Machine Learning 3/3

Lecture 09

Computer Vision for Geosciences

2021-05-07

1. Recap Principal Component Analisis (PCA)

- 1. toy example
- 2. Sentinel-2 example

2. Support Vector Machine (SVM)

- 1. description
- 2. application examples

1. Recap Principal Component Analisis (PCA)

- 1. toy example
- 2. Sentinel-2 example

2. Support Vector Machine (SVM)

- 1. description
- 2. application examples

PCA toy example

We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality. Which features best define it, are there related features (i.e. covariant) which are redundent?

PCA toy example

We have several wine bottles in our cellar, 11 <u>features</u> (alcohol, acidity, etc.) describe its <u>quality</u>. Which features best define it, are there related features (i.e. covariant) which are redundent?

 $\Rightarrow \frac{\text{PCA allows to summarize each wine with fewer characteristics}}{\Rightarrow \text{ reduce data dimensions}}$

PCA toy example

We have several wine bottles in our cellar, 11 <u>features</u> (alcohol, acidity, etc.) describe its <u>quality</u>. Which features best define it, are there related features (i.e. covariant) which are redundent?

 $\Rightarrow \frac{\text{PCA allows to summarize each wine with fewer characteristics}}{\Rightarrow \frac{\text{reduce data dimensions}}{\text{reduce data dimensions}}$

 $\Rightarrow \mathsf{PCA} \text{ does } \textit{not} \text{ select some features and discards others,} \\ \text{instead it } \frac{\text{defines new features}}{\text{which will best represent wine variability}}$

(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

 \rightarrow low variance (dispersion) of the data along the 2nd eigenvector \Rightarrow the 2 original features (var x, var y) could be reduced to 1 feature, i.e. the projection on the 1st eigenvector

\Rightarrow Do the same with the 11 features

 \rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

\Rightarrow Do the same with the 11 features

 \rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

 $\underline{Q1}$: How much data variance is explained by each principal component (eigenvector)?

\Rightarrow Do the same with the 11 features

 \rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

<u>Q1</u>: How much data variance is explained by each principal component (eigenvector)?

\Rightarrow Do the same with the 11 features

 \rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

<u>Q1</u>: How much data variance is explained by each principal component (eigenvector)? <u>Q2</u>: How do the 11 eigenvectors (PCs) relate to the original feature space?

	0	1	2	3	4	5	6	7	8	9	10
0	0.489314	-0.238584	0.463632	0.146107	0.212247	-0.036158	0.023575	0.395353	-0.438520	0.242921	-0.113232
1	-0.110503	0.274930	-0.151791	0.272080	0.148052	0.513567	0.569487	0.233575	0.006711	-0.037554	-0.386181
2	-0.123302	-0.449963	0.238247	0.101283	-0.092614	0.428793	0.322415	-0.338871	0.057697	0.279786	0.471673
3	-0.229617	0.078960	-0.079418	-0.372793	0.666195	-0.043538	-0.034577	-0.174500	-0.003788	0.550872	-0.122181
4	-0.082614	0.218735	-0.058573	0.732144	0.246501	-0.159152	-0.222465	0.157077	0.267530	0.225962	0.350681
5	0.101479	0.411449	0.069593	0.049156	0.304339	-0.014000	0.136308	-0.391152	-0.522116	-0.381263	0.361645
6	-0.350227	-0.533735	0.105497	0.290663	0.370413	-0.116596	-0.093662	-0.170481	-0.025138	-0.447469	-0.327651
7	-0.177595	-0.078775	-0.377516	0.299845	-0.357009	-0.204781	0.019036	-0.239223	-0.561391	0.374604	-0.217626
8	-0.194021	0.129110	0.381450	-0.007523	-0.111339	-0.635405	0.592116	-0.020719	0.167746	0.058367	-0.037603
9	-0.249523	0.365925	0.621677	0.092872	-0.217671	0.248483	-0.370750	-0.239990	-0.010970	0.112320	-0.303015
10	0.639691	0.002389	-0.070910	0.184030	0.053065	-0.051421	0.068702	-0.567332	0.340711	0.069555	-0.314526

\Rightarrow Do the same with the 11 features

 \rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

<u>Q1</u>: How much data variance is explained by each principal component (eigenvector)? <u>Q2</u>: How do the 11 eigenvectors (PCs) relate to the original feature space?

