. PCA

PCA toy example (inspired by this post)

We have several wine bottles in our cellar, described by different features: alcohol, color, etc.
However many features will measure related properties, and so will be redundant.

⇒ PCA allows to summarize each wine with fewer characteristics
⇒ reduce data dimensions

⇒ PCA does not select some features and discards others,
instead it defines new features (using linear combinations of available features)

which will best represent wine variability

How?
45 / 54

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

Feature extraction (dimension reduction)
1. PCA

Consider 2 correlated features x and y :

⇒ a new “feature” (red dots •) can be constructed by
drawing a line through the cloud and projecting all points
onto it
⇒ linear combination w1x + w2y
⇒ PCA will find the “best” line according to 2 criteria:

• maximum variance of the red dots (i.e., spread along
black line)

• minimum distance to black line (i.e., length of red
lines)

⇒ “best” line = 1st principal component
⇒ we can project the data on the principal components, and
thereby reduce dimensionality
NB: if only one eigenvector was kept, the transformed data would have only one
dimension

46 / 54

Feature extraction (dimension reduction)
1. PCA

Consider 2 correlated features x and y :

⇒ a new “feature” (red dots •) can be constructed by
drawing a line through the cloud and projecting all points
onto it

⇒ linear combination w1x + w2y
⇒ PCA will find the “best” line according to 2 criteria:

• maximum variance of the red dots (i.e., spread along
black line)

• minimum distance to black line (i.e., length of red
lines)

⇒ “best” line = 1st principal component
⇒ we can project the data on the principal components, and
thereby reduce dimensionality
NB: if only one eigenvector was kept, the transformed data would have only one
dimension

47 / 54

Feature extraction (dimension reduction)
1. PCA

Consider 2 correlated features x and y :

⇒ a new “feature” (red dots •) can be constructed by
drawing a line through the cloud and projecting all points
onto it
⇒ linear combination w1x + w2y

⇒ PCA will find the “best” line according to 2 criteria:
• maximum variance of the red dots (i.e., spread along

black line)
• minimum distance to black line (i.e., length of red

lines)

⇒ “best” line = 1st principal component
⇒ we can project the data on the principal components, and
thereby reduce dimensionality
NB: if only one eigenvector was kept, the transformed data would have only one
dimension

48 / 54

Feature extraction (dimension reduction)
1. PCA

Consider 2 correlated features x and y :

⇒ a new “feature” (red dots •) can be constructed by
drawing a line through the cloud and projecting all points
onto it
⇒ linear combination w1x + w2y
⇒ PCA will find the “best” line according to 2 criteria:

• maximum variance of the red dots (i.e., spread along
black line)

• minimum distance to black line (i.e., length of red
lines)

⇒ “best” line = 1st principal component
⇒ we can project the data on the principal components, and
thereby reduce dimensionality
NB: if only one eigenvector was kept, the transformed data would have only one
dimension

NB: the above animation will only run with PDF readers having built-in JavaScript engine (ex: Adobe Reader, recent versions of Okular, etc.)
49 / 54

Feature extraction (dimension reduction)
1. PCA

Consider 2 correlated features x and y :

⇒ a new “feature” (red dots •) can be constructed by
drawing a line through the cloud and projecting all points
onto it
⇒ linear combination w1x + w2y
⇒ PCA will find the “best” line according to 2 criteria:

• maximum variance of the red dots (i.e., spread along
black line)

• minimum distance to black line (i.e., length of red
lines)

⇒ “best” line = 1st eigenvector = 1st principal component

⇒ we can project the data on the principal components, and
thereby reduce dimensionality
NB: if only one eigenvector was kept, the transformed data would have only one
dimension

50 / 54

Feature extraction (dimension reduction)
1. PCA

Consider 2 correlated features x and y :

⇒ a new “feature” (red dots •) can be constructed by
drawing a line through the cloud and projecting all points
onto it
⇒ linear combination w1x + w2y
⇒ PCA will find the “best” line according to 2 criteria:

• maximum variance of the red dots (i.e., spread along
black line)

• minimum distance to black line (i.e., length of red
lines)

⇒ “best” line = 1st eigenvector = 1st principal component

⇒ we can project the data on the principal components, and
thereby reduce dimensionality
NB: if only one eigenvector was kept, the transformed data would have only one
dimension

51 / 54

Feature extraction (dimension reduction)
1. PCA

⇒ PCA implementation steps (video link):

52 / 54

https://www.youtube.com/watch?v=QP43Iy-QQWY

Feature extraction (dimension reduction)
1. PCA

EXERCICE:
PCA analysis on satellite image crops

53 / 54

Feature extraction (dimension reduction)
1. PCA

Math reminders

variance σ
2 = measure of the “spread” or “extent” of the data about some particular axis

= average of the squared differences from the mean
= square of standard deviation (σ)

varx =

∑N
i=1

(xi − x̄)2

N

vary =

∑N
i=1

(yi − ȳ)2

N

covariance = measure the level to which two variables vary together.” of the joint variability of two random variables

covx,y =

∑N
i=1

(xi − x̄)(yi − ȳ)

N − 1

covariance matrix =
[

varx covx,y
covx,y vary

]

54 / 54

	Big picture
	Classification based on features
	overview
	linear decision boundary: toy example
	non-linear decision boundary: k-NN algorithm

	Feature extraction (dimension reduction)
	PCA

	anm0:
	anm1:

