Lecture 07 GEE Image Classification: supervised & unsupervised classification

2024-04-15

Sébastien Valade

Previous lecture:

GEE image manipulation:

 \Rightarrow band arithmetic (spectral indices), thresholds, masks, reducers

Today:

GEE image classification:

 \Rightarrow assign a *class* to each pixel in the image

 \Rightarrow supervised & unsupervised learning

Previous lecture:

GEE image manipulation:

 \Rightarrow band arithmetic (spectral indices), thresholds, masks, reducers

Today: GEE image classification:

- $\Rightarrow\,$ assign a class to each pixel in the image
- $\Rightarrow\,$ supervised & unsupervised learning

Table of Contents

1. Introduction

- 1. Image classification overview
- 2. Pixel-based image classification
- 3. Supervised vs. unsupervised learning in a nutshell

2. Supervised classification in GEE

- 1. Workflow overview
- 2. Select image to classify
- 3. Collect training samples
- 4. Select prediction bands
- 5. Select classifier & train
- 6. Classify the image
- 7. Compare results with other land cover image collections

3. Unsupervised classification in GEE

- 1. Workflow overview
- 2. Select image to classify
- 3. Collect unlabeled data
- 4. Select/train clustering algorithm
- 5. Classify image

1. Introduction

- 1. Image classification overview
- 2. Pixel-based image classification
- 3. Supervised vs. unsupervised learning in a nutshell

2. Supervised classification in GEE

- 1. Workflow overview
- 2. Select image to classify
- 3. Collect training samples
- 4. Select prediction bands
- 5. Select classifier & train
- 6. Classify the image
- 7. Compare results with other land cover image collections

3. Unsupervised classification in GEE

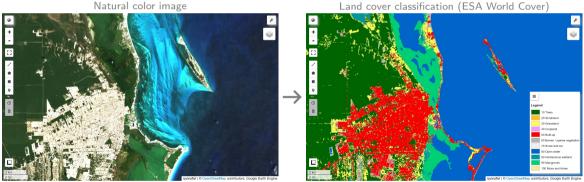
- 1. Workflow overview
- 2. Select image to classify
- 3. Collect unlabeled data
- 4. Select/train clustering algorithm
- 5. Classify image

Image Classification:

- ⇒ **Image classification** in remote sensing, is a task that involves categorizing all pixels in an image into a finite number of **classes**
- ⇒ its most common application is *land use & land cover (LULC)* classification, whereby all pixels are categorized in predefined land cover classes (e.g., water, forest, urban, etc.)

Image Classification:

- ⇒ **Image classification** in remote sensing, is a task that involves categorizing all pixels in an image into a finite number of **classes**
- ⇒ its most common application is *land use & land cover (LULC)* classification, whereby all pixels are categorized in predefined land cover classes (e.g., water, forest, urban, etc.)



- \Rightarrow Several techniques exist to classify the image (Li et al. 2014, Kavzoglu et al. 2009 (ed2), 2025 (ed3)):
 - Pixel-based techniques:
 - Object-based techniques:
 - Deep Learning techniques:

classify each pixel individually based on spectral properties classify groups of pixels (objects) based on spectral, spatial, and cor use neural networks to learn features and classify images

- ⇒ These techniques generally fall in the broad field of <u>Machine Learning</u>, whereby <u>statistical algorithms are able to learn from data</u>, and <u>generalize to unseen data</u>, thus performing tasks (i.e., classification) without explicit instructions
- \Rightarrow The learning approach can be either supervised or unsupervised:
 - Supervised classification: requires training data (labeled data)
 - **Unsupervised classification**: does *not* require *training data*

 \Rightarrow In this lecture, we will focus on the *implementation in GEE* of **pixel-based classification** using both **supervised and unsupervised** techniques

- \Rightarrow Several techniques exist to classify the image (Li et al. 2014, Kavzoglu et al. 2009 (ed2), 2025 (ed3)):
 - Pixel-based techniques:
 - Object-based techniques:
 - Deep Learning techniques:

classify each pixel individually based on spectral properties

- classify groups of pixels (objects) based on spectral, spatial, and cor use neural networks to learn features and classify images
- ⇒ These techniques generally fall in the broad field of Machine Learning, whereby <u>statistical algorithms are able to learn from data, and generalize to unseen data</u>, thus performing tasks (i.e., classification) without explicit instructions
- \Rightarrow The learning approach can be either supervised or unsupervised:
 - Supervised classification: requires training data (labeled data)
 - Unsupervised classification: does not require training data