	0	1	2	3	4	5	6	7	8	9	10	
0	0.489314	-0.238584	0.463632	0.146107	0.212247	-0.036158	0.023575	0.395353	-0.438520	0.242921	-0.113232	Principal Component
1	-0.110503	0.274930	-0.151791	0.272080	0.148052	0.513567	0.569487	0.233575	0.006711	-0.037554	-0.386181	
2	-0.123302	-0.449963	0.238247	0.101283	-0.092614	0.428793	0.322415	-0.338871	0.057697	0.279786	0.471673	
3	-0.229617	0.078960	-0.079418	-0.372793	0.666195	-0.043538	-0.034577	-0.174500	-0.003788	0.550872	-0.122181	
4	-0.082614	0.218735	-0.058573	0.732144	0.246501	-0.159152	-0.222465	0.157077	0.267530	0.225962	0.350681	
5	0.101479	0.411449	0.069593	0.049156	0.304339	-0.014000	0.136308	-0.391152	-0.522116	-0.381263	0.361645	
6	-0.350227	-0.533735	0.105497	0.290663	0.370413	-0.116596	-0.093662	-0.170481	-0.025138	-0.447469	-0.327651	
7	-0.177595	-0.078775	-0.377516	0.299845	-0.357009	-0.204781	0.019036	-0.239223	-0.561391	0.374604	-0.217626	
8	-0.194021	0.129110	0.381450	-0.007523	-0.111339	-0.635405	0.592116	-0.020719	0.167746	0.058367	-0.037603	
9	-0.249523	0.365925	0.621677	0.092872	-0.217671	0.248483	-0.370750	-0.239990	-0.010970	0.112320	-0.303015	
10	0.639691	0.002389	-0.070910	0.184030	0.053065	-0.051421	0.068702	-0.567332	0.340711	0.069555	-0.314526	

PC 1 = 0.49*feature0 + -0.24*feature1 + 0.46*feature2 + 0.15*feature3 + 0.21*feature4 + -0.04*feature5 + 0.02*feature6 + 0.40*feature7 + -0.44*feature8 + 0.24*feature9 + -0.11*feature10

\Rightarrow Do the same with the 11 features

 \rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?

 $\overline{Q2}$: How do the 11 eigenvectors (PCs) relate to the original feature space?

 $\overline{Q3}$: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

\Rightarrow Do the same with the 11 features

ightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?

 $\overline{Q2}$: How do the 11 eigenvectors (PCs) relate to the original feature space?

 $\overline{Q3}$: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (classification task using KNN):

- using 11 original features \Rightarrow accuracy = 0.79
- using 6 first principal components \Rightarrow accuracy = 0.78

\Rightarrow Do the same with the 11 features

ightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?

 $\overline{Q2}$: How do the 11 eigenvectors (PCs) relate to the original feature space?

 $\overline{Q3}$: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (classification task using KNN):

- using 11 original features \Rightarrow accuracy = 0.79
- using 6 first principal components \Rightarrow accuracy = 0.78

 $\Rightarrow \frac{PCA \text{ can successfully reduce data dimensionality,}}{\text{ and achieve (almost) the same prediction accuracy with fewer features}}$

\Rightarrow Do the same with the 11 features

ightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?

 $\overline{Q2}$: How do the 11 eigenvectors (PCs) relate to the original feature space?

 $\overline{Q3}$: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (classification task using KNN):

- using 11 original features \Rightarrow accuracy = 0.79
- using 6 first principal components \Rightarrow accuracy = 0.78

 $\Rightarrow \frac{\text{PCA can successfully reduce data dimensionality,}}{(\text{almost}) \text{ the same prediction accuracy with fewer features}}$

 \Rightarrow how about using PCA on images?

