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Chapter 1. Algorithm 

 

1.1 Overview 

The advent of next generation sequencing has enabled fast and cost-effective genotyping, which 

may significantly accelerate the process of gene identification in forward genetics studies. Sequencing-

based forward genetics studies are frequently referred to as phenotype-sequencing studies.  

The success of a typical phenotype-sequencing study depends on a range of experimental and 

analysis choices, including the number of phenotype-exhibiting samples being sequenced, the genomic 

region being sequenced, the quality and depth distribution of sequencing data, the approach to map 

sequencing reads to genome, the variant calling method, the approach to filter unlikely-causal variants, 

and the criterion to report candidate genes. Some previous studies have characterized the impacts of 

some of these choices (Ratan, Miller et al. 2013, Chilamakuri, Lorenz et al. 2014, Lelieveld, 

Spielmann et al. 2015). However, for investigators, it is still difficult to design an optimal analysis 

procedure with an integral consideration of all factors that affect its chance of success. In particular, 

after the sequencing results are ready, how to design an effective analysis procedure that fits the quality 

of this particular set of sequencing data.  

To meet this analytical need, we developed the Gene Identification via Phenotype Sequencing 

(GIPS) tool. GIPS estimates four measurements to help optimize an analysis procedure. The four 

measurements are, 1) its chance to report candidate genes that are truly associated with the 

phenotype; 2) the expected number of random genes that may be reported; 3) the significance of 

each candidate gene to associate with the phenotype; and 4) the significance of violating 

Mendelian assumption, if no gene is reported or all candidate genes have failed validation. Their 

interpretations are discussed in more detail in section 3.2.4 (Example discussion: strategy to optimize 

an analysis procedure). 

As previously described, a range of experimental and analysis parameters can affect these four 

measurements of study effectiveness. In general, their impacts on these four study-wise effectiveness 

measurements can be summarized into their impacts on two sample-wise effectiveness measurements: 

the “sensitivity” and “specificity” for each sample, with which an analysis procedure under evaluation 

is expected to detect the phenotype-causing variants. Note that in this framework, it is permitted that 

different analysis procedures can be applied on different samples, which allows fine-tuning of sample-

specific analysis procedures based on sample-specific data qualities. With the sample-wise variant 

detection sensitivities and specificities, the combined study-wise measurements of analysis 

effectiveness can be computed in a recursive form, which is detailed in later sections.  

Figure 1 illustrates the general workflow of GIPS, which formally considers seven aspects of an 
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analysis procedure that affect its likelihoods of success in gene identification. These aspects include, 1) 

the number of phenotype-exhibiting samples being sequenced, 2) the genomic region being 

sequenced, 3) the quality and depth distribution of sequencing data, 4) the choice of software and 

parameters to align sequencing reads, 5) the choice of software and parameters to call variants, 

6) the choice of strategies to filter variants that are unlikely to associate with the phenotype, and 

7) the criterion to report candidate genes. The impacts of these choices can be estimated from real 

data, or customarily specified to reflect the belief of the investigator.  

 

 
Figure 1.  The general workflow of GIPS. Details are given in later sections. 

 

In general, impacts of “the genomic region being sequenced” and “the approach to filter unlikely-

causal variants”, on the variant detection sensitivity of each sample, can be estimated by using the 

same approach to filter a library of known phenotype-causing variants, and compute how much 

proportion of the phenotype-causing variants will be discarded. For human, the ClinVar database 

collected 19,334 Mendelian phenotype-associated variants (Landrum, Lee et al. 2014). Because the 

genome structures in higher organisms are similar, ClinVar may also be used as a reference library for 

other higher organisms, in case no appropriate library exists.  

Impacts of “the quality and depth distribution of sequencing data”, “the approach to map 

sequencing reads to genome”, and “the variant calling method”, on the variant detection sensitivity of 

each sample, can be estimated by simulating a set of sequencing data with the same quality and depth 
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distribution. The simulated sequencing reads are from a genome containing random artificial 

(simulated) variants. Therefore, the combined impact of these factors on variant detection sensitivity 

can be estimated through computing how much proportion of these artificial SNPs can be detected. 

GIPS measures the sample-wise specificities of an analysis procedure by computing the frequency 

of detected variants per base in the effective genomic region (after all variant filtering steps). 

Assuming that all detected variants are unrelated to the phenotype, these frequencies are used to 

compute how many genes are expected by chance to accumulate random mutations in multiple samples 

and pass the candidate gene criterion.  

 

1.2 Variant detection sensitivity 

Variant detection sensitivity (VDS) is computed for a specific analysis procedure that is applied 

on a specific sample. It has two components, variant calling sensitivity and false ignorance rate.  

Variant calling sensitivity (VCS) characterizes how much proportion of the real variants can be 

observed with the analysis procedure under evaluation, before any filtering. It depends on the quality 

and depth distribution of the sequencing data, the approach to align sequencing reads, and the approach 

to call variants.  

It is not expected all variants are phenotype-related, e.g., synonymous mutations are unlikely to 

produce phenotype. In most phenotype-sequencing studies, filters are applied to remove observed 

variants that are unlikely to produce the target phenotype. In GIPS, false ignorance rate (FIR) is used to 

characterize the likelihood of filters to discard variants that may actually produce the phenotype. 

Focusing on an “effective genomic region” (e.g., using exome sequencing) is considered a filter, 

because this action risks ignoring phenotype-associated variants that are located outside the effective 

genomic region. In addition, GIPS supports the use of four types of other filters. They are, 1) the 

control filter, which removes variants observed in phenotype-absent control samples; 2) the 

ancestry filter, which removes variants replicated in multiple phenotype-exhibiting samples (this 

filter is applicable only if all samples are known unrelated); 3) the big difference filter, which 

removes small-difference non-synonymous mutations that are unlikely to change protein 

function; and 4) the congestion filter, which removes potentially spurious variants that are results 

of ambiguous alignments of sequencing reads.  

Let: 

        D!! be the VDS of sample S!; 

       Η!! be the VCS of sample S!; 

       Φ!! be the FIR of sample S!; 
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We have: 

       D!! = Η!!×(1−Φ!!). 

For each sample S!, Η!! and Φ!!can be estimated from real data or customarily specified. Note 

that GIPS allows the usage of sample-specific sequence alignment/variant calling procedures.  

 

1.2.1 Variant calling sensitivity 

The VCS Η!! of sample S! can be estimated with real sequencing data. To estimate Η!!  for 

homozygous variants, the raw sequencing reads from sample S!  are first mapped to the reference 

genome. GIPS will then simulate an alignment result from a hypothetical genome of sample S! , which 

harbors artificial SNPs. A number (the “NUM_SIM_SNPS” parameter in “PROJECT.ini”, defaults to 

5,000) of artificial SNPs, distributed uniformly over the “effective genomic region”, are hypothetically 

introduced to the genome of S! . The aligned sequencing reads are updated to reflect the introduction of 

artificial SNPs. To avoid complications, the artificial SNPs are only introduced at locations where the 

genome of S!  matches the reference genome. The artificial SNPs randomly change the original 

nucleotide bases to other ones. The mapped reads in the original alignment result (SAM file) are 

updated to reflect this change. For each mapped read covering an artificial SNP, its corresponding base 

is changed as follows. If the base is a correct read (i.e., matching the reference genome), it is changed 

to match the artificial SNP. If the base is an incorrect read and it does not match the artificial SNP, it is 

left unchanged. If the base is an incorrect read and it matches the artificial SNP, it is changed to match 

the reference genome. After this update, the simulated mapping result and the original mapping result 

will have the same reads quality, mapping quality, and depth distribution. The VCS Η!!  of sample S!  is 

therefore estimated as the proportion of these artificial SNPs that can be detected with the user-

supplied variant calling procedure (script).  

Users may specify any variant calling protocol with a custom script, as long as it takes a sequence 

alignment result in SAM format (Li, Handsaker et al. 2009) as input and produces a variant call file in 

VCF format. Because GIPS will invoke the user-supplied variant-calling scripts to call variants from 

the simulated alignment results, these scripts have to implement a convention of command line 

arguments. See 2.2.2 for details. Note that GIPS will not invoke these scripts to call variants from the 

original alignment results. Instead, users should use their scripts to call variants from the original 

alignment results and supply the resultant VCF files to GIPS. This design is also to ensure that the 

user-supplied variant calling scripts are working. 

To estimate Η!!  for heterozygous variants, GIPS uses the same approach except that only a 

random half of the mapped reads in the original sequence alignment result (SAM file) are updated to 



7 

reflect the introduction of artificial SNPs.  

 

1.2.2 False ignorance rate 

The FIR Φ!!  of sample S!  does not depend on the sequencing result of S! . It depends only on the 

variant filters that are applied on S!S!. The same filtering procedure will always have the same FIR, 

however, it is allowed to use different filtering procedures on different samples. GIPS supports the use 

of five configurable filters (Figure 2). Two filters, the effective region filter and the big difference 

filter, are based on predicted variant functions (i.e., variant annotations), which aim to discard variants 

that are unlikely to produce any phenotype. The other three filters, the ancestry filter, the control filter, 

and the congestion filter, are study-based filters, which aim to discard variants that are unlikely to 

produce the target phenotype. Details about these filters are given below. 

 

 

Figure 2. Variant filters. 
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Let: 

       Φ!!  be the FIR of sample S!; 

       Φ!!,! be the FIR of function based variant filters that are applied on S!; 

       Φ!!,! be the FIR of study based variant filters that are applied on S!; 

We have: 

       Φ!! = 1 − (1 − Φ!!,!)×(1 − Φ!!,!). 

The FIR of function-based variant filters Φ!!,! is estimated by applying the same filters on a 

library of known phenotype-causing variants, and compute how much proportion of these variants will 

be discarded. For human, the ClinVar database lists 19,334 Mendelian phenotype-associated variants 

(Landrum, Lee et al. 2014). For other higher species, because the genome structures in higher 

organisms are similar, ClinVar may also be used as a reference library in case no appropriate library 

for these species exists. Users can specify the reference variant library with the 

“LIB_PHENOTYPE_VAR” parameter in “PROJECT.ini”. The ClinVar database has been included in 

the GIPS distribution package. If no reference variant library is specified, ClinVar will be used as 

default. 

