Swapnil More

swapnilmore@iisc.ac.in, swapnil2me.github.io, +91-911-399-9596

EXPERTISE

Ultrasensitive measurements, nanofabrication, building scientific experiments

EDUCATIONAL QUALIFICATION

Degree	Institute / School	CGPA / %	Year
Doctor of Philosophy	IISc, Bangalore	7/10	Aug 2022
MTech Nanotechnology	IISc, Bangalore	6.4/8	July 2016
BE in Mechanical Eng.	University of Pune	69%	July 2012
Diploma in Mechanical Eng.	Govt. Polytechnic, Pune	86%	July 2009

RELEVANT TECHNICAL SKILLS

Semiconductor Fabrication: E-beam lithography, Photolithography, RIE, DRIE, CMOS wet bench processes, Thermal/E-beam evaporation, SEM, AFM.

Scientific Experiment Design: Scientific instrument control, liquid Helium cryostat, Vacuum system design, Free space optics, Soldering, PCB design.

REFERENCES

	Prof. Akshay Naik Research supervisor	Prof. Prosenjit Sen Course Instructor
Email	anaik@iiac.ac.in	prosenjits@iisc.ac.in
Contact Priority	Primary. Can be contacted before the interview.	Secondary. Please inform me before contacting Prof. Sen

RELEVANT WORK EXPERIENCE

COMPUTATIONAL LITHOGRAPHY (INTERN, GLOBAL FOUNDRIES, BANGALORE) AUG'22 – JAN'23

- Developing model-based, rule-based OPC and SRAF recipes, Etch modeling, and ILT techniques for full chip layouts using Siemens Calibre WORKbench (GUI + SVRF).
- Simulating accurate print image, development contour, and etch contour by optimizing optical, resist and etch models.
- > Fourier optics simulations to understand the diffraction limits of lithography
- Processing full chip layout data using EDA tools, reviewing CMOS design rules, photo mask manufacturability rules, optical rules for the simulated print image
- > Shell scripting, automating the testing process using python.

RESEARCH SCHOLAR (IISC, BANGALORE)

Aug 2016 - Aug 2022

Nanofabrication and characterization:

> 6 years of class 100 cleanroom fabrication experience.

- Expertise in Photo/e-beam lithography, Dry/Wet etching, thin film deposition, exfoliation-transfer-characterization of 2D materials, fabrication process flow design, statistical process control, wafer/die handling, yield optimization.
- > Experienced in imaging nanoscale devices, physical and material characterization.

2D-NEMS and MEMS sensors:

- > Developed nanoelectromechanical sensors with strain tunability.
- Studied the effect of strain on linear and nonlinear dynamics, mode coupling, dynamic range, limit of detection, and quality factor of resonant sensors.
- Gained expertise in MEMS/NEMS design, nanofabrication, ultrasensitive measurement, design of experiments and scientific data analysis.

Ultrasensitive measurements:

- Experience with lock-in amplifiers (ZI, SRS), RF Signal generators, DC source meters, RF signal processing, PLL, and PID controllers.
- > Remote control of scientific instruments through MATLAB / Python scripting.
- > PCB fabrication, SMD soldering, wire bonding of nanodevices.

MEMS / NEMS Sensor packaging: Developed a packaging scheme for NEMS sensors that achieves the following

- > Vacuum cavity for nano resonator
- > Coupling of external stimuli with NEMS through a MEMS device
- > Electrical and optical feedthrough for electrical and optical readout

Design of Experiments: Developed various experiments, such as

- > Electrostatic actuation and detection of mechanical resonance
- Electromagnetic and piezoelectric actuation of Silicon diaphragm to strain NEMS fabricated on the Silicon diaphragm.
- > Mechanically coupled NEMS with strain tunable coupling.
- > Free space optics for optical detection of mechanical resonance.

Data analysis and hypothesis testing:

- > Maintaining clean and unambiguous datasets of the experiments
- Extracting the dynamical behavior of NEMS from the raw experimental data through noise subtraction, data visualization, and model fitting.
- > Extra emphasis is given to statistical hypothesis testing by performing repeated studies under curated experimental conditions.

