Machine Learning 2/3

Lecture 08

Computer Vision for Geosciences

2021-04-30

2. Classification based on features

- 1. overview
- 2. linear decision boundary: toy example
- 3. non-linear decision boundary: k-NN algorithm
- 3. Feature extraction (dimension reduction) 1. PCA

2. Classification based on features

- 1. overview
- 2. linear decision boundary: toy example
- 3. non-linear decision boundary: k-NN algorithm

3. Feature extraction (dimension reduction) 1. PCA

Pinpoint "hot" words

Artificial Intelligence

broad concept, whereby machine mimics human behaviour

Pinpoint "hot" words

Artificial Intelligence

broad concept, whereby machine mimics human behaviour

Machine Learning (a.k.a. Statistical Learning, Classical Learning) subset of AI which uses **statistical** methods (features are designed by the user)

Pinpoint "hot" words

Artificial Intelligence

broad concept, whereby machine mimics human behaviour

Machine Learning (a.k.a. Statistical Learning, Classical Learning) subset of AI which uses **statistical** methods (features are designed by the user)

Deep Learning (a.k.a. Modern Machine Learning) subset of ML, which uses **multi-layered neural networks** (features are learned by the network)

Pinpoint "hot" words

Artificial Intelligence

broad concept, whereby machine mimics human behaviour

Machine Learning (a.k.a. Statistical Learning, Classical Learning) subset of AI which uses **statistical** methods (features are designed by the user)

Deep Learning (a.k.a. Modern Machine Learning) subset of ML, which uses **multi-layered neural networks** (features are learned by the network)

ML: lectures 07, 08 (today), 09 DL: lectures 10, 11, 12 Machine Learning is a huge (and growing) field!

source

Machine Learning is a huge (and growing) field!

source

Machine Learning is a huge (and growing) field!

source

What we will introduce in the ML lectures:

- Learning algorithm is presented inputs and desired outputs: training data D = (in, out)
- ► Goal: learn a general rule f that maps inputs to outputs f(in) = out
- ⇒ Regression task: out is a continuous number e.g. linear regression, polynomial regression
- ⇒ Classification task: out is a nominal number (class label) e.g. kNN, SVM, Logistic Regression

- ▶ No training data is given to the learning algorithm
- \blacktriangleright Goal: find structure data, discover hidden patterns, learn features
- $\Rightarrow \frac{\text{Dimension reduction}}{\rightarrow \text{ also used to craft features}}$
- \Rightarrow Clustering task, e.g. K-means

2. Classification based on features

- 1. overview
- 2. linear decision boundary: toy example
- 3. non-linear decision boundary: k-NN algorithm
- 3. Feature extraction (dimension reduction) 1. PCA

Classification task

Goal:

Learn the mapping between low level features, and high level information (e.g. semantic classes)

NB: "features" is here used in a broad sense, not the "descriptors" introduced in lecture 06 (e.g. HOG, SIFT)

- Steps:
 - 1. features extraction (e.g. handcrafted, PCA)
 - 2. learning algorithm (e.g. SVM)

Task:

 \Rightarrow classify fruit images into either bananas or apples

Task:

 \Rightarrow classify fruit images into either bananas or apples

• Features (hand-crafted):

 \Rightarrow Hue (yellow to red) & Elongation (max/min extent)

Task:

 \Rightarrow classify fruit images into either bananas or apples

• Features (hand-crafted):

 \Rightarrow Hue (yellow to red) & Elongation (max/min extent)

 \Rightarrow representation of input data in 2D feature space

Task:

 \Rightarrow classify fruit images into either bananas or apples

• Features (hand-crafted):

⇒ Hue (yellow to red) & Elongation (max/min extent) ⇒ representation of input data in 2D feature space ⇒ can we "learn" which part of the feature space is bananas/apples?

Task:

 \Rightarrow classify fruit images into either bananas or apples

Features (hand-crafted):

⇒ Hue (yellow to red) & Elongation (max/min extent) ⇒ representation of input data in 2D feature space ⇒ can we "learn" which part of the feature space is bananas/apples?

Learning algorithm:

 \Rightarrow simple idea: split feature space into two half spaces

Task:

 \Rightarrow classify fruit images into either bananas or apples

Features (hand-crafted):

⇒ Hue (yellow to red) & Elongation (max/min extent) ⇒ representation of input data in 2D feature space ⇒ can we "learn" which part of the feature space is bananas/apples?

Learning algorithm:

 \Rightarrow simple idea: split feature space into two half spaces \Rightarrow classify data based on linear decision boundary

Task:

 \Rightarrow classify fruit images into either bananas or apples

Features (hand-crafted):

⇒ Hue (yellow to red) & Elongation (max/min extent) ⇒ representation of input data in 2D feature space ⇒ can we "learn" which part of the feature space is bananas/apples?

