
ENCIT - Licenciatura en Geograf́ıa Aplicada - “Procesamiento de Imágenes Digitales/Satelitales” - Semestre 2024-2

Lecture 08
GEE Change Detection:
two-date image differencing

2024-04-22
Sébastien Valade

1 / 27

Table of Contents

1. Introduction

2. Case example: detection of a wild fire
1. Select pre/post-event images
2. Preprocess images
3. Compute change map
4. Analyze change map

1. Introduction

1. Introduction

2. Case example: detection of a wild fire
1. Select pre/post-event images
2. Preprocess images
3. Compute change map
4. Analyze change map

3 / 27

1. Introduction

Change detection:

⇒ Change detection in remote sensing consists in capturing differences in images acquired at
different times in order to assess how landscape conditions have changed. Examples:

• changes in land cover → e.g., deforestation, urban sprawl, desertification, polar ice loss, etc.
• changes after natural disasters → e.g., floods, fires, eruptions, etc.

⇒ Questions which can be addressed:
• has a change occurred?
• what area is affected?
• what is the nature/severity of the change?

⇒ Challenges which arise: separate the “changes of interest” from the “other changes”
• changes related to seasonal conditions
• changes related to image acquisition conditions:

- scene illumination (e.g., sun angle, sensor position)
- atmospheric effects (e.g., clouds)
- sensor health and processing algorithm (e.g., leading to radiometric inconsistencies)

4 / 27

1. Introduction

Change detection:

⇒ Change detection in remote sensing consists in capturing differences in images acquired at
different times in order to assess how landscape conditions have changed. Examples:

• changes in land cover → e.g., deforestation, urban sprawl, desertification, polar ice loss, etc.
• changes after natural disasters → e.g., floods, fires, eruptions, etc.

⇒ Questions which can be addressed:
• has a change occurred?
• what area is affected?
• what is the nature/severity of the change?

⇒ Challenges which arise: separate the “changes of interest” from the “other changes”
• changes related to seasonal conditions
• changes related to image acquisition conditions:

- scene illumination (e.g., sun angle, sensor position)
- atmospheric effects (e.g., clouds)
- sensor health and processing algorithm (e.g., leading to radiometric inconsistencies)

5 / 27

1. Introduction

Change detection:

⇒ Change detection in remote sensing consists in capturing differences in images acquired at
different times in order to assess how landscape conditions have changed. Examples:

• changes in land cover → e.g., deforestation, urban sprawl, desertification, polar ice loss, etc.
• changes after natural disasters → e.g., floods, fires, eruptions, etc.

⇒ Questions which can be addressed:
• has a change occurred?
• what area is affected?
• what is the nature/severity of the change?

⇒ Challenges which arise: separate the “changes of interest” from the “other changes”
• changes related to seasonal conditions
• changes related to image acquisition conditions:

- scene illumination (e.g., sun angle, sensor position)
- atmospheric effects (e.g., clouds)
- sensor health and processing algorithm (e.g., leading to radiometric inconsistencies)

6 / 27

1. Introduction

Naive method: two-date image differencing

⇒ Easiest way to detect changes is to perform image differencing between two images (pre- and
post-event), by simply subtracting the spectral bands values (or spectral indices values) of the
pre-image from that of the post-image, pixel by pixel.

⇒ The exercise here consists in detecting the changes related the wild fires which affected the region
of Palermo in July 2023. The workflow will be as followed:

1. Select images
2. Preprocess images
3. Compute change map
4. Analyze change map

7 / 27

2. Case example: detection of a wild fire

1. Introduction

2. Case example: detection of a wild fire
1. Select pre/post-event images
2. Preprocess images
3. Compute change map
4. Analyze change map

8 / 27

2. Case example: detection of a wild fire

2.1. Select pre/post-event images

Step 1: Select pre/post-event images

1. Select two images (before/after the event), trying to minimize the impact of:
• seasonal conditions: select images acquired during the same season

⇒ use .filter(ee.Filter.calendarRange(<start>, <end>, ‘month’)
• atmospheric conditions: select images with the least cloud cover possible

⇒ Simple approach: use metadata CLOUD COVER to select the least clouded image
NB: sorting the collection using the metadata CLOUD COVER can help to select the least clouded
image. However, keep in mind that this metadata corresponds to a percentage of the cloud cover
computed over the entire image footprint ⇒ this might not reflect the cloud cover in your area of
interest.