The FIR of study based variant filters Φ!!,! is estimated as the proportion of “effective genomic 

region” that is ignored by these filters. Study based variant filters discard variants according to variants 

detected in other samples. However, variants detected in other samples could be spurious. Therefore, 

GIPS takes the proportion of “effective genomic region” ignored by these study based variant filters as 

their estimated FIR. 

Whether to use a specific variant filter is specified with the “VAR_FILTERS” parameter in the 

“[GLOBAL]” section of the parameter file “PROJECT.ini”.  

 

VAR_FILTERS: [EBAC] 

E: Effective genomic region; B: Big difference filter; A: Ancestry filter; C: Congestion filter. 

Note that the “effect genomic region” filter is required. It will take effect even if “E” is not 

specified here. In addition, the “control filter” will take effect if control samples are specified. See 

1.2.2.5 for details. No specification of control filter is needed with this parameter. “C” here stands 

for congestion filter. 
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1.2.2.1 Effective region filter 

This filter discards variants that are outside the user-specified “effective genomic region”. 

Effective genomic region is specified based on the reference genome structure. An annotation of the 

reference genome is needed in generic feature format (GFF3) (Stein 2007). GIPS uses the below gene 

model to specify the effective genomic region (Figure 3). 

 

 

Figure 3. Gene structure model for specification of effective genomic region. 

 

Users can specify whether to include the promoter region (keyword: Promoter=length), 5’ 

untranslated region (keyword: 5UTR), coding sequence (keyword: CDS), splice site (keyword: 

SpliceSite=length), exon (keyword: EXON), and 3’ untranslated region (keyword: 3UTR) into the 

effective genomic region. The lengths of promoter and splice site can be customized. The effective 

region specification applies to all samples. The “[GLOBAL]” section of the parameter file 

“PROJECT.ini” contains this specification: 

REF_GENOME_ANNOTATION.GFF: /path/to/genome/annotation/file.gff3 

EFF_REGION: Keywords separated by “|”. Defaults to “CDS|SpliceSite=2”.  

 

Example: 

EFF_REGION: Promoter=1000|5UTR|CDS|3UTR|SpliceSite=2 

 

1.2.2.2 Big difference filter 

This filter discards non-synonymous variants that result in similar amino acids. The variants 

observed in each sample are first annotated by SnpEff (Cingolani, Platts et al. 2012). SnpEff assigns 

variants into different categories based on their putative effects. If this filter is used, GIPS will keep 

only variants that are annotated with “HIGH” effect and coding region variants that lead to significant 

amino acid changes. To define what is “significant amino acid change”, users can specify a maximum 
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residue similarity score and an amino acid scoring matrix. GIPS has 87 built-in scoring matrices, which 

are retrieved from NCBI (ftp://ftp.ncbi.nih.gov//blast/matrices).  

Big difference filter can have sample specific parameters. The parameters “SCORE_MATRIX” 

and “MAX_AA_SCORE” specified in the “[GLOBAL]” section of “PROJECT.ini” apply to all samples. 

The “SCORE_MATRIX” and “MAX_AA_SCORE” parameters can also be specified in specific sample 

sections, which override the corresponding global parameters.  

 

SCORE_MATRIX: Name of a scoring matrix, e.g., BLOSUM80. Defaults to “DEFAULT”, which 

discards only synonymous SNPs. Available scoring matrices are listed in the 

“config” file (“/path/to/GIPS_folder/config”). 

MAX_AA_SCORE: Maximum amino acid similarity score to define a significant amino acid 

change, as in the specified scoring matrix. Defaults to 0. 

 

1.2.2.3 Ancestry filter 

This filter discards variants that are detected in more than one phenotype-exhibiting samples. If all 

phenotype-exhibiting samples are known unrelated, the event of random mutations hitting the same 

genomic position in two or more samples is unlikely. Therefore, the same variant observed in unrelated 

samples probably indicates a shared genetic background, rather than phenotype association.  

Note that the ancestry filter should only be used when all the phenotype-exhibiting samples are 

known unrelated. For example, in plant research, mutants generated by chemical treatments are 

unrelated. The next version of GIPS will support gene identification with family-based experimental 

design.   

As described above, the FIR of the ancestry filter is estimated as the proportion of “effective 

genomic region” covered by all detected variants in all phenotype-exhibiting samples. This estimation 

implements the consideration that mutations in two unrelated samples do have a small chance of hitting 

the same genomic location, and that some of the observed variants are spurious.  

 

1.2.2.4 Congestion filter 

Some genomic regions are highly similar, which makes alignment of sequencing reads difficult. 

Variants in these regions further complicate the alignment process. As a result, variants observed in 

these genomic regions are more frequently false positive calls, especially in cases when many variants 

appear in a short region. Congestion filter discards a variant if there is another variant exists in its 

vicinity (11bp region centering on it).  
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As described above, the FIR of congestion filter is estimated as the proportion of “effective 

genome region” covered by all discarded variants and their 11bp vicinity regions.  

 

1.2.2.5 Control filter 

This filter discards variants observed in phenotype-absent control samples. The FIR of control 

filter is estimated as the proportion of “effective genomic region” covered by all observed variants in 

all control samples. This estimation implements the consideration that some of the observed variants in 

control samples are spurious.  

The “CONTROL” parameter specified in the “[GLOBAL]” section of “PROJECT.ini” applies to 

all phenotype-exhibiting samples. The “CONTROL” parameters specified in specific sample sections 

override the global parameter for the respective samples.  

Control variants are provided with one VCF file. 

 

CONTROL: /path/to/control_sample.vcf 

If there are multiple control samples, please merge the variants called from all control samples 

into one VCF file.  

 

1.3 Variant detection specificity 

GIPS measures the specificity of an analysis procedure by computing the frequency of detected 

variants per base (after all variant filtering steps) in the effective genomic region. This frequency is 

termed background variant frequency (BVF) . 

Let: 

𝐵!! be the BVF of sample S!; 

𝑁𝑣!! be the number of variants detected (after filtering) from sample S!; 

l be the length of the effective genomic region; 

We have: 

𝐵!! = 𝑁𝑣!!/  l  . 

 

1.4 Measurements of study effectiveness  

To report a candidate gene, the criterion is specified as a minimal frequency with which the 



12 

candidate gene harbors variants that are detected (after filtering) in phenotype-exhibiting samples.  

Let: 

       N be the total number of phenotype-exhibiting samples; 

       M be a user specified threshold. 

 The reporting criterion is therefore: 

In ≥ M out of N phenotype-exhibiting samples, the candidate gene harbors detected variants 

(after filtering). 

 

With this candidate gene criterion, GIPS calculates four measurements of study effectiveness, 

which are detailed below.  

  

1.4.1 Significance of each candidate gene to associate with the phenotype 

The significance of a candidate gene to associate with the phenotype is calculated as the 

likelihood with which this candidate gene might accumulate random variants in ≥ M phenotype-

exhibiting samples by chance. 

Let: 

       𝐺! be the candidate gene;  

𝐿!! be the length of effective genomic region that is annotated to 𝐺!; 

𝐵!! be the BVF of sample S!. 𝐵!! is obtained earlier. 

𝑃𝑉!!,!! be the probability of 𝐺! harboring at least one random variant in sample S!; 

We have: 

𝑃𝑉!!,!! = 1 − (1 − 𝐵!!)
!!! . 

Let: 

       𝑢, 𝑣 be variables in the recursive function;  

𝑅!!,! be the number of samples from the first 𝑢 samples in which 𝐺! harbors at least one 

random variant; 

We have: 
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𝑃 𝑅!!,! = 𝑣  

=

𝑃𝑉!!,!!×𝑃 𝑅!!,!!! = 𝑣 − 1   + 1 − 𝑃𝑉!!,!! ×𝑃 𝑅!!,!!! = 𝑣      0 < 𝑣 < 𝑢

1 − 𝑃𝑉!!,!!
!

!!!
                                                                                                                                                                                                   𝑣 = 0   

𝑃𝑉!!,!!
!

!!!
                                                                                                                                                                                                                         𝑣 = 𝑢

 

 

The above recursive function enumerates all possible combinations of 𝑣 samples from the first 𝑢 

samples, and sums up the probability of each combination to have 𝐺! harboring at least one random 

variant in each sample. 

Therefore, the likelihood with which 𝐺! accumulates random variants in ≥ M samples from all N 

samples can be computed as follows. 

Let: 

Q!! be the significance of gene 𝐺! to associate with the phenotype; 

We have: 

𝑄!! = 𝑃 𝑅!!,! ≥ 𝑀 = 𝑃 𝑅!!,! = 𝑘!
!!! .  

 

1.4.2 Expected number of random genes that may be reported 

The likelihood with which a gene can accumulate random variants in ≥ M phenotype-exhibiting 

samples, 𝑃 𝑅!!,! ≥ 𝑀 , is calculated in the previous section. Therefore, the number of random genes 

that are expected to meet the reporting criterion can be calculated as the sum of this likelihood for all 

genes. 

Let: 

𝐸 𝑀,𝑁  be the number of random genes that are expected to meet the reporting criterion; 

We have: 

𝐸 𝑀,𝑁 = 𝑃 𝑅!!,! ≥ 𝑀!∈[!""  !"#"$] = 𝑄!!!∈[!""  !"#"$]   . 

 

1.4.3 Chance to report candidate genes that are truly associated with the phenotype 

The chance that the true phenotype-associated gene will meet the candidate gene criterion is 

computed as follows. 
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Let: 

𝑢, 𝑣 be variables in the recursive function; 

𝐷!! be the VDS of sample S! . 𝐷!! is obtained earlier. 

𝐴! be the number of samples from the first 𝑢 samples in which the true phenotype-associated 

variants are detected;  

We have: 

 

𝑃 𝐴! = 𝑣 =

D!!×𝑃 𝐴!!! = 𝑣 − 1 + 1 − D!! ×𝑃 𝐴!!! = 𝑣                  0 < 𝑣 < 𝑢

1 − D!!
!

!!!
                                                                                                                                                                     𝑣 = 0

D!!
!

