{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd, numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "ro=['CDO7252998062998','CDO5064618063001','CDO3042698063020','CDO7893378063026','CDO4604228063028','CDO7821968063031',\n", " 'CDO5072238063046','CDO4981038063054','CDO4725178063056','CDO5209078063060','CDO699718063062','CDO4894288063064',\n", " 'CDO1632508063066','CDO8765068063068','CDO9993348063070']\n", "hu=['CDO5941998062972','CDO5285728062974','CDO3021588062978','CDO9675788062981']" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "p='C:/Users/csala/Onedrive - Lancaster University/Datarepo/szekelydata/klima/'" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "stations=pd.read_csv(p+'stations.csv')" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CDO5941998062972\n", "CDO5285728062974\n", "CDO3021588062978\n", "CDO9675788062981\n" ] } ], "source": [ "dfs=[]\n", "for i in hu:\n", " df=pd.read_csv(p+'daily/raw/hu/'+i+'.txt',dtype={' FRSHTT':str,' YEARMODA':str})\n", " dfs.append(df)\n", " print(i)" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CDO7252998062998\n", "CDO5064618063001\n", "CDO3042698063020\n", "CDO7893378063026\n", "CDO4604228063028\n", "CDO7821968063031\n", "CDO5072238063046\n", "CDO4981038063054\n", "CDO4725178063056\n", "CDO5209078063060\n", "CDO699718063062\n", "CDO4894288063064\n", "CDO1632508063066\n", "CDO8765068063068\n", "CDO9993348063070\n" ] } ], "source": [ "for i in ro:\n", " df=pd.read_csv(p+'daily/raw/ro/'+i+'.txt',dtype={' FRSHTT':str,' YEARMODA':str})\n", " dfs.append(df)\n", " print(i)" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [], "source": [ "dfs=pd.concat(dfs)" ] }, { "cell_type": "code", "execution_count": 88, "metadata": {}, "outputs": [], "source": [ "year_fixer={'199710':'19971001'}" ] }, { "cell_type": "code", "execution_count": 89, "metadata": {}, "outputs": [], "source": [ "dfs['time']=pd.to_datetime(dfs[' YEARMODA'].str.strip().replace(year_fixer),format='%Y%m%d')" ] }, { "cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | STN--- | \n", "WBAN | \n", "YEARMODA | \n", "TEMP | \n", "\n", " | DEWP | \n", ".1 | \n", "SLP | \n", ".2 | \n", "STP | \n", "... | \n", ".5 | \n", "MXSPD | \n", "GUST | \n", "MAX | \n", "MIN | \n", "PRCP | \n", "SNDP | \n", "FRSHTT | \n", "Unnamed: 22 | \n", "time | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", "127560 | \n", "99999 | \n", "20150101 | \n", "24.2 | \n", "6.0 | \n", "16.9 | \n", "6.0 | \n", "1036.1 | \n", "6.0 | \n", "1016.1 | \n", "... | \n", "5.0 | \n", "7.8 | \n", "999.9 | \n", "27.3 | \n", "20.8* | \n", "0.00I | \n", "999.9 | \n", "000000 | \n", "NaN | \n", "2015-01-01 | \n", "
| 1 | \n", "127560 | \n", "99999 | \n", "20150102 | \n", "25.6 | \n", "8.0 | \n", "23.9 | \n", "8.0 | \n", "1030.7 | \n", "8.0 | \n", "1010.9 | \n", "... | \n", "6.0 | \n", "7.8 | \n", "999.9 | \n", "31.8* | \n", "21.2 | \n", "0.02E | \n", "999.9 | \n", "000000 | \n", "NaN | \n", "2015-01-02 | \n", "
| 2 | \n", "127560 | \n", "99999 | \n", "20150103 | \n", "34.4 | \n", "8.0 | \n", "30.0 | \n", "8.0 | \n", "1023.9 | \n", "8.0 | \n", "1004.6 | \n", "... | \n", "8.0 | \n", "15.5 | \n", "999.9 | \n", "40.5 | \n", "28.0 | \n", "0.00I | \n", "999.9 | \n", "000000 | \n", "NaN | \n", "2015-01-03 | \n", "
| 3 | \n", "127560 | \n", "99999 | \n", "20150104 | \n", "33.6 | \n", "7.0 | \n", "30.4 | \n", "7.0 | \n", "1016.6 | \n", "7.0 | \n", "997.3 | \n", "... | \n", "7.0 | \n", "13.6 | \n", "999.9 | \n", "40.8 | \n", "28.4* | \n", "0.04A | \n", "999.9 | \n", "000000 | \n", "NaN | \n", "2015-01-04 | \n", "
| 4 | \n", "127560 | \n", "99999 | \n", "20150105 | \n", "27.2 | \n", "12.0 | \n", "24.0 | \n", "12.0 | \n", "1022.6 | \n", "12.0 | \n", "1003.0 | \n", "... | \n", "10.0 | \n", "11.7 | \n", "999.9 | \n", "37.4 | \n", "18.3* | \n", "0.00G | \n", "999.9 | \n", "000000 | \n", "NaN | \n", "2015-01-05 | \n", "
5 rows × 24 columns
\n", "