 \rightarrow Sentinel-2 example: reduce a space with 20,000×4×15×15 pixels (900 dimensions)

$\textbf{Sentinel-2 example} \Rightarrow \textsf{apply PCA on satellite image crops}$

= (scalar) * (4,15,15) = (4,5,15)

$\textbf{Sentinel-2 example} \Rightarrow \textsf{apply PCA on satellite image crops}$

- k-Nearest Neighbor (kNN) (last week lecture)
 - \Rightarrow label images by comparing them to (annotated) images from the training set
 - \Rightarrow disadvantages:
 - classifier needs to keep all training data for future comparisons with the test data
 - \rightarrow inefficient when datasets become very large (\geq GB)
 - classifying a test image is expensive since it requires a comparison to all training images
- Support Vector Machines (this week lecture)
 - \Rightarrow parametric linear classification method
 - \Rightarrow advantages:
 - once the parameters are learnt, training data can be discarded
 - classification (prediction) for a new test image is fast
 → simple matrix multiplication with learned weights,
 not an exhaustive comparison to every single training data
- <u>Convolutional Neural Networks</u> (coming weeks)

 \Rightarrow CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters

- \Rightarrow advantages: very powerful
- \Rightarrow disadvantages: needs LOTS of data!

- k-Nearest Neighbor (kNN) (last week lecture)
 - \Rightarrow label images by comparing them to (annotated) images from the training set
 - \Rightarrow disadvantages:
 - classifier needs to keep all training data for future comparisons with the test data
 - \rightarrow inefficient when datasets become very large (\geq GB)
 - classifying a test image is expensive since it requires a comparison to all training images
- Support Vector Machines (this week lecture)
 - \Rightarrow parametric linear classification method
 - \Rightarrow advantages:
 - once the parameters are learnt, training data can be discarded
 - classification (prediction) for a new test image is fast → simple matrix multiplication with learned weights, not an exhaustive comparison to every single training data
- Convolutional Neural Networks (coming weeks)
 - \Rightarrow CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
 - \Rightarrow advantages: very powerful
 - \Rightarrow disadvantages: needs LOTS of data!

- k-Nearest Neighbor (kNN) (last week lecture)
 - \Rightarrow label images by comparing them to (annotated) images from the training set
 - \Rightarrow disadvantages:
 - classifier needs to keep all training data for future comparisons with the test data
 - \rightarrow inefficient when datasets become very large (\geq GB)
 - classifying a test image is expensive since it requires a comparison to all training images
- Support Vector Machines (this week lecture)
 - \Rightarrow parametric linear classification method
 - \Rightarrow advantages:
 - once the parameters are learnt, training data can be discarded
 - classification (prediction) for a new test image is fast → simple matrix multiplication with learned weights, not an exhaustive comparison to every single training data
- Convolutional Neural Networks (coming weeks)
 - \Rightarrow CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
 - \Rightarrow advantages: very powerful
 - \Rightarrow disadvantages: needs LOTS of data!

- k-Nearest Neighbor (kNN) (last week lecture)
 - \Rightarrow label images by comparing them to (annotated) images from the training set
 - \Rightarrow disadvantages:
 - classifier needs to keep all training data for future comparisons with the test data
 - \rightarrow inefficient when datasets become very large (\geq GB)
 - classifying a test image is expensive since it requires a comparison to all training images
- Support Vector Machines (this week lecture)
 - \Rightarrow parametric linear classification method
 - \Rightarrow advantages:
 - once the parameters are learnt, training data can be discarded
 - classification (prediction) for a new test image is fast → simple matrix multiplication with learned weights, not an exhaustive comparison to every single training data
- Convolutional Neural Networks (coming weeks)
 - \Rightarrow CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
 - \Rightarrow advantages: very powerful
 - \Rightarrow disadvantages: needs LOTS of data!