!!!
                                                                                                                                                                                           𝑣 = 𝑢

 

The above recursive function enumerates all possible combinations of  𝑣  samples from the first 𝑢 

samples, and sums up the probability of each combination to have the true phenotype-associated 

variants detected in each sample. 

Let: 

𝐻 𝑀,𝑁  be the chance of reporting the true phenotype-associated gene; 

We have: 

𝐻 𝑀,𝑁 = 𝑃 𝐴! ≥ 𝑀 = P A! = k!
!!! . 

 

1.4.4 Significance of violating Mendelian assumption 

The significance of violating Mendelian assumption, if no gene is reported or all candidate genes 

have failed validation, is the likelihood with which true phenotype-associated variants are not detected 

in ≥ M phenotype-exhibiting samples. 

Let: 

𝑤′ be the number of samples in which the true phenotype-associated variants are detected. 

  𝑤′ < 𝑀. 

𝑤 be the maximum number of samples in which one gene harbors variants in all these 

samples, and, this gene has not been proven unrelated to the phenotype.   𝑤′ ≤ 𝑤  . 

𝑍 𝑤′,𝑁  be the significance of violating Mendelian assumption. 

𝑢, 𝑣 be variables in the recursive function; 

𝐷!! be the VDS of sample S!. 𝐷!! is obtained earlier. 

𝐴! be the number of samples from all 𝑁 samples in which the true phenotype-associated 
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variants are detected.  

We have: 

 

𝑃 𝐴! = 𝑣 =

D!!×𝑃 𝐴!!! = 𝑣 − 1 + 1 − D!! ×𝑃 𝐴!!! = 𝑣                  0 < 𝑣 < 𝑢

1 − D!!
!

!!!
                                                                                                                                                                     𝑣 = 0

D!!
!

!!!
                                                                                                                                                                                           𝑣 = 𝑢

 

Because 𝑤′ is difficult to obtain, we compute 𝑍 𝑤,𝑁  as the upper bound of 𝑍 𝑤′,𝑁 . 

Let: 

𝑍 𝑤,𝑁   be the significance of violating Mendelian assumption; 

We have: 

 𝑍 𝑤′,𝑁 ≤ 𝑍 𝑤,𝑁 = 𝑃 𝐴! ≤ 𝑤 = 𝑃 𝐴! = 𝑘!
!!! . 
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Chapter 2. Tool Usage 

2.1 General workflow 

To initiate a project, GIPS will create a main directory with four sub-folders. Using the “Test” 

project as example (detailed in 3.1), the structure of project directory is illustrated below (Figure 4). 

The GIPS parameter file “PROJECT.ini” will be placed in the main project folder, and the GIPS result 

file “RESULT.gips” will be placed in the “Working” sub-folder.  

 

Figure 4. Structure of the GIPS project directory for “test” project. 

 

“PROJECT.ini” specifies the analysis procedure that will be evaluated by GIPS. A full analysis 

procedure includes steps to align sequencing reads to reference genome, to call variants from the 

aligned reads, to filter the observed variants, and finally, to call candidate genes.  

Users need to create custom scripts to implement their desired approach to align sequencing reads 

and to call variants. These scripts are recommended to be placed in the “/path/to/project_folder/Script” 

folder. In addition, it is recommended to use a naming convention that intuitively states the nature of 

these scripts, for example, “mapper-v1-20150502-q30-nr.sh”. Note that GIPS will not directly invoke 

user scripts to align sequencing reads or to call variants from the actual sequencing results. GIPS only 

uses these scripts to process simulated reads to estimate the variant calling sensitivity for each sample 

(see 1.2.1 for details). Instead, users should use these scripts to call variants from the actual sequencing 

results, and supply the resultant VCF files to GIPS. Furthermore, it is recommended to use a naming 

convention for all intermediate result files that unambiguously associates a result file to its producing 

script. For example, the alignment result of sample_1 produced by “mapper-v1-0515-q30-nr.sh” is 
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named “sample_1-mapper-v1-0515-q30-nr.sam”. The “/path/to/project_folder/Data” folder is designed 

to store intermediate result files. 

To filter variants that are unlikely to associate with the phenotype, users can specify a filtering 

procedure with five configurable filters (see section 1.2.2 for details). Finally, the candidate gene 

criterion is specified.  

After an analysis procedure has been fully specified in “PROJECT.ini”, a GIPS run will execute 

and evaluate this procedure. Candidate genes will be reported and the four measurements of study 

effectiveness will be computed. The “RESULT.gips” file reports the GIPS results. A summary of the 

analysis procedure and intermediate results is also included in “RESULT.gips”. 

After the first GIPS run, users can iteratively optimize the analysis protocol and evaluate how 

these changes affect candidate genes and study effectiveness. Users can modify “PROJECT.ini” and 

run GIPS in the “update” mode. In the “update mode”, GIPS will try to reuse previously produced 

intermediate results whenever possible. Meta data on previous intermediate results are coded and 

stored in the “[GIPS TRACEBACK]” section of the “RESULT.gips” file. In each GIPS run, the existing 

“RESULT.gips” file, which contains information of the previous GIPS run, will automatically be 

archived in the “/path/to/project_folder/Working/Archive” folder. If a user wishes to base further 

analysis optimization on an earlier analysis procedure (not the procedure of the immediate previous 

run), he can locate the corresponding “RESULT.gips” file in the archive folder and restore this file to 

“/path/to/project_folder/Working/RESULT.gips”. This will allow GIPS to reuse related intermediate 

results in its “update” mode.  

 

2.2 Parameter and result file 

2.2.1 Project initialization 

Usage: Java –jar –Xms3g GIPS.jar -init /path/to/project_folder 

GIPS will create the directory “/path/to/project_folder”. This directory contains four sub-folders: 

 “Scripts”, for storing user scripts. 

“Working”, for storing intermediate results and archiving GIPS result files.  

“Ref”, for storing reference data, such as genome annotation files and library of phenotype-

causing variants.  

“Data”, for storing user-provided sequence alignment (SAM) files and variant call (VCF) 

files. 

The “project_folder” also contains two text files:  
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“PROJECT.ini”, which specifies the analysis procedure to be evaluated (detailed below); 

“Working/RESULT.gips”, which presents GIPS results (detailed blow). 

 

2.2.2 Analysis procedure specification (“PROJECT.ini”) 

The “PROJECT.ini” file includes one “[GLOBAL]” section, followed by multiple “[SAMPLE]” 

sections. There is also a section named “[SAMPLE_LIST]”, which lists all sample names. If the same 

parameter appears in both the “[GLOBAL]” section and a “[SAMPLE]” section, the “[SAMPLE]” 

specific specification overrides the “[GLOBAL]” specification, which applies only to that specific 

sample.  “#” is used to add comments. 

The “[GLOBAL]” section contains the following specifications. 

PROJECT: Project name, which is automatically filled when a project is initiated. 

SNPEFF_GENOME_VERSION: The genome version code used by SnpEff to annotate variants. 

This is a required parameter with no default value. 

REF_GENOME_ANNOTATION.GFF: /path/to/genome_annotation.gff. The genome annotation 

file that GIPS uses to select the “effective genomic region”. This is a required parameter 

with no default value. If only a file name is specified, GIPS looks for this file in 

“/path/to/project_folder/Ref/”.  

SNPEFF: /path/to/program/SnpEff/folder. Note that this is the path to SnpEff program folder, not 

the path to the SnpEff executable (jar file). This is a required parameter with no default 

value. SnpEff can be downloaded at http://snpeff.sourceforge.net/index.html.  

VAR_CALL_SCRIPT: /path/to/variant_calling_script. GIPS invokes user-supplied scripts to call 

variants from simulated sequencing reads. User-supplied variant calling scripts need to take 

two command line parameters. The first one (“$1” in common Linux shell script) specifies 

a path to the input SAM file, and the second one (“$2” in common Linux shell script) 

specifies a path to the output VCF file. This is a required parameter with no default value. If 

only a file name is specified, GIPS looks for this script in “/path/to/project_folder/Script/”.  

CANDIDATE_CRITERION: The minimal number of phenotype-exhibiting samples in which a 

candidate gene is expected to harbor variants. Defaults to the total number of samples 

(which reports only genes that harbor variants in all samples). 

EFF_REGION: Combination of the following regions, separated by “|”: promoter=length, CDS, 

5UTR, 3UTR, SpliceSite=length. Example: “EFF_REGION=CDS|PROMOTER=1000”. 

Defaults to “CDS|SpliceSite=2|PROMOTER=1000”.  This parameter is case-insensitive.  
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VAR_FILTERS: Variant filters to be used. “A”: Ancestry filter. “B”: Big difference filter. “E”: 

Effective region filter. “C”: Congestion filter. Example: “VAR_FILTERS: EB”. Defaults to 

“EBA”. Note that the “control filter” will take effect if the “CONTROL” parameter is 

specified. The effective region filter (“E”) will always be enabled. See 1.2.2 for details. 

SCORE_MATRIX: The scoring matrix used for filtering non-synonymous SNPs. GIPS has 87 

built-in scoring matrices, which are listed in “/path/to/GIPS_folder/config”. Defaults to 

“DEFAULT”, which means that no scoring matrix is used and all non-synonymous variants 

are kept. 

MAX_AA_SCORE: The maximum amino acid similarity score as in the user specified scoring 

matrix for a non-synonymous SNP to be kept by the big difference filter. Its default value is 

“0”. 

NUM_SIM_SNPS: Number of artificial SNP to be simulated when estimating the variant calling 

sensitivity for a sample. Defaults to 5,000. 

CONTROL: /path/to/control_sample.vcf. A single file containing all variants that are found in 

phenotype-absent control samples. If there are multiple control samples, please merge their 

observed variants into one VCF file.  

 

After the “[GLOBAL]” section, in each “[SAMPLE]” section, the following parameters are 

specified. 

 

SAMPLE_NAME: Name of this sample. This is a required parameter with no default value. 

READS_ALIGNMENT.SAM: /path/to/sample.sam. The reads alignment result of this sample. Note 

that the user-supplied variant calling script should be able to take this file as input and 

produce the variant calling result that is specified in the “SAMPLE.VCF” parameter. This 

parameter is required if “SPECIFY_HOMO_VDS”, “SPECIFY_HETERO_VDS”, and 

“SPECIFY_BVF” are not used. If only a file name is specified, GIPS looks for this file in 

“/path/to/project_folder/Data/”.  