 \Rightarrow In this lecture, we will focus on the *implementation in GEE* of **pixel-based classification** using both **supervised and unsupervised** techniques

- \Rightarrow Several techniques exist to classify the image (Li et al. 2014, Kavzoglu et al. 2009 (ed2), 2025 (ed3)):
 - Pixel-based techniques:
 - Object-based techniques:
 - Deep Learning techniques:

classify each pixel individually based on spectral properties

- classify groups of pixels (objects) based on spectral, spatial, and cor use neural networks to learn features and classify images
- ⇒ These techniques generally fall in the broad field of Machine Learning, whereby statistical algorithms are able to learn from data, and generalize to unseen data, thus performing tasks (i.e., classification) without explicit instructions
- \Rightarrow The learning approach can be either **supervised** or **unsupervised**:
 - Supervised classification: requires training data (labeled data)
 - Unsupervised classification: does not require training data

 \Rightarrow In this lecture, we will focus on the *implementation in GEE* of **pixel-based classification** using both **supervised and unsupervised** techniques

- \Rightarrow Several techniques exist to classify the image (Li et al. 2014, Kavzoglu et al. 2009 (ed2), 2025 (ed3)):
 - Pixel-based techniques:
 - Object-based techniques:
 - Deep Learning techniques:

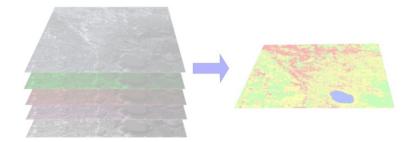
classify each pixel individually based on spectral properties

- classify groups of pixels (objects) based on spectral, spatial, and cor use neural networks to learn features and classify images
- ⇒ These techniques generally fall in the broad field of Machine Learning, whereby statistical algorithms are able to learn from data, and generalize to unseen data, thus performing technology (i.e., clear) without explicit instructions.
 - tasks (i.e., classification) without explicit instructions
- \Rightarrow The learning approach can be either **supervised** or **unsupervised**:
 - Supervised classification: requires training data (labeled data)
 - Unsupervised classification: does not require training data

 \Rightarrow In this lecture, we will focus on the *implementation in GEE* of **pixel-based classification** using both **supervised and unsupervised** techniques

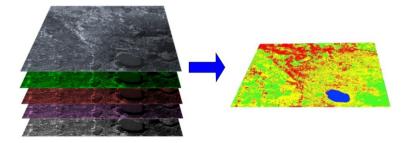
Pixel-based classification:

- ⇒ With the pixel-based classification method, pixels are <u>classified</u> *individually*, i.e. without spatial context from the neighboring pixels
- ⇒ Classification is based on the *pixel spectral properties* (i.e., reflectance values in each band), and/or on their transformations (i.e., spectral indices, principal components, etc.)



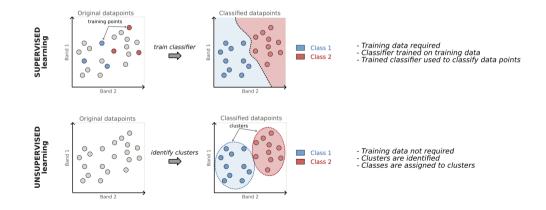
Pixel-based classification:

- ⇒ With the pixel-based classification method, pixels are <u>classified</u> *individually*, i.e. without spatial context from the neighboring pixels
- ⇒ Classification is based on the *pixel spectral properties* (i.e., reflectance values in each band), and/or on their transformations (i.e., spectral indices, principal components, etc.)



Pixel-based classification:

⇒ **Supervised** vs. **Unsupervised** learning:



1. Introduction

- 1. Image classification overview
- 2. Pixel-based image classification
- 3. Supervised vs. unsupervised learning in a nutshell

2. Supervised classification in GEE

- 1. Workflow overview
- 2. Select image to classify
- 3. Collect training samples
- 4. Select prediction bands
- 5. Select classifier & train
- 6. Classify the image
- 7. Compare results with other land cover image collections

3. Unsupervised classification in GEE

- 1. Workflow overview
- 2. Select image to classify
- 3. Collect unlabeled data
- 4. Select/train clustering algorithm
- 5. Classify image

Workflow of supervised classification

1. Select image to classify

2. Collect training data

 \Rightarrow a *training dataset* is collection of *labeled data*, that is input-output pairs, where the *input* is the data provided to the model, and the *output* is the corresponding target or label that the model is expected to predict.

