{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Päivitetty 2025-11-28 / Aki Taanila\n" ] } ], "source": [ "from datetime import datetime\n", "print(f'Päivitetty {datetime.now().date()} / Aki Taanila')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3/7 Kahden arvoakselin kaavio\n", "\n", "Jos esitettävät arvosarjat ovat eri suuruusluokkaa, niin kahden arvoakselin käyttö on paikallaan (kummallekin arvosarjalle oma arvoakseli).\n", "\n", "### Tuonnit ja alkuvalmistelut" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "\n", "# Grafiikan tyylimäärittely 'whitegrid' sisältää taustaviivoitukset (grid).\n", "# Muita tyylivaihtoehtoja ovat 'darkgrid', 'dark', 'white' ja 'ticks'.\n", "sns.set_style('white')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
IndeksiMyynti
198085307954
198183566829
19821161241391
19831442109871
19841933009299
19851849184649
198625424933405
198732029726136
198840531719819
198944215343617
19902846318198
\n", "
" ], "text/plain": [ " Indeksi Myynti\n", "1980 85 307954\n", "1981 83 566829\n", "1982 116 1241391\n", "1983 144 2109871\n", "1984 193 3009299\n", "1985 184 9184649\n", "1986 254 24933405\n", "1987 320 29726136\n", "1988 405 31719819\n", "1989 442 15343617\n", "1990 284 6318198" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Dataframen Helsingin pörssin kehityksestä vuosina 1980 - 1990.\n", "df = pd.DataFrame({'Indeksi':[85,83,116,144,193,184,254,320,405,442,284],\n", " 'Myynti':[307954,566829,1241391,2109871,3009299,9184649,24933405,29726136,31719819,15343617,6318198]},\n", " index=['1980','1981','1982','1983','1984','1985','1986','1987','1988','1989','1990'])\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Kahden arvosarjan kaavio\n", "\n", "Ensimmäisen arvosarjan osalta voit tehdä kaavion normaalisti. Luo toista arvosarjaa varten kaavio **twinx**-toiminnolla. Tällöin toisella kaaviolla on oma arvoakseli, mutta yhteinen x-akseli ensimmäisen arvosarjan kanssa." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAGqCAYAAADX+PgWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAa75JREFUeJzt3Xd4VGX6xvHvTJJJDyGBhBJ67wRCEQQECwqigICuKIqi6Kqr2OtPrGtj3V2xYFmxVxBFRRRRFFEk9B4gtFQSEpLMpEwyc35/DAQCREhI5qTcn+uaK8w5M+c8j0Fy5533vMdiGIaBiIiIiIhUG6vZBYiIiIiI1HUK3SIiIiIi1UyhW0RERESkmil0i4iIiIhUM4VuEREREZFqptAtIiIiIlLNFLpFRERERKqZr9kFeFtJSQlbt24lMjISq1W/c4iIiIjUNG63m4MHD9KlSxd8fetGXK0bXVTA1q1bmTBhgtlliIiIiMgpfP755/To0cPsMqpEvQvdkZGRgOeb2LhxY5OrEREREZHjZWRkMGHChNLcVhfUu9B9ZEpJ48aNadKkicnViIiIiEh56tJU4LrTiYiIiIhIDaXQLSIiIiJSzRS6RURERESqmalzul1ugyvf+IOYhkHMmtQLgIe+2Mhn8Un4+lhKX/fw6K5cOaAlAJ+vTuKlpTs4kFtE+6gQZl7Sjb6tGppSv4iIiIjI6TA1dP9nSQKr9mQR0zCodNuGpByeHt+DCX1jTnj977sOMvOrzcyd2o9eLcJ5Z8Uebng3nt/uG0GgzcebpYuIiIiInDbTppes2JnJok1pXNS9aem2ohIX29Py6BnT4KTv+WTVPsb0akpc6wj8fKxMG9KWhkF+LNyQ4q2yRUREREQqzJSR7kx7EffO28DrV8fx1vLdpdu3puZR7Hbzr+8TiN+bRWiAH5PiWjB9aFusVgsJ6XYmxZUdAe8QFcrW1Nxyz+V0OnE6naXPHQ4HAPaiEvIKi6u4MxERERE5U/aiErNLqHJeD91ut8GMT9Yx7ew2dG0WVmZfXmExA9tEcu3g1rx0ZSybU3KZ/l48VgtMH9YOh7OEIFvZkgNtPuQXuco935w5c5g9e/YJ28+btQyCwqukJxERERGpQvmH8De7hirm9dD9ys878fe1cu3gNifsG9KhMUM6HL1LZO8W4Vw3uA1fb0hl+rB2BPr5UFBcNmAXOF00DLeVe77p06czderU0ufp6emMGjWKJXcNIzo6ugo6EhEREZGqlJ6ezujFZldRtbweuuevTeZAbhE9Znr+SxYeDtHfb0njhYm9yLQXMXlAq9LXO0vcBPh5pp53ahJKQnpemePtOJDH8M7l387dZrNhsx0N5Xa7HYAQf19CA/yqpikRERERqTIO/7p303Svd7T0rnPKPL/r0/UAzJrUi+82pfHE11toHRnMoHaRrNl3iLdX7OGRi7sAeOZ3v7ea0T2b0q91BO/+vpdMu5OR3XQ7dxERERGpuWrUrxEXdm/CI46uPLJgE6k5hTQO9WfGeR0YF+u5eHJw+0Y8MbYbDy/YRFpOIR2iQ5k7tR/hQeVPLxERERERMZvpofvITXGOmDygVZnpJccbFxtTGsJFRERERGoD3QZeRERE5Axk2ovItBeZXYbUcKaPdIuIiIjURoXFLl7+aSev/ryLyBAbP919zglLG4scoZFuERERkQr6c3cWo/77Ky8t3UmJ2yA9t4jvN6ebXZbUYArdIiIicvrc5d+Qrk6c7xRyC4t58IuNTJrzO4kZDhqH+nNu5ygA5q1JMrk6qcn0GYiIiIicPqsPzJsGmQnVf65GHeGyN6v/PKdp8eY0/u/LTaTneuZv/61/C+6/qAuH8p38uO0Av+3MJD23kOiwAJMrlZpIoVtEREQqJjMBUtebXYXXHMgt5NGvNrNoUxoAbRoF8/S4HpzVLhKABoF+9G3VkNV7s/lyXTI3Dm1nZrlSQ2l6iYiIiMhJGIbBx3/u49x/LWPRpjR8rRZuGd6ORbcPKQ3cR4zv0xyA+WuSzShVagGNdIuIiIgcJzHDzgPzN7JydxYAPWMa8Mz4nnRtFnbS11/coxmPfbWFbWl5bEnJLfd1Un8pdIuIiIgcVuxy8/ovifznxx04S9wE+vlw1wUdmTq4DT5WS7nvaxDkx7ldoli0KY35a5Lo2qyrF6uW2kDTS0RERESA9fsPMeal5Ty/eDvOEjdDOjTi+xlDmTak7V8G7iPG9/HcMXvBuhRKXO7qLldqGY10i4iISL2W7yzhX98n8L/fduM2oGGQH/83pitjezfHYjl12D5iWMfGRATbyLQXsXxnJud0iqrGqqW20Ui3iIiI1FvLEjK44MVfeHO5J3CP7d2MJXcOY1xsTIUCN4DN18qYnk0BXVApJ9JIt4iIiNQ7WQ4nT369hflrPeG4eXggT47rzvAzHJ0e3yeGd37fy+LNaeQVFhMa4FcV5UodoNAtIiIi9YZhGHy1PoXHFm4hy+HEYoFrB7Xm7gs6Eex/5rGoZ0wD2jUOZleGg0Wb0pgU16IKqpa6QNNLREREpF5Iys5n6txV3P7xOrIcTjpFhzL/5kE8OqZblQRuAIvFUnpB5XzdFl6OodAtIiIidZrLbfC/5bu54MVf+Hl7BjYfK3df0JGFt51NbMuGVX6+sbGeG+X8kZhFUnZ+lR9faidNLxEREZE6a1taLvfN28j6/YcA6N86gqfH96B9VEi1nbN5eCBntY3k98SDfLkuhVuGt6+2c0ntoZFuERERqXMKi13M+n47F/93Oev3HyLU35enxnXn4xsHVmvgPmLc4dvCz1uThGEY1X4+qfkUukVERKRO+XN3FqP++ysvLd1Jidvggq7R/HDnMCYPaIX1NG5yUxUu6t6EAD8riRkO1ifleOWcUrNpeomIiIjUCbmFxTyzaBsfrtwHQONQf564tBsXdm/q9VpCA/wY2a0JX65L4Ys1SfRuEe71GuqVxGXw42OQkQB+gdBtLJz/uOfPSfGw6F44sA2CI2HoPdBnitdL1Ei3iIiI1HqLN6dx/r+WlQbuv/VvwZI7h5kSuI8Yd/iCyq/Wp+As0W3hq40jEz6cBHHXw/374KZfYc9yWP4iFGTDBxOg1988+y6ZDd89CEmrvV6mRrpFRESk1jqQW8ijX21m0aY0ANo0CubpcT04q12kyZXB2e0b0TjUn4y8In7efoALujUxu6Tax2mHwtyjz339PY9jBTeCe3aCfygYBuRnQUkhBDWCLV9BYAT0v8Hz2rbDoOdEWPUGxPT1Xh8odIuIiEgtZBgGn6zaz1PfbiWvsARfq4Xpw9py24gOBPj5mF0eAL4+Vsb2bsYbv+7mi7XJCt2VEDInDvyOuRB12P0w/IETX+gf6vn6r66QlwItB0HsZFj6JER3Lfvaxp1