Machine Learning 3/3

Lecture 09

Computer Vision for Geosciences

1. Recap Principal Component Analisis (PCA)
2. toy example
3. Sentinel-2 example
4. Support Vector Machine (SVM)
5. description
6. application examples

1. Recap Principal Component Analisis (PCA)

1. toy example
2. Sentinel-2 example
3. Support Vector Machine (SVM)
4. description
5. application examples

Recap Principal Component Analisis (PCA)

1. toy example

PCA toy example

We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality. Which features best define it, are there related $\overline{\text { features (i.e. covariant) which are redundent? }}$

	fixed acidity volatile acidity			cltric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pH	sulphates	alcohol	quality
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
\square -	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

Recap Principal Component Analisis (PCA)

1. toy example

PCA toy example

We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality.
Which features best define it, are there related $\overline{\text { features (i.e. covariant) which are redundent? }}$

		fixed acldity	volatile acidity	citric acld	residual sugar	chlorides	free sulfur dioxide	total sulfur dloxide	density	pH	sulphates	alcohol	quality
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

$$
\Rightarrow \frac{\text { PCA allows to summarize each wine with fewer characteristics }}{\Rightarrow \text { reduce data dimensions }}
$$

Recap Principal Component Analisis (PCA)

1. toy example

PCA toy example

We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality. Which features best define it, are there related $\overline{\text { features }}$ (i.e. covariant) which are redundent?

		fixed acldity	volatile acidity	cltric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pH	sulphates	alcohol	quality
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

$$
\Rightarrow \frac{\text { PCA allows to summarize each wine with fewer characteristics }}{\Rightarrow \text { reduce data dimensions }}
$$

\Rightarrow PCA does not select some features and discards others, instead it defines new features (using linear combinations of available features) which will best represent wine variability

Recap Principal Component Analisis (PCA)

1. toy example
\Rightarrow Example with 2 variables: compute covariance matrix \rightarrow find largest eigenvalues \& eigenvectors \rightarrow project
(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

Recap Principal Component Analisis (PCA)

1. toy example
\Rightarrow Example with 2 variables: compute covariance matrix \rightarrow find largest eigenvalues \& eigenvectors \rightarrow project
(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

Recap Principal Component Analisis (PCA)

1. toy example
\Rightarrow Example with 2 variables: compute covariance matrix \rightarrow find largest eigenvalues \& eigenvectors \rightarrow project
(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

Recap Principal Component Analisis (PCA)

1. toy example
\Rightarrow Example with 2 variables: compute covariance matrix \rightarrow find largest eigenvalues \& eigenvectors \rightarrow project
(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

\rightarrow low variance (dispersion) of the data along the 2nd eigenvector
\Rightarrow the 2 original features ($\operatorname{var} \mathrm{x}$, var y) could be reduced to 1 feature, i.e. the projection on the 1 st eigenvector

\Rightarrow Do the same with the 11 features

\rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

\Rightarrow Do the same with the 11 features

\rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?

\Rightarrow Do the same with the 11 features

\rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?

Recap Principal Component Analisis (PCA)

\Rightarrow Do the same with the 11 features

\rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	0.489314	-0.238584	0.463632	0.146107	0.212247	-0.036158	0.023575	0.395353	-0.438520	0.242921	-0.113232
$\mathbf{1}$	-0.110503	0.274930	-0.151791	0.272080	0.148052	0.513567	0.569487	0.233575	0.006711	-0.037554	-0.386181
$\mathbf{2}$	-0.123302	-0.449963	0.238247	0.101283	-0.092614	0.428793	0.322415	-0.338871	0.057697	0.279786	0.471673
$\mathbf{3}$	-0.229617	0.078960	-0.079418	-0.372793	0.666195	-0.043538	-0.034577	-0.174500	-0.003788	0.550872	-0.122181
$\mathbf{4}$	-0.082614	0.218735	-0.058573	0.732144	0.246501	-0.159152	-0.222465	0.157077	0.267530	0.225962	0.350681
$\mathbf{5}$	$\mathbf{0 . 1 0 1 4 7 9}$	0.411449	0.069593	0.049156	0.304339	-0.014000	0.136308	-0.391152	-0.522116	-0.381263	0.361645
$\mathbf{6}$	-0.350227	-0.533735	0.105497	0.290663	0.370413	-0.116596	-0.093662	-0.170481	-0.025138	-0.447469	-0.327651
$\mathbf{7}$	-0.177595	-0.078775	-0.377516	0.299845	-0.357009	-0.204781	0.019036	-0.239223	-0.561391	0.374604	-0.217626
$\mathbf{8}$	-0.194021	0.129110	0.381450	-0.007523	-0.111339	-0.635405	0.592116	-0.020719	0.167746	0.058367	-0.037603
$\mathbf{9}$	-0.249523	0.365925	0.621677	0.092872	-0.217671	0.248483	-0.370750	-0.239990	-0.010970	0.112320	-0.303015
$\mathbf{1 0}$	$\mathbf{0 . 6 3 9 6 9 1}$	0.002389	-0.070910	0.184030	0.053065	-0.051421	0.068702	-0.567332	0.340711	0.069555	-0.314526