⇒ Advanced approach: compute a cloud score on the area of interest using band ‘QA60’
NB: the band name ‘QA60’ is specific to GEE, but is derived from ESA’s cloud masks
‘MSK CLOUDS’ subtypes “OPAQUE” & “CIRRUS”

9 / 27

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/level-1c/masks

2. Case example: detection of a wild fire

2.1. Select pre/post-event images

Step 1: Select pre/post-event images

1. Select two images (before/after the event), trying to minimize the impact of:
• seasonal conditions: select images acquired during the same season

⇒ use .filter(ee.Filter.calendarRange(<start>, <end>, ‘month’)
• atmospheric conditions: select images with the least cloud cover possible

⇒ Simple approach: use metadata CLOUD COVER to select the least clouded image
NB: sorting the collection using the metadata CLOUD COVER can help to select the least clouded
image. However, keep in mind that this metadata corresponds to a percentage of the cloud cover
computed over the entire image footprint ⇒ this might not reflect the cloud cover in your area of
interest.

⇒ Advanced approach: compute a cloud score on the area of interest using band ‘QA60’
NB: the band name ‘QA60’ is specific to GEE, but is derived from ESA’s cloud masks
‘MSK CLOUDS’ subtypes “OPAQUE” & “CIRRUS”

10 / 27

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/level-1c/masks

2. Case example: detection of a wild fire

2.1. Select pre/post-event images

Step 1: Select pre/post-event images
1. Select two images (before/after the event):

⇒ Simple approach: select pre-event image using metadata CLOUD COVER

Select image collection and bands
image_collection = (ee.ImageCollection('COPERNICUS/S2_HARMONIZED')

.select(
['B2', 'B3', 'B4', 'B8', 'B11', 'B12'], # selected bands
['blue', 'green', 'red', 'nir', 'swir1', 'swir2'] # renamed bands (for convenience)

))

Select pre-event image
point = ee.Geometry.Point([13.33, 38.13]) # select region of interest
ti, tf = '2019-01-01', '2022-01-01' # select time interval
ti_month, tf_month = 8, 10 # select month interval (season)

image_pre = (image_collection
.filterBounds(point)
.filterDate(ti, tf)
.filter(ee.Filter.calendarRange(ti_month, tf_month, 'month'))
.sort('CLOUD_COVER') # sort collection by cloud cover
.first()) # select least clouded image

image_pre_date = ee.Date(image_pre.get('system:time_start')).format('YYYY-MM-dd').getInfo()

11 / 27

2. Case example: detection of a wild fire

2.1. Select pre/post-event images

⇒ advanced approach: select pre-event image using cloud score computed on the area of interest

Function to add cloud bands from QA60 band
def add_cloud_bands(image):

cloud_bit_mask = 1 << 10 # = 1024 (opaque cloud)
cirrus_bit_mask = 1 << 11 # = 2048 (cirrus cloud)
cloud_opaque = image.select('QA60').eq(cloud_bit_mask).rename('cloud_opaque')
cloud_cirrus = image.select('QA60').eq(cirrus_bit_mask).rename('cloud_cirrus')
cloud_free = image.select('QA60').eq(0).rename('cloud_free')
cloud_opaque_and_cirrus = cloud_opaque.Or(cloud_cirrus).rename('cloud_opaque_and_cirrus') # cloud+cirrus
return image.addBands([cloud_opaque, cloud_cirrus, cloud_free, cloud_opaque_and_cirrus]) # add bands to image