Learning algorithm:

 \Rightarrow simple idea: split feature space into two half spaces \Rightarrow classify data based on linear decision boundary

 $\Rightarrow \underline{\mathsf{perceptron}}: \quad y = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$

- $y \in \{-1, 1\}$: predicted class \rightarrow banana or apple
- $\mathbf{x} \in \mathbb{R}^2$: feature vector \rightarrow [hue, elongation]
- $\mathbf{w} \in \mathbb{R}^2$: "weight vector" \rightarrow needs to be learned
- $b \in \mathbb{R}$: "bias" ightarrow needs to be learned
- sign: sign function returning the sign of a real number

Task:

 \Rightarrow classify fruit images into either bananas or apples

Features (hand-crafted):

⇒ Hue (yellow to red) & Elongation (max/min extent) ⇒ representation of input data in 2D feature space ⇒ can we "learn" which part of the feature space is bananas/apples?

Learning algorithm:

 \Rightarrow simple idea: split feature space into two half spaces \Rightarrow classify data based on linear decision boundary

 $\Rightarrow \underline{\text{perceptron}}: \quad y = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$

- $y \in \{-1, 1\}$: predicted class \rightarrow banana or apple
- $\mathbf{x} \in \mathbb{R}^2$: feature vector \rightarrow [hue, elongation]
- $\mathbf{w} \in \mathbb{R}^2$: "weight vector" \rightarrow needs to be learned
- $b \in \mathbb{R}$: "bias" ightarrow needs to be learned
- sign: sign function returning the sign of a real number

Problem:

 \Rightarrow feature space often not linearly separable

- Problem:
 - \Rightarrow feature space often not linearly separable
 - \Rightarrow needs non-linear decision boundary

- Problem:
 - \Rightarrow feature space often not linearly separable
 - \Rightarrow needs non-linear decision boundary
- Classification algorithm:
 - \Rightarrow k-Nearest-Neighbors (KNN)

Problem:

 \Rightarrow feature space often not linearly separable

 \Rightarrow needs non-linear decision boundary

- Classification algorithm:
 - \Rightarrow k-Nearest-Neighbors (KNN)
 - $1. \ take random data points in the training dataset$

Problem:

- \Rightarrow feature space often not linearly separable
- \Rightarrow needs non-linear decision boundary
- Classification algorithm:
 - \Rightarrow k-Nearest-Neighbors (KNN)
 - 1. take random data points in the training dataset
 - 2. for a sample find the k (e.g. 5) closest data points in the training dataset

Problem:

- \Rightarrow feature space often not linearly separable
- \Rightarrow needs non-linear decision boundary

Classification algorithm:

- \Rightarrow k-Nearest-Neighbors (KNN)
 - 1. take random data points in the training dataset
 - 2. for a sample find the k (e.g. 5) closest data points in the training dataset
 - 3. look at the neighbor labels, return/assign the mode

Problem:

- \Rightarrow feature space often not linearly separable
- \Rightarrow needs non-linear decision boundary

Classification algorithm:

- ⇒ k-Nearest-Neighbors (KNN)
 - 1. take random data points in the training dataset
 - 2. for a sample find the k (e.g. 5) closest data points in the training dataset
 - 3. look at the neighbor labels, return/assign the mode
 - 4. decision boundary can be designed as probability meshgrids

 $\mathsf{k}=1$

 $\mathsf{k} = 1$

k = 5

k=5

$$k = 25$$

$$k = 25$$

2. Classification based on features

- 1. overview
- 2. linear decision boundary: toy example
- 3. non-linear decision boundary: k-NN algorithm

3. Feature extraction (dimension reduction) 1. PCA

Feature extraction:

 \Rightarrow handcrafting features is nice, but can we do better?

Feature extraction:

- \Rightarrow handcrafting features is nice, but can we do better?
- \Rightarrow find a space where samples from different classes are well separable

 \Rightarrow Principal Component Analysis (PCA) \rightarrow represent data in a space that best describes the data variation

 \Rightarrow Principal Component Analysis (PCA) \rightarrow represent data in a space that best describes the data variation

How to take a picture to capture the most information about the teapot?

 \Rightarrow Principal Component Analysis (PCA) \rightarrow represent data in a space that best describes the data variation

EX: intuitive representation of PCA (video):

How to take a picture to capture the most information about the teapot?

 \Rightarrow Principal Component Analysis (PCA) \rightarrow represent data in a space that best describes the data variation

EX: intuitive representation of PCA (video): How to take a picture that captures the most information about the teapot?

 \Rightarrow Principal Component Analysis (PCA) \rightarrow represent data in a space that best describes the data variation

EX: intuitive representation of PCA (video): How to take a picture that captures the most information about the teapot?