1. Recap Principal Component Analisis (PCA)

- 1. toy example
- 2. Sentinel-2 example

2. Support Vector Machine (SVM)

- 1. description
- 2. application examples

Support Vector Machine (SVM) 1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

Recap from Lecture 08

Task:

 \Rightarrow classify fruit images into either bananas or apples

Support Vector Machine (SVM) 1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

Recap from Lecture 08

Task:

 \Rightarrow classify fruit images into either bananas or apples

• Features (hand-crafted):

 \Rightarrow Hue (yellow to red) & Elongation (max/min extent)

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

Recap from Lecture 08

Task:

 \Rightarrow classify fruit images into either bananas or apples

• Features (hand-crafted):

 \Rightarrow Hue (yellow to red) & Elongation (max/min extent)

 \Rightarrow representation of input data in 2D feature space

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

Recap from Lecture 08

Hue

Task:

 \Rightarrow classify fruit images into either bananas or apples

Features (hand-crafted):

⇒ Hue (yellow to red) & Elongation (max/min extent) ⇒ representation of input data in 2D feature space ⇒ can we "learn" which part of the feature space is bananas/apples?

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

Recap from Lecture 08

 \Rightarrow classify fruit images into either bananas or apples

Features (hand-crafted):

⇒ Hue (yellow to red) & Elongation (max/min extent) ⇒ representation of input data in 2D feature space ⇒ can we "learn" which part of the feature space is bananas/apples?

Learning algorithm:

 \Rightarrow simple idea: split feature space into two half spaces

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

Recap from Lecture 08

 \Rightarrow classify fruit images into either bananas or apples

Features (hand-crafted):

⇒ Hue (yellow to red) & Elongation (max/min extent)
 ⇒ representation of input data in 2D feature space
 ⇒ can we "learn" which part of the feature space is bananas/apples?

Learning algorithm:

 \Rightarrow simple idea: split feature space into two half spaces \Rightarrow classify data based on linear decision boundary

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

Recap from Lecture 08

 \Rightarrow classify fruit images into either bananas or apples

• Features (hand-crafted):

⇒ Hue (yellow to red) & Elongation (max/min extent) ⇒ representation of input data in 2D feature space ⇒ can we "learn" which part of the feature space is bananas/apples?

Learning algorithm:

 \Rightarrow simple idea: split feature space into two half spaces \Rightarrow classify data based on linear decision boundary

 $\Rightarrow \underline{\text{perceptron}}: \quad y = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$

- $y \in \{-1, 1\}$: predicted class \rightarrow banana or apple
- $\mathbf{x} \in \mathbb{R}^2$: feature vector \rightarrow [hue, elongation]
- $\mathbf{w} \in \mathbb{R}^2$: "weight vector" \rightarrow needs to be learned
- $b \in \mathbb{R}$: "bias" ightarrow needs to be learned
- sign: sign function returning the sign of a real number

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron:
$$y = sign(\mathbf{w}^T \mathbf{x} + b)$$

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron:
$$y = sign(\mathbf{w}^T \mathbf{x} + b)$$

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron:
$$y = sign(\mathbf{w}^T \mathbf{x} + b)$$

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron:
$$y = sign(\mathbf{w}^T \mathbf{x} + b)$$

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron:
$$y = sign(\mathbf{w}^T \mathbf{x} + b)$$

perceptron:
$$y = sign(\mathbf{w}^T \mathbf{x} + b)$$

- Best decision boundary (hyperplane)?
 - \Rightarrow multiple "good" boundaries
 - $\Rightarrow \mathsf{optimal} \ \mathsf{hyperplane}$
 - = boundary with the maximal margin
 - = perceptron of maximal stability to new inputs

perceptron:
$$y = sign(\mathbf{w}^T \mathbf{x} + b)$$

- Best decision boundary (hyperplane)?
 - \Rightarrow multiple "good" boundaries
 - $\Rightarrow \mathsf{optimal} \ \mathsf{hyperplane}$
 - = boundary with the maximal margin
 - = perceptron of maximal stability to new inputs
 - $\Rightarrow \underline{\text{margin}} = \frac{2}{||w||}$

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron:
$$y = sign(\mathbf{w}^T \mathbf{x} + b)$$

- Best decision boundary (hyperplane)?
 - \Rightarrow multiple "good" boundaries
 - \Rightarrow optimal hyperplane
 - = boundary with the maximal margin
 - = perceptron of maximal stability to new inputs
 - $\Rightarrow \underline{\text{margin}} = \frac{2}{||w||}$
 - \Rightarrow support vector points = points closest to the hyperplane