3. Select prediction bands

 \Rightarrow prediction bands correspond to the bands used to extract the spectral information to classify each pixels.

<u>EX</u>: use the bands provided in the product (including bands in the visible range, and possibly in the infrared range), and possibly derived bands (e.g., spectral indices, or principal components derived from a PCA analysis)

4. Select a <u>classifier</u> and <u>train</u> it on the training data

 \Rightarrow a *classifier* is a <u>statistical model</u> that learns to map input pixels to output classes based on the provided labels.

EX: commonly used classifiers are Random Forest, Support Vector Machine, K-Nearest Neighbors, CART, etc.

5. Classify the image using the trained classifier

Workflow of supervised classification

1. Select image to classify

2. Collect training data

 \Rightarrow a <u>training dataset</u> is collection of <u>labeled data</u>, that is input-output pairs, where the *input* is the data provided to the model, and the *output* is the corresponding target or label that the model is expected to predict.

3. Select prediction bands

 \Rightarrow prediction bands correspond to the bands used to extract the spectral information to classify each pixels.

<u>EX</u>: use the bands provided in the product (including bands in the visible range, and possibly in the infrared range), and possibly derived bands (e.g., spectral indices, or principal components derived from a PCA analysis)

4. Select a <u>classifier</u> and <u>train</u> it on the training data

 \Rightarrow a *classifier* is a <u>statistical model</u> that learns to map input pixels to output classes based on the provided labels.

EX: commonly used classifiers are Random Forest, Support Vector Machine, K-Nearest Neighbors, CART, etc.

5. Classify the image using the trained classifier

Workflow of supervised classification

1. Select image to classify

2. Collect training data

 \Rightarrow a <u>training dataset</u> is collection of <u>labeled data</u>, that is input-output pairs, where the *input* is the data provided to the model, and the *output* is the corresponding target or label that the model is expected to predict.

3. Select prediction bands

 \Rightarrow prediction bands correspond to the bands used to extract the spectral information to classify each pixels.

<u>EX</u>: use the bands provided in the product (including bands in the visible range, and possibly in the infrared range), and possibly derived bands (e.g., spectral indices, or principal components derived from a PCA analysis)

4. Select a <u>classifier</u> and <u>train</u> it on the training data

 \Rightarrow a *classifier* is a <u>statistical model</u> that learns to map input pixels to output classes based on the provided labels.

EX: commonly used classifiers are Random Forest, Support Vector Machine, K-Nearest Neighbors, CART, etc.

5. Classify the image using the trained classifier

Workflow of supervised classification

1. Select image to classify

2. Collect training data

 \Rightarrow a <u>training dataset</u> is collection of <u>labeled data</u>, that is input-output pairs, where the *input* is the data provided to the model, and the *output* is the corresponding target or label that the model is expected to predict.

3. Select prediction bands

 \Rightarrow prediction bands correspond to the bands used to extract the spectral information to classify each pixels.

<u>EX</u>: use the bands provided in the product (including bands in the visible range, and possibly in the infrared range), and possibly derived bands (e.g., spectral indices, or principal components derived from a PCA analysis)

4. Select a <u>classifier</u> and <u>train</u> it on the training data

 \Rightarrow a *classifier* is a *statistical model* that learns to map input pixels to output classes based on the provided labels.

EX: commonly used classifiers are Random Forest, Support Vector Machine, K-Nearest Neighbors, CART, etc.

5. Classify the image using the trained classifier

Workflow of supervised classification

1. Select image to classify

2. Collect training data

 \Rightarrow a <u>training dataset</u> is collection of <u>labeled data</u>, that is input-output pairs, where the *input* is the data provided to the model, and the *output* is the corresponding target or label that the model is expected to predict.

3. Select prediction bands

 \Rightarrow prediction bands correspond to the bands used to extract the spectral information to classify each pixels.

<u>EX</u>: use the bands provided in the product (including bands in the visible range, and possibly in the infrared range), and possibly derived bands (e.g., spectral indices, or principal components derived from a PCA analysis)

4. Select a <u>classifier</u> and <u>train</u> it on the training data

 \Rightarrow a *classifier* is a *statistical model* that learns to map input pixels to output classes based on the provided labels.

EX: commonly used classifiers are Random Forest, Support Vector Machine, K-Nearest Neighbors, CART, etc.

5. Classify the image using the *trained classifier*

2.2. Select image to classify

Step 1: select the image to classify

Step 2: collect training samples

<u>NB</u>: the built-in tool in GEEMAP called "Collect training samples" is suffering bugs in the Google Colab environment (in particular, it does not store the "property" & "value" fields in the user_rois object). The approach suggested below is a workaround to collect training samples.