Function to calculate mean value of 'cloud_opaque_and_cirrus' band in aoi
def get_cloudscore_aoi(image):

mean_value = image.select('cloud_opaque_and_cirrus').reduceRegion(reducer=ee.Reducer.mean(), geometry=aoi_geometry)
return image.set('cloud_score_aoi', mean_value.get('cloud_opaque_and_cirrus')) # add 'cloud_score_aoi' as property

aoi_geometry = ee.Geometry.Rectangle(coords=Map.user_roi_coords()) # Geometry from rectangle drawn on map
image_collection = (ee.ImageCollection('COPERNICUS/S2_HARMONIZED')

.filterBounds(point)

.filterDate(ti, tf)

.filter(ee.Filter.calendarRange(ti_month, tf_month, 'month'))

.map(add_cloud_bands) # add cloud bands derived from 'QA60'

.map(get_cloudscore_aoi) # compute cloud score for each image and return as property 'cloud_score_aoi'

.select(['B2', 'B3', 'B4', 'B8', 'B11', 'B12'], ['blue', 'green', 'red', 'nir', 'swir1', 'swir2'])

.sort('cloud_score_aoi')
)

image_pre = image_collection.first() # = image with lowest cloud score on aoi

12 / 27

2. Case example: detection of a wild fire

2.1. Select pre/post-event images

Step 1: Select pre/post-event images
1. Select two images (before/after the event)

2. Clip region of interest (optional)
NB: use clip with parsimony as it increases computation time (see Coding Best Practices)

Clip region of interest
lon_min, lon_max = 12.9597, 13.6091
lat_min, lat_max = 37.9648, 38.2878
roi = ee.Geometry.Rectangle([lon_min, lat_min, lon_max, lat_max])

image_pre = image_pre.clip(roi)
image_post = image_post.clip(roi)

13 / 27

https://developers.google.com/earth-engine/guides/best_practices#if_you_dont_need_to_clip_dont_use_clip

2. Case example: detection of a wild fire

2.1. Select pre/post-event images

Step 1: Select pre/post-event images
1. Select two images (before/after the event)

2. Clip region of interest (optional)

3. Display result

Map = geemap.Map()
Map.centerObject(point, 11)
Map.addLayerControl()

vis_params = {'bands': ['red', 'green', 'blue'], 'min': 0, 'max': 2000}
Map.addLayer(image_pre, vis_params, f'Pre-event ({image_pre_date})')
Map.addLayer(image_post, vis_params, f'Post-event ({image_post_date})')
Map

14 / 27

2. Case example: detection of a wild fire

2.1. Select pre/post-event images

Step 1: Select pre/post-event images

Pre-event image
(2019-08-01)

Post-event image
(2023-08-03)

15 / 27

2. Case example: detection of a wild fire

2.2. Preprocess images

Step 2: Preprocess images
⇒ image preprocessing should be achieved on images before continuing the change detection workflow, in

order to ensure that each pixel records the same type of measurement at the same location over time.
This typically includes:

• image co-registration
⇒ ensures that images are in the same projection and have the same pixel size (resampling)

• radiometric and atmospheric corrections
⇒ ensures that the pixel values are comparable (e.g., convert digital numbers (DN) to reflectance values,
calculated either at the top of the atmosphere (TOA) or at the surface, with or without atmospheric
correction)

• illumination correction
⇒ correct local solar incidence (depends on sensor inclination + sun elevation/azimuth + terrain
slope/aspect) → see Canty (2019) Chapter 5
NB: notice the sunglint in the post-event image, caused by the specular reflection of sunlight off the water
surface directly towards the satellite sensor, which results in bright silvery pixels. (The MSI instrument onboard
Sentinel-2 has different detectors which acquire the scene with slightly different viewing angles, thereby resulting
in different sunglint patterns. Metadata stores information on sensor/sun viewing angles).