Publications:

- > Nanomechanical Resonators: Toward Atomic Scale, <u>ACS Nano 2022</u>
- Strain engineering of graphene nano resonator, <u>JMM. 31 045015, 2021</u>
- Ultra-sensitive charge detection and latch memory using MoS₂-nanoresonator-based bifurcation amplifiers, <u>Appl. Phys. Lett. 118, 053105 (2021)</u>
- Fabrication of 2D NEMS on Flexible Substrates for Strain Engineering in Sensing Applications, <u>IWPSD 2017. Springer Proceedings in Physics, vol 215. Springer, Cham</u>

Conferences:

- > Dynamic frequency tuning of 2D NEMS, NMC 2022, IISc Bangalore.
- Manipulating Internal Resonance and Coupled Modes in NEMS, NMC 2019, EPFL Lausanne, Switzerland.
- Modeling Internal Resonance in 2D NEMS, International Conference on Nonlinear Solid Mechanics (ICoNSOM), Rome, Italy (June 16-19, 2019).

OTHER TECHNICAL SKILLS

Programming Languages: Python, MATLAB, JavaScript, Mathematica, LabVIEW **Design tools:** COMSOL, Autodesk Inventor, CATIA, Blender

Data Science: Machine learning, 2D/3D visualization, data cleaning, optimization.

EDA: Siemens Calibre WORKbench, Full chip layout simulations for RET

Web Development: HTML, CSS, React

Machine Learning Stanford Online, MOOC by Prof. Andrew Ng Certificate

ACADEMIC WORK

PH.D. THESIS (IISC, BANGALORE, 2016-2022)

Strain tunable nanoelectromechanical system (NEMS) for sensing applications.

- > Design, fabrication and packaging of strain tunable NEMS sensors.
- > Demonstration of linear pressure sensing, dynamic strain sensing, and nonlinear bifurcation amplifier for pressure sensing and logic operations.

MASTER'S THESIS (IISC, BANGALORE, 2015-2016)

Fabrication of nanoelectromechanical system (NEMS) on flexible substrates

- > Developed a nanofabrication method for NEMS on flexible substrates.
- Designed a motorized actuator to bend flexible substrate so that the strain on NEMS can be tuned during an experiment.

BATCHELOR'S PROJECT (UNI. PUNE, 2011-2012)

Design of transverse electric mode cell for testing for ICs for EM compatibility

- > The cell was designed as per requirements provided by the Automotive Research Association of India (ARAI).
- > The designed TE-Mode cell allowed testing of EM emission from the automotive ICs as well as testing the ICs for EM compatibility till 100 MHz.

DIPLOMA PROJECT (GOVERNMENT POLYTECHNIC, PUNE, 2008-2009)

Pneumatic automation using the programmable logic controller

- Simulated various tasks for automated general-purpose assembly lines using pneumatic actuators and valves.
- > The pneumatic actuation was controlled through PLC.
- The PLC provided flexibility to connect and operate actuators and valves according to the assembly process requirements.

TEST SCORE(S)

GATE - 2014 Mechanical Engineering: 911/1000, All India Rank 59

NON-ACADEMIC PROJECTS (FOR FUN!)

Dashboard for controlling scientific experiments

Webapp to control and monitor the scientific experiments at NEMS-Lab.

Discord chatbot for simulating quantum circuits and for solving differential equations

<u>A smart chatbot</u> that simulates basic quantum circuits and solves nonlinear differential equations on the fly.

Blockchain applications for renting robots

A simple payments app and its extension to rent out IoTs on Ganache test net.

OTHER PROFESSIONAL EXPERIENCE

PROJECT ASSISTANT (IIT MUMBAI)

Study and design of heating, ventilation and air conditioning system

GRADUATE ENGINEER TRAINEE (MAHINDRA & MAHINDRA)

AUG 2012 - JAN 2013

FEB 2013 – DEC 2013

Sales and dealer development