(only these points are contributing to the result, other points are not)

- How can this best boundary be "learned"?
 - i.e. learn the linear classifier parameters (\mathbf{w}, \mathbf{b})

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{How can this best boundary be "learned"}?\\ \hline {i.e. learn the linear classifier parameters (w, b)} \\ \Rightarrow \mbox{ maximize margin } \frac{2}{||w||} \\ \Leftrightarrow \mbox{ max } \frac{2}{||w||}, \mbox{ subject to } \begin{cases} w^T \mathbf{x}_i + b \geq 1 & \mbox{if } y_i = +1 \\ w^T \mathbf{x}_i + b \leq 1 & \mbox{if } y_i = -1 \end{cases} \end{array}$

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

How can this best boundary be "learned"? i.e. learn the linear classifier parameters (\mathbf{w} , b) $\Rightarrow \underline{\text{maximize margin}} \frac{2}{||w||}$ $\Leftrightarrow \max_{w} \frac{2}{||w||}$, subject to $\begin{cases} w^T \mathbf{x}_i + b \ge 1 & \text{if } y_i = +1 \\ w^T \mathbf{x}_i + b \le 1 & \text{if } y_i = -1 \end{cases}$ which is equivalent to: $\Leftrightarrow \min_{w} ||w||^2$, subject to $y_i(w^T \mathbf{x}_i - b) \ge 1$

- $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{How can this best boundary be "learned"?} \\ \hline \mbox{i.e. learn the linear classifier parameters (w, b)} \\ \Rightarrow \mbox{ maximize margin } \frac{2}{||w||} \\ \Leftrightarrow \mbox{ max } \frac{2}{||w||}, \mbox{ subject to } \begin{cases} w^T \mathbf{x}_i + b \geq 1 & \mbox{if } y_i = +1 \\ w^T \mathbf{x}_i + b \leq 1 & \mbox{if } y_i = -1 \end{cases} \\ \mbox{ which is equivalent to:} \\ \Leftrightarrow \mbox{ min } ||w||^2, \mbox{ subject to } y_i(w^T \mathbf{x}_i b) \geq 1 \end{cases} \end{array}$
- How can outliers be handled?

- $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{How can this best boundary be "learned"?} \\ \hline \mbox{i.e. learn the linear classifier parameters (w, b)} \\ \Rightarrow \mbox{ maximize margin } \frac{2}{||w||} \\ \Leftrightarrow \mbox{ max } \frac{2}{||w||}, \mbox{ subject to } \begin{cases} w^T \mathbf{x}_i + b \geq 1 & \mbox{if } y_i = +1 \\ w^T \mathbf{x}_i + b \leq 1 & \mbox{if } y_i = -1 \end{cases} \\ \mbox{ which is equivalent to:} \\ \Leftrightarrow \mbox{ min } ||w||^2, \mbox{ subject to } y_i(w^T \mathbf{x}_i b) \geq 1 \end{cases} \end{array}$
- How can outliers be handled?
 ⇒ is a hard-margin with 100% accuracy good?

- How can this best boundary be "learned"? i.e. learn the linear classifier parameters (**w**, b) $\Rightarrow \underline{\text{maximize margin}} \quad \frac{2}{||w||}$ $\Leftrightarrow \max_{w} \frac{2}{||w||}, \text{ subject to } \begin{cases} w^T \mathbf{x}_i + b \ge 1 & \text{if } y_i = +1 \\ w^T \mathbf{x}_i + b \le 1 & \text{if } y_i = -1 \end{cases}$ which is equivalent to: $\Leftrightarrow \min_{w} ||w||^2, \text{ subject to } y_i(w^T \mathbf{x}_i - b) \ge 1$
- How can outliers be handled?
 - \Rightarrow is a hard-margin with 100% accuracy good?
 - \Rightarrow no, allow small errors to favour overall better model
 - \Leftrightarrow favour large margin boundaries
 - ⇔ tolerate margin violation (**soft-margin**)