Recap Principal Component Analisis (PCA)

\Rightarrow Do the same with the 11 features

\rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?

| | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | |
| $\mathbf{0}$ | 0.489314 | -0.238584 | 0.463632 | 0.146107 | 0.212247 | -0.036158 | 0.023575 | 0.395353 | -0.438520 | 0.242921 | -0.113232 | Principal Component $\mathbf{1}$ |
| $\mathbf{1}$ | -0.110503 | 0.274930 | -0.151791 | 0.272080 | 0.148052 | 0.513567 | 0.569487 | 0.233575 | 0.006711 | -0.037554 | -0.386181 | |
| $\mathbf{2}$ | -0.123302 | -0.449963 | 0.238247 | 0.101283 | -0.092614 | 0.428793 | 0.322415 | -0.338871 | 0.057697 | 0.279786 | 0.471673 | |
| $\mathbf{3}$ | -0.229617 | 0.078960 | -0.079418 | -0.372793 | 0.666195 | -0.043538 | -0.034577 | -0.174500 | -0.003788 | 0.550872 | -0.122181 | |
| $\mathbf{4}$ | -0.082614 | 0.218735 | -0.058573 | 0.732144 | 0.246501 | -0.159152 | -0.222465 | 0.157077 | 0.267530 | 0.225962 | 0.350681 | |
| $\mathbf{5}$ | 0.101479 | 0.411449 | 0.069593 | 0.049156 | 0.304339 | -0.014000 | 0.136308 | -0.391152 | -0.522116 | -0.381263 | 0.361645 | |
| $\mathbf{6}$ | -0.350227 | -0.533735 | 0.105497 | 0.290663 | 0.370413 | -0.116596 | -0.093662 | -0.170481 | -0.025138 | -0.447469 | -0.327651 | |
| $\mathbf{7}$ | -0.177595 | -0.078775 | -0.377516 | 0.299845 | -0.357009 | -0.204781 | 0.019036 | -0.239223 | -0.561391 | 0.374604 | -0.217626 | |
| $\mathbf{8}$ | -0.194021 | 0.129110 | 0.381450 | -0.007523 | -0.111339 | -0.635405 | 0.592116 | -0.020719 | 0.167746 | 0.058367 | -0.037603 | |
| $\mathbf{9}$ | -0.249523 | 0.365925 | 0.621677 | 0.092872 | -0.217671 | 0.248483 | -0.370750 | -0.239990 | -0.010970 | 0.112320 | -0.303015 | |
| $\mathbf{1 0}$ | 0.639691 | 0.002389 | -0.070910 | 0.184030 | 0.053065 | -0.051421 | 0.068702 | -0.567332 | 0.340711 | 0.069555 | -0.314526 | |

[^0]
\Rightarrow Do the same with the 11 features

\rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?
Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

\Rightarrow Do the same with the 11 features

\rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?
Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?
Prediction accuracy of wine quality (classification task using KNN):

- using 11 original features \Rightarrow accuracy $=0.79$
- using 6 first principal components \Rightarrow accuracy $=0.78$

Recap Principal Component Analisis (PCA)

1. toy example

\Rightarrow Do the same with the 11 features

\rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?
Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?
Prediction accuracy of wine quality (classification task using KNN):

- using 11 original features \Rightarrow accuracy $=0.79$
- using 6 first principal components \Rightarrow accuracy $=0.78$
$\Rightarrow \quad \Rightarrow \frac{\text { PCA can successfully reduce data dimensionality, }}{\text { and achieve }}$ (almost) the same prediction accuracy with fewer features

Recap Principal Component Analisis (PCA)

\Rightarrow Do the same with the 11 features

\rightarrow search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?
Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?
Prediction accuracy of wine quality (classification task using KNN):

- using 11 original features \Rightarrow accuracy $=0.79$
- using 6 first principal components \Rightarrow accuracy $=0.78$

$$
\Rightarrow \underline{\text { PCA can successfully reduce data dimensionality, }}
$$

and achieve (almost) the same prediction accuracy with fewer features

$$
\Rightarrow \text { how about using PCA on images? }
$$

\rightarrow Sentinel-2 example: reduce a space with $20,000 \times 4 \times 15 \times 15$ pixels (900 dimensions)

Sentinel-2 example \Rightarrow apply PCA on satellite image crops

Original dataset

(20000, 4, 15, 15)

Create covariance matrix (mean covmat of all crops)

Get eigenvectors \& eigenvalues

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example \Rightarrow apply PCA on satellite image crops

Create covariance matrix (mean covmat of all crops)

Get eigenvectors \& eigenvalues

Reshape eigenvectors \Rightarrow principal components as image

Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example \Rightarrow apply PCA on satellite image crops

Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example \Rightarrow apply PCA on satellite image crops

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example \Rightarrow apply PCA on satellite image crops

Original dataset

(20000, 4, 15, 15)

Vectorize dataset

(20000, 900)

Create covariance matrix (mean covmat of all crops)

Get eigenvectors \& eigenvalues

Reshape eigenvectors
\Rightarrow principal components as images

(900, 4, 15, 15)

Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example \Rightarrow apply PCA on satellite image crops

Original dataset

(20000, 4, 15, 15)

Vectorize dataset

(20000, 900)

Create covariance matrix (mean covmat of all crops)

Get eigenvectors

 \& eigenvalues

Reshape eigenvectors
\Rightarrow principal components as images

(900, 4, 15, 15)

Reconstruct crops
\Rightarrow project each crop on first 32 pc
$=(900,1)(1,900)$
$=$ (scalar)
\Rightarrow reconstruct crop from its 32 features \& 32 first pcs
\Rightarrow reconstruct crop from its 32 features $\& 32$ nirst pCS

Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example \Rightarrow apply PCA on satellite image crops

Original dataset

(20000, 4, 15, 15)

Vectorize dataset

(20000, 900)

Create covariance matrix (mean covmat of all crops)

Get eigenvectors

\& eigenvalues

Reshape eigenvectors
\Rightarrow principal components as images

(900, 4, 15, 15)

Reconstruct crops

\Rightarrow reconstruct crop from its 32 features \& 32 first pcs

Reconstruction crop \#1:
reconstruction $=$ mean_crops $\quad \#(4,15,15)$
for i in range(32): \#loop crop features/pcs reconstruction $+=$ features $[0, i]$ * pc[i, : ::]
$=$ (scalar) * $(4,15,15)$
$=(4,5,15)$

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example \Rightarrow apply PCA on satellite image crops

Original dataset

(20000, 4, 15, 15)

$$
(20000,4,15,15)
$$

Vectorize dataset
\square

(20000, 900)

Create covariance matrix (mean covmat of all crops)

Get eigenvectors

 \& eigenvalues

Reshape eigenvectors
\Rightarrow principal components as images

(900, 4, 15, 15)

Reconstruct crops

\Rightarrow reconstruct crop from its 32 features \& 32 first pcs

original crop reconstructed crop

Reconstruction crop \#1:
reconstruction $=$ mean_crops $\quad \#(4,15,15)$
$\begin{array}{ll}\text { reconstruction }=\text { mean_crops } & \#(4,15,15) \\ \text { for } i \text { in range (32): } & \# 100 p \text { crop features/pcs }\end{array}$
reconstruction $+=$ features[0,i] * pc[i,: :: $]$
$=$ (scalar) * $(4,15,15)$
$=(4,5,15)$

Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example \Rightarrow apply PCA on satellite image crops

Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example \Rightarrow apply PCA on satellite image crops

Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Classifying algorithms?

- k-Nearest Neighbor (kNN) (last week lecture)
\Rightarrow label images by comparing them to (annotated) images from the training set \Rightarrow disadvantages:
- classifier needs to keep all training data for future comparisons with the test data \rightarrow inefficient when datasets become very large ($\geq G B$)
- classifying a test image is expensive since it requires a comparison to all training images
- Support Vector Machines

```
parametric linear classification method
advantages
    - once the parameters are learnt, training data can be discarded
    - classification (prediction) for a new test image is fast }->\mathrm{ simple matrix multiplication with learned weights,
        not an exhaustive comparison to every single training data
```

- Convolutionat Neural Networks

CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
\Rightarrow advantages: very powerful
\Rightarrow disadvantages: needs LOTS of data!

Classifying algorithms?

- k-Nearest Neighbor (kNN) (last week lecture)
\Rightarrow label images by comparing them to (annotated) images from the training set
\Rightarrow disadvantages:
- classifier needs to keep all training data for future comparisons with the test data \rightarrow inefficient when datasets become very large ($\geq G B$)
- classifying a test image is expensive since it requires a comparison to all training images
- Support Vector Machines (this week lecture)
\Rightarrow parametric linear classification method
\Rightarrow advantages:
- once the parameters are learnt, training data can be discarded
- classification (prediction) for a new test image is fast \rightarrow simple matrix multiplication with learned weights, not an exhaustive comparison to every single training data
- Convolutional Neural Networks

```
CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
=> advantages: very powerful
=> disadvantages: needs LOTS of data!
```


Classifying algorithms?

- k-Nearest Neighbor (kNN) (last week lecture)
\Rightarrow label images by comparing them to (annotated) images from the training set
\Rightarrow disadvantages:
- classifier needs to keep all training data for future comparisons with the test data \rightarrow inefficient when datasets become very large ($\geq G B$)
- classifying a test image is expensive since it requires a comparison to all training images
- Support Vector Machines (this week lecture)
\Rightarrow parametric linear classification method
\Rightarrow advantages:
- once the parameters are learnt, training data can be discarded
- classification (prediction) for a new test image is fast \rightarrow simple matrix multiplication with learned weights, not an exhaustive comparison to every single training data
- Convolutional Neural Networks (coming weeks)
\Rightarrow CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
\Rightarrow advantages: very powerful
\Rightarrow disadvantages: needs LOTS of data!

Classifying algorithms?

- k-Nearest Neighbor (kNN) (last week lecture)
\Rightarrow label images by comparing them to (annotated) images from the training set
\Rightarrow disadvantages:
- classifier needs to keep all training data for future comparisons with the test data \rightarrow inefficient when datasets become very large ($\geq G B$)
- classifying a test image is expensive since it requires a comparison to all training images
- Support Vector Machines (this week lecture)
\Rightarrow parametric linear classification method
\Rightarrow advantages:
- once the parameters are learnt, training data can be discarded
- classification (prediction) for a new test image is fast \rightarrow simple matrix multiplication with learned weights, not an exhaustive comparison to every single training data
- Convolutional Neural Networks (coming weeks)
\Rightarrow CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
\Rightarrow advantages: very powerful
\Rightarrow disadvantages: needs LOTS of data!

1. Recap Principal Component Analisis (PCA)
2. toy example
3. Sentinel-2 example
4. Support Vector Machine (SVM)
5. description
6. application examples

Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- Task:
\Rightarrow classify fruit images into either bananas or apples

Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- Task:
\Rightarrow classify fruit images into either bananas or apples
- Features (hand-crafted):
\Rightarrow Hue (yellow to red) \& Elongation (max/min extent)

Support Vector Machine (SVM)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

Recap from Lecture 08

- Task:
\Rightarrow classify fruit images into either bananas or apples
- Features (hand-crafted):
\Rightarrow Hue (yellow to red) \& Elongation (max/min extent)
\Rightarrow representation of input data in 2D feature space

Support Vector Machine (SVM)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

Recap from Lecture 08

- Task:
\Rightarrow classify fruit images into either bananas or apples
- Features (hand-crafted):
\Rightarrow Hue (yellow to red) \& Elongation (max/min extent)
\Rightarrow representation of input data in 2D feature space
\Rightarrow can we "learn" which part of the feature space is bananas/apples?

Support Vector Machine (SVM)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- Task:
\Rightarrow classify fruit images into either bananas or apples
- Features (hand-crafted):
\Rightarrow Hue (yellow to red) \& Elongation (max/min extent)
\Rightarrow representation of input data in 2D feature space
\Rightarrow can we "learn" which part of the feature space is bananas/apples?
- Learning algorithm:
\Rightarrow simple idea: split feature space into two half spaces

Support Vector Machine (SVM)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- Task:
\Rightarrow classify fruit images into either bananas or apples
- Features (hand-crafted):
\Rightarrow Hue (yellow to red) \& Elongation (max/min extent)
\Rightarrow representation of input data in 2D feature space
\Rightarrow can we "learn" which part of the feature space is bananas/apples?
- Learning algorithm:
\Rightarrow simple idea: split feature space into two half spaces
\Rightarrow classify data based on linear decision boundary

Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- Task:
\Rightarrow classify fruit images into either bananas or apples
- Features (hand-crafted):
\Rightarrow Hue (yellow to red) \& Elongation (max/min extent)
\Rightarrow representation of input data in 2D feature space
\Rightarrow can we "learn" which part of the feature space is bananas/apples?
- Learning algorithm:
\Rightarrow simple idea: split feature space into two half spaces
\Rightarrow classify data based on linear decision boundary
\Rightarrow perceptron: $y=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+b\right)$
- $y \in\{-1,1\}$: predicted class \rightarrow banana or apple
- $\mathbf{x} \in \mathbb{R}^{2}$: feature vector \rightarrow [hue, elongation]
- w $\in \mathbb{R}^{2}$: "weight vector" \rightarrow needs to be learned
- $b \in \mathbb{R}$: "bias" \rightarrow needs to be learned

- sign: sign function returning the sign of a real number

Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

perceptron: $y=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+b\right)$

- Best decision boundary (hyperplane)?

$$
\Rightarrow \text { multiple "good" boundaries }
$$

Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

perceptron: $y=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+b\right)$

- Best decision boundary (hyperplane)?
\Rightarrow multiple "good" boundaries

Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

perceptron: $y=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+b\right)$

- Best decision boundary (hyperplane)?
\Rightarrow multiple "good" boundaries

Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)
perceptron: $y=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+b\right)$

- Best decision boundary (hyperplane)?
\Rightarrow multiple "good" boundaries

Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)
perceptron: $y=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+b\right)$

- Best decision boundary (hyperplane)?
\Rightarrow multiple "good" boundaries

Support Vector Machine (SVM)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

perceptron: $y=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+b\right)$

- Best decision boundary (hyperplane)?
\Rightarrow multiple "good" boundaries
\Rightarrow optimal hyperplane
$=$ boundary with the maximal margin
$=$ perceptron of maximal stability to new inputs

Support Vector Machine (SVM)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

perceptron: $y=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+b\right)$

- Best decision boundary (hyperplane)?
\Rightarrow multiple "good" boundaries
\Rightarrow optimal hyperplane
$=$ boundary with the maximal margin
$=$ perceptron of maximal stability to new inputs
$\Rightarrow \underline{\text { margin }}=\frac{2}{\|w\|}$

Support Vector Machine (SVM)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

perceptron: $y=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+b\right)$

- Best decision boundary (hyperplane)?
\Rightarrow multiple "good" boundaries
\Rightarrow optimal hyperplane
$=$ boundary with the maximal margin
$=$ perceptron of maximal stability to new inputs
$\Rightarrow \underline{\text { margin }}=\frac{2}{\|w\|}$
\Rightarrow support vector points $=$ points closest to the hyperplane (only these points are contributing to the result, other points are not)

Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- How can this best boundary be "learned"?
i.e. learn the linear classifier parameters (w, b)

Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- How can this best boundary be "learned"?
i.e. learn the linear classifier parameters (w, b)
$\Rightarrow \underline{\text { maximize margin }} \frac{2}{\|w\|}$

$$
\Leftrightarrow \max _{w} \frac{2}{\|w\|}, \text { subject to } \begin{cases}w^{T} \mathbf{x}_{i}+b \geq 1 & \text { if } y_{i}=+1 \\ w^{T} \mathbf{x}_{i}+b \leq 1 & \text { if } y_{i}=-1\end{cases}
$$

Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- How can this best boundary be "learned"?
i.e. learn the linear classifier parameters (w, b)
$\Rightarrow \underline{\text { maximize margin }} \frac{2}{\|w\|}$
$\Leftrightarrow \max _{w} \frac{2}{\|w\|}$, subject to $\begin{cases}w^{T} \mathbf{x}_{i}+b \geq 1 & \text { if } y_{i}=+1 \\ w^{T} \mathbf{x}_{i}+b \leq 1 & \text { if } y_{i}=-1\end{cases}$
which is equivalent to:

$$
\Leftrightarrow \min _{w}\|w\|^{2} \text {, subject to } y_{i}\left(w^{\top} \mathbf{x}_{i}-b\right) \geq 1
$$

Support Vector Machine (SVM)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- How can this best boundary be "learned"?
i.e. learn the linear classifier parameters (w, b)
$\Rightarrow \underline{\text { maximize margin }} \frac{2}{\|w\|}$

$$
\Leftrightarrow \max _{w} \frac{2}{\|w\|}, \text { subject to } \begin{cases}w^{T} \mathbf{x}_{i}+b \geq 1 & \text { if } y_{i}=+1 \\ w^{\top} \mathbf{x}_{i}+b \leq 1 & \text { if } y_{i}=-1\end{cases}
$$

which is equivalent to:

$$
\Leftrightarrow \min _{w}\|w\|^{2} \text {, subject to } y_{i}\left(w^{T} \mathbf{x}_{i}-b\right) \geq 1
$$

- How can outliers be handled?

Support Vector Machine (SVM)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- How can this best boundary be "learned"?
$\overline{\text { i.e. learn the linear classifier parameters (w, b) }}$
$\Rightarrow \underline{\text { maximize margin }} \frac{2}{\|w\|}$
$\Leftrightarrow \max _{w} \frac{2}{\|w\|}$, subject to $\begin{cases}w^{T} \mathbf{x}_{i}+b \geq 1 & \text { if } y_{i}=+1 \\ w^{T} \mathbf{x}_{i}+b \leq 1 & \text { if } y_{i}=-1\end{cases}$
which is equivalent to:

$$
\Leftrightarrow \min _{w}\|w\|^{2}, \text { subject to } y_{i}\left(w^{T} \mathbf{x}_{i}-b\right) \geq 1
$$

- How can outliers be handled?
\Rightarrow is a hard-margin with 100% accuracy good?

Support Vector Machine (SVM)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- How can this best boundary be "learned"?
i.e. learn the linear classifier parameters (w, b)
$\Rightarrow \underline{\text { maximize margin }} \frac{2}{\|w\|}$

$$
\Leftrightarrow \max _{w} \frac{2}{\|w\|}, \text { subject to } \begin{cases}w^{T} \mathbf{x}_{i}+b \geq 1 & \text { if } y_{i}=+1 \\ w^{T} \mathbf{x}_{i}+b \leq 1 & \text { if } y_{i}=-1\end{cases}
$$

which is equivalent to:

$$
\Leftrightarrow \min _{w}\|w\|^{2}, \text { subject to } y_{i}\left(w^{T} \mathbf{x}_{i}-b\right) \geq 1
$$

- How can outliers be handled?
\Rightarrow is a hard-margin with 100% accuracy good?
\Rightarrow no, allow small errors to favour overall better model
\Leftrightarrow favour large margin boundaries
\Leftrightarrow tolerate margin violation (soft-margin)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- How can this best boundary be "learned"?
i.e. learn the linear classifier parameters (w, b)
$\Rightarrow \underline{\text { maximize margin }} \frac{2}{\|w\|}$

$$
\Leftrightarrow \max _{w} \frac{2}{\|w\|}, \text { subject to } \begin{cases}w^{T} \mathbf{x}_{i}+b \geq 1 & \text { if } y_{i}=+1 \\ w^{T} \mathbf{x}_{i}+b \leq 1 & \text { if } y_{i}=-1\end{cases}
$$

which is equivalent to:

$$
\Leftrightarrow \min _{w}\|w\|^{2}, \text { subject to } y_{i}\left(w^{T} \mathbf{x}_{i}-b\right) \geq 1
$$