SAMPLE.VCF: /path/to/sample.vcf. The variant calling result of this sample. Note that the user-

supplied variant calling script should be able to produce this result file from the reads 

alignment file specified in the “READS_ALIGNMENT.SAM” parameter. This parameter is 

required if “SPECIFY_HOMO_VDS”, “SPECIFY_HETERO_VDS”, and “SPECIFY_BVF” 

are not used. If only a file name is specified, GIPS looks for this file in 

“/path/to/project_folder/Data/”.  
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SPECIFY_HOMO_VDS: Do not estimate the variant detection sensitivity for homozygous 

variants from the real sequencing data. Use the specified value instead. This parameter is 

required if “READS_ALIGNMENT.SAM” is not used.  

SPECIFY_HETERO_VDS: Do not estimate the variant detection sensitivity for heterozygous 

variants from the real sequencing data. Use the specified value instead. This parameter is 

required if “READS_ALIGNMENT.SAM” is not used. 

 SPECIFY_BVF: Do not estimate the background variant frequency from the real sequencing data. 

Use the specified value instead. This parameter is required if “READS_ALIGNMENT.SAM” 

is not used.  

VAR_CALL_SCRIPT: Overrides the same parameter in the“[GLOBAL]” section, if specified. 

SCORE_MATRIX: Overrides the same parameter in the“[GLOBAL]” section, if specified. 

MAX_AA_SCORE: Overrides the same parameter in the“[GLOBAL]” section, if specified. 

CONTROL: Overrides the same parameter in the“[GLOBAL]” section, if specified. 

NUM_SIM_SNPS: Overrides the same parameter in the“[GLOBAL]” section, if specified. 

 

Please note that the three parameters, SPECIFY_HOMO_VDS, SPECIFY_HETERO_VDS and 

SPECIFY_BVF, should always be used together. Otherwise, GIPS would report an error, as below. 

 

 

 

2.2.3 Result file (“RESULT.gips”) 

“RESULT.gips” has five sections, which may not all appear. Whether a section will appear 

depends on the type of GIPS run. 

The “[Study Effectiveness]” section shows the chance of reporting the true phenotype-associated 

gene with the current analysis protocol, and, the significance of violating Mendelian assumption, if no 

gene is reported or all candidate genes have failed validation.  

The “[Candidate Gene List]” section shows all candidate genes. Detailed information about the 

variants in these candidate genes is given in the result file “Working/CANDIDATE_GENES.txt”. 
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The “[Sample Specific Sensitivity and Specificity]” section shows, for each sample, the variant 

calling sensitivity (section 1.2.1), false ignorance rate (section 1.2.2), variant detection sensitivity 

(section 1.2), and background variant frequency (section 1.3).  

The “[Protocol]” section records the analysis protocol specified in “PROJECT.ini”.  

The “[GIPS TRACEBACK]” section encodes the meta-data of intermediate results produced in 

this GIPS run. These intermediate results can be used to speed up future GIPS runs in the “update” 

mode.  Users should not modify information in this section. 

 

2.2.4 Running GIPS  

Usage: java -jar GIPS.jar [options]  

Example:  java –Xms3g -jar GIPS.jar -T <tool> -p /path/to/project_folder  

 

Table 1. GIPS software options 

Options:  

-h (-H)  Show help. 

-Test  Initiate a new project with the test setup. See the next 
chapter for the “Test” example. 

-init /path/to/project_folder Initiate a new project. 

-T <gips|vcs|filter> Select GIPS function. gips: full workflow; vcs: only 
estimate the variant calling sensitivity for each 
sample; filter: only use variant filters to remove 
likely unrelated variants. Defaults to “gips”. 

-update  Run GIPS in “update” mode. GIPS will try to reuse 
intermediate results produced in previous runs. 
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Chapter 3. Examples  

 

3.1 Test example 

This example tests GIPS with synthesized artificial data.  

 

Step 1: Initiate the test project. 

 

Command: java -jar GIPS.jar –Test  

 

The above command creates the GIPS project folder, “Test”. Its directory structure is as follows. 

  

In “Test/Data”, there are three directories, “sample1”, “sample2” and “sample3”. These 

directories store the synthesized sequencing reads alignment results and variant calling results from 

three hypothetical samples. These artificial sequencing reads are generated by the ART simulator 

(Huang, Li et al. 2012). 

In “Test/Script”, there is a variant calling script, which invokes SAMTools to call variants from 

mapped sequencing reads. Please modify this script accordingly to fit the user’s computing system. 

This script was used to call variants from the mapped reads of each hypothetical sample, and will be 

invoked by GIPS to estimate variant calling sensitivity (section 1.2.1). This script takes two command 

line parameters. The first one specifies a path to the input SAM file, and the second one specifies a 
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path to the output VCF file. 

In “project_folder/Ref”, there are two files. “Test.fa” provides the hypothetical reference genome 

sequence of the samples. “Test.gff3” annotates the hypothetical reference genome.  

The “Working” directory has stored a sample GIPS result file, “RESULT.gips”, and some 

intermediate results. It is recommended that users also follow this convention to store intermediate 

results when developing their custom scripts to work with GIPS.  

The parameter file “PROJECT.ini” specifies the analysis procedure to be executed and evaluated 

by GIPS (section 2.2.2). 

Step 2: Setup SAMTools and SnpEff. 

SAMTools can be downloaded at http://samtools.sourceforge.net.  

Please make sure that “samtools”, “bcftools”, “vcfutils.pl” are all placed in the executable search 

path of the user system ($PATH). Otherwise, please modify the “Test/Script/samtools_Q13q30_script” 

accordingly. 

SnpEff can be downloaded at http://snpeff.sourceforge.net/download.html.  

Unzip the downloaded package and set its folder path to the “SNPEFF” parameter in the 

“[GLOBAL]” section of the “PROJECT.ini” file and create a new folder named “Test” in  

“SNPEFF/data”.  

Then you should put the “project_folder/Ref/Test.gff3” file to the new Test folder and  run the 

following command to create the snpEffectPredictor.bin file of Test. 

 

Command: java -jar /path/to/SNPEFF/snpeff.jar build -gff3 -v Test 

 

Step 3: Run GIPS to estimate variant calling sensitivity. 

 

Command: java –Xms3G –jar GIPS.jar –p Test –T vcs 

 

This command tests the GIPS function to estimate sample-specific variant calling sensitivities. 

The script “Test/Script/samtools_Q13q30_script” will be invoked to call variants from simulated reads 

alignment result, and GIPS will compute how much proportion of the simulated SNPs is recovered by 

this script (section 1.2.1).  

The GIPS result file, “Test/Working/RESULT.gips”, will show contents like below. 
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Step 4: Run GIPS to filter variants. 

 

Command: java –Xms3G -jar GIPS.jar –T filter –p Test 

 

This command tests the GIPS function to filter variants that are unlikely to associate with the 

target phenotype. The filtering procedure is specified in “Test/PROJECT.ini”. If successful, users will 

find three result files in  “Test/Working”, with the names “sample1.filter.gips”, “sample2.filter.gips”, 

and “sample3.filter.gips”.  

 

Step 5: Run a full GIPS workflow. 

 

Command: java –Xms3G –jar GIPS.jar –p Test –T gips 

 

This command tests the full GIPS workflow to call candidate genes from sequencing data. The 

hypothetical gene “gene1_gips” is expected to appear in the “[Candidate Gene List]” section of the 

GIPS result file “Test/Working/RESULT.gips”. The GIPS result file will show contents like below. 
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In addition, a text file “Test/Working/CANDIDATE_GENES.txt” will be created, which provides 

detailed information on the variants detected in “gene1_gips” in each sample. 

 

 

3.2 Identification of a Pho2 suppressor gene in Oryza Sativa 

3.2.1 Overview 

Inorganic phosphorus (Pi) is an essential nutrient for plant growth and development, and Pi 

limitation is widely a constraint for crop yield in cultivated soils (Raghothama 1999). Understanding 

the molecular mechanisms of Pi uptake and utilization is important for breeding practices to improve 

nutrient efficiency in crops. The mutation of PHOSPHATE2 (PHO2) was first described in 

Arabidopsis. The phenotype is over-accumulation of Pi in shoot tissues (Delhaize and Randall 1995). 

Arabidopsis PHO2 was later characterized as an ubiquitin-conjugating E2 enzyme (Liu, Huang et al. 

2012). OsPHO2, the PHO2 homolog in rice (LOC_Os05g48390), was also identified as an important 

regulator in phosphate translocation and homeostasis, which showed similar functions like AtPHO2. 

Ospho2 mutant shows leaf tip necrosis and Pi accumulation largely in mature leaves (Wang, Ying et al. 

2009, Hu, Zhu et al. 2011). In this study, we performed a forward genetic study to identify its potential 

suppressor genes in rice. A pho2 Tos17 insertion mutant was obtained from the Rice Genome 
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Resource Center, Japan (http://tos.nias.affrc.go.jp/, Accession: NE8536). We derived a homozygous 

pho2 mutant (HNE8536) from this line (Wang, Ying et al. 2009). 

An EMS (ethyl methanesulfonate) induced mutant library was generated from the HNE8536 

homozygous pho2 mutant line. From the M2 population of ~15,000 lines grown in soil, three partial 

suppressor mutants showing an identical phenotype of Pi tolerance were obtained (M28, M29 and 

M249, Figure 5 (1A)). Because these mutants are produced by EMS treatment, they are considered 

unrelated and the ancestry filter (section 1.2.2.3) is enabled. The raw sequencing results can be 

retrieved from the Sequence Read Archive Database with accession SRP058881. 

 

3.2.2 Run with empirical parameters 

Step 1: Download raw sequencing data and convert to the FASTQ format. 

 

Table 2. The Pho2 suppressor identification dataset. 

SAMPLE NAME SAMPLE ID NCBI SRA database link 

M28 SRS949736 http://www.ncbi.nlm.nih.gov/sra/?term=SRS949736 

M29 SRS949738 http://www.ncbi.nlm.nih.gov/sra/?term=SRS949738 

M249 SRS949741 http://www.ncbi.nlm.nih.gov/sra/?term=SRS949741 

 

Sequencing reads data in SRA format need to be converted to FASTQ format using the SRA 

Toolkit (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software). 

vdb-validate.2 /path/to/sample.sra 

fastq-dump.2 --split-3 /path/to/sample.sra  

 

Step2: Align sequencing reads to reference genome and call variants. 