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

- $\begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{How can this best boundary be "learned"?} \\ \hline i.e. \ learn the linear classifier parameters (w, b) \\ \Rightarrow \ \underline{\mbox{maximize margin}} \ \frac{2}{||w||} \\ \Leftrightarrow \ \underline{\mbox{max}} \ \frac{2}{||w||}, \ \mbox{subject to} \ \begin{cases} w^T \mathbf{x}_i + b \geq 1 & \mbox{if } y_i = +1 \\ w^T \mathbf{x}_i + b \leq 1 & \mbox{if } y_i = -1 \end{cases} \\ \ \mbox{which is equivalent to:} \\ \Leftrightarrow \ \underline{\mbox{min }} ||w||^2, \ \mbox{subject to } y_i(w^T \mathbf{x}_i b) \geq 1 \end{array}$
- How can outliers be handled?
 - \Rightarrow is a hard-margin with 100% accuracy good?
 - \Rightarrow no, allow small errors to favour overall better model
 - \Leftrightarrow favour large margin boundaries
 - \Leftrightarrow tolerate margin violation (soft-margin)
 - \Rightarrow optimization becomes:

$$\min_{w,\xi_i} ||w||^2 + C \sum_i^N \xi_i, \text{ subject to } y_i(w^T \mathbf{x}_i - b) \geq 1 - \xi_i$$

where C is a regularization parameter:

small C \Rightarrow constraints easily ignored \Rightarrow large margin; large C \Rightarrow opposite

Side note: reformulating optimization in terms of regularization and loss function (anticipating DL lectures)

Learning an SVM has been formulated as a *constrained* optimization problem over w and ξ :

$$\min_{w,\xi_i} ||w||^2 + C \sum_i^N \xi_i \quad \text{subject to:} \quad y_i(w^T \mathbf{x}_i - b) \ge 1 - \xi_i$$

The constraint $y_i(w^T \mathbf{x}_i - b) \ge 1 - \xi_i$ can be written more concisely as: $y_i f(\mathbf{x}_i) \ge 1 - \xi_i$

Together with $\xi_i > 0$, it is equivalent to: $\xi_i = max(0, 1 - y_i f(x_i))$

Hence the learning problem is equivalent to the *unconstrained* optimization problem over w:

$$\min_{w} \underbrace{||w||^{2}}_{regularization} + C \sum_{i}^{N} \underbrace{max(0, 1 - y_{i}f(x_{i}))}_{loss function (Hinge loss)}$$

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• What if the features x_i are not linearly separable?

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

- What if the features x_i are not linearly separable?
 - \Rightarrow compute new features $x_i \mapsto \phi(x)$

 $\overline{\phi(x)}$ is a **feature map**, mapping x to $\phi(x)$ where data is separable

- What if the features x_i are not linearly separable?
 - \Rightarrow compute new features $x_i \mapsto \phi(x)$
 - $\overline{\phi(x)}$ is a **feature map**, mapping x to $\phi(x)$ where data is separable
 - \Rightarrow solve for $\overline{\mathbf{w}}$ in high dimensional feature space

- What if the features x_i are not linearly separable?
 - \Rightarrow compute new features $x_i \mapsto \phi(x)$
 - $\overline{\phi}(x)$ is a **feature map**, mapping x to $\phi(x)$ where data is separable
 - \Rightarrow solve for $\overline{\mathbf{w}}$ in high dimensional feature space
 - \Rightarrow data not lineary-seperable in original feature space become separable

Kernel trick

The Representer Theorem states that the solution w can be written as a linear combination of the training data:

$$w = \sum_{j=1}^{N} \alpha_j y_j x_j$$

Kernel trick

The Representer Theorem states that the solution w can be written as a linear combination of the training data:

$$w = \sum_{j=1}^{N} \alpha_j y_j x_j$$

The linear classifier can therefore be reformulated as:

$$f(x) = w^{\mathsf{T}}x + b$$
$$= \sum_{i}^{\mathsf{N}} \alpha_{i} y_{i}(x_{i}^{\mathsf{T}}x) + b$$