• cloud and shadow masking
⇒ remove pixels affected by clouds/shadows

16 / 27

https://www.taylorfrancis.com/books/mono/10.1201/9780429464348/image-analysis-classification-change-detection-remote-sensing-morton-john-canty
https://en.wikipedia.org/wiki/Sunglint

2. Case example: detection of a wild fire

2.2. Preprocess images

Step 2: Preprocess images
⇒ luckily, the most important preprocessing steps have been applied to the images available in GEE. EX:

• Sentinel-2 (MSI)
• Top-of-Atmosphere Reflectance: ‘COPERNICUS/S2 HARMONIZED’

= Level 1-C processing
= top-of-atmosphere reflectance (TOA), orthorectified, harmonized1

• Surface Reflectance: ‘COPERNICUS/S2 SR HARMONIZED’
= Level 2-A processing
= surface reflectance, orthorectified, atmospherically corrected, harmonized1

• Sentinel-1 (SAR)
• Ground Range Detected SAR (log-scaling): ‘COPERNICUS/S1 GRD’

= Level 1 GRD processing
= backscattered intensity with log scaling (IdB = 10 ∗ log10(I)), single-polarization (VV or VH),
sampled in ground range, orthorectified (terrain corrected using DEM), calibrated (thermal noise
removal + radiometric calibration)

• Ground Range Detected SAR (log-scaling): ‘COPERNICUS/S1 GRD FLOAT’
= same as ‘COPERNICUS/S1 GRD’ but without log scaling

1The “harmonized” designation means that the band-dependent offset added to reflectance bands (affecting data after 2022/01/24, processing baseline
04.00) has been removed.

17 / 27

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_HARMONIZED
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/product-types/level-1c
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels/level-2
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels/level-1
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD

2. Case example: detection of a wild fire

2.3. Compute change map

Step 3: Compute change map
⇒ the “naive approach” to computing change maps is to substract bands (or substract band compositions

such as spectral indices) between the pre-event and post-event images.

⇒ the choice of the bands (or band compositions) to substract greatly depends on the type of change to
detect (i.e. flooding, fire, urban sprawl, etc.)

⇒ in this example we want to detect a wild fire, so we will substract the NBR (Normalized Burn Ratio)
between the pre-event and post-event images, where NBR = NIR−SWIR

NIR+SWIR

Calculate Normalized Burn Ratio (NBR) for pre-event and post-event images
nbr_pre = image_pre.normalizedDifference(['nir', 'swir2']).rename('nbr_pre')
nbr_post = image_post.normalizedDifference(['nir', 'swir2']).rename('nbr_post')

Calculate difference between pre-event and post-event NBR
img_change = nbr_post.subtract(nbr_pre).rename('change')

Display result
vis_params = {'palette': 'magma', 'min': -1, 'max': 1}
Map.addLayer(img_change, vis_params, 'Change map')
Map.add_colorbar(vis_params, label="NBR change", layer_name='Change map')

18 / 27

2. Case example: detection of a wild fire

2.3. Compute change map

Step 3: Compute change map

Change map (dNBR)

19 / 27

2. Case example: detection of a wild fire

2.4. Analyze change map

Step 4: Analyze change map
⇒ The goal here is to isolate the regions of the change map that correspond to the burned area

⇒ This can be achieved by:
1. threshold the change map

⇒ select threshold to binarize image in burned/non-burned areas

2. mask the thresholded map
⇒ make pixels with value = 0 invalid (i.e. not burned)

3. update the burned mask
⇒ exclude from the mask the pixels corresponding to water bodies (e.g. lakes, rivers, etc.)