 

Paired-end sequencing reads are aligned to the Oryza Sativa Nipponbare reference genome 

version 7 (Kawahara, de la Bastide et al. 2013), using the Bowtie2 software (Langmead and Salzberg 

2012). The reference genome FASTA file (all.chrs.con.fa) and annotation file (all.gff3) can be 

downloaded from 

ftp://ftp.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/

pseudomolecules/version_7.0/all.dir/ 
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There is a blank line in the reference genome file (all.chrs.con.fa) at the bottom of Chr2. This 

blank line needs to be removed, or it will cause an error when building Bowtie2 index. This blank line 

looks like below: 

 

Suppose that the reference genome and annotation files are store in “/path/to/pho2/reference/”, 

and the raw sequencing reads are store in “/path/to/pho2/dataset/”. 

The SAMTools package version 1.2 (Li, Handsaker et al. 2009) is used to call variants from the 

aligned reads. PCR duplicates are marked and removed by Picard. The commands are: 

 

 

Step 3: Set up the GIPS project. 

 

First initiate the GIPS project with the following command: 

 

java –jar GIPS.jar –init GIPS-Rice  

 

Then modify “PROJECT.ini”:  

 

Set “REF_GENOME_ANNOTATION.GFF”, “SNPEFF”, and “SNPEFF_GENOME_VERSION” 
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appropriately. In our system, these parameters are set to: 

  

Move the reads alignment results and variant calling results obtained in Step 2 into the GIPS 

project folder, “/path/to/GIPS-Rice/Data”. Provide the variant calling steps to GIPS as a script. See 

below for an example. This script takes two command line parameters. The first specifies the input sam 

file and the second specifies the output vcf file. Here, the below example script is named “default-Q13-

q0.sh”. Move the variant calling script to “/path/to/rice/Script” and set its path in “PROJECT.ini”.  

 

 

After the above steps, the parameter file “PROJECT.ini” should look like below. 
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Step 4: Call candidate genes. 

 

Command: java –Xms3g –jar GIPS.jar –T gips –p GIPS-Rice 

 

This command will call candidate genes with the default analysis procedure. The default analysis 

procedure considers only coding sequences and splice sites (effective genomic region), and uses 

ancestry filter (section 1.2.2.3) and big difference filter (section 1.2.2.2). The default behavior of big 

difference filter is to remove only synonymous SNPs. Candidate genes are expected to harbor detected 

variants in all three samples. 

As shown in “/path/to/GIPS-Rice/Working/RESULT.gips”, this default analysis procedure has 

~91% chance to detect homozygous variant and ~81% chance to detect heterozygous variant in each 

sample. The combined likelihood of the true phenotype-associated gene harboring detected variants in 

all three samples is high (74%).  These results are summarized in Table 3. 
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Table 3. Sample-wise study effectiveness measurements of the default analysis procedure.  
Homo_VCS: homozygous variant calling sensitivity; Hetero_VCS: heterozygous variant calling 
sensitivity; FIR: false ignorance rate; Homo_VDS: homozygous variant detection sensitivity; 
Hetero_VDS: Heterozygous variant detection sensitivity; BVF: background variant frequency. 

 

The default analysis procedure identified 28 candidate genes. Information on these genes and the 

mutations they harbor is detailed in the Appendix. In GIPS results, two files present these data. The 

candidate genes are listed in the “[Candidate Gene List]” section of the result file  (/path/to/GIPS-

Rice/Working/RESULT.gips), which looks like below. The variants that these candidate gene harbor 

are provided in a separate file (path/to/GIPS-Rice/Working/CANDIDATE_GENES.txt). 

 

 

Rough running times for the above analysis procedures are listed in Table 4. 

 

 

 

 

 

Sample Homo_VCS Hetero_VCS FIR Homo_VDS Hetero_VDS BVF 

M28 0.934 0.837 0.0167 0.918 0.822 1.51E-5 

M29 0.883 0.812 0.0167 0.868 0.798 8.32E-6 

M249 0.952 0.837 0.0167 0.936 0.822 8.46E-6 
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Table 4. Rough running times on a single CPU Intel Xeon E3-1230 server. 

Procedure Runtime 

SRA Toolkit ~12min 

Bowtie2 build index ~9min 

Bowtie2 align ~2.5h 

Picard sort and add groups ~45min 

Picard rmdup ~40min 

Samtools index ~2.5min 

Samtools call variants ~3.5h 

Total ~ 8h 

GIPS  1h 

 

 

3.2.3 Run with optimized parameters 

The default analysis procedure identified 28 candidate genes, which are too many for 

experimental validation. Such a big number of identified candidates indicates the lack of specificity of 

the default analysis procedure. Therefore, next, we modify the default analysis procedure to improve 

its specificity.  

 

Step 5: Modify the analysis procedure. 

 

1) Use a more strict quality criterion in the variant calling step. 

We increase the minimum base quality score from 13 to 15, and increase the minimum mapping 

quality score from 0 to 20. The updated variant calling procedure is as below. 
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The updated procedure is then used to call variants from the actual sequencing reads. The 

resultant VCF files (i.e., “/path/to/pho2/Dataset/sample/samtools_Q15_q20_noDPfilter.vcf”) should be 

moved to the “/path/to/GIPS-Rice/Data/sample/” folder. Meanwhile, create a new script to supply this 

updated procedure to GIPS. We name this script “samtools_Q15_q20.sh”, and put it in “/path/to/GIPS-

Rice/Script”. This script is a modified version of “default-Q13-q0.sh” (see above), with the samtools 

parameters changed. This script takes two command line parameters. The first specifies the input sam 

file and the second specifies the output vcf file.  

 

2) Use a more strict “big difference filter”. 

In the “[GLOBAL]” section of “PROJECT.ini”, set: 

 

SCORE_MATRIX: PAM120 

 

This change instructs the big difference filter to remove non-synonymous variants that result in 

similar amino acid changes with positive similarity scores in the PAM120 scoring matrix. 

 

3) Shrink the effective genomic region to include only CDS regions and splice sites. 

It is arguable that most phenotype-related de novo mutations happen in the CDS regions and 

splice sites. By considering only the CDS regions and splice sites, we reduce the number of detected 

variants that may confound the gene identification process.  

In the “[GLOBAL]” section of “PROJECT.ini”, set: 

 

EFF_REGION: CDS|SpliceSite=2 
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The “PROJECT.ini” file is then updated to reflect these changes. 

  

 

Step 6: Run GIPS in “update” mode to evaluate the modified analysis procedure. 

 

Command: java –Xms3g –jar GIPS.jar –T gips –p GIPS-Rice –update 

 

This command will call candidate genes with the modified analysis procedure.  

As shown in “/path/to/GIPS-Rice/Working/RESULT.gips”, the modified analysis procedure has 

~70% chance to detect homozygous variants and ~67% chance to detect heterozygous variants in each 

sample. The combined likelihood of the true phenotype-associated gene harboring detected variants in 

all three samples is 29%.  These results are summarized in Table 5. 

Table 5. Sample-wise study effectiveness measurements of the modified analysis procedure. 
Homo_VCS: homozygous variant calling sensitivity; Hetero_VCS: heterozygous variant calling 
sensitivity; FIR: false ignorance rate; Homo_VDS: homozygous variant detection sensitivity; 
Hetero_VDS: Heterozygous variant detection sensitivity; BVF: background variant frequency. 

Sample Homo_VCS Hetero_VCS FIR Homo_VDS Hetero_VDS BVF 

M28 0.916 0.879 0.196 0.735 0.705 5.89E-6 

M29 0.819 0.773 0.196 0.657 0.62 3.63E-6 
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M249 0.897 0.836 0.196 0.72 0.671 2.86E-6 

 

In contrast to the default analysis procedure, the modified analysis procedure has a less chance to 

detect the true phenotype-associated variant in each sample. This results in a decrease of the combined 

likelihood that the true phenotype-related gene harbors detected variants in all three samples. On the 

other hand, the modified analysis procedure detects much less variants in each sample, only ~23% of 

those detected with the default analysis procedure. This decrease of confounding variants increases the 

confidence in the identification of phenotype-associated gene. As a result, the significance of the top 

candidate gene has increased from 1.911×10 -6 to 9.453×10 -7, using the modified analysis procedure. 

The modified analysis procedure reports only one candidate gene, LOC_Os02g56510 

(OsPHO1;2). This candidate is a functional homology of the Arabidopsis AtPHO1 gene(Secco, Wang 

et al. 2012). AtPHO1 was proposed to function as a Pi transporter (Secco, Wang et al. 2012)A recent 

study has demonstrated that AtPHO1 is a crucial downstream component of AtPHO2. AtPHO2 

modulates the degradation of AtPHO1 in endomembranes to maintain Pi homeostasis in 

Arabidopsis(Liang, Wang et al. 2014). Therefore, it is highly likely that OsPHO1;2 is the gene that 

suppressed the pho2 mutant phenotype in rice. The variants detected in OsPHO1;2 are listed in Table 

6. 

 
 
Table 6. Variants detected in OsPHO1;2. 

Sample Pos Ref Alt GT Effect 
M28 34611907 C T 1/1 Missense (A:V) 
M29 34614585 C T 1/1 Missense (H:Y) 

M249 34614218 G A 1/1 Stop_gained 

 

To further validate this gene-phenotype association, we screened another 5000 lines from the 

EMS-induced mutant library based on the HNE8536 homozygous Ospho2 mutant line. One additional 

mutant (M358), which exhibited the same Pi tolerance phenotype, was obtained. As expected, we 

found a high-effect mutation Ser340Gly in OsPHO1;2 in M358. 

The mutant phenotypes and genotypes of M28, M29, M249, and M358 are shown in Figure 5. 