Kernel trick

The Representer Theorem states that the solution w can be written as a linear combination of the training data:

$$w = \sum_{j=1}^{N} \alpha_j y_j x_j$$

The linear classifier can therefore be reformulated as:

$$f(x) = w^T x + b$$
$$= \sum_{i}^{N} \alpha_i y_i(x_i^T x) + b$$

<u>NB</u>: this reformulation seems to have the disadvantage of a K-NN classifier, i.e. requires the training data points x_i . However, many of the $\alpha_i = 0$: the ones that are non-zero define the support vector points x_i

Kernel trick

The Representer Theorem states that the solution w can be written as a linear combination of the training data:

$$w = \sum_{j=1}^{N} \alpha_j y_j x_j$$

The linear classifier can therefore be reformulated as:

$$f(x) = w^T x + b$$

= $\sum_{i}^{N} \alpha_i y_i(x_i^T x) + b$

<u>NB</u>: this reformulation seems to have the disadvantage of a K-NN classifier, i.e. requires the training data points x_i . However, many of the $\alpha_i = 0$: the ones that are non-zero define the support vector points x_i

Using the feature map $\phi(x)$, it can be reformulated as:

$$f(x) = \sum_{i}^{N} \alpha_{i} y_{i}(\phi(x_{i})^{T} \phi(x)) + b$$
$$= \sum_{i}^{N} \alpha_{i} y_{i} k(x_{i}, x) + b$$

where $k(x_i, x)$ is known as a Kernel

Kernel trick

- Classifier can be learnt and applied without explicitly computing $\phi(x)$
- All that is required is the kernel k(x, x')
- Multiple kernels exist:
 - linear kernels: $k(x, x') = x^T x'$
 - \rightarrow very fast and easy to train, but very simple
 - polynomial kernels: $k(x, x') = (1 + x^T x')^d$
 - ightarrow contains all polynomial terms up to degree d
 - **gaussian kernels:** $k(x, x') = exp(-||x x'||^2/2\sigma^2)$ (*RBF kernel*)
 - ightarrow kernel very powerful and most often used

Kernel trick

- Classifier can be learnt and applied without explicitly computing $\phi(x)$
- All that is required is the kernel k(x, x')
- Multiple kernels exist:
 - linear kernels: $k(x, x') = x^T x'$
 - \rightarrow very fast and easy to train, but very simple
 - polynomial kernels: $k(x, x') = (1 + x^T x')^d$
 - ightarrow contains all polynomial terms up to degree d
 - **gaussian kernels:** $k(x, x') = exp(-||x x'||^2/2\sigma^2)$ (*RBF kernel*)
 - ightarrow kernel very powerful and most often used

Kernel trick

- Classifier can be learnt and applied without explicitly computing $\phi(x)$
- All that is required is the kernel k(x, x')
- Multiple kernels exist:
 - <u>linear kernels</u>: $k(x, x') = x^T x'$
 - \rightarrow very fast and easy to train, but very simple
 - polynomial kernels: $k(x, x') = (1 + x^T x')^d$
 - ightarrow contains all polynomial terms up to degree d
 - gaussian kernels: $k(x, x') = exp(-||x x'||^2/2\sigma^2)$ (RBF kernel)

ightarrow kernel very powerful and most often used

- Original idea: Dalal and Triggs (2005) "Histograms of Oriented Gradients for Human Detection"
- Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

- Original idea: Dalal and Triggs (2005) "Histograms of Oriented Gradients for Human Detection"
- Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

- Original idea: Dalal and Triggs (2005) "Histograms of Oriented Gradients for Human Detection"
- Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

raw ship image

- Original idea: Dalal and Triggs (2005) "Histograms of Oriented Gradients for Human Detection"
- Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

HOG feature computation

1. HOG features + SVM for object detection

- Original idea: Dalal and Triggs (2005) "Histograms of Oriented Gradients for Human Detection"
- Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

HOG feature computation

train SVM for classification

	Accuracy: 0.99625				
		precision	recall	f1-score	support
-	0.0	1.00	1.00	1.00	589
	1.0	1.00	0.99	0.99	211
	accuracy			1.00	800
	macro avo	1.00	0.99	1,00	800
	weighted avg	1.00	1.00	1.00	800

PCA dimensionality reduction

PCA dimensionality reduction

train SVM & apply

PCA dimensionality reduction train SVM & apply land-use classification

EXERCISE !