 \Rightarrow For each <u>land cover class</u> (see table below), repeat the following:

- 1. <u>Select</u> training pixels using the Draw a marker tool on the interactive map
- 2. <u>Convert</u> the collected samples (Map.user_rois) to a GeoPandasDataframe, and create a new column called "class" storing the numeric value corresponding to the land cover class
- 3. Export the GeoPandasDataframe to a GeoJson file on your Google Drive for future use
- 4. <u>Combine</u> all collected samples in a unique FeatureCollection: once steps 1-3 have been performed for each class, <u>import</u> all GeoJson files and combine in a unique FeatureCollection, which will store all the collected samples along with their class

 \Rightarrow In this example, we will be using the following <u>land cover classes</u> (feel free to adapt to your image): Class <u>Description</u>

- 0 Vegetation
- 1 Urban
- 2 Water
- 3 Grassland

Step 2: collect training samples

<u>NB</u>: the built-in tool in GEEMAP called "Collect training samples" is suffering bugs in the Google Colab environment (in particular, it does not store the "property" & "value" fields in the user_rois object). The approach suggested below is a workaround to collect training samples.

 \Rightarrow For each <u>land cover class</u> (see table below), repeat the following:

- 1. Select training pixels using the Draw a marker tool on the interactive map
- <u>Convert</u> the collected samples (Map.user_rois) to a GeoPandasDataframe, and create a new column called "class" storing the numeric value corresponding to the land cover class
- 3. Export the GeoPandasDataframe to a GeoJson file on your Google Drive for future use
- 4. <u>Combine</u> all collected samples in a unique FeatureCollection: once steps 1-3 have been performed for each class, <u>import</u> all GeoJson files and combine in a unique FeatureCollection, which will store all the collected samples along with their class

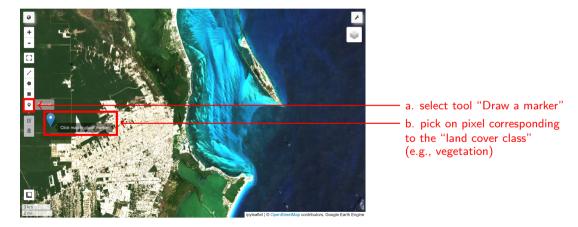
 \Rightarrow In this example, we will be using the following <u>land cover classes</u> (feel free to adapt to your image):

- Class Description
- 0 Vegetation
- 1 Urban
- 2 Water
- 3 Grassland

2.3. Collect training samples

Step 2: collect training samples

1. <u>Select</u> training pixels using the Draw a marker tool on the interactive map



2.3. Collect training samples

Step 2: collect training samples

2. <u>Convert</u> the collected samples (Map.user_rois) to a GeoPandasDataframe, and create a new column called "class" storing the numeric value corresponding to the land cover class

Step 2: collect training samples

3. Export the GeoPandasDataframe to a GeoJson file on your Google Drive for future use

<u>NB</u>: to mount your Google Drive in the Google Colab jupyter environment, either run the command below, or click on "Folder" icon in the vertical toolbar on the left-hand side of the screen, then click on the icon representing a folder w the Google Drive logo inside.

Step 2: collect training samples

 <u>Combine</u> all collected samples in a unique FeatureCollection: once steps 1-3 have been performed for each class, <u>import</u> all GeoJson files and combine in a unique FeatureCollection, which will store all the collected samples along with their class

```
# Import GeoJson as individual feature collections
p geojson = '/content/drive/MyDrive/training samples/'
fc_vegetation = geemap.geojson_to_ee(p_geojson+'training_samples_class-0_vegetation.geojson')
fc urban = geemap.geojson to ee(p geojson+'training samples class-1 urban.geojson')
fc water = geemap.geojson to ee(p geojson+'training samples class-2 water.geojson')
fc grass = geemap.geoison to ee(p geoison+'training samples class-3 grass.geoison')
# Display the FeatureCollections (optional)
Map.addLaver(fc vegetation, {'color':'green'}, "vegetation")
Map.addLayer(fc_urban, {'color':'red'}, "urban")
Map.addLaver(fc water, {'color':'blue'}, "water")
Map.addLayer(fc_grass, {'color':'orange'}, "grass")
# Combine all feature collections in a unique training FeatureCollection
fc_trainingSamples = (ee.FeatureCollection([
    fc vegetation, fc urban, fc water, fc grass
    1) flatten())
```

2.3. Collect training samples

Step 2: collect training samples

4. Combine all collected samples in a unique FeatureCollection: once steps 1-3 have been performed for each class, import all GeoJson files and combine in a unique FeatureCollection, which will store all the collected samples along with their class

Collected training samples

Step 3: select prediction bands

- ⇒ <u>Select the prediction bands</u> to be used for the classification. In the example below, we only use bands from the Sentinel-2 product, but you could also use derived bands (e.g., spectral indices, principal components, etc.)
- $\Rightarrow \frac{Sample the training data points}{information at each training data point}$ using these bands: use the sampleRegions method to sample the bands

<u>NB</u>: use display(fc_c classifierTraining) to visualize the content of the object: by expanding the first feature (i.e. first training data point), you should see 1) the data of the prediction bands for that pixel, and 2) the class information you assigned to it.

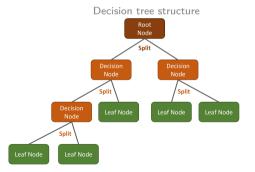
Step 4: select and train the classifier

- ⇒ The classifier is a statistical model which contains mathematical rules linking the pixel's spectral information to its class
- ⇒ Selecting the appropriate classifier can be tricky. Various classifiers are available in GEE, e.g.: CART (Classification and Regression Trees), Random Forest, Naive Bayes, etc.

<u>NB</u>: the classifiers in GEE have names starting with "smile" (ee.Classifier.smileCart()), which stands for "Statistical Machine Intelligence and Learning Engine".

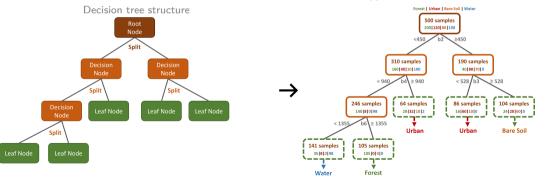
Step 4: select and train the classifier

- ⇒ In the following example, we use the CART classifier (Classification and Regression Trees), which is a <u>Decision Tree Method</u> introduced by Breiman et al. in 1984.
- ⇒ the CART algorithm *recursively splits* the data into subsets based on the most important feature (using e.g. the *Gini Index*). (See FU-Berlin for more details, from where the images below are taken).



Step 4: select and train the classifier

- ⇒ In the following example, we use the CART classifier (Classification and Regression Trees), which is a <u>Decision Tree Method</u> introduced by Breiman et al. in 1984.
- ⇒ the CART algorithm *recursively splits* the data into subsets based on the most important feature (using e.g. the *Gini Index*). (See FU-Berlin for more details, from where the images below are taken).



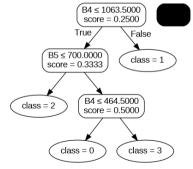
Decision tree applied to land classification of satellite image

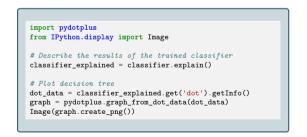
Step 4: select and train the classifier

- ⇒ In the following example, we use the CART classifier (Classification and Regression Trees), which is a <u>Decision Tree Method</u> introduced by Breiman et al. in 1984.
- ⇒ the CART algorithm *recursively splits* the data into subsets based on the most important feature (using e.g. the *Gini Index*). (See FU-Berlin for more details, from where the images below are taken).
- \Rightarrow implementation in GEE:

Step 4: select and train the classifier

⇒ Optional: you can use the command display(classifier) to display the basic characteristics of the classifier (bands, properties, and classifier name), and the command classifier.explain() to describe the results of the trained classifier (e.g., display decision rules of the trained classifier, plot as a *dot graph*, etc.)





2.6. Classify the image

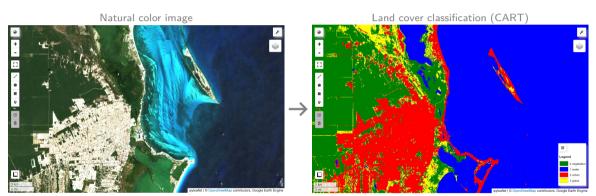
Step 5: classify the image using the trained classifier