The phenotypes of the mutants were further validated by measuring their shoot Pi concentrations, and 

confirming their Ospho2 Tos17 insertion (data not shown). 
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Figure 5. Plant phenotypes, Pi contents, and SNPs detected in the OsPHO1;2 region. (A) Phenotypes 
of 60-day-old plants grown in soil. WT: wild type Nipponbare; pho2: homozygous pho2 mutant 
(HNE8536). (B) Shoot Pi contents of 40-day-old plants grown in +Pi (200 µM) hydroponic medium 
(Error bars represent SE, n = 3). (C) Variations detected in the OsPHO1;2 region. 
 
 

3.2.4 Example discussion (strategy to optimize an analysis procedure) 

This example provides case for discussing how an analysis procedure can be optimized based on 

the study effective measurements provided by GIPS, in particular, “the chance to report candidate 

genes that are truly associated with the phenotype” and “the significance of violating Mendelian 

assumption, when no candidate gene is reported or all candidates have failed validation”.  

In the above example, the default analysis procedure reported 28 candidate genes (section 3.2.2), 

which are too many for validation. A more strict analysis procedure is therefore desired to identify 

candidates of higher confidence. For this reason, we optimized the analysis procedure toward accuracy 

and the optimized procedure identified only one candidate gene, which was subsequently confirmed 

with experiments. Although the optimized analysis procedure has a lower “chance to report the true 

phenotype-associated gene”, it is not informative as long as this procedure can identify a biologically 

sound candidate that is worthy of validation. The measurement “chance to report the true phenotype-

associated gene” is intended to provide guidance on the next steps when an analysis procedure cannot 

identify any biologically sound candidate or all identified candidates have failed validation. 

To identify a phenotype-associated gene, a more “strict” or “accurate” analysis procedure will 

only consider highly confident variations that are supported by a significant number of high quality 
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sequencing reads. Subsequent filtering process will also keep only variations that are very likely to 

produce the target phenotype. This “accurate” procedure will result in less number of possible 

variations that might produce the phenotype in each sample. Consequently, a candidate gene harboring 

variations in multiple samples will have a higher significance to associate with the phenotype. 

However, such an “accurate” procedure will also risk ignoring the true phenotype-causing mutations 

that are not supported by unequivocal evidence. This undesired ignorance can result in the true 

phenotype-associated gene harboring variations in an insufficient number of samples, which will fail 

the candidate gene criterion.  

On the other hand, a more “permissive” or “comprehensive” analysis procedure will include more 

false positive variations and/or more less-likely phenotype-causing variations in each sample, which 

results in a higher chance that random genes may harbor variations in multiple samples. When the 

candidate gene criterion is met, the significance of a candidate to associate with the phenotype is also 

lower. Although a comprehensive analysis procedure is more unlikely to render the true phenotype-

associated gene failing the candidate gene criterion, such a procedure is more likely to report 

phenotype-unrelated candidates, which demands significant extra effort in their validations. 

Therefore, to most investigators, it is recommended to use a more accurate analysis procedure 

whenever possible. Accurate procedures produce highly confident candidates, which minimize the 

chance of failure in candidate validations. GIPS calculates a significance p-value for each candidate 

gene to associate with the phenotype. If there is at least one candidate gene unconfirmed and is not 

discouraged by other evidence (e.g., evidence that some of its variations might be false positive calls), 

it is advised to validate this candidate first. In this scenario, the study effectiveness measurement 

“chance to report the true phenotype-associated gene” is not informative. If it is low, it just indicates 

that this analysis procedure happens to fit the need of identifying this candidate gene very well. On the 

other hand, if an analysis procedure produces many candidates, this procedure is probably not accurate 

enough. Investigators are advised to try more aggressive approaches to further increase the confidence 

of the reported candidates. 

Though it is always more advisable to use a accurate analysis procedure as long as it can identify 

biologically sound candidate genes for validation, in cases that the protocol is too strict to identify any 

candidate or all identified candidates have failed validation, the two study effectiveness measurements, 

“chance to report the true phenotype-associated gene” and “significance of violating Mendelian 

assumption”, may provide a guidance on the next steps. If the chance to report phenotype-associated 

gene is low, the analysis procedure is likely too strict and needs relaxation. Investigators may consider 

validating more candidates reported by a more permissive analysis procedure, or sequencing more 

phenotype-exhibiting samples to increase the support of the phenotype-associated gene.  
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Conversely, if an investigator has sequenced a large number of phenotype-exhibiting samples 

and/or have validated many candidates, and the phenotype-associated gene is still at large, the study 

effectiveness measurement, “significance of violating Mendelian assumption”, may advise on the next 

steps. If this significance is low (p>0.05), there is no compelling evidence that the phenotype is 

controlled by multiple genes and the investigator is still advised to add samples, validate more 

candidates, or to relax the analysis procedure to identify more candidates. If this significance is high 

(p<0.05), the investigator is advised to re-examine the phenotype-exhibiting samples included in the 

study.  

For a qualitative trait, though it is possible that multiple genes can produce similar phenotypes, it 

is unlikely that two genes produce exactly the same phenotype. This is because most, if not all, genes 

are pleiotropic. Disruptions of different genes might produce the same major effect, but each will also 

produce dissimilar “side effects”. Therefore, arguably, key to the success of a sequencing-based direct 

gene cloning study is the definition of a proper set of phenotype criteria, which can identify mutants of 

the same gene. The stricter the phenotype criteria are, the more likely that the included samples are 

mutants of the same gene. When GIPS reports a high significance of violating Mendelian assumption, 

investigators are advised to re-confirm the phenotypes of the samples included in the study. If there is 

no doubt, investigators are advised to consider using a more strict set of phenotype criteria for this 

study, which examine more minor phenotypic traits and can distinguish mutants of different but 

functionally related genes. 

In general, the approach of sequencing based direct cloning in forward genetics study is expected 

to gain popularity. The reasons are two folds. First, this approach does not require the generation of 

cross or backcross populations, which significantly accelerates the gene identification process. 

Although this time advantage may come with more effort spent in screening mutant library to obtain 

multiple unrelated mutants of the same phenotype, library screenings in typical forward genetics 

studies require only bare-eye observation. The cost of screening a larger library is usually acceptable. 

Furthermore, rapid development of automated phenotyping technologies makes it possible to screen 

large libraries for minor phenotypes that cannot be easily observed(Pardo-Martin, Allalou et al. 2013). 

Second, because this approach does not require the creation of a population, it is free from the related 

limitations. This approach is readily applicable in identification of genes that are important in organ 

development (the disruption of which breaks the plant life cycle), and reproductive development (the 

disruption of which impedes crossing operation). 

In this context, GIPS provides guidance on the effective design and execution of a sequencing 

based direct cloning study. It is different from other gene prioritization software, such as ANNOVAR 

(Wang, Li et al. 2010), which scores genes and variants to provide a rank. These priority scores do not 



38 

advise, when no phenotype-associate gene can be identified, whether an investigator should change the 

analysis procedure, validate more candidate genes, add more samples, or re-examine the phenotype 

criteria used in the study. GIPS implements a probabilistic framework that models the entire process of 

sequencing based direct cloning study. Within this framework, other gene prioritization software 

focusing on removing genes/variants that are unlikely to associate with the phenotype can be integrated 

with the GIPS workflow as additional gene/variant filters.  
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Abbreviations 