hzXvVV3Q5FLpFRESkVknMsPPA/I2s3J0FeO4C+cz4nnRtFmZyZScaFxvDG7/u5setBziU7yQ8yGZ2SbWKfXo8IVFRRzccP8p9vH+sgYJDMP8G+HQKhDYFv+Cyr/EL9Iyge5nmdIuIiEitUOxy8/JPO7nwP7+ycncWgX4+PDy6C1/8fXCNDNwAXZuF0blJKE6Xm683pJpdTu1jC4GAsKOPU4Vuv0AIawrnPQY7l4AtGIqPu0FRcQH4V/+ykcdT6BYREZEab/3+Q4x5aTnPL96Os8TNkA6N+H7GUKYNaYuPl5YBrKzLDt8W/ou1ySZXUkftWwkvxUGJ8+g2VxH42KBxJ8jYVvb1Gdsg6rgpJ16g0C0iIlJV3K66fT6TvPlLIuNe+Y1taXk0DPLjxct78e51/WkREWR2aafl0t7NsFpg9d5s9mQ6zC6n7onu5hm9XjLTE7wP7YPvH4bYq6HrWLCnw++vgKsYdv8CGz6D2Ku8XqbmdIuIiFQVqw/MmwaZCdV/rkYd4bI3q/88NcAX65JxGzC2dzMeubgrkSGnmGJQw0SFBXB2h8b8kpDB/LXJ3Hl+R7NLqlv8Q+CqefDd/fBCe/BvAD0nwbB7PdNRrl7g2ffT0551ui96FtoM9XqZCt0iIiJVKTMBUtebXUWdEhXqz91T+zG8U9SpX1xDXdanOb8kZPDF2iRmnNcBi6VmT4mpdaI6w5QFJ9/XvA9c/71XyzkZhW4RERGp0V6Z3IdAW+2OLBd0bUKwzYf9WQXE782mX+sIs0sSL9OcbhEREanRanvgBgi0+XBRD8/dMeevSTK5GjGDQreIiIiIF4zv47kt/NcbUiksrh8XwcpRCt0iIiIiXjCwTSTNGgSQV1jCj1sPmF2OeJlCt4iIiIgXWK0WxsZ6Rrs1xaT+UegWERER8ZIjU0yWJWSQaS8yuRrxJoVuERERES9pHxVKz5gGlLgNFq5PMbsc8SKFbhEREREvGl86xUS3ha9PFLpFREREvGhMr2b4Wi1sTM5hR3qe2eWIlyh0i4iIiHhRZIg/53RqDMD8tRrtri9MDd0ut8Hlc37nrk+P3i537b5sLn35N7r+33ec/exSPlm1r8x7Pl+dxLDnf6LLI98x5qXlrN6b7e2yRURERM7I+D4xACxYm4zLbZhcjXiDqaH7P0sSWLUnq/R5Tn4xU+eu4rI+zdnw6AU8d1lPnvh6K+v2HwLg910HmfnVZmZN7MWGmRdwae9m3PBuPAVOLTAvIiIitceIzlGEBfiSmlPIH4kHzS5HvMC00L1iZyaLNqVxUfempdsWbUqlYZCNKWe1xtfHyqD2jbi0dzPe/X0PAJ+s2seYXk2Jax2Bn4+VaUPa0jDIj4UbdPWviIiI1B4Bfj6M7tkM0AWV9YWvGSfNtBdx77wNvH51HG8t3126PSHdTqfo0DKv7RAVwifxSaX7J8XFHLc/lK2pueWey+l04nQ6S587HA4A7EUl5BUWn3EvIiIiAFYLBPv7ef28jqJivDU7oT706E0XdY/moz/38e3GVO69sCNBNlNiWY1kLyoxu4Qq5/XvrtttMOOTdUw7uw1dm4WV2ecoKiHI5lNmW6DNh3yn5z+8w1lywl/IQJsP+UXlTy+ZM2cOs2fPPmH7ebOWQVB4JbsQEREpq1uzML75xxCvn3fSnD/YnFL+4FNVqg89mqGg2MWAp5eaXUbNkn8If7NrqGJeD92v/LwTf18r1w5uc8K+QJsPubllR58LnC6CDwftQD8fCopdJ+xvGG4r93zTp09n6tSppc/T09MZNWoUS+4aRnR09Jm0IiIiUspqMee8n04f6NWRbjN4s0dve+Wnnby6LJFB7SKZc3Vfs8upMdLT0xm92OwqqpbXQ/f8tckcyC2ix0zPf8nCwyH6+y1pPDiqC7/uyCjz+h0H7HRq4ply0qlJKAnHrWe540Aewzs3Lvd8NpsNm+1oKLfb7QCE+PsSGuD9j8hERESqkhnTPbytLvd4Rf+WvLoskT8SD+IoctGkQYDZJdUIDv+6N9XG6xdSLr3rHDY9NpKNMz2PS3o155Jezdk4cyQXdmtCRl4Rby3fTbHLzYpdmXy5LoWJh+dxT4prwZfrUlixK5Nil5u3lu8m0+5kZLcm3m5DRERE5Iy1igwmrlVD3AZ8uU4XVNZlNerXiIbBNt6fNoDHFm7hxR8SiAi28eiYrgxq1wiAwe0b8cTYbjy8YBNpOYV0iA5l7tR+hAeVP71EREREpCYb16c58Xuzmb8mmRuHtsViMWkej1Qr00P3rEm9yjzvGRPOvJsHlfv6cbExjIuNKXe/iIiISG1ycY9mPPbVFran57ElNZduzRqYXZJUA90GXkRERMREDYL8OK9rFKA1u+syhW4RERERkx35FP/LdSmUuNwmVyPVQaFbRERExGTDOjYmIthGpr2IX3dmml2OVAOFbhERERGT2XytXNJLt4WvyxS6RURERGqAcbHNAfh+cxp5hcWneLXUNgrdIiIiIjVAz5gGtGscTFGJm0Ub08wuR6qYQreIiIhIDWCxWBjfx3NB5bw1SSZXI1VNoVtEREROy687Mswuoc4be3iKycrdWSRl55tcjVQlhW4RERE5pYy8Il75aafZZdR5zcMDOattJAAL1uqCyrpEoVtERET+kmEYPDB/I7mFJWaXUi+M7+MZ7Z6/JhnDMEyuRqqKQreIiIj8pflrklmyNR1fH4vZpdQLF/VoSoCflcRMB+uTcswuR6qIQreIiIiUK+VQATMXbgbgyv6tTK6mfgjx92VktyYAzNcFlXWGQreIiIiclGEY3DdvA3mFJcS2DOeyw9MepPodWcXkq/UpOEt0W/i6QKFbRERETuqDlfv4dUcmAX5WZk3sha+PYoO3DG4XSVSoP4fyi/l5+wGzy5EqoP97RERE5AR7Dzp4+tutANx3YWfaNg4xuaL6xdfHyqW9dVv4ukShW0RERMpwuQ3u/mw9+U4XA9tGcM1Zrc0uqV46MsXkx23pHMp3mlyNnCmFbhERESnjf8t3s2pPNsE2H56f0AurVauWmKFL0zC6NA2j2GXw9YZUs8uRM6TQLSIiIqV2pOfx/PfbAXjk4q60iAgyuaL6bXzskTW7tYpJbafQLSIiIgAUu9zc9dl6nCVuzunUmMv7tTC7pHrv0t7NsFpgzb5D7M50mF2OnAGFbhEREQHg1Z93sSEphwaBfjx7WU8sFk0rMVtUWABDOjQG4AvdFr5WU+gWERERNiXn8N8fdwDw+KXdiA4LMLkiOeLobeGTcLt1W/jaSqFbRESknisqcXHXp+spcRtc1L0Jl/RqZnZJcowLujYh2OZDUnYB8XuzzS5HKkmhW0REpJ7795IdbE/Po1GIjSfHdte0khom0ObDqB5NAfhirS6orK0UukVEROqx1XuzmLNsFwBPjetBZIi/yRXJyYw7PMXk6w2pFBa7TK5GKkOhW0REpJ7Kd5Zw16frcRueecMjuzUxuyQpx8A2kTRrEEBeYQlLtqabXY5UgkK3iIhIPfXcd9vZczCfJmEBPDqmm9nlyF+wWi2lo91f6LbwtZJCt4iISD20Ymcmc1fsAeC5CT1pEOhnbkFySuNiPbeF/zkhg0x7kcnVSEUpdIuIiNQzeYXF3PP5BgAmD2jJ0I6NTa5ITkf7qBB6xTTA5Tb4al2K2eVIBfmaXYCIiIh415NfbyX5UAEtIgJ5cFQXs8uRChjfJ4b1STl8sTaZ685uY3Y5NUfaRvj+YUhZBz42aDcCRj4NwZHw9QxY+z5Yj/k0Z+RTEDfVqyVqpFtERKQeWbotnU/i92OxwKyJvQn21/hbbTKmVzN8rRY2JueQkJ5ndjk1Q3EBvD8BWgyAu3fALSuhIAu+/Ltnf/IaGPMfeCjl6MPLgRsUukVEROqNbIeT++ZtBGDa2W3o3ybC5IqkoiKCbZzTKQqA+fXhgkqnHQpzjz5KTjKXPScJmnSHYfeBrw2CIqDvVNi7wvP6A1ugWaz3az+OQreIiEg98X9fbSYjr4j2USHcdUEns8uRSrrs8ComX65LxlXHbwsfMicOnmlx9PHrv058UaMOcNU8sPoc3bblS2jaC9I2gasYfnoKnm8P/+0Dy18Et9t7TRymz5RERMR73K6yPxjr2vlqsK83pLBwfQo+VguzJvYiwE//XWqrEV2iCAvwJTWnkD8SDzK4fSOzS6o29unxhERFHd3ge4qbNxkGLH0SEhbB1EVgT4fWZ8OAm2DC25C6AT6ZDBYrDL69eos/jkK3iIh4j9UH5k2DzITqP1ejjnDZm9V/nlrgQF4hjyzYBMAt57SjV4twcwuSM+Lv68PFvZrx4cp9zFuTVKdDN7YQCAg7vdcW5nrmcaes9wTu6G6eR7sRR18T0xcG3gyb5it0i4hIHZeZAKnrza6i3jAMgwfnbyI7v5iuTcO4dUQHs0uSKnBZn+Z8uHIf321K48mxJQTZ6nmky0qEDyZCgxi48WfPqiUAW78GxwGIu+7oa0uc4Bfo9RI1p1tERKQOm7cmmSVb0/HzsfCvy3th89WP/rqgT8uGtIoMIt/pYvHmNLPLMVdBNrxziWf1kqu+OBq4ATDguwch8WfP1JP9f8LKVz0XWnpZPf+1SEREpO5KOVTAY19tBmDG+R3p3OQ0P6aXGs9isTAutjn/XrKD+WuSS+9WWS+t/QBy9sPmL2DzgrL7HkqBC5+Gb+6C3BQIiYJzHoBel3u9TIVuERGROsgwDO79fAN5RSXEtgznxiFtzS5Jqtj42Bj+vWQHv+3MJC2nkCYNAswuyRyDbvU8yhN3XdnpJSbRZ0wiIiJ10Psr97F8ZyYBflZmTeyFr49+5Nc1LSODiGvVELfhWT5QajZTRrpX7Mzk2cXb2XXAToCfD6N7NOGBUV0I8PPhoS828ll8Er4+ltLXPzy6K1cOaAnA56uTeGnpDg7ketYZnXlJN/q2amhGGyIiIjXS3oMOnv5mKwD3X9iZto1DTK5Iqsv4PjHE781m/ppkbhzaFovFcuo3iSm8HroP2ouYOncVT47tzmV9Ysi0F3H1W3/yys+7uPP8jmxIyuHp8T2Y0PfEuUm/7zrIzK82M3dqP3q1COedFXu44d14frtvBIE2rTcqIiLichvc9el6CopdnNU2kilntTa7JKlGo3s0ZebCzWxPz2NLai7dmjUwuyQph9dDd2SIP6sfOZ8Qf18MwyA7v5iiEheRwTaKSlxsT8ujZ8zJ/8J8smofY3o1Ja6157a104a05aM/97FwQwqT4lqc9D1OpxOn01n63OFwAGAvKiGvsLiKuxMRkfJYLRDs7+f18zqKivHGTftqSn9zf9tD/N5sgm0+PDqmKw5nSZWdq6b0KEdZrTCsY2N+2JLOx3/u594Lg8wuqUrYi6ru721NYcr0khB/z2nP+udS0nIL6d86golxMWxNzaPY7eZf3ycQvzeL0AA/JsW1YPrQtlitFhLS7UyKKzsC3iEqlK2pueWea86cOcyePfuE7efNWgZB4VXal4iIlK9bszC++ccQr5930pw/2JxS/s+JqlLT+nM4XVz4n1+r9Fw1rUcp670/9vLeH3vNLqNq5B/iFPeerHVMXb3k53vOIaegmNs/XsvN769h2pA2DGwTybWDW/PSlbFsTsll+nvxWC0wfVg7HM4TF38PtPmQX+Qq9xzTp09n6tSjazGmp6czatQoltw1jOjo6GrrTUREyrKaNNX00+kDvTbSbYYj/RW73Fz15p9sSc1lSIdGvHxlbJXP7zW7Rzm5Ypebc2ctIzu/mFcmxzKkQ2OzSzpj6enpjF5sdhVVy9TQHeDnQ4CfD/df1IWxL//Gf6+I5aMbB5bu790inOsGt+HrDalMH9aOQD8fCorLBuwCp4uG4bZyz2Gz2bDZju632+2AZ7Q9NMD7H5GJiIh3mTEdwpuO9PefJTvYkppLg0A/XpjYi7DA8n821jZ1/XtYFS7t3Zy5K/awaFM6o3o0M7ucM+bwr3urWnt9/aDVe7MYMetnnCXu0m3OEjc2Hyu/7szgg5VlPxZxlrgJ8POU2alJKAnpeWX27ziQR6cmuipbRETqr03JOby0dAcAj1/ajeiwerpecz02vk9zAL7fnEaurlmrkbweujs3CaPQ6eLZ77bhLHGTlJ3PU99uZVK/GHytVp74egu/7czEMAxW783m7RV7SpcLnBTXgi/XpbBiVybFLjdvLd9Npt3JyG5NvN2GiIhIjeAscXHnp+socRuM6tGES3rV/lFOqbgezRvQPiqEohI3322s57eFr6G8PnYf7O/LO9f15/GvtxD35A+EBvgxLrY5t53bHn9fHx5xdOWRBZtIzSmkcag/M87rUHpr08HtG/HE2G48vGATaTmFdIgOZe7UfoQH1Z2P0ERERCrig5X7SEi30yjExpNje2id5nrqyG3hn1+8nXlrkpjU7+Sruol5TJkw0yE6lPeuH3DSfZMHtGLygFblvndcbExpCBcREanv5q9JAuCf43sSEaxBqPpsbGxzXvh+Oyt3Z7E/K58WEXVj+cC6QveEFRERqcXcBlzWJ4bzu2pFrvqueXggZ7WNBHRb+JpIoVtERKQWaxTiz/+N6Wp2GVJDjIv1XFA5f00yhqF1FmsShW4REZFa7PZzO9AgUEvqicdFPZoS4GclMdPBuv2HzC5HjqHQLSIiUov1adXQ7BKkBgnx9+XCw6u6fbFWU0xqEoVuERERkTpkXB/PghNfrU8pc18UMZdCt4iIiEgdMrhdJFGh/hzKL+an7QfMLkcOU+gWERERqUN8fayMPXxB5RdrNMWkplDoFhEREaljjqxi8uO2dA7lO02uRkChW0RERKTO6dI0jC5Nwyh2GSzckGp2OYJCt4iIiEiddFmfI1NMkkyupBbL2g17f4c9v3keu36C31+u1KFMuQ28iIiIiFSvS3o14+lvt7Jm3yF2Zzpo0yjY7JJql19nwY9PgMXieW4Ynj836Qln3VLhw2mkW0RERKQOigoLYEiHxoBGuytl1Vsw6V3428fQZwrcmwjdxkPbcyp1OIVuERERkTpq/OEpJvPXJuN267bwFVJwCLpeAtHdIWUdBEXARc/CpvmVOpxCt4iIiEgddUHXJoT4+5KUXUD83myzy6ldQptAUR6ENYPsPZ7pJcGNoPBQpQ6n0C0iIiJSRwXafLiou+e28PM1xaRiWg+GT66Gwhxo2gt+fAx+fhZCm1bqcArdIiIiInXY+MO3hf9mQyqFxS6Tq6lFRj4Nke3A7YILn4Ft38Dqt+GiZyp1OK1eIiIiIlKHDWgTQfPwQJIPFbBkazoX92xmdkm1g38ojJ7l+XNwJNy66owOp5FuERERkTrMarUwNtYTtOfrtvCnzzDgj1dhdn94sgn8pxf88oJneyUodIuIiIjUceNiPVNMliVkkJFXZHI1tcTK12DFbBhwI1z+Pgy8BeLfht/+XanDKXSLiIiI1HHto0LoFdMAl9tg4foUs8upHeL/B3/7EPpNgw7necL33z70BO9KUOgWERERqQeOXFA5f61WMTkteWkQ3aPstugeUFC5pRcVukVERETqgTG9muFrtbApOZeE9Dyzy6n5ItrCtoVlt21b6NleCVq9RERERKQeiAi2MbxzFD9sSWf+mmTuv6iz2SXVbEPvgc+nwuYF0LA1ZO+Gbd96bg1fCRrpFhEREaknxsd6bgu/YG0yLt0W/q91uRiumge+/pC6HgLCYeoi6HRhpQ6nkW4RERGRemJElyjCAnxJyy3k910HObtDI7NLqrk++huMmwNthlbJ4TTSLSIiIlJP+Pv6MKbX4TW7dUHlX9u/0jPKXUUUukVERETqkfF9PFNMvtuUhqOoxORqarAeE+HTKbDxc9izHPb8dvRRCZpeIiIiIlKP9GnZkFaRQew9mM/izWmlSwnKcVbO8XxNWFx2u8UCj1Z82UCFbhEREZF6xGKxMD42hheXJPDF2mSF7vLMPFSlh9P0