
ENCIT - Licenciatura en Geograf́ıa Aplicada - “Procesamiento de Imágenes Digitales/Satelitales” - Semestre 2024-2

Lecture 02
Digital Image Basics

2024-02-01
Sébastien Valade

1 / 56



1. Digital Image

1. What is a digital image?
1. image acquisition
2. sampling and quantization
3. 3D projection on 2D plane
4. color image
5. color spaces
6. image histogram

2. Point operations

3. Image processing levels

4. Image manipulation with Python

2 / 56



1. Digital Image

1.1. image acquisition

1. energy from an illumination source is reflected from a scene
2. the imaging system collects the incoming energy and focuses it onto an image plane

NB: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light
intensity I(x): the CCD (Charge-Coupled Device)

3. the image plane is sampled and quantized to produce a digital image

Credit: Gonzalez & Woods 2018
3 / 56



1. Digital Image

1.1. image acquisition

1. energy from an illumination source is reflected from a scene
2. the imaging system collects the incoming energy and focuses it onto an image plane

NB: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light
intensity I(x): the CCD (Charge-Coupled Device)

3. the image plane is sampled and quantized to produce a digital image

Credit: Gonzalez & Woods 2018
4 / 56



1. Digital Image

1.1. image acquisition

1. energy from an illumination source is reflected from a scene
2. the imaging system collects the incoming energy and focuses it onto an image plane

NB: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light
intensity I(x): the CCD (Charge-Coupled Device)

3. the image plane is sampled and quantized to produce a digital image

Credit: Gonzalez & Woods 2018
5 / 56



1. Digital Image

1.1. image acquisition

1. energy from an illumination source is reflected from a scene
2. the imaging system collects the incoming energy and focuses it onto an image plane

NB: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light
intensity I(x): the CCD (Charge-Coupled Device)

3. the image plane is sampled and quantized to produce a digital image

Credit: Gonzalez & Woods 2018
6 / 56



1. Digital Image

1.2. sampling and quantization

• each photosensor records incident light
• digitalization of an analog signal involves two operations

• spatial sampling (= discretization of space domain)
• intensity quantization (= discretization of incoming light signal)

7 / 56



1. Digital Image

1.2. sampling and quantization

• each photosensor records incident light
• digitalization of an analog signal involves two operations

• spatial sampling (= discretization of space domain)
• intensity quantization (= discretization of incoming light signal)

8 / 56



1. Digital Image

1.2. sampling and quantization

spatial sampling (= discretization of space domain)
⇒ smallest element resulting from the discretization of the space is called a pixel (=picture element)

intensity quantization (= discretization of light intensity signal)
⇒ typically, 256 levels (8 bits/pixel = 28 values) suffices to represent the intensity

9 / 56



1. Digital Image

1.2. sampling and quantization

spatial sampling (= discretization of space domain)
⇒ smallest element resulting from the discretization of the space is called a pixel (=picture element)

intensity quantization (= discretization of light intensity signal)
⇒ typically, 256 levels (8 bits/pixel = 28 values) suffices to represent the intensity

10 / 56



1. Digital Image

1.3. 3D projection on 2D plane

But how is the 3D world projected on a 2D plane?
⇒ comparison between human eye and pinhole camera:

11 / 56



1. Digital Image

1.3. 3D projection on 2D plane

Image = 3D world projection on 2D
⇒ projection using the pinhole camera model:

(from PyTorch Geometry)

Perspective transformation:

s m′ = K [R|t]M′ (1)

s

[
u
v
1

]
=

[
fx 0 u0
0 fy v0
0 0 1

][
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

][
X
Y
Z
1

]
(2)

where:
• M′ = 3D point in space with coordinates [X , Y , Z ]T expressed in

Euclidean coordinates
• m′ = projection of the 3D point M′ onto the image plane with

coordinates [u, v ]T expressed in pixel units

• K = camera calibration matrix (a.k.a instrinsics parameters matrix)
• fx, fy = focal lengths expressed in pixel units
• u0, v0 = coordinates of the optical center (aka principal

point), origin in the image plane
• [R|t] = joint rotation-translation matrix (a.k.a. extrinsics

parameters matrix), describing the camera pose, and translating
from world coordinates to camera coordinates

12 / 56

https://kornia.readthedocs.io/en/v0.1.2/pinhole.html


1. Digital Image

1.3. 3D projection on 2D plane

Image = 3D world projection on 2D
⇒ projection using the pinhole camera model:

(from PyTorch Geometry)

Perspective transformation:

s m′ = K [R|t]M′ (1)

s

[
u
v
1

]
=

[
fx 0 u0
0 fy v0
0 0 1

][
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

][
X
Y
Z
1

]
(2)

where:
• M′ = 3D point in space with coordinates [X , Y , Z ]T expressed in

Euclidean coordinates
• m′ = projection of the 3D point M′ onto the image plane with

coordinates [u, v ]T expressed in pixel units

• K = camera calibration matrix (a.k.a instrinsics parameters matrix)
• fx, fy = focal lengths expressed in pixel units
• u0, v0 = coordinates of the optical center (aka principal

point), origin in the image plane
• [R|t] = joint rotation-translation matrix (a.k.a. extrinsics

parameters matrix), describing the camera pose, and translating
from world coordinates to camera coordinates

13 / 56

https://kornia.readthedocs.io/en/v0.1.2/pinhole.html


1. Digital Image

1.3. 3D projection on 2D plane

Image = 3D world projection on 2D
⇒ projection using the pinhole camera model:

(from PyTorch Geometry)

Perspective transformation:

s m′ = K [R|t]M′ (1)

s

[
u
v
1

]
=

[
fx 0 u0
0 fy v0
0 0 1

][
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

][
X
Y
Z
1

]
(2)

where:
• M′ = 3D point in space with coordinates [X , Y , Z ]T expressed in

Euclidean coordinates
• m′ = projection of the 3D point M′ onto the image plane with

coordinates [u, v ]T expressed in pixel units

• K = camera calibration matrix (a.k.a instrinsics parameters matrix)
• fx, fy = focal lengths expressed in pixel units
• u0, v0 = coordinates of the optical center (aka principal

point), origin in the image plane
• [R|t] = joint rotation-translation matrix (a.k.a. extrinsics

parameters matrix), describing the camera pose, and translating
from world coordinates to camera coordinates

14 / 56

https://kornia.readthedocs.io/en/v0.1.2/pinhole.html


1. Digital Image

1.3. 3D projection on 2D plane

Image = 3D world projection on 2D
⇒ projection using the pinhole camera model:

(from PyTorch Geometry)

Perspective transformation:

s m′ = K [R|t]M′ (1)

s

[
u
v
1

]
=

[
fx 0 u0
0 fy v0
0 0 1

][
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

][
X
Y
Z
1

]
(2)

where:
• M′ = 3D point in space with coordinates [X , Y , Z ]T expressed in

Euclidean coordinates
• m′ = projection of the 3D point M′ onto the image plane with

coordinates [u, v ]T expressed in pixel units

• K = camera calibration matrix (a.k.a instrinsics parameters matrix)
• fx, fy = focal lengths expressed in pixel units
• u0, v0 = coordinates of the optical center (aka principal

point), origin in the image plane
• [R|t] = joint rotation-translation matrix (a.k.a. extrinsics

parameters matrix), describing the camera pose, and translating
from world coordinates to camera coordinates

15 / 56

https://kornia.readthedocs.io/en/v0.1.2/pinhole.html


1. Digital Image

1.3. 3D projection on 2D plane

Image = 3D world projection on 2D
⇒ projection using the pinhole camera model:

(from PyTorch Geometry)

Perspective transformation:

s m′ = K [R|t]M′ (1)

s

[
u
v
1

]
=

[
fx 0 u0
0 fy v0
0 0 1

][
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

][
X
Y
Z
1

]
(2)

where:
• M′ = 3D point in space with coordinates [X , Y , Z ]T expressed in

Euclidean coordinates
• m′ = projection of the 3D point M′ onto the image plane with

coordinates [u, v ]T expressed in pixel units

• K = camera calibration matrix (a.k.a instrinsics parameters matrix)
• fx, fy = focal lengths expressed in pixel units
• u0, v0 = coordinates of the optical center (aka principal

point), origin in the image plane
• [R|t] = joint rotation-translation matrix (a.k.a. extrinsics

parameters matrix), describing the camera pose, and translating
from world coordinates to camera coordinates

16 / 56

https://kornia.readthedocs.io/en/v0.1.2/pinhole.html


1. Digital Image

1.3. 3D projection on 2D plane

⇒ digital image function f (x , y)