- How can outliers be handled?
\Rightarrow is a hard-margin with 100% accuracy good?
\Rightarrow no, allow small errors to favour overall better model
\Leftrightarrow favour large margin boundaries
\Leftrightarrow tolerate margin violation (soft-margin)
\Rightarrow optimization becomes:
$\min _{w, \xi_{i}}\|w\|^{2}+C \sum_{i}^{N} \xi_{i}$, subject to $y_{i}\left(w^{T} \mathbf{x}_{i}-b\right) \geq 1-\xi_{i}$

where C is a regularization parameter:
small $C \Rightarrow$ constraints easily ignored \Rightarrow large margin; large $C \Rightarrow$ opposite

Side note: reformulating optimization in terms of regularization and loss function (anticipating DL lectures)

Learning an SVM has been formulated as a constrained optimization problem over w and ξ :

$$
\min _{w, \xi_{i}}\|w\|^{2}+C \sum_{i}^{N} \xi_{i} \quad \text { subject to: } \quad y_{i}\left(w^{T} \mathbf{x}_{i}-b\right) \geq 1-\xi_{i}
$$

The constraint $y_{i}\left(w^{T} \mathbf{x}_{i}-b\right) \geq 1-\xi_{i}$ can be written more concisely as: $y_{i} f\left(\mathbf{x}_{i}\right) \geq 1-\xi_{i}$
Together with $\xi_{i}>0$, it is equivalent to: $\xi_{i}=\max \left(0,1-y_{i} f\left(x_{i}\right)\right)$
Hence the learning problem is equivalent to the unconstrained optimization problem over w :

$$
\min _{w} \underbrace{\|w\|^{2}}_{\text {regularization }}+C \sum_{i}^{N} \underbrace{\max \left(0,1-y_{i} f\left(x_{i}\right)\right)}_{\text {loss function (Hinge loss) }}
$$

Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- What if the features x_{i} are not linearly separable?

Support Vector Machine (SVM)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- What if the features x_{i} are not linearly separable?
\Rightarrow compute new features $x_{i} \mapsto \phi(x)$

Support Vector Machine (SVM)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- What if the features x_{i} are not linearly separable?
\Rightarrow compute new features $x_{i} \mapsto \phi(x)$
$\overline{\phi(x)}$ is a feature map, mapping x to $\phi(x)$ where data is separable
\Rightarrow solve for $\overline{\mathbf{w}}$ in high dimensional feature space

Support Vector Machine (SVM)

Toy example (courtesy of Andreas Ley \& Ronny Hänsch)

- What if the features x_{i} are not linearly separable?
\Rightarrow compute new features $x_{i} \mapsto \phi(x)$
$\overline{\phi(x)}$ is a feature map, mapping x to $\phi(x)$ where data is separable
\Rightarrow solve for $\overline{\mathbf{w}}$ in high dimensional feature space
\Rightarrow data not lineary-seperable in original feature space become separable

Kernel trick

The Representer Theorem states that the solution w can be written as a linear combination of the training data:

$$
w=\sum_{j=1}^{N} \alpha_{j} y_{j} x
$$

Support Vector Machine (SVM)

Kernel trick

The Representer Theorem states that the solution \mathbf{w} can be written as a linear combination of the training data:

$$
w=\sum_{j=1}^{N} \alpha_{j} y_{j} x
$$

The linear classifier can therefore be reformulated as:

$$
\begin{aligned}
f(x) & =w^{\top} x+b \\
& =\sum_{i}^{N} \alpha_{i} y_{i}\left(x_{i}^{\top} x\right)+b
\end{aligned}
$$

Support Vector Machine (SVM)

Kernel trick

The Representer Theorem states that the solution w can be written as a linear combination of the training data:

$$
w=\sum_{j=1}^{N} \alpha_{j} y_{j} x
$$

The linear classifier can therefore be reformulated as:

$$
\begin{aligned}
f(x) & =w^{\top} x+b \\
& =\sum_{i}^{N} \alpha_{i} y_{i}\left(x_{i}^{\top} x\right)+b
\end{aligned}
$$

NB: this reformulation seems to have the disadvantage of a K-NN classifier, i.e. requires the training data points x_{i}. However, many of the $\alpha_{i}=0$: the ones that are non-zero define the support vector points x_{i}

Support Vector Machine (SVM)