EhEREZF6ZtzhVUyW78wkLafQ5GpqqEP7y39Ugka6RUREROqZlpFB9GvdkFV7slmwLpmbhrUzu6Sa5989PFNJjMNLK1osR/dpeomIiIiInI7xfWJYtSeb+WuSmD60LZZjQ6XAHRvKPndkwm//gc6jK3U4TS8RERERqYdG9WiKzddKQrqdzSm5ZpdT84S3LPto3gcu+S/89FSlDqfQLSIiIlIPNQj04/wu0QDMX5NscjW1SMGhSr1N00tERERE6qnxfZrzzcZUvlqfzIOjOuPro/HYUj8/W/a5ywk7l0CL/pU6nEK3iIiISD01tGNjIoNtZNqd/Lojk+Gdo8wuqebY82vZ5xarJ3APuatSh1PoFhEREamn/HysjOnVjLkr9jBvTVLtDd1pG+H7hyFlHfjYoN0IGPk0BEdCUjwsuhcObPM8H3oP9Jly6mNe+3WVlqjPEERERKrA/ux8s0sQqZTLDt8c54ct6eQWFptcTSUUF8D7E6DFALh7B9yyEgqy4Mu/Q0E2fDABev0N7t8Hl8yG7x6EpNWnd+yM7bDoPvh4MuRnwcrXK12mKaF7xc5MLn35N7o/upi4J5fw6JebKCx2AbB2XzaXvvwbXf/vO85+dimfrNpX5r2fr05i2PM/0eWR7xjz0nJW7634OokiIiJVKSOviJlfbTK7DJFK6d48jPZRIRSVuFm0MdXsciouJwmadIdh94GvDYIioO9U2LsCtnwFgRHQ/wbw8YW2w6DnRFj1xqmPu2spvHEu5B+ExGVQnA/LnoXlL1aqTK+H7oP2IqbOXcVVA1qy4dEL+PYfZ/NHYhav/LyLnPxips5dxWV9mrPh0Qt47rKePPH1VtbtPwTA77sOMvOrzcya2IsNMy/g0t7NuOHdeAqcLm+3ISIiAkC+s4Tr31lFWk6R2aWIVIrFYmF8H88dKufVtFVMnHYozD36KDnJ/2eNOsBV88Dqc3Tbli+haS/I2AbRXcu+vnFnSDuNX5J/fBwm/A8uexOsVmgQA5M/g/i3K9WK10N3ZIg/qx85n4lxLbBYIDu/mKISF5HBNhZtSqVhkI0pZ7XG18fKoPaNuLR3M979fQ8An6zax5heTYlrHYGfj5VpQ9rSMMiPhRtSvN2GiIgIJS43t324lg1JOYQF6DIpqb3G9m6OxQJ/7s5if1bNmSoVMicOnmlx9PHrv/76DYYBPz4BCYvgomehKA/8gsu+xi/QE+ZP5WAidDj/8JPDNw5q3qd2LRkY4u857Vn/XEpabiH9W0cwMS6GFxYn0Ck6tMxrO0SF8El8EgAJ6XYmxcUctz+UranlL+judDpxOp2lzx0OBwD2ohLyauO8JRGRWspqgWB/P6+f11FUjNuo+uMahsFT32zlx20H8Pe1cs+Fnav+JKehuvo7mbr2PZSjQgN86d86gpW7s/hk1X6mD2traj32ohLP1+nxhEQdc3Gnr3/5byrM9czjTlkPUxdBdDewBUPucYOzxQXgH3LqIsJbwP6V0HLg0W3Ja6BB8wp0ckzplXpXFfn5nnPIKSjm9o/XcvP7a2gSFkCQzafMawJtPuQ7Pf/hHc4Sgmy+J+4vKn96yZw5c5g9e/YJ28+btQyCws+8CREROS3dmoXxzT+GeP28k+b8Ue132ysqcfPIgk11tr8j6vL3UI6a/dNOZv+009wi8g/hD2ALgYCwU78+KxE+mOiZAnLjz55VSgCiunjmZh8rYxtEdT3hECc4ewZ8eDn0ux5cxbD837ByDpz7fxXr5TBTQ3eAnw8Bfj7cf1EXxr78G9cOak1ubtnR5wKni+DDQTvQz4eCYtcJ+xuG28o9x/Tp05k6dWrp8/T0dEaNGsWSu4YRHR1dhd2IiMhfsVrMOe+n0wdW+Sjpoo2p3DtvIwD3XdiJqwa2qlP9lac+9FifOYpKGP7CzxQUu/lgWn96xoSbVkt6ejqjF5/miwuy4Z1LoM1Qz+ok1mNmT3e5BH74P/j9Fc/FlPt+hw2fwd8+PPVxe0wA/zDPRZfhLWD3MrjoGeh6aaV68nroXr03i3s+38B3tw/F5uv5j+IscWPzsdIhOoRfd2SUef2OA3Y6NfFMOenUJJSE9Lzj9ucxvHPjcs9ns9mw2Y6GcrvdM4cnxN+X0ADvf0QmIiLeVdXTIVYmHuThBZsBuG5wG24+p32VHr+izJju4W31oceaIDTAj5HdmrBgXQrfbUpncPvy81V1c/hXIKKu/QBy9sPmL2DzgrL7HkqBqxfAd/fDT4fX7b7oWU9APx0dL/A8qoDXL6Ts3CSMQqeLZ7/bhrPETVJ2Pk99u5VJ/WIY1b0pGXlFvLV8N8UuNyt2ZfLluhQmHp7HPSmuBV+uS2HFrkyKXW7eWr6bTLuTkd2aeLsNERGph3YeyOOGd+Nxutxc2K0JD43uYnZJIlVq/OE1uxduSMFZ4ja5mtM06FaYmQMPpXpC9rEP8Fz8eP338GAS3L4eYiebUqbXR7qD/X1557r+PP71FuKe/IHQAD/GxTbntnPb4+/rw/vTBvDYwi28+EMCEcE2Hh3TlUHtGgEwuH0jnhjbjYcXbCItp5AO0aHMndqP8KDyp5eIiIhUhQN5hVz79ipyC0vo0zKcf1/RGx+z5luIVJPB7RsRFerPgbwiftp+QAObVciUOd0dokN57/oBJ93XMyaceTcPKve942JjGBcbU+5+ERGRquYoKuH6ufEkZRfQOjKIN6/pR4Cfz6nfKFLL+FgtjI1tzuu/JDJ/TZJCdxXSbeBFRET+QonLzW0frWVjcg4RwTbmTu1PRLA+YZW668iNcpZuO0C2w3mKV9dDrpJKvU0r+YuIiJTDMAwe/WozSw+vxf3mNXG0bhR86jeK1GKdm4TRtWkYW1Jz+XpjKlcPbGV2SebISoRlz3nW+TYOz293FcPBHXBvYoUPp5FuERGRcry2LJEPVu7DYoH/XBFLn5YNzS5JxCuOjHbPX5NkciUm+uofcGifZ51wd4lnbe8DW6H/jZU6nEK3iIjISXy5Lplnv9sGwKMXd+XC7prbKvXHJb2bYbXA2n2HSMw4jVum10XJa+CKD2DovZ71ukc9BxP+B4nLKnU4hW4REZHj/JF4kHs+2wDAtLPbcO3gNiZXJOJdUaEBDO3oWad7wdpkk6sxiS0IAhtCRFs4sMWzrcN5kJlQqcMpdIuIiBxjR3oeNx5ei/ui7k14cJTW4pb6aVzs4Skma5Nx18dbgka0hYTvwT/EM6c7ew/kpoK7+JRvPRmFbhERkcMO5B5di7tvq4a8eHlvrFqLW+qpC7o2IcTfl6TsAlbtyTK7HO87ewZ8OsUTtvtOhTfPhzdGQKdRlTqcVi8RERHBsxb3de+sIvlQAW0aBfPmlDitxS31WqDNh1E9mvBpfBJfrE1mQNtIs0vyrk4XwT/WQHBjGHYPRLaFojzodWWlDqeRbhERqfdKXG5u/XANm5JziQy2MXdqPxpqLW6R0hsSfrMhlcJil8nVmCCsGfj4ef7c/TLofRVkbK3UoTTSLSIi9ZphGDzy5SZ+2p5BgJ9nLe5WkVqLWwRgQJsImocHknyogD8SD3JOpyizS/KehMXwzV2edbo5Zk671Q8eOVDhwyl0i4hIvfbKz7v46M/9WC3w3ytiidVa3CKlrFYLD47qwnt/7KFjdKjZ5XjXD49Cl0sgMBzSNkKPiZ6b5fS5ulKHU+gWEZF6a8HaZJ5fvB2AmZd044JuWotb5HijezZldM+mZpfhfdl74PzH4dBez9rcXS+BRh3h86kwYHqFD6c53SIiUi+t2JXJPZ+vB+DGoW2ZclZrcwsSkZoluBFYrNCgBWR6fjknqjPkVm7d8tMe6R754i8snjGUs59diqWc1ZN+vXdEpYoQERHxpoT0PKa/t5pil8HoHk25/8LOZpckIjVNdDf46SkYdh8ER3nW7PYLBN/ASh3utEP334e3A+D2cztgKS91i4iI1HDpuYVc+78/ySssoV/rhsya1EtrcYvIic5/3LNOd99rYPgD8PHfPDfJOf+JSh3utEP3pb09dyWaGNeizPadB/IIDfAjOiygUgWIiIh4i72ohOvmriIlp5C2jYN5Q2txi0h5GneCW1Z6/hzeEmZshiI7NGpfqcNVeE736r1ZjPrPrwB8sHIv57/4C0Oe/YnvN6dVqgARERFvKHa5ueWDNWxOyaVRiI251/YnPEhrcYvIX8hLg72/w57f4OAusKd7/lwJFV695NlF2zm3SxSGYfDKT7uYNbEX4UF+PLtou676FhGRGskwDB5ZsIllCRkE+vnw1jX9aBkZZHZZIlKTrZwDix8E93E3BbJY4NHsCh+uwqF7V4adT6YPZFeGnQx7EaN7NsXf14fbPlxb4ZOLiIh4w8s/7eTjVZ61uF/6Wyy9WoSbXZKI1HR/vAKjXoDYq8HnzFfZrvARrFYLDqeLn7dnENsiHH9fH5Ky8wkJ0JLfIiJS8yzdls4L3ycA8Ngl3Tiva7TJFYlIreA4CH2uAWvVrLBd4aOM7BbNpNd+578/7uCK/i3YkZ7HlLf+5JJezaqkIBERkar0nx93ADB9WFuu1lrcInK6Wp8Ne36tssNVeHj6sUu6M39NEgF+Pozp1YzdmQ6uHNCS6wa3qbKiREREqkqJy2BMr2bcN1JrcYtIBYQ1hQ8nQeshEHLcJ2RjX67w4So80r0708HEuBaMOTyy3aZRMNcMas2sH7ZX+OQiIiLVrXvzBrwwsafW4haRiikpgu6XQUgUYBz3qLgKj3Rf/dZKPrvpLGIaeq76TkjP446P15Gd7+QejSKIiEgN8/CoLvj7ai1uEamgsa9U6eEqPNJ9Rb+WTH5zJem5hby2bBdjXlpOl6ZhLJ4xtEoLExERqQqhgX5mlyAitdUfr8Ls/vBkE/hPL/jlBTC8NNJ9+3kdcLndDHv+JxoG2Xj1qj6M6KwrwUVERESkDvnjVVgxG4bMgPDWkJUIv/0HrD5w9owKH+60Q3fyoYLSP1/evyVJ2QUkHMijXeOQ0n3NwwMrXICIiIiISI0T/z/424fQtNfRbS0HwCdXV2/oPvvZpRx7CcqRgfXhL/yMAViAxH+OrnABIiIiIiI1Tl4aRPcouy26BxRU/G6UUIHQ/eu9wyt1AhERERGRWieiLWxbCF0vPbpt20LP9ko47dB9ZLWSIzYl55CUnc+IztHkFhbTKMS/UgWIiIiIiNQ4Q++Bz6fC5gXQsDVk74Zt38Kkdyt1uAqvXpJpL+KyV1cw7pXfuPPT9ezLcjDsuZ9YvbdyQ+0iIiIiIjVOl4vhqnng6w+p6yEgHKYugk4XVupwFQ7djy/cQqcmoWx4dCS+Vgvto0K5+Zx2/PPbrZUqQERERESkRmozFM5/AoY/BEPvhpi+lT5UhZcMXLHrIL/eO5xAmw8Wi+fSyunD2vH6L4mVLkJEREREpEYpzIUvboKERUe3tRkGE+dCYHiFD1fhkW6bj4XCYhcAxuHFwR1FJYT4Vzi/i4iIiIjUTD8+Bk47/P0PeDAVbvoNDDf88H+VOlyFQ/d5XaO545N17M50YLFYyLQX8fCCTQzvHFWpAkREREREapzt38Flb0HjTuAXANFdYfwbsO2bSh2uwqH7vgs7E+zvw4hZP5NbWEz/p5ZQWOzivos6V6oAEREREZEap9gBAQ3Kbgto4BntroQKzwkJ9vfllcl9OWgvIim7gKYNAogKC6jUyUVEREREaqSYfvDTk3DeY2CxgGHAT09B8z6VOtxph+6ViQdPun13poPdmQ4ABrSNrFQRIiIiIiI1ynmPwdzRsOFTaNACcvYDFpiyoFKHO+3QfcUbf4DnVKXCg2zkFhTjNgwaBtlY/cj5lSpCRERERKRGie4Kt632zOF2ZEB4S+hwAQSEVepwpx26d/9zNACv/7KLbWl5zLykG2EBfuQ7S3jym600CPQ77ZNuScnl6W+3sjE5Bz8fK0M7NOLhi7sSEWzjoS828ll8Er4+R+P9w6O7cuWAlgB8vjqJl5bu4EBuEe2jQph5STf6tmp42ucWERERETktQRHQ5+oqOVSF53S//ksiy+8bQYCfj6cWmy//d3FXBv7zR+678NQXUxYWu7j27T+5on9L/ndtPxxFJdz56Tru+Ww9b13bjw1JOTw9vgcT+sac8N7fdx1k5lebmTu1H71ahPPOij3c8G48v903gkCbT0VbEREREREp6+kYeDAJZoZ75nKfjMUKwVEw7B6Iu+60Dlvh0O02PLeCj2kYVLotKbsAX2s5RR0n+VABXZqGcfu5HfCxWrD52rhyQCvu/GQdRSUutqfl0TOmwUnf+8mqfYzp1ZS41hEATBvSlo/+3MfCDSlMimtR0VZERERERMqa/Jnn6zULyw/dhhvSt8CPj1df6B4X25wp//uTm4a2o2l4APuy8pmzLJErB7Q6rfe3axzCO9f1L7Nt0cZUujdvwNbUPIrdbv71fQLxe7MIDfBjUlwLpg9ti9VqISHdzqS4siPgHaJC2ZqaW+75nE4nTqez9LnD4bno015UQl5h8em2LSIiZ8hqgWD/05+KWFUcRcW4jeo/T13vD+pHj1Iz2ItKzDt5q7M8X9sM+evXxfSH5PjTPmyFQ/cDF3Um2ObDSz/tID2niKbhAVzRvwU3D2tX0UNhGAazvk9gydZ0Pr3pLDLyihjYJpJrB7fmpStj2ZySy/T34rFaPLeadzhLCLKVLTnQ5kN+kavcc8yZM4fZs2efsP28WcsgKLzCNYuISOV0axbGN/84xQ+xajBpzh9sTil/cKaq1PX+oH70KDVE/iH8zTr3v3tQdumQk7hjg+eGOZe9edqHrXDo9vWxcucFnbjzgk4VfWsZeYXF3PPZBjYm5/DpTWfRuUkYnZvAkA6NS1/Tu0U41w1uw9cbUpk+rB2Bfj4UFJcN2AVOFw3DbeWeZ/r06UydOrX0eXp6OqNGjWLJXcOIjo4+ox5EROT0neYsxCr36fSBXhvpNoO3+oP60aPUDOnp6YxebNLJh91f/rSSM1Dh0O1yGyzalMruDMcJ/wPcfl6H0zrG3oMOpr69imbhgSy87Wwigj2hefHmNDLtRUw+ZqqKs8RNgJ/nxpmdmoSSkJ5X5lg7DuQxvHNjymOz2bDZjoZyu90OQIi/L6EB3v+ITEREvMuM6RDeVNf7g/rRo5Tl8K9wRK06sZOr5bAV7uihLzaycH0KXZqGlVnWz4KF2zl16M7JL+bKN1ZyVrtInrusJ9Zjfm02DHji6y20jgxmULtI1uw7xNsr9vDIxV0APPO731vN6J5N6dc6gnd/30um3cnIbk0q2oaIiIjIidwusHpxRTRvn6+uc2TCm+fBJS8dnZP99QxY+z5Yj/nlbeRTEDf15Mf4YKLnYsq5F5d/nmu/rnBpFQ7dS7Ye4KMbB9IzJrzCJwP4bPV+kg8V8M2GVL7dmFpm35bHL+QRR1ceWbCJ1JxCGof6M+O8DoyL9Vw8Obh9I54Y242HF2wiLaeQDtGhzJ3aj/Cg8qeXiIiIiJw2qw/MmwaZCdV/rkYdKzQnWE5h3x/wxU2Qvbvs9uQ1MOY/0PvK0ztOy4Ger63PrtLyKhy6DcOgW7OTL+l3OqYNacu0IW3L3T95QKsy00uONy42pjSEi4iIiFS5zARIXW92FVIR6z6En56G8x+Dz49Zwq+kCA5sgWaxp3+sIXd5vp5zf5WWWOHQfUnvZsz5ZRd/P6d9lRYiIiIiIlKG0w6Fx6xc4+vveRyv3bnQYxL4+JYN3WmbwFUMPz3lGQn3D/PcYXLQ7WC1/vW5s3bDr7Pg0D7PutzH8sb0kk3JOcTvzWb20p1EhpSd1vHrvSMqXICIiIiIyMmEzIkDv2NW7hh2Pwx/4MQXhpazIl1RjmeayICbYMLbkLoBPpnsuaPk4Nv/+uSfX+cJ+G2Gel5/hiocui/v15LL+7U84xOLiIiIiPwV+/R4QqKijm442Sj3X2k3wvM4IqYvDLwZNs0/dejOTIB7doJfYