
Building Resilient Serverless
Systems

@johnchapin | symphonia.io

John Chapin

• Partner, Symphonia

• 20+ yrs experience in govt, healthcare, travel, ad-tech

• Intent Media, RoomKey, Meddius, SAIC, Booz Allen

re·sil·ience
The ability to recover readily from adversity.

The ability of your service to continue
operating when the source of failure is

beyond your control.

–Werner Vogels, T-Shirt Enthusiast

“Failures are a given and everything will eventually
fail over time ...”

(https://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html)

https://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html

Werner on Embracing Failure

• Systems will fail. At scale, systems will fail a lot.

• Embrace failure as a natural occurrence.

• Limit the blast radius of failures.

• Keep operating.

• Recover quickly (automate!)

AWS isolation mechanisms

us-east-1a

us-east-1b

eu-west-2a

eu-west-2b

sa-east-1a

sa-east-1b

eu-west-2c

us-east-1d

us-east-1c

us-east-1e

us-east-1f

sa-east-1c

Serverless = FaaS + BaaS!

• FaaS = Functions as a Service

• AWS Lambda, Auth0 Webtask,
Azure Functions, Google Cloud
Functions, etc...

• BaaS = Backend as a Service

• Auth0, Amazon DynamoDB,
Google Firebase, Parse, Amazon
S3, etc...

Serverless attributes

• No managing of hosts or
processes

• Self auto-scaling and provisioning

• Costs based on precise usage  
(down to zero!)

• Implicit high availability

Failures in Serverless land

• Serverless is all about using vendor-managed services.

• Two broad classes of failures:

• Application failures (your problem, your resolution)

• Service failures (your problem, but not your resolution)

• What happens when those vendor-managed services fail?

Mitigation through architecture
• We have no control over resolving acute vendor failures.

• Plan for failure, architect and build applications to be resilient.

• Take advantage of:

• Vendor-designed isolation mechanisms (like AWS regions).

• Vendor services designed to work across regions (like Route 53).

• Take advantage of vendor-recommended architectural practices, like the AWS
Well-Architected Framework's Reliability Pillar: 
https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf

https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf

Serverless resiliency on AWS
• Regional high-availability = services running across multiple availability

zones in one region.

• With EC2 (and other traditional instance-based services), it's our problem.

• With Serverless (Lambda, DynamoDB, S3, etc), AWS handle it for us.

• Global high-availability = services running across multiple regions.

• We can architect our systems for global high-availability.

• The Serverless cost model is a huge advantage!

Serverless resiliency on AWS
• Event-driven Serverless systems with externalized state mean:

• Little or no data in-flight when a failure occurs

• Data persisted to reliable systems (like Kinesis, DynamoDB or S3)

• Serverless continuous deployment means:

• No persistent infrastructure to re-hydrate

• Highly likely to be a portable, infrastructure-as-code approach

Not just resiliency

• Regional infrastructure is closer to regional users

• Because Serverless is "pay per request", total costs are similar

• Infrastructure-as-code minimizes incremental work in deploying to new
region

• Automated multi-region deployment keeps infrastructure up-to-date

Serverless makes it possible to architect for
resiliency to vendor failures, without multiplying
costs, while improving the end user experience.

Demo

Overview
• Chat application with a global, highly-available API

• https://github.com/symphoniacloud/resilient-serverless-systems

• Serverless Application Model (SAM) template

• Lambda code (Java)

• Build system (Maven)

• Elm front-end

https://github.com/symphoniacloud/resilient-serverless-systems

api.resilient-demo.symphonia.io

api-ws.resilient-demo.symphonia.io

(us-w
est-2)

messages

wss://

https://

/health

messages

wss://

https://

/health

us-west-2

us-east-1

conns

conns
api.resilient-demo.symphonia.io

api-ws.resilient-demo.symphonia.io
(us-east-1)

Request flow
• DNS lookup for api.resilient-demo.symphonia.io

• Route 53 responds with IP address for

• lowest latency regional API Gateway endpoint

• that has a passing health check (HTTP 2xx or 3xx from /health endpoint)

• Request traverses regional API Gateway to regional Lambda

• Regional Lambda writes to regional DynamoDB table

• DynamoDB replicates data to all replica tables in other regions, last write wins

Simulating failure

• Alter us-east-1 health check to return HTTP error status

• Observe HTTP request routed to us-west-2 instead

• Observe DynamoDB writes propagated from us-west-2 back to us-east-1

Rough edges

• DynamoDB Global Tables not available in CloudFormation

• API Gateway WebSockets + Custom Domains not available in
CloudFormation

• Can't add new replicas to DynamoDB global tables after inserting data

• SAM not compatible with CloudFormation Stack Sets

Additional approaches

• Multi-region deployment via Code Pipeline  
https://github.com/symphoniacloud/multi-region-codepipeline

• CloudFront Origin Failover 
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
high_availability_origin_failover.html

• Global Accelerator (for ELB, ALB, and EIP) 
https://aws.amazon.com/global-accelerator/

https://github.com/symphoniacloud/multi-region-codepipeline
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/high_availability_origin_failover.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/high_availability_origin_failover.html
https://aws.amazon.com/global-accelerator/

AWS Resources
• James Hamilton's "Amazon Global Network Overview" 

https://www.youtube.com/watch?v=uj7Ting6Ckk

• Rick Houlihan's DAT401: Advanced Design Patterns for DynamoDB 
https://www.youtube.com/watch?v=HaEPXoXVf2k

• https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-
amazon-api-gateway-and-aws-lambda/ 
(Magnus Bjorkman, November 2017)

• https://aws.amazon.com/blogs/database/how-to-use-amazon-dynamodb-global-tables-to-power-
multiregion-architectures/ 
(Adrian Hornsby, December 2018)

• https://aws.amazon.com/blogs/compute/announcing-websocket-apis-in-amazon-api-gateway/
(Diego Magalhaes, December 2018)

https://www.youtube.com/watch?v=uj7Ting6Ckk
https://www.youtube.com/watch?v=HaEPXoXVf2k
https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/database/how-to-use-amazon-dynamodb-global-tables-to-power-multiregion-architectures/
https://aws.amazon.com/blogs/database/how-to-use-amazon-dynamodb-global-tables-to-power-multiregion-architectures/
https://aws.amazon.com/blogs/compute/announcing-websocket-apis-in-amazon-api-gateway/

Symphonia resources
• Programming AWS Lambda - Our upcoming full-length book with O'Reilly.

• What is Serverless? Our 2017 report, published by O'Reilly.

• Serverless Architectures - Mike's de-facto industry primer on Serverless.

• Learning Lambda - A 9-part blog series to help new devs get started.

• Serverless Insights - Our email newsletter covering all things Serverless.

• The Symphonium - Our blog, featuring technical content and analysis.

https://learning.oreilly.com/library/view/programming-aws-lambda/9781492041047/
https://www.oreilly.com/programming/free/what-is-serverless.csp
https://www.martinfowler.com/articles/serverless.html
https://blog.symphonia.io/learning-lambda-1f25af64161c
https://www.symphonia.io/
https://blog.symphonia.io

Stay in touch!

john@symphonia.io

@johnchapin

@symphoniacloud

symphonia.io/events

blog.symphonia.io

mailto:john@symphonia.io
https://www.symphonia.io/events
https://blog.symphonia.io