4. analyze the burned mask!
4.1 get the severity map of the burned regions

⇒ mask the change map using the burned mask and scale colormap to min/max values
4.2 get the area of the burned regions

⇒ sum the pixel areas of the burned mask
4.3 get the contour of the burned regions

⇒ reduce mask to vector
20 / 27

2. Case example: detection of a wild fire

2.4. Analyze change map

Step 4: Analyze change map

1. Thresholded change map

Threshold change map
lt_threshold, lt_newval = -0.25, 1 # select threshold and new value = 1 (= valid)
img_change_thresh = ee.Image(0) # create image filled with 0 (= invalid)
img_change_thresh = img_change_thresh.where(img_change.lte(lt_threshold), lt_newval)
Map.addLayer(img_change_thresh, {'palette':['white', 'black']}, 'Change map thresholded')

2. Mask of burned area

Get mask of burned area
mask_burned = img_change_thresh.selfMask() # make pixels with value = 0 invalid
Map.addLayer(mask_burned, {'palette':['white', 'black']}, 'Burned mask')

21 / 27

2. Case example: detection of a wild fire

2.4. Analyze change map

3.1 Water mask

Get water bodies (to exclude from burned mask)
water_mask = (ee.Image("JRC/GSW1_1/GlobalSurfaceWater")

.select('occurrence') # frequency with which water was present (since 1984)

.gte(50)
) # pixel values: 1=water / None=not-water

Map.addLayer(water_mask, {'palette':['white', 'blue']}, 'water')

3.2. Updated burned mask

Exclude water bodies from burned mask
=> need to invert water mask (we need invalid values (= 0) where water is):
.unmask => converts None values to 0
.eq(0) => tests if pixel=0 => where water used to be (=1), sets False (=0=invalid)
water_mask_invert = water_mask.unmask(0).eq(0)
mask_burned = mask_burned.updateMask(water_mask_invert) # Update mask
Map.addLayer(mask_burned, {'palette':['white', 'black']}, 'Burned mask (water excluded)')

22 / 27

2. Case example: detection of a wild fire

2.4. Analyze change map

4.1 Burned regions severity
Get burn severity
=> mask `change map` using mask `mask_burned`
burned_severity = img_change.updateMask(mask_burned)

Get min/max in burned_severity masked image
minMax = burned_severity.reduceRegion(

reducer=ee.Reducer.minMax(),
geometry=burned_severity.geometry(),
maxPixels=1e10,

)
min = minMax.get('change_min').getInfo() # property name = <band_name>_min
max = minMax.get('change_max').getInfo() # property name = <band_name>_max
vis_params = {'palette':'magma', 'min':min, 'max':max}
Map.addLayer(burned_severity, vis_params, 'Burned regions severity')

23 / 27

2. Case example: detection of a wild fire

2.4. Analyze change map

Burned regions severity

24 / 27

2. Case example: detection of a wild fire

2.4. Analyze change map

4.2. Compute burned area

Create a pixel area image in which pixel value = pixel area in m2
NB: the returned image has a single band called "area"
NB: you'll notice that the pixel area value changes with the zoom level
=> need to specify pixel scale when performing computation with ee.reduceRegion
=> specify parameter "scale" (or "crs"/"crsTransform")
img_pixArea = ee.Image.pixelArea()
mask_area = img_pixArea.updateMask(mask_burned)

Sum the area of burned pixels
area = mask_area.reduceRegion(

reducer=ee.Reducer.sum(),
geometry=roi, # clipped region where to compute area,
scale=10, # nominal scale in meters of the projection to work in
maxPixels=1e10

)

Fetch summed aimg_pixArearea property
square_meters = area.getNumber('area').round()
hectares = square_meters.divide(10000).round() # 1 hectare = 100x100m = 10,000 m2
print('Burned area = {} Ha'.format(hectares.getInfo()))

Add layer with pixel area
Map.addLayer(mask_area, {'palette':'viridis', 'min':0, 'max':3000}, 'pixel area (masked)')

25 / 27

2. Case example: detection of a wild fire

2.4. Analyze change map

Burned regions severity

26 / 27

2. Case example: detection of a wild fire

2.4. Analyze change map

4.3. Contour burned area

fc_burn = mask_burned.reduceToVectors(
geometry=roi,
scale=30

).filterMetadata("label", "equals", 1)
Map.addLayer(fc_burn, {}, 'Burned contour in aoi')

27 / 27

	Introduction
	Case example: detection of a wild fire
	Select pre/post-event images
	Preprocess images
	Compute change map
	Analyze change map