Kernel trick

The Representer Theorem states that the solution \mathbf{w} can be written as a linear combination of the training data:

$$
w=\sum_{j=1}^{N} \alpha_{j} y_{j} x
$$

The linear classifier can therefore be reformulated as:

$$
\begin{aligned}
f(x) & =w^{\top} x+b \\
& =\sum_{i}^{N} \alpha_{i} y_{i}\left(x_{i}^{\top} x\right)+b
\end{aligned}
$$

NB: this reformulation seems to have the disadvantage of a K-NN classifier, i.e. requires the training data points x_{i}. However, many of the $\alpha_{i}=0$: the ones that are non-zero define the support vector points x_{i}
Using the feature map $\phi(x)$, it can be reformulated as:

$$
\begin{aligned}
f(x) & =\sum_{i}^{N} \alpha_{i} y_{i}\left(\phi\left(x_{i}\right)^{T} \phi(x)\right)+b \\
& =\sum_{i}^{N} \alpha_{i} y_{i} k\left(x_{i}, x\right)+b
\end{aligned}
$$

where $k\left(x_{i}, x\right)$ is known as a Kernel

Support Vector Machine (SVM)

1. description

Kernel trick

- Classifier can be learnt and applied without explicitly computing $\phi(x)$
- All that is required is the kernel $k\left(x, x^{\prime}\right)$
- Multiple kernels exist
- linear kernels: $k\left(x, x^{\prime}\right)=x^{\top} x^{\prime}$
- polynomial kernels: $k\left(x, x^{\prime}\right)=\left(1+x^{T} x^{\prime}\right)^{d}$
- gaussian kernels: $k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2} / 2 \sigma^{2}\right)$

Support Vector Machine (SVM)

1. description

Kernel trick

- Classifier can be learnt and applied without explicitly computing $\phi(x)$
- All that is required is the kernel $k\left(x, x^{\prime}\right)$
- Multiple kernels exist:
- linear kernels: $k\left(x, x^{\prime}\right)=x^{T} x^{\prime}$
- polynomial kernels
- gaussian kernels: $k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2} / 2 \sigma^{2}\right)$

Kernel trick

- Classifier can be learnt and applied without explicitly computing $\phi(x)$
- All that is required is the kernel $k\left(x, x^{\prime}\right)$
- Multiple kernels exist:
- linear kernels: $k\left(x, x^{\prime}\right)=x^{\top} x^{\prime}$
\rightarrow very fast and easy to train, but very simple
- polynomial kernels: $k\left(x, x^{\prime}\right)=\left(1+x^{T} x^{\prime}\right)^{d}$
\rightarrow contains all polynomial terms up to degree a
- gaussian kernels: $k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2} / 2 \sigma^{2}\right)$ (RBF kernel)
\rightarrow kernel very powerful and most often used

1. HOG features + SVM for object detection

- Original idea: Dalal and Triggs (2005) - "Histograms of Oriented Gradients for Human Detection"
" Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

1. HOG features + SVM for object detection

- Original idea: Dalal and Triggs (2005) - "Histograms of Oriented Gradients for Human Detection"
- Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

1. HOG features + SVM for object detection

- Original idea: Dalal and Triggs (2005) - "Histograms of Oriented Gradients for Human Detection"
- Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)
raw ship image

1. HOG features + SVM for object detection

- Original idea: Dalal and Triggs (2005) - "Histograms of Oriented Gradients for Human Detection"
- Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)
raw ship image

HOG feature computation

1. HOG features + SVM for object detection

- Original idea: Dalal and Triggs (2005) - "Histograms of Oriented Gradients for Human Detection"
- Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)
raw ship image

train SVM for classification

Accuracy: 0.99625

precision
0.0
1.0
accuracy macro avg
matro macro avg
weighted avg
on 1.00
1.08
1.00
1.08
recall f1-score
1.09
0.9
0. 99
2. Classify land use in satellite images (Sentinel-2)
2. Classify land use in satellite images (Sentinel-2)

PCA dimensionality reduction

2. Classify land use in satellite images (Sentinel-2)

PCA dimensionality reduction

2. Classify land use in satellite images (Sentinel-2)

PCA dimensionality reduction

train SVM \& apply

land-use classification

2. Classify land use in satellite images (Sentinel-2)

PCA dimensionality reduction

land-use classification

EXERCISE!

[^0]:

