Lecture 02 Digital Image Basics

2024-02-01

Sébastien Valade

1. [What is a digital image?](#page-1-0)

- 1. [image acquisition](#page-2-0)
- 2. [sampling and quantization](#page-6-0)
- 3. [3D projection on 2D plane](#page-10-0)
- 4. [color image](#page-18-0)
- 5. [color spaces](#page-25-0)
- 6. [image histogram](#page-30-0)
- 2. [Point operations](#page-36-0)
- 3. [Image processing levels](#page-46-0)
- 4. [Image manipulation with Python](#page-53-0)

1. energy from an **illumination source** is reflected from a **scene**

- 2. the **imaging system** collects the incoming energy and focuses it onto an **image plane** NB: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light intensity $I(x)$: the CCD (Charge-Coupled Device)
- 3. the image plane is sampled and quantized to produce a **digital image**

- 1. energy from an **illumination source** is reflected from a **scene**
- 2. the **imaging system** collects the incoming energy and focuses it onto an **image plane**
	- NB: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light intensity $I(x)$: the CCD (Charge-Coupled Device)
- 3. the image plane is sampled and quantized to produce a **digital image**

- 1. energy from an **illumination source** is reflected from a **scene**
- 2. the **imaging system** collects the incoming energy and focuses it onto an **image plane** NB: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light intensity $I(x)$: the CCD (Charge-Coupled Device)

3. the image plane is sampled and quantized to produce a **digital image**

- 1. energy from an **illumination source** is reflected from a **scene**
- 2. the **imaging system** collects the incoming energy and focuses it onto an **image plane** NB: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light intensity $I(x)$: the CCD (Charge-Coupled Device)
- 3. the image plane is sampled and quantized to produce a **digital image**

Credit: Gonzalez & Woods 2018

1.2. sampling and quantization

• each photosensor records incident light

- digitalization of an analog signal involves two operations
	- **spatial sampling** $(=$ discretization of space domain)
	- **intensity quantization** (= discretization of incoming light signal)

1.2. sampling and quantization

- each photosensor records incident light
- digitalization of an analog signal involves two operations
	- **spatial sampling** $(=$ discretization of space domain)
	- **intensity quantization** (= discretization of incoming light signal)

1. [Digital Image](#page-1-0)

1.2. sampling and quantization

spatial sampling $(=$ discretization of space domain)

 \Rightarrow smallest element resulting from the discretization of the space is called a pixel (=picture element)

 (512.512) $(128, 128)$ $(64, 64)$ $(32, 32)$

intensity quantization ($=$ discretization of light intensity signal)

 \Rightarrow typically, 256 levels (8 bits/pixel $=2^8$ values) suffices to represent the intensity

2-hit resolution $2^2 = 4$ gray levels

1-hit resolution $2^1 = 2$ aray levels

1. [Digital Image](#page-1-0)

1.2. sampling and quantization

spatial sampling $(=$ discretization of space domain)

 \Rightarrow smallest element resulting from the discretization of the space is called a pixel (=picture element)

 (512.512) $(128, 128)$ $(64, 64)$ $(32, 32)$

intensity quantization ($=$ discretization of light intensity signal)

 \Rightarrow typically, 256 levels (8 bits/pixel $=2^8$ values) suffices to represent the intensity

3-bit resolution $2^3 = 8$ gray levels

2-hit resolution $2^2 = 4$ grav levels

1-hit resolution 2^1 = 2 arav levels

But how is the 3D world projected on a 2D plane? \Rightarrow comparison between human eye and pinhole camera:

$Image = 3D$ world projection on 2D

⇒ projection using the **pinhole camera** model:

Perspective transformation:

$$
s \t m' = K[R|t]M'
$$
(1)

$$
s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}
$$
(2)

- $M' = 3D$ point in space with coordinates $[X, Y, Z]^T$ expressed in
- m' = projection of the 3D point M' onto the image plane with
- $K =$ camera calibration matrix (a.k.a instrinsics parameters matrix)
	- f_x , f_y = focal lengths expressed in pixel units
	- \bullet u_0, v_0 = coordinates of the optical center (aka principal
- $[R|t] =$ joint rotation-translation matrix (a.k.a. extrinsics

$Image = 3D$ world projection on 2D

⇒ projection using the **pinhole camera** model:

Perspective transformation:

$$
s \, m' = K[R|t]M'
$$
 (1)

$$
s\begin{bmatrix}u\\v\\1\end{bmatrix}=\begin{bmatrix}f_x&0&u_0\\0&f_y&v_0\\0&0&1\end{bmatrix}\begin{bmatrix}r_{11}&r_{12}&r_{13}&t_1\\r_{21}&r_{22}&r_{23}&t_2\\r_{31}&r_{32}&r_{33}&t_3\end{bmatrix}\begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}
$$
(2)

- $M' = 3D$ point in space with coordinates $[X, Y, Z]^T$ expressed in Euclidean coordinates
- m' = projection of the 3D point M' onto the image plane with
- $K =$ camera calibration matrix (a.k.a instrinsics parameters matrix)
	- f_x , f_y = focal lengths expressed in pixel units
	- \bullet u_0, v_0 = coordinates of the optical center (aka principal
- $[R|t] =$ joint rotation-translation matrix (a.k.a. extrinsics

$Image = 3D$ world projection on 2D

⇒ projection using the **pinhole camera** model:

Perspective transformation:

$$
s \; m' = K[R|t]M'
$$
 (1)

$$
s\begin{bmatrix}u\\v\\1\end{bmatrix}=\begin{bmatrix}f_{x}&0&u_{0}\\0&f_{y}&v_{0}\\0&0&1\end{bmatrix}\begin{bmatrix}r_{11}&r_{12}&r_{13}&t_{1}\\r_{21}&r_{22}&r_{23}&t_{2}\\r_{31}&r_{32}&r_{33}&t_{3}\end{bmatrix}\begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}
$$
(2)

- $M' = 3D$ point in space with coordinates $[X, Y, Z]^T$ expressed in Euclidean coordinates
- m' = projection of the 3D point M' onto the image plane with coordinates $[u, v]^T$ expressed in pixel units
- $K =$ camera calibration matrix (a.k.a instrinsics parameters matrix)
	- f_x , f_y = focal lengths expressed in pixel units
	- \bullet u_0, v_0 = coordinates of the optical center (aka principal
- $[R|t] =$ joint rotation-translation matrix (a.k.a. extrinsics

$Image = 3D$ world projection on 2D

⇒ projection using the **pinhole camera** model:

Perspective transformation:

$$
s \; m' = K[R|t]M'
$$
 (1)

$$
s\begin{bmatrix}u\\v\\1\end{bmatrix}=\begin{bmatrix}f_{x}&0&u_{0}\\0&f_{y}&v_{0}\\0&0&1\end{bmatrix}\begin{bmatrix}r_{11}&r_{12}&r_{13}&t_{1}\\r_{21}&r_{22}&r_{23}&t_{2}\\r_{31}&r_{32}&r_{33}&t_{3}\end{bmatrix}\begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}
$$
(2)

- $M' = 3D$ point in space with coordinates $[X, Y, Z]^T$ expressed in Euclidean coordinates
- m' = projection of the 3D point M' onto the image plane with coordinates $[u, v]^T$ expressed in pixel units
- $K =$ camera calibration matrix (a.k.a instrinsics parameters matrix)
	- $f_X, f_Y =$ focal lengths expressed in pixel units
	- \bullet u_0 , v_0 = coordinates of the optical center (aka principal point), origin in the image plane
- $[R|t] =$ joint rotation-translation matrix (a.k.a. extrinsics

$Image = 3D$ world projection on 2D

⇒ projection using the **pinhole camera** model:

Perspective transformation:

$$
s \; m' = K[R|t]M'
$$
 (1)

$$
s\begin{bmatrix}u\\v\\1\end{bmatrix}=\begin{bmatrix}f_x&0&u_0\\0&f_y&v_0\\0&0&1\end{bmatrix}\begin{bmatrix}r_{11}&r_{12}&r_{13}&t_1\\r_{21}&r_{22}&r_{23}&t_2\\r_{31}&r_{32}&r_{33}&t_3\end{bmatrix}\begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}
$$
(2)

- $M' = 3D$ point in space with coordinates $[X, Y, Z]^T$ expressed in Euclidean coordinates
- m' = projection of the 3D point M' onto the image plane with coordinates $[u, v]^T$ expressed in pixel units
- $K =$ camera calibration matrix (a.k.a instrinsics parameters matrix)
	- $f_X, f_Y =$ focal lengths expressed in pixel units
	- \bullet u_0 , v_0 = coordinates of the optical center (aka principal point), origin in the image plane
- $[R|t] =$ joint rotation-translation matrix (a.k.a. extrinsics parameters matrix), describing the camera pose, and translating from world coordinates to camera coordinates

 \Rightarrow digital image function $f(x, y)$

\Rightarrow digital image function $f(x, y)$

Typical ranges:

• uint $8 = [0-255]$ $(8 \text{ bits} = 1 \text{ byte} = 2^8 = 256 \text{ values per})$ pixel)

• float $32 = [0-1]$ $(32 \text{ bits} = 4 \text{ bytes} = 4.3e9 \text{ values per pixel})$

How do we record colors?

⇒ **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

How do we record colors?

⇒ **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene

- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
- 5. Full RGB version at 120×80 -pixels for comparison

How do we record colors?

⇒ **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

- 1. Original scene
- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
- 5. Full RGB version at 120×80 -pixels for comparison

How do we record colors?

⇒ **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

- 1. Original scene
- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
- 5. Full RGB version at 120×80 -pixels for comparison

How do we record colors?

⇒ **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

- 1. Original scene
- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)

5. Full RGB version at 120×80 -pixels for comparison

How do we record colors?

⇒ **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

- 1. Original scene
- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
- 5. Full RGB version at 120×80 -pixels for comparison

```
1. Digital Image
```
 \Rightarrow color image = 3D tensor in colorspace

- $RGB = Red + Green + Blue bands$ (.JPEG)
- $RGBA = Red + Green + Blue + Alpha bands$ (.PNG, .GIF, .BMP, TIFF, .JPEG 2000)

Other ways to represent the color information?

- Hue $(H) = [0-360] \Rightarrow$ shift color
- Saturation $(S) = [0-1] \Rightarrow$ shift intensity
- Value (V) = $[0-1] \Rightarrow$ shift brightness

3D tensor with different information

RGB colorspace HSV colorspace

original

saturation x2

• more saturation S

⇒ more intense colors

•more value V

•shift hue H

original

saturation x2

• more saturation S

⇒ more intense colors

value x1.5

•more value V

 \Rightarrow brighter colors

•shift hue H

original

saturation x2

• more saturation S

⇒ more intense colors

value x1.5

•more value V

 \Rightarrow brighter colors

original

•shift hue H

⇒ shift color

hue x5

1. [Digital Image](#page-1-0)

1.6. image histogram

Histogram of pixel values in each band:

original (uint8)

1. [Digital Image](#page-1-0)

1.6. image histogram

Histogram of pixel values after conversion from RGB (3-bands) to gray-scale (1-band):

 $0.7154 G + 0.0721 B$

gray-scale (uint8)

1. [Digital Image](#page-1-0)

1.6. image histogram

Histogram of pixel values after conversion to float values (range [0-1])

 $+ 0.7154$ G + 0.0721 B

gray-scale (float)

•original gray-scale

•histogram rescale to 10-90 [percentiles](https://en.wikipedia.org/wiki/Percentile)

■ histogram equalize

⇒ spread out the most frequent intensity values

1.6. image histogram

•original gray-scale

• histogram rescale to 10-90 [percentiles](https://en.wikipedia.org/wiki/Percentile) \Rightarrow contrast stretching

■ histogram equalize

⇒ spread out the most frequent intensity values

1.6. image histogram

•original gray-scale

• histogram rescale to 10-90 [percentiles](https://en.wikipedia.org/wiki/Percentile) \Rightarrow contrast stretching

■ histogram equalize

⇒ spread out the most frequent intensity values

1. [What is a digital image?](#page-1-0)

2. [Point operations](#page-36-0)

- 1. [homogeneous point operations](#page-38-0)
- 2. [inhomogeneous Point Operations](#page-44-0)
- 3. [Image processing levels](#page-46-0)
- 4. [Image manipulation with Python](#page-53-0)

identity inverse square root $q(x, y) = a \cdot exp(f(x, y) - 1)$ 1.0 $0.8\,$ transformed pixel values $g(x, y)$
)
)
)
)
)
)
) logarithm exponential 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 original pixel values $f(x, y)$

Inhomogeneous Point Operations (depends on pixel position) EX: background detection / change detection

$$
a(x, y) = \frac{1}{N} \sum_{i=0}^{N} f_i(x, y)
$$

 $a(x, y)$

$$
g_i(x, y) = T(f(x, y), x, y) = f_i(x, y) - a(x, y)
$$

Inhomogeneous Point Operations (depends on pixel position) EX: background detection / change detection

- 1. [What is a digital image?](#page-1-0)
- 2. [Point operations](#page-36-0)
- 3. [Image processing levels](#page-46-0)
- 4. [Image manipulation with Python](#page-53-0)

Image processing levels: inhomogeneous Point Operations

Credit: Pablo Alvarado 2012

Examples of processing levels:

- Low-level processing
	- image manipulation \Rightarrow resizing, color adjustments, filtering, etc.
	- feature extraction \Rightarrow edges, gradients, etc.
- Mid-level processing
	- panorama stitching
	- Structure from Motion (SfM) \Rightarrow 2D to 3D
	- Optical Flow \Rightarrow velocities
- High-level processing
	- classification \Rightarrow what is in the image?
	- detection \Rightarrow where are they?
	- segmentation (semantic or instance) \Rightarrow segment image and give names

Examples of processing levels:

- Low-level processing
	- image manipulation \Rightarrow resizing, color adjustments, filtering, etc.
	- feature extraction \Rightarrow edges, gradients, etc.

• Mid-level processing

- panorama stitching
- Structure from Motion (SfM) \Rightarrow 2D to 3D
- Optical Flow \Rightarrow velocities
- High-level processing
	- classification \Rightarrow what is in the image?
	- detection \Rightarrow where are they?
	- segmentation (semantic or instance) \Rightarrow segment image and give names

hue x5

filter (high pass)

Image processing levels

Examples of processing levels:

- Low-level processing
	- image manipulation \Rightarrow resizing, color adjustments, filtering, etc.
	- feature extraction \Rightarrow edges, gradients, etc.

• Mid-level processing

- panorama stitching
- Structure from Motion (SfM) \Rightarrow 2D to 3D
- Optical Flow \Rightarrow velocities
- High-level processing
	- classification \Rightarrow what is in the image?
	- detection \Rightarrow where are they?
	- segmentation (semantic or instance) \Rightarrow segment image and give names

panorama stiching

Optical Flow (Farneback)

3D reconstruction

Examples of processing levels:

- Low-level processing
	- image manipulation \Rightarrow resizing, color adjustments, filtering, etc.
	- feature extraction \Rightarrow edges, gradients, etc.
- Mid-level processing
	- panorama stitching
	- Structure from Motion (SfM) \Rightarrow 2D to 3D
	- Optical Flow \Rightarrow velocities
- High-level processing
	- classification \Rightarrow what is in the image?
	- detection \Rightarrow where are they?
	- segmentation (semantic or instance) \Rightarrow segment image and give names

Credit: cloudfactory

Examples of processing levels:

- Low-level processing
	- image manipulation \Rightarrow resizing, color adjustments, filtering, etc.
	- feature extraction \Rightarrow edges, gradients, etc.

• Mid-level processing

- panorama stitching
- Structure from Motion (SfM) \Rightarrow 2D to 3D
- Optical Flow \Rightarrow velocities
- High-level processing
	- classification \Rightarrow what is in the image?
	- detection \Rightarrow where are they?
	- segmentation (semantic or instance) \Rightarrow segment image and give names

1. [What is a digital image?](#page-1-0)

- 2. [Point operations](#page-36-0)
- 3. [Image processing levels](#page-46-0)

4. [Image manipulation with Python](#page-53-0)

- 1. [numpy tutorial](#page-54-0)
- 2. [exercises](#page-55-0)

4.1. numpy tutorial

Numpy tutorial:

 \Rightarrow Open DIP4RS_02_imagebasics/DIP4RS_02_numpy-tutorial.ipynb

4.2. exercises

Exercices:

⇒ Open DIP4RS_02_imagebasics/DIP4RS_02_exercices.ipynb