Feature extraction:

- \Rightarrow Principal Component Analysis (PCA) \rightarrow represent data in a space that best describes the data variation
- \Rightarrow PCA can be used to reduce data dimensions \rightarrow will reduce computational load of the classifier

PCA toy example (inspired by this post)

We have several wine bottles in our cellar, described by different *features*: alcohol, color, etc. However many features will measure related properties, and so will be redundant.

		alcohol	malic_acid	ash	alcalinity_of_ash	magneslum	total_phenois	flavanoids	nonflavanoid_phenois	proanthocyanins	color_intensity	hue
	0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04
	1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05
	2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03
	3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86
	4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04
For the state of t												

PCA toy example (inspired by this post)

We have several wine bottles in our cellar, described by different <u>features</u>: alcohol, color, etc. However many features will measure related properties, and so will be redundant.

		alcohol	malic_acid	ash	alcalinity_of_ash	magneslum	total_phenois	flavanoids	nonflavanoid_phenois	proanthocyanins	color_intensity	hue
₽₽₽₽₽ ₽ ₽	0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04
	1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05
	2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03
	3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86
	4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04
the set of												

 $\Rightarrow \underline{\mathsf{PCA}} \text{ allows to summarize each wine with fewer characteristics}} \\ \Rightarrow \underline{\mathsf{reduce data dimensions}}$

PCA toy example (inspired by this post)

We have several wine bottles in our cellar, described by different <u>features</u>: alcohol, color, etc. However many features will measure related properties, and so will be redundant.

		alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenois	flavanoids	nonflavanoid_phenois	proanthocyanins	color_Intensity	hue
	0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04
	1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05
	2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03
	3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86
	4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04

 $\Rightarrow \frac{\text{PCA allows to summarize each wine with fewer characteristics}}{\Rightarrow \frac{\text{reduce data dimensions}}{\text{reduce data dimensions}}$

 $\Rightarrow \mathsf{PCA} \text{ does } \textit{not} \text{ select some features and discards others,} \\ \text{instead it } \frac{\text{defines new features}}{\text{which will best represent wine variability}}$

PCA toy example (inspired by this post)

We have several wine bottles in our cellar, described by different <u>features</u>: alcohol, color, etc. However many features will measure related properties, and so will be redundant.

		alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenois	flavanoids	nonflavanoid_phenois	proanthocyanins	color_intensity	hue
	0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04
	1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05
	2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03
	3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86
	4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04

 $\Rightarrow \frac{\text{PCA allows to summarize each wine with fewer characteristics}}{\Rightarrow \frac{\text{reduce data dimensions}}{\text{reduce data dimensions}}$

⇒ PCA does *not* select some features and discards others, instead it <u>defines new features</u> (using linear combinations of available features) which will best represent wine variability

How?

 \Rightarrow a <u>new "feature"</u> (red dots •) can be constructed by drawing a line through the cloud and projecting all points onto it

 \Rightarrow a <u>new "feature"</u> (red dots •) can be constructed by drawing a line through the cloud and projecting all points onto it

 \Rightarrow linear combination $w_1x + w_2y$

 \Rightarrow a <u>new "feature"</u> (red dots •) can be constructed by drawing a line through the cloud and projecting all points onto it

- \Rightarrow <u>linear combination</u> $w_1x + w_2y$
- \Rightarrow PCA will find the "best" line according to 2 criteria:
 - maximum <u>variance</u> of the red dots (i.e., spread along black line)
 - minimum <u>distance</u> to black line (i.e., length of red lines)

- \Rightarrow a <u>new "feature"</u> (red dots \bullet) can be constructed by drawing a line through the cloud and projecting all points onto it
- \Rightarrow <u>linear combination</u> $w_1x + w_2y$
- \Rightarrow PCA will find the "best" line according to 2 criteria:
 - maximum <u>variance</u> of the red dots (i.e., spread along black line)
 - minimum <u>distance</u> to black line (i.e., length of red lines)
- \Rightarrow "best" line = 1st eigenvector = 1st principal component

 \Rightarrow a <u>new "feature"</u> (red dots \bullet) can be constructed by drawing a line through the cloud and projecting all points onto it

- \Rightarrow <u>linear combination</u> $w_1x + w_2y$
- \Rightarrow PCA will find the "best" line according to 2 criteria:
 - maximum <u>variance</u> of the red dots (i.e., spread along black line)
 - minimum <u>distance</u> to black line (i.e., length of red lines)

 \Rightarrow "best" line = 1st eigenvector = 1st principal component

 \Rightarrow we can project the data on the principal components, and thereby reduce dimensionality

 $\underline{\text{NB}}$: if only one eigenvector was kept, the transformed data would have only one dimension

51/54

\Rightarrow PCA implementation steps (video link):

EXERCICE: PCA analysis on satellite image crops

Math reminders

variance σ^2 = measure of the "spread" or "extent" of the data about some particular axis

- = average of the squared differences from the mean
- = square of standard deviation (σ)

$$var_{x} = rac{\sum_{i=1}^{N} (x_{i} - ar{x})^{2}}{N}$$

 $var_{y} = rac{\sum_{i=1}^{N} (y_{i} - ar{y})^{2}}{N}$

covariance = measure the level to which two variables vary together." of the joint variability of two random variables

$$cov_{x,y} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{N - 1}$$

$$covariance matrix = \begin{bmatrix} var_x & cov_{x,y} \\ cov_{x,y} & var_y \end{bmatrix}$$