Term Abbreviation/Illustration Section 

BVF : Background variant frequency 1.3 

CDS: Coding sequence 
 

ClinVar: Clinical variant database 1.2.2 

FIR: False ignorance rate 1.2.2 

GIPS: Gene identification via phenotype sequencing 
 

SAM : Sequence Alignment/Map Format 
 

VDS: Variant detection sensitivity 1.2 

VCS: Variant calling sensitivity 1.2.1 

VCF: Variant Call Format 
 

PROJECT.ini Parameter file to specify the analysis procedure that will be 

executed and evaluated by GIPS 
2.2.2 

RESULT.gips GIPS result file 2.2.3 

CANDIDATE_G

ENES.txt 

Detailed information about the variants found in candidate 

genes 
2.2.3 

Effective 

genomic region 

Genomic regions that are considered by GIPS in gene 

identification 
1.2.2.1 

Effective region 

filter 

Discards variants that are outside the user-specified “effective 

genomic region” 
1.2.2.1 

Ancestry filter Discards variants that are detected in more than one phenotype-

exhibiting samples (when all samples are known unrelated) 
1.2.2.3 

Big difference 

filter 

Discards non-synonymous variants that result in similar amino 

acids changes 
1.2.2.2 

Congestion filter Discards a variant if there is another variant located in its 

vicinity (11bp region centering on it) 
1.2.2.4 

Control filter Discards variants observed in phenotype-absent control 

samples 
1.2.2.5 
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GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os12g35520 LOC_Os12g35520 Chr12 1224 1.91E@06 5 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr12 21600397 G GCTC 137 0/1
mutationENOE2 249 Chr12 21600398 G GTCGCTTGT 135 0/1
mutationENOE3 28 Chr12 21600814 T C 26 1/1
mutationENOE4 28 Chr12 21600815 C A 32 1/1
mutationENOE5 29 Chr12 21600815 CCC CAAGGCCCACC 4 1/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os12g26100 LOC_Os12g26100 Chr12 1272 2.14E@06 18 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr12 15184408 A C 42 0/1
mutationENOE2 249 Chr12 15184415 A C 40 0/1
mutationENOE3 249 Chr12 15184552 T A 37 0/1
mutationENOE4 28 Chr12 15184012 T C 71 0/1 missense_variant(Q:R)
mutationENOE5 28 Chr12 15184018 G A 71 0/1 missense_variant(A:V)
mutationENOE6 28 Chr12 15184231 C A 65 0/1
mutationENOE7 28 Chr12 15184882 C T 68 0/1
mutationENOE8 28 Chr12 15184894 G A 78 0/1
mutationENOE9 28 Chr12 15184907 G A 87 0/1
mutationENOE10 28 Chr12 15184915 C T 85 0/1
mutationENOE11 28 Chr12 15184930 A G 81 0/1
mutationENOE12 28 Chr12 15184961 T TG 79 0/1
mutationENOE13 29 Chr12 15185023 T C 39 0/1
mutationENOE14 29 Chr12 15185041 C T 39 0/1
mutationENOE15 29 Chr12 15185048 A G 38 0/1
mutationENOE16 29 Chr12 15185049 G A 38 0/1
mutationENOE17 29 Chr12 15185055 G C 37 0/1
mutationENOE18 29 Chr12 15185078 G A 36 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os03g64310 LOC_Os03g64310 Chr3 1312 2.35E@06 6 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr3 36347342 GTAT GTATCTAT 34 0/1
mutationENOE2 249 Chr3 36347351 TATG TATGGATG 33 0/1
mutationENOE3 28 Chr3 36347346 GTAT GTATTTAT 41 0/1
mutationENOE4 28 Chr3 36347359 TATG TATGGATG 38 0/1
mutationENOE5 28 Chr3 36347442 CCTCTCTCTCTCTCTCTCTCTCTCCCTCTCTCTCTCTCTCTCTCTC 33 0/1
mutationENOE6 29 Chr3 36347363 TATG TATGAATG 21 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os04g02550 LOC_Os04g02550 Chr4 1446 3.14E@06 16 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr4 946934 G T 70 0/1
mutationENOE2 249 Chr4 946940 G C 65 0/1
mutationENOE3 249 Chr4 946946 G C 60 0/1
mutationENOE4 249 Chr4 946949 T C 57 0/1
mutationENOE5 249 Chr4 947027 G C 72 0/1
mutationENOE6 28 Chr4 947721 G A 106 0/1
mutationENOE7 29 Chr4 946150 T C 52 0/1 missense_variant(N:D)
mutationENOE8 29 Chr4 946219 T C 88 0/1 missense_variant(K:E)
mutationENOE9 29 Chr4 946228 A T 95 0/1 missense_variant(Y:N)
mutationENOE10 29 Chr4 946757 A T 92 0/1
mutationENOE11 29 Chr4 946758 A T 91 0/1
mutationENOE12 29 Chr4 946796 A G 82 0/1
mutationENOE13 29 Chr4 946830 G T 74 0/1
mutationENOE14 29 Chr4 947633 A T 51 0/1
mutationENOE15 29 Chr4 947636 G A 50 0/1
mutationENOE16 29 Chr4 947678 A G 43 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os08g05950 LOC_Os08g05950 Chr8 1470 3.30E@06 6 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr8 3239885 G T 36 0/1 missense_variant(Q:K)
mutationENOE2 249 Chr8 3239893 G A 40 0/1 missense_variant(A:V)
mutationENOE3 28 Chr8 3240264 T TG 16 1/1
mutationENOE4 29 Chr8 3240498 CTGTGT CTGT 27 0/1
mutationENOE5 29 Chr8 3241166 C G 35 0/1
mutationENOE6 29 Chr8 3241174 C T 38 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os04g08690 LOC_Os04g08690 Chr4 1489 3.43E@06 4 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr4 4721439 A T 3 1/1
mutationENOE2 28 Chr4 4721276 T TTGACTTC 1 0/1
mutationENOE3 29 Chr4 4721299 T A 1 0/1
mutationENOE4 29 Chr4 4721301 T A 1 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os06g39744 LOC_Os06g39744 Chr6 1558 3.92E@06 5 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr6 23585340 C T 654 1/1
mutationENOE2 28 Chr6 23585712 A T 26 1/1
mutationENOE3 28 Chr6 23585713 A T 26 1/1
mutationENOE4 29 Chr6 23584739 T C 727 1/1 missense_variant(H:R)
mutationENOE5 29 Chr6 23585506 A G 840 1/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os01g67710 LOC_Os01g67710 Chr1 1658 4.72E@06 8 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr1 39351566 CGGGG CGGG 222 0/1
mutationENOE2 249 Chr1 39351621 A G 210 0/1
mutationENOE3 249 Chr1 39351625 G A 210 0/1
mutationENOE4 249 Chr1 39351630 C T 198 0/1
mutationENOE5 28 Chr1 39351762 T C 430 1/1
mutationENOE6 29 Chr1 39351818 T C 64 0/1
mutationENOE7 29 Chr1 39351839 T G 63 0/1
mutationENOE8 29 Chr1 39351854 A G 65 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os10g07040 LOC_Os10g07040 Chr10 2201 1.09E@05 16 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr10 3696315 GAAAAAAAAAA GAAAAAAAA 42 0/1
mutationENOE2 249 Chr10 3696650 T G 56 0/1
mutationENOE3 249 Chr10 3696659 A G 51 0/1
mutationENOE4 249 Chr10 3698715 G A 64 0/1 missense_variant(V:I)
mutationENOE5 28 Chr10 3696368 T C 40 0/1
mutationENOE6 29 Chr10 3696033 G A 45 0/1
mutationENOE7 29 Chr10 3696063 A T 47 0/1
mutationENOE8 29 Chr10 3696064 T C 47 0/1
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mutationENOE9 29 Chr10 3696070 T A 44 0/1
mutationENOE10 29 Chr10 3696106 C A 46 0/1
mutationENOE11 29 Chr10 3696905 A G 44 0/1 missense_variant(M:V)
mutationENOE12 29 Chr10 3696909 T G 45 0/1 missense_variant(F:C)
mutationENOE13 29 Chr10 3696976 A T 65 0/1 missense_variant(E:D)
mutationENOE14 29 Chr10 3698157 A G 51 0/1 missense_variant(I:V)
mutationENOE15 29 Chr10 3698439 A G 64 0/1 missense_variant(N:D)
mutationENOE16 29 Chr10 3698454 G A 67 0/1 missense_variant(V:I)

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os04g35000 LOC_Os04g35000 Chr4 2571 1.73E@05 6 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr4 21270863 TTTGGGCCCAAAAA T 4 1/1
mutationENOE2 249 Chr4 21270877 A ACATTG 4 1/1
mutationENOE3 28 Chr4 21270864 TTGGGCCCAAAAAA T 20 1/1
mutationENOE4 29 Chr4 21270860 CA CATTGAA 27 1/1
mutationENOE5 29 Chr4 21270861 AAT A 27 1/1
mutationENOE6 29 Chr4 21270863 T TGAACG 5 1/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os11g12710 LOC_Os11g12710 Chr11 2717 2.04E@05 4 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr11 7182119 . CTTTTTTTT CTTTTTTTTTTTTT 39 0/1
mutationENOE2 28 Chr11 7181320 . G A 215 0/1
mutationENOE3 29 Chr11 7181202 . C G 121 0/1
mutationENOE4 29 Chr11 7181756 . T TTTCGA 25 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os06g38270 LOC_Os06g38270 Chr6 3166 3.21E@05 13 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr6 22640315 G A 61 0/1 missense_variant(P:S)
mutationENOE2 249 Chr6 22640396 T A 54 0/1 stop_gained
mutationENOE3 28 Chr6 22639587 G A 86 0/1 missense_variant(A:V)
mutationENOE4 28 Chr6 22640068 G A 84 0/1 stop_gained
mutationENOE5 28 Chr6 22640070 G A 85 0/1 missense_variant(P:L)
mutationENOE6 28 Chr6 22642280 G A 85 0/1
mutationENOE7 28 Chr6 22642418 G A 99 0/1
mutationENOE8 28 Chr6 22642419 C T 97 0/1
mutationENOE9 28 Chr6 22642449 C T 91 0/1
mutationENOE10 28 Chr6 22642466 G A 89 0/1
mutationENOE11 28 Chr6 22642469 T C 92 0/1
mutationENOE12 29 Chr6 22642109 T C 30 0/1
mutationENOE13 29 Chr6 22642130 A G 30 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os04g51840 LOC_Os04g51840 Chr4 3180 3.25E@05 7 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr4 30743500 ACC AC 12 1/1
mutationENOE2 28 Chr4 30743409 A G 13 1/1
mutationENOE3 29 Chr4 30743033 T G 5 1/1
mutationENOE4 29 Chr4 30743042 C A 4 1/1
mutationENOE5 29 Chr4 30743059 A AC 4 1/1
mutationENOE6 29 Chr4 30743068 C A 2 1/1
mutationENOE7 29 Chr4 30743084 A C 1 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os10g15210 LOC_Os10g15210 Chr10 3194 3.29E@05 8 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr10 8054116 A G 26 0/1 missense_variant(M:T)
mutationENOE2 249 Chr10 8054122 C G 26 0/1 missense_variant(R:T)
mutationENOE3 249 Chr10 8054928 G A 38 0/1
mutationENOE4 28 Chr10 8054332 A G 12 0/1 missense_variant(L:P)
mutationENOE5 28 Chr10 8054522 A T 24 0/1
mutationENOE6 28 Chr10 8054528 C G 23 0/1
mutationENOE7 28 Chr10 8054537 C A 25 0/1
mutationENOE8 29 Chr10 8051867 TCCCCC TC 62 0/1 frameshift_variant

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os10g15170 LOC_Os10g15170 Chr10 3356 3.81E@05 5 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr10 8068176 T C 64 0/1 missense_variant(T:A)
mutationENOE2 28 Chr10 8066893 T C 39 0/1 missense_variant(Q:R)
mutationENOE3 28 Chr10 8068428 C T 131 0/1 splice_acceptor_variant&intron_variant
mutationENOE4 28 Chr10 8068721 G A 93 0/1 missense_variant(P:L)
mutationENOE5 29 Chr10 8067941 T G 43 0/1 missense_variant(N:T)

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os10g13550 LOC_Os10g13550 Chr10 3447 4.12E@05 3 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr10 7337673 TT TTGGCAAAAT 5 1/1
mutationENOE2 28 Chr10 7337662 CC CCAATTTTGC 13 0/1
mutationENOE3 29 Chr10 7337674 T TGGCAAAATTGGTTA 9 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os02g56510 LOC_Os02g56510 Chr2 3504 4.32E@05 3 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY EFF
mutationENOE1 249 Chr2 34614218 G A 41 1/1 stop_gained
mutationENOE2 28 Chr2 34611907 C T 15 1/1 missense_variant(A:V)
mutationENOE3 29 Chr2 34614585 C T 24 1/1 missense_variant(H:Y)

