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re·sil·ience
The ability to recover readily from adversity.



The ability of your service to continue 
operating when the source of failure is 

beyond your control.





























–Werner Vogels, T-Shirt Enthusiast

“Failures are a given and everything will eventually 
fail over time ...” 

(https://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html)

https://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html


Werner on Embracing Failure

• Systems will fail. At scale, systems will fail a lot.

• Embrace failure as a natural occurrence.

• Limit the blast radius of failures.

• Keep operating.

• Recover quickly (automate!)
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Serverless = FaaS + BaaS!

• FaaS = Functions as a Service

• AWS Lambda, Auth0 Webtask, 
Azure Functions, Google Cloud 
Functions, etc...

• BaaS = Backend as a Service

• Auth0, Amazon DynamoDB, 
Google Firebase, Parse, Amazon 
S3, etc...



Serverless attributes

• No managing of hosts or 
processes

• Self auto-scaling and provisioning

• Costs based on precise usage  
(down to zero!)

• Implicit high availability



Failures in Serverless land

• Serverless is all about using vendor-managed services.

• Two broad classes of failures:

• Application failures (your problem, your resolution)

• Service failures (your problem, but not your resolution)

• What happens when those vendor-managed services fail?



Mitigation through architecture
• We have no control over resolving acute vendor failures.

• Plan for failure, architect and build applications to be resilient.

• Take advantage of:

• Vendor-designed isolation mechanisms (like AWS regions).

• Vendor services designed to work across regions (like Route 53).

• Take advantage of vendor-recommended architectural practices, like the AWS 
Well-Architected Framework's Reliability Pillar: 
https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf  

https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf


Serverless resiliency on AWS
• Regional high-availability = services running across multiple availability 

zones in one region.

• With EC2 (and other traditional instance-based services), it's our problem.

• With Serverless (Lambda, DynamoDB, S3, etc), AWS handle it for us.

• Global high-availability = services running across multiple regions.

• We can architect our systems for global high-availability.

• The Serverless cost model is a huge advantage!



Serverless resiliency on AWS
• Event-driven Serverless systems with externalized state mean:

• Little or no data in-flight when a failure occurs

• Data persisted to reliable systems (like Kinesis, DynamoDB or S3) 

• Serverless continuous deployment means:

• No persistent infrastructure to re-hydrate

• Highly likely to be a portable, infrastructure-as-code approach



Not just resiliency

• Regional infrastructure is closer to regional users

• Because Serverless is "pay per request", total costs are similar

• Infrastructure-as-code minimizes incremental work in deploying to new 
region

• Automated multi-region deployment keeps infrastructure up-to-date



Serverless makes it possible to architect for 
resiliency to vendor failures, without multiplying 
costs, while improving the end user experience.



Demo



Overview
• Chat application with a global, highly-available API

• https://github.com/symphoniacloud/resilient-serverless-systems 

• Serverless Application Model (SAM) template

• Lambda code (Java)

• Build system (Maven)

• Elm front-end

https://github.com/symphoniacloud/resilient-serverless-systems
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Request flow
• DNS lookup for api.resilient-demo.symphonia.io

• Route 53 responds with IP address for

• lowest latency regional API Gateway endpoint

• that has a passing health check (HTTP 2xx or 3xx from /health endpoint)

• Request traverses regional API Gateway to regional Lambda

• Regional Lambda writes to regional DynamoDB table

• DynamoDB replicates data to all replica tables in other regions, last write wins



Simulating failure

• Alter us-east-1 health check to return HTTP error status

• Observe HTTP request routed to us-west-2 instead

• Observe DynamoDB writes propagated from us-west-2 back to us-east-1



Rough edges

• DynamoDB Global Tables not available in CloudFormation

• API Gateway WebSockets + Custom Domains not available in 
CloudFormation

• Can't add new replicas to DynamoDB global tables after inserting data

• SAM not compatible with CloudFormation Stack Sets



Additional approaches

• Multi-region deployment via Code Pipeline  
https://github.com/symphoniacloud/multi-region-codepipeline 

• CloudFront Origin Failover 
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
high_availability_origin_failover.html 

• Global Accelerator (for ELB, ALB, and EIP) 
https://aws.amazon.com/global-accelerator/ 

https://github.com/symphoniacloud/multi-region-codepipeline
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/high_availability_origin_failover.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/high_availability_origin_failover.html
https://aws.amazon.com/global-accelerator/


AWS Resources
• James Hamilton's "Amazon Global Network Overview" 

https://www.youtube.com/watch?v=uj7Ting6Ckk

• Rick Houlihan's DAT401: Advanced Design Patterns for DynamoDB 
https://www.youtube.com/watch?v=HaEPXoXVf2k 

• https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-
amazon-api-gateway-and-aws-lambda/ 
(Magnus Bjorkman, November 2017)

• https://aws.amazon.com/blogs/database/how-to-use-amazon-dynamodb-global-tables-to-power-
multiregion-architectures/ 
(Adrian Hornsby, December 2018)

• https://aws.amazon.com/blogs/compute/announcing-websocket-apis-in-amazon-api-gateway/ 
(Diego Magalhaes, December 2018)

https://www.youtube.com/watch?v=uj7Ting6Ckk
https://www.youtube.com/watch?v=HaEPXoXVf2k
https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/database/how-to-use-amazon-dynamodb-global-tables-to-power-multiregion-architectures/
https://aws.amazon.com/blogs/database/how-to-use-amazon-dynamodb-global-tables-to-power-multiregion-architectures/
https://aws.amazon.com/blogs/compute/announcing-websocket-apis-in-amazon-api-gateway/


Symphonia resources
• Programming AWS Lambda - Our upcoming full-length book with O'Reilly.

• What is Serverless? Our 2017 report, published by O'Reilly.

• Serverless Architectures - Mike's de-facto industry primer on Serverless.

• Learning Lambda - A 9-part blog series to help new devs get started.

• Serverless Insights - Our email newsletter covering all things Serverless.

• The Symphonium - Our blog, featuring technical content and analysis. 

https://learning.oreilly.com/library/view/programming-aws-lambda/9781492041047/
https://www.oreilly.com/programming/free/what-is-serverless.csp
https://www.martinfowler.com/articles/serverless.html
https://blog.symphonia.io/learning-lambda-1f25af64161c
https://www.symphonia.io/
https://blog.symphonia.io
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