17 / 56



1. Digital Image

1.3. 3D projection on 2D plane

⇒ digital image function f (x , y)

Typical ranges:
• uint8 = [0-255]

(8 bits = 1 byte = 28 = 256 values per
pixel)

• float32 = [0-1]
(32 bits = 4 bytes = 4.3e9 values per pixel)

18 / 56



1. Digital Image

1.4. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

(source wikipedia)

19 / 56

https://en.wikipedia.org/wiki/Bayer_filter


1. Digital Image

1.4. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene
2. Output of a 120×80-pixel sensor with a Bayer filter
3. Output color-coded with Bayer filter colors
4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
5. Full RGB version at 120×80-pixels for comparison

20 / 56



1. Digital Image

1.4. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene
2. Output of a 120×80-pixel sensor with a Bayer filter
3. Output color-coded with Bayer filter colors
4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
5. Full RGB version at 120×80-pixels for comparison

21 / 56



1. Digital Image

1.4. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene
2. Output of a 120×80-pixel sensor with a Bayer filter
3. Output color-coded with Bayer filter colors
4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
5. Full RGB version at 120×80-pixels for comparison

22 / 56



1. Digital Image

1.4. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene
2. Output of a 120×80-pixel sensor with a Bayer filter
3. Output color-coded with Bayer filter colors
4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
5. Full RGB version at 120×80-pixels for comparison

23 / 56



1. Digital Image

1.4. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene
2. Output of a 120×80-pixel sensor with a Bayer filter
3. Output color-coded with Bayer filter colors
4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
5. Full RGB version at 120×80-pixels for comparison

24 / 56



1. Digital Image

1.4. color image

⇒ color image = 3D tensor in colorspace
• RGB = Red + Green + Blue bands (.JPEG)
• RGBA = Red + Green + Blue + Alpha bands (.PNG, .GIF, .BMP, TIFF, .JPEG 2000)

25 / 56



1. Digital Image

1.5. color spaces

Other ways to represent the color information?

RGB colorspace HSV colorspace

• Hue (H) = [0-360] ⇒ shift color
• Saturation (S) = [0-1] ⇒ shift intensity
• Value (V) = [0-1] ⇒ shift brightness

26 / 56



1. Digital Image

1.5. color spaces

3D tensor with different information

RGB colorspace HSV colorspace

27 / 56



1. Digital Image

1.5. color spaces

•more saturation S
⇒ more intense colors

•more value V
⇒ brighter colors

•shift hue H
⇒ shift color

28 / 56



1. Digital Image

1.5. color spaces

•more saturation S
⇒ more intense colors

•more value V
⇒ brighter colors

•shift hue H
⇒ shift color

29 / 56



1. Digital Image

1.5. color spaces

•more saturation S
⇒ more intense colors

•more value V
⇒ brighter colors

•shift hue H
⇒ shift color

30 / 56



1. Digital Image

1.6. image histogram

Histogram of pixel values in each band:

31 / 56



1. Digital Image

1.6. image histogram

Histogram of pixel values after conversion from RGB (3-bands) to gray-scale (1-band):

32 / 56



1. Digital Image

1.6. image histogram

Histogram of pixel values after conversion to float values (range [0-1])

33 / 56



1. Digital Image

1.6. image histogram

•original gray-scale

•histogram rescale to 10-90 percentiles
⇒ contrast stretching

•histogram equalize
⇒ spread out the most frequent intensity values

34 / 56

https://en.wikipedia.org/wiki/Percentile


1. Digital Image

1.6. image histogram

•original gray-scale

•histogram rescale to 10-90 percentiles
⇒ contrast stretching

•histogram equalize
⇒ spread out the most frequent intensity values

35 / 56

https://en.wikipedia.org/wiki/Percentile


1. Digital Image

1.6. image histogram

•original gray-scale

•histogram rescale to 10-90 percentiles
⇒ contrast stretching

•histogram equalize
⇒ spread out the most frequent intensity values

36 / 56

https://en.wikipedia.org/wiki/Percentile


2. Point operations

1. What is a digital image?

2. Point operations
1. homogeneous point operations
2. inhomogeneous Point Operations

3. Image processing levels

4. Image manipulation with Python

37 / 56



2. Point operations

Point operations

38 / 56



2. Point operations

2.1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

39 / 56



2. Point operations

2.1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

40 / 56



2. Point operations

2.1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

41 / 56



2. Point operations

2.1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

42 / 56



2. Point operations

2.1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

43 / 56



2. Point operations

2.1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

44 / 56



2. Point operations

2.2. inhomogeneous Point Operations

Inhomogeneous Point Operations (depends on pixel position)
EX: background detection / change detection

45 / 56



2. Point operations

2.2. inhomogeneous Point Operations

Inhomogeneous Point Operations (depends on pixel position)
EX: background detection / change detection

46 / 56



3. Image processing levels

1. What is a digital image?

2. Point operations

3. Image processing levels

4. Image manipulation with Python

47 / 56



3. Image processing levels

Image processing levels: inhomogeneous Point Operations

Credit: Pablo Alvarado 2012

48 / 56



3. Image processing levels

Image processing levels

Examples of processing levels:

• Low-level processing
• image manipulation ⇒ resizing, color

adjustments, filtering, etc.
• feature extraction ⇒ edges, gradients, etc.

• Mid-level processing
• panorama stitching
• Structure from Motion (SfM) ⇒ 2D to 3D
• Optical Flow ⇒ velocities

• High-level processing
• classification ⇒ what is in the image?
• detection ⇒ where are they?
• segmentation (semantic or instance) ⇒

segment image and give names
49 / 56



3. Image processing levels

Image processing levels

Examples of processing levels:

• Low-level processing
• image manipulation ⇒ resizing, color

adjustments, filtering, etc.
• feature extraction ⇒ edges, gradients, etc.

• Mid-level processing
• panorama stitching
• Structure from Motion (SfM) ⇒ 2D to 3D
• Optical Flow ⇒ velocities

• High-level processing
• classification ⇒ what is in the image?
• detection ⇒ where are they?
• segmentation (semantic or instance) ⇒

segment image and give names
50 / 56



3. Image processing levels

Image processing levels

Examples of processing levels:

• Low-level processing
• image manipulation ⇒ resizing, color

adjustments, filtering, etc.
• feature extraction ⇒ edges, gradients, etc.

• Mid-level processing
• panorama stitching
• Structure from Motion (SfM) ⇒ 2D to 3D
• Optical Flow ⇒ velocities

• High-level processing
• classification ⇒ what is in the image?
• detection ⇒ where are they?
• segmentation (semantic or instance) ⇒

segment image and give names
51 / 56



3. Image processing levels

Image processing levels

Examples of processing levels:

• Low-level processing
• image manipulation ⇒ resizing, color

adjustments, filtering, etc.
• feature extraction ⇒ edges, gradients, etc.

• Mid-level processing
• panorama stitching
• Structure from Motion (SfM) ⇒ 2D to 3D
• Optical Flow ⇒ velocities

• High-level processing
• classification ⇒ what is in the image?
• detection ⇒ where are they?
• segmentation (semantic or instance) ⇒

segment image and give names
52 / 56



3. Image processing levels

Image processing levels

Examples of processing levels:

• Low-level processing
• image manipulation ⇒ resizing, color

adjustments, filtering, etc.
• feature extraction ⇒ edges, gradients, etc.

• Mid-level processing
• panorama stitching
• Structure from Motion (SfM) ⇒ 2D to 3D
• Optical Flow ⇒ velocities

• High-level processing
• classification ⇒ what is in the image?
• detection ⇒ where are they?
• segmentation (semantic or instance) ⇒

segment image and give names
53 / 56



4. Image manipulation with Python

1. What is a digital image?

2. Point operations

3. Image processing levels

4. Image manipulation with Python
1. numpy tutorial
2. exercises

54 / 56



4. Image manipulation with Python

4.1. numpy tutorial

Numpy tutorial:

⇒ Open DIP4RS 02 imagebasics/DIP4RS 02 numpy-tutorial.ipynb

55 / 56



4. Image manipulation with Python

4.2. exercises

Exercices:

⇒ Open DIP4RS 02 imagebasics/DIP4RS 02 exercices.ipynb

56 / 56


	What is a digital image?
	image acquisition
	sampling and quantization
	3D projection on 2D plane
	color image
	color spaces
	image histogram

	Point operations
	homogeneous point operations
	inhomogeneous Point Operations

	Image processing levels
	Image manipulation with Python
	numpy tutorial
	exercises