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os08g06280 LOC_Os08g06280 Chr8 3529 4.42E@05 10 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr8 3463799 AAAAGGA AA 51 0/1
mutationENOE2 249 Chr8 3463826 C T 42 0/1
mutationENOE3 28 Chr8 3463447 T G 79 0/1
mutationENOE4 28 Chr8 3463921 G GC 34 0/1
mutationENOE5 28 Chr8 3463983 T C 26 0/1
mutationENOE6 29 Chr8 3462962 T A 49 0/1 missense_variant(R:W)
mutationENOE7 29 Chr8 3462998 T A 46 0/1 initiator_codon_variant
mutationENOE8 29 Chr8 3463016 G T 49 0/1
mutationENOE9 29 Chr8 3463283 G C 55 0/1
mutationENOE10 29 Chr8 3463290 T C 52 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os12g11570 LOC_Os12g11570 Chr12 3975 6.27E@05 3 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr12 6272224 T A 4 1/1
mutationENOE2 28 Chr12 6272219 TA T 5 1/1
mutationENOE3 29 Chr12 6272221 G T 8 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os12g08110 LOC_Os12g08110 Chr12 4141 7.07E@05 7 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr12 4132282 C T 51 0/1
mutationENOE2 28 Chr12 4132130 CGAAC CGAACAAACGTGAAC 40 0/1

DESCRIPTION

DESCRIPTION

DESCRIPTION
retrotransposon,Eputative,Ecentromere@specific

DESCRIPTION

DESCRIPTION

DESCRIPTION
retrotransposonEprotein,Eputative,Eunclassified

retrotransposonEprotein,Eputative,ETy3@gypsyEsubclass

DESCRIPTIONendonuclease/exonuclease/phosphataseEfamilyEprotein,E
putative,EexpressedE

DESCRIPTIONRecName:EFull=PhosphateEtransporterEPHO1@2;EAltName:E
Full=ProteinEPHO1@2;EShort=OsPHO1;2

DESCRIPTIONRecName:EFull=ProteinELSD1;EAltName:EFull=ProteinELESIONE
SIMULATINGEDISEASEE1;EShort=OsLSD1;EAltName:E

DESCRIPTIONtransposonEprotein,Eputative,ECACTA,EEn/SpmEsub@classE
[OryzaEsativaEJaponicaEGroup]

DESCRIPTIONtransposonEprotein,Eputative,ECACTA,EEn/SpmEsub@classE
[OryzaEsativaEJaponicaEGroup]
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mutationENOE3 28 Chr12 4132144 T G 44 0/1
mutationENOE4 29 Chr12 4131953 C T 6 0/1
mutationENOE5 29 Chr12 4131969 A G 8 0/1
mutationENOE6 29 Chr12 4131980 C T 9 0/1
mutationENOE7 29 Chr12 4134637 C T 36 0/1 missense_variant(P:L)

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os04g02520 LOC_Os04g02520 Chr4 4484 8.92E@05 12 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr4 925275 T C 45 0/1 missense_variant(D:G)
mutationENOE2 249 Chr4 925293 C T 39 0/1 missense_variant(S:N)
mutationENOE3 28 Chr4 925767 A T 94 0/1 missense_variant(L:Q)
mutationENOE4 28 Chr4 925770 C T 99 0/1 missense_variant(S:N)
mutationENOE5 28 Chr4 925777 C T 103 0/1 missense_variant(D:N)
mutationENOE6 29 Chr4 925102 T C 37 0/1 missense_variant(I:V)
mutationENOE7 29 Chr4 925137 A G 41 0/1 missense_variant(V:A)
mutationENOE8 29 Chr4 925441 T C 40 0/1 missense_variant(S:G)
mutationENOE9 29 Chr4 925451 T G 43 0/1 missense_variant(E:D)
mutationENOE10 29 Chr4 926266 T C 37 0/1 missense_variant(M:V)
mutationENOE11 29 Chr4 926277 G C 40 0/1 missense_variant(S:W)
mutationENOE12 29 Chr4 926290 C T 35 0/1 missense_variant(E:K)

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os05g51770 LOC_Os05g51770 Chr5 4780 1.08E@04 5 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr5 29709125 A G 56 0/1
mutationENOE2 28 Chr5 29708324 G A 46 0/1
mutationENOE3 29 Chr5 29704719 G A 56 0/1 missense_variant(P:L)
mutationENOE4 29 Chr5 29708197 G A 57 0/1
mutationENOE5 29 Chr5 29708264 G A 66 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os03g64320 LOC_Os03g64320 Chr3 4819 1.10E@04 6 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr3 36347342 GTAT GTATCTAT 34 0/1
mutationENOE2 249 Chr3 36347351 TATG TATGGATG 33 0/1
mutationENOE3 28 Chr3 36347346 GTAT GTATTTAT 41 0/1
mutationENOE4 28 Chr3 36347359 TATG TATGGATG 38 0/1
mutationENOE5 28 Chr3 36347442 CCTCTCTCTCTCTCTCTCTCTCTCCCTCTCTCTCTCTCTCTCTCTC 33 0/1
mutationENOE6 29 Chr3 36347363 TATG TATGAATG 21 0/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os03g23760 LOC_Os03g23760 Chr3 4838 1.11E@04 3 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr3 13462020 A G 71 0/1 missense_variant(H:R)
mutationENOE2 28 Chr3 13463366 G A 124 0/1 missense_variant(R:H)
mutationENOE3 29 Chr3 13463983 C T 90 0/1 stop_gained

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os04g05104 LOC_Os04g05104 Chr4 5084 1.29E@04 6 3

SAMPLE CHROM POS ALT SEQ@DEPTH GT ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr4 2526021 TG T 4 1/1 frameshift_variant
mutationENOE2 28 Chr4 2525974 G T 14 1/1 missense_variant(L:M)
mutationENOE3 28 Chr4 2530633 GTT G 30 1/1 frameshift_variant
mutationENOE4 29 Chr4 2525859 G T 6 1/1 missense_variant(A:E)
mutationENOE5 29 Chr4 2525910 CAA CA 13 1/1 frameshift_variant
mutationENOE6 29 Chr4 2530635 TCT T 4 1/1 frameshift_variant

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os02g32690 LOC_Os02g32690 Chr2 5330 1.48E@04 12 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr2 19409046 G T 46 0/1 missense_variant(A:E)
mutationENOE2 249 Chr2 19409047 C T 47 0/1 missense_variant(A:T)
mutationENOE3 249 Chr2 19409049 C T 47 0/1 missense_variant(R:H)
mutationENOE4 28 Chr2 19420231 TGCGGC TGC 72 0/1 inframe_deletion
mutationENOE5 28 Chr2 19420463 G C 82 0/1 missense_variant(Q:E)
mutationENOE6 28 Chr2 19420634 TGCAG TG 80 0/1 inframe_deletion
mutationENOE7 28 Chr2 19420673 G A 74 0/1 missense_variant(P:S)
mutationENOE8 28 Chr2 19421642 A C 24 0/1
mutationENOE9 28 Chr2 19421658 G A 30 0/1
mutationENOE10 28 Chr2 19421693 C G 40 0/1
mutationENOE11 28 Chr2 19421782 A T 26 0/1
mutationENOE12 29 Chr2 19406091 A C 37 0/1 missense_variant(S:A)

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os04g49890 LOC_Os04g49890 Chr4 5346 1.49E@04 6 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr4 29743379 T TAAAA 33 1/1
mutationENOE2 249 Chr4 29743385 G GA 33 1/1
mutationENOE3 249 Chr4 29743386 T TA 35 1/1
mutationENOE4 249 Chr4 29743578 TA T 10 1/1
mutationENOE5 28 Chr4 29743579 ATT ATTT 26 1/1
mutationENOE6 29 Chr4 29743387 GAA GAAAAA 34 1/1

GENE_ID GENE_NAME Chr EFF_REGION_LENGHT SIGNIFICANCE NUM_VARIANT NUM_SAMPLE
LOC_Os04g13510 LOC_Os04g13510 Chr4 5578 1.69E@04 23 3

SAMPLE CHROM POS REF ALT SEQ@DEPTH ZYGOSITY PREDICTEDEEFFECTS
mutationENOE1 249 Chr4 7534243 T C 68 0/1 missense_variant(I:V)
mutationENOE2 249 Chr4 7534259 C G 68 0/1 missense_variant(L:F)
mutationENOE3 249 Chr4 7534864 T C 65 0/1 missense_variant(N:D)
mutationENOE4 249 Chr4 7537722 A G 57 0/1
mutationENOE5 249 Chr4 7537724 G A 57 0/1
mutationENOE6 249 Chr4 7537750 T C 57 0/1
mutationENOE7 249 Chr4 7537906 C T 51 0/1
mutationENOE8 249 Chr4 7537956 G T 61 0/1
mutationENOE9 28 Chr4 7533456 A C 67 0/1 missense_variant&splice_region_variant(F:V)
mutationENOE10 28 Chr4 7534789 T C 89 0/1 missense_variant(K:E)
mutationENOE11 28 Chr4 7537271 T A 107 0/1 missense_variant(Q:L)
mutationENOE12 28 Chr4 7537305 C T 99 0/1 missense_variant(E:K)
mutationENOE13 28 Chr4 7537667 C T 71 0/1
mutationENOE14 29 Chr4 7533273 T C 41 0/1 missense_variant(N:D)
mutationENOE15 29 Chr4 7535269 T G 36 0/1 missense_variant(K:Q)
mutationENOE16 29 Chr4 7537422 G C 55 0/1 missense_variant(P:A)
mutationENOE17 29 Chr4 7537435 T G 52 0/1 missense_variant(E:D)
mutationENOE18 29 Chr4 7537561 C T 64 0/1
mutationENOE19 29 Chr4 7537571 G A 62 0/1
mutationENOE20 29 Chr4 7537577 A G 59 0/1
mutationENOE21 29 Chr4 7537598 C T 66 0/1
mutationENOE22 29 Chr4 7538425 T A 47 0/1
mutationENOE23 29 Chr4 7538426 A C 47 0/1

DESCRIPTION

DESCRIPTION

DESCRIPTION

DESCRIPTION
expressedEprotein

DESCRIPTION

RecName:EFull=ABCEtransporterEGEfamilyEmemberE41;E
Short=OsABCG41;EAltName:EFull=PleiotropicEdrugEresistanceE

DESCRIPTION

retrotransposonEprotein,Eputative,ETy3@gypsyEsubclass

DESCRIPTION

DESCRIPTION
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