 \Rightarrow once the classifier has been trained, you can use it to predict the class of each pixel in the image

```
# Classify the image using the trained classifier
image_classified = image.select(predictionBands).classify(classifier)
# Visualize the classified image and add custom legend to the map
vis_params = {'min': 0, 'max': 3, 'palette': ['green', 'red', 'blue', 'yellow']}
Map.addLayer(image_classified, vis_params, 'Land Cover Classification (CART)')
legend_dict = {
    '0 vegetation': '008000', # 'green' hex code
    '1 water': '0000FF', # 'blue' hex code
    '2 urban': 'FF000', # 'red' hex code
    '3 grass': 'FFFF00' # 'yellow' hex code
}
Map.add_legend(legend_title="Land Cover Classification", legend_dict=legend_dict)
Map
```

2.6. Classify the image

Supervised classification results



Supervised classification results

 \Rightarrow Unsatisfied with the results? Here are some options to improve the classification:

- Training data: increase number of training points to have a more representative sampling of the classes
- **Predictors**: add spectral indices to the "prediction bands" <u>EX</u>: adding the NDVI index (dedicated to quantifying vegetation health) is likely to improve the common misclassification between grass and urban classes.
- **Classifier hyperparameter**: model "hyperparameters" are set to default values, but can be tuned (e.g. for classification trees, you can tune the *number of leaves* in the trees)
- **Classifier selection**: try using a different classifier <u>EX</u>: the Random Forest (RF) algorithm (Breiman 2001) builds on the concept of decision trees in the CART algorithm, by constructing multiple decision trees (hence the term "forest"), making it more powerful

Supervised classification results

 \Rightarrow Unsatisfied with the results? Here are some options to improve the classification:

- Training data: increase number of training points to have a more representative sampling of the classes
- **Predictors**: add spectral indices to the "prediction bands" <u>EX</u>: adding the NDVI index (dedicated to quantifying vegetation health) is likely to improve the common misclassification between grass and urban classes.
- **Classifier hyperparameter**: model "hyperparameters" are set to default values, but can be tuned (e.g. for classification trees, you can tune the *number of leaves* in the trees)
- **Classifier selection**: try using a different classifier <u>EX</u>: the Random Forest (RF) algorithm (Breiman 2001) builds on the concept of decision trees in the CART algorithm, by constructing multiple decision trees (hence the term "forest"), making it more powerful

Supervised classification results

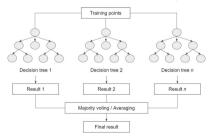
 \Rightarrow Unsatisfied with the results? Here are some options to improve the classification:

- Training data: increase number of training points to have a more representative sampling of the classes
- **Predictors**: add spectral indices to the "prediction bands" <u>EX</u>: adding the NDVI index (dedicated to quantifying vegetation health) is likely to improve the common misclassification between grass and urban classes.
- **Classifier hyperparameter**: model "hyperparameters" are set to default values, but can be tuned (e.g. for classification trees, you can tune the *number of leaves* in the trees)
- **Classifier selection**: try using a different classifier <u>EX</u>: the Random Forest (RF) algorithm (Breiman 2001) builds on the concept of decision trees in the CART algorithm, by constructing multiple decision trees (hence the term "forest"), making it more powerful

Supervised classification results

 \Rightarrow Unsatisfied with the results? Here are some options to improve the classification:

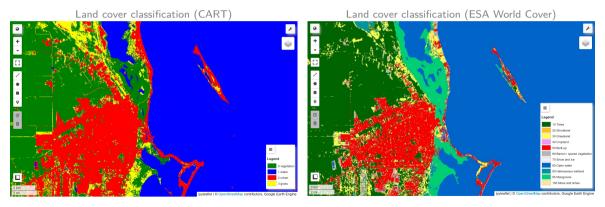
- Training data: increase number of training points to have a more representative sampling of the classes
- **Predictors**: add spectral indices to the "prediction bands" <u>EX</u>: adding the NDVI index (dedicated to quantifying vegetation health) is likely to improve the common misclassification between grass and urban classes.
- **Classifier hyperparameter**: model "hyperparameters" are set to default values, but can be tuned (e.g. for classification trees, you can tune the *number of leaves* in the trees)
- **Classifier selection**: try using a different classifier <u>EX</u>: the Random Forest (RF) algorithm (Breiman 2001) builds on the concept of decision trees in the CART algorithm, by constructing multiple decision trees (hence the term "forest"), making it more powerful



2. Supervised classification in GEE

Compare with land cover image collections available in GEE

⇒ compare your classification with the ESA World Cover collection, which is a global map of land use and land cover derived from ESA's Sentinel-2 imagery at 10m.

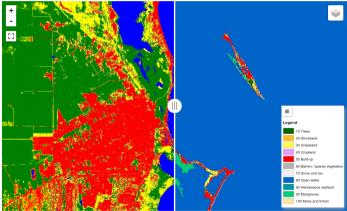


Compare with land cover image collections available in GEE

⇒ compare your classification with the ESA World Cover collection, which is a global map of land use and land cover derived from ESA's Sentinel-2 imagery at 10m.

Compare with land cover image collections available in GEE

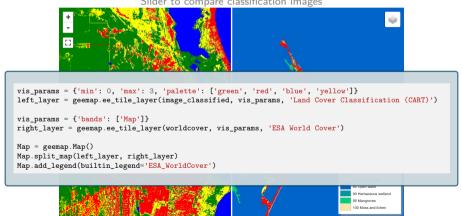
 \Rightarrow try using geemap's split_map method to easily compare the two classifications using a slider



Slider to compare classification images

Compare with land cover image collections available in GEE

 \Rightarrow try using geemap's split_map method to easily compare the two classifications using a slider



Slider to compare classification images

1. Introduction

- 1. Image classification overview
- 2. Pixel-based image classification
- 3. Supervised vs. unsupervised learning in a nutshell

2. Supervised classification in GEE

- 1. Workflow overview
- 2. Select image to classify
- 3. Collect training samples
- 4. Select prediction bands
- 5. Select classifier & train
- 6. Classify the image
- 7. Compare results with other land cover image collections

3. Unsupervised classification in GEE

- 1. Workflow overview
- 2. Select image to classify
- 3. Collect unlabeled data
- 4. Select/train clustering algorithm
- 5. Classify image

Workflow of unsupervised classification

- ⇒ contrary to *supervised* algorithms (where the model learns from labeled training data provided by the user), *unsupervised* algorithms are "self-taught" as they do not rely on labeled data: instead, they attempt to find groups (i.e., clusters, classes) within the unlabeled data.
- \Rightarrow the workflow in GEE is as follows
- 1. Select image to classify
- Collect randomly sampled points (<u>unlabeled data</u>)
 ⇒ randomly sample pixels from the image, which will constitute the *unlabeled dataset* in which to find clusters with similar spectral properties
- 3. Select <u>clustering</u> algorithm and "train" it on the unlabeled data ⇒ the <u>k-means</u> clustering algorithm is commonly used in remote sensing.
- 4. Classify the image using the *trained clusterer*

Workflow of unsupervised classification

- ⇒ contrary to *supervised* algorithms (where the model learns from labeled training data provided by the user), *unsupervised* algorithms are "self-taught" as they do not rely on labeled data: instead, they attempt to find groups (i.e., clusters, classes) within the unlabeled data.
- \Rightarrow the workflow in GEE is as follows:

- Collect randomly sampled points (unlabeled data)
 ⇒ randomly sample pixels from the image, which will constitute the unlabeled dataset in which to find clusters with similar spectral properties
- 3. Select clustering algorithm and "train" it on the unlabeled data ⇒ the <u>k-means</u> clustering algorithm is commonly used in remote sensing.
- 4. Classify the image using the *trained clusterer*

Workflow of unsupervised classification

- ⇒ contrary to *supervised* algorithms (where the model learns from labeled training data provided by the user), *unsupervised* algorithms are "self-taught" as they do not rely on labeled data: instead, they attempt to find groups (i.e., clusters, classes) within the unlabeled data.
- \Rightarrow the workflow in GEE is as follows:

- Collect randomly sampled points (unlabeled data)
 ⇒ randomly sample pixels from the image, which will constitute the unlabeled dataset in which to find clusters with similar spectral properties
- 3. Select <u>clustering</u> algorithm and "train" it on the unlabeled data ⇒ the <u>k-means</u> clustering algorithm is commonly used in remote sensing.
- 4. Classify the image using the *trained clusterer*

Workflow of unsupervised classification

- ⇒ contrary to *supervised* algorithms (where the model learns from labeled training data provided by the user), *unsupervised* algorithms are "self-taught" as they do not rely on labeled data: instead, they attempt to find groups (i.e., clusters, classes) within the unlabeled data.
- \Rightarrow the workflow in GEE is as follows:

- Collect randomly sampled points (<u>unlabeled data</u>)
 ⇒ randomly sample pixels from the image, which will constitute the *unlabeled dataset* in which to find clusters with similar spectral properties
- 3. Select clustering algorithm and "train" it on the unlabeled data \Rightarrow the <u>k-means</u> clustering algorithm is commonly used in remote sensing.
- 4. Classify the image using the *trained clusterer*

Workflow of unsupervised classification

- ⇒ contrary to *supervised* algorithms (where the model learns from labeled training data provided by the user), *unsupervised* algorithms are "self-taught" as they do not rely on labeled data: instead, they attempt to find groups (i.e., clusters, classes) within the unlabeled data.
- \Rightarrow the workflow in GEE is as follows:

- Collect randomly sampled points (<u>unlabeled data</u>)
 ⇒ randomly sample pixels from the image, which will constitute the *unlabeled dataset* in which to find clusters with similar spectral properties
- 3. Select clustering algorithm and "train" it on the unlabeled data \Rightarrow the *k*-means clustering algorithm is commonly used in remote sensing.
- 4. Classify the image using the *trained clusterer*

3.2. Select image to classify

Step 1: select the image to classify

 $\Rightarrow\,$ use the image you used during the supervised classification

51 / 58

3.3. Collect unlabeled data

Step 2: Collect randomly sampled points (unlabeled data)

- \Rightarrow randomly sample pixels from the image (using *all* bands) \rightarrow these will constitute the *unlabeled dataset* in which to find clusters with similar spectral properties
- ⇒ use the image.sample method to sample the image in random position (unlike the image.sampleRegion method used in the supervised classification, which sampled pixels at the training point locations) → this will create a *FeatureCollection* of random points

3.3. Collect unlabeled data

Step 2: Collect randomly sampled points (unlabeled data)

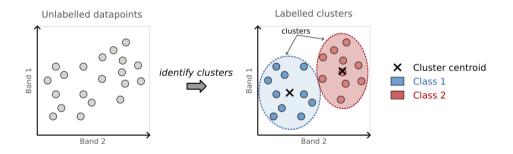
- \Rightarrow randomly sample pixels from the image's prediction bands \rightarrow these will constitute the *unlabeled dataset* in which to find clusters with similar spectral properties
- ⇒ use the image.sample method to sample the image in random position (unlike the image.sampleRegion method used in the supervised classification, which sampled pixels at the training point locations) → this will create a *FeatureCollection* of random points

Randomly sampled points

3.4. Select/train clustering algorithm

Step 3: Select clustering algorithm and "train" it on the unlabeled data

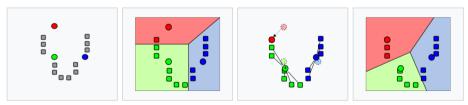
- \Rightarrow in the example below we use the famous k-means clustering algorithm (ee.Clusterer.wekaKMeans)
- \Rightarrow the algorithm uses an *iterative grouping strategy* to identify *groups of pixels* (clusters) close to each other in the *spectral space*:



3.4. Select/train clustering algorithm

Step 3: Select clustering algorithm and "train" it on the unlabeled data

- \Rightarrow in the example below we use the famous k-means clustering algorithm (ee.Clusterer.wekaKMeans)
- ⇒ the algorithm uses an *iterative grouping strategy* to identify *groups of pixels* (clusters) close to each other in the *spectral space*:
- \Rightarrow the standard algorithm (a.k.a. *naive k-means*) iterative procedure can be illustrated as follows (source):



 k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color). k clusters are created by associating every observation with the nearest mean.

- 3. The centroid of each of the *k* clusters becomes the new mean.
- Steps 2 and 3 are repeated until convergence has been reached.

3.4. Select/train clustering algorithm

Step 3: Select clustering algorithm and "train" it on the unlabeled data

 \Rightarrow instantiate the k-means clustering algorithm and train it on the randomly collected data (unlabeled)

Instantiate the clustering algorithm
clusterer = ee.Clusterer.wekaKMeans(nClusters=4)

Train the clustering algorithm
clusterer = clusterer.train(fc_training)

3.5. Classify image

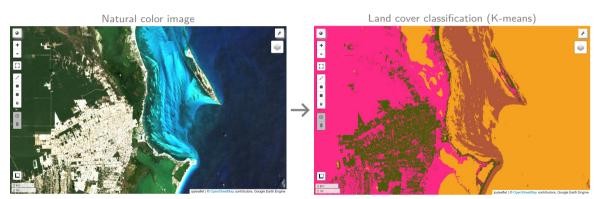
Step 4: Classify the image using the trained clusterer

 $\Rightarrow\,$ apply the clusterer to the image and plot classified image

<u>NB</u>: because the clustering algorithm has no a-priori on the "meaning" of each class, in the example below we assign random colors to the classes (leaving it to the user to interpret the results).



Unsupervised classification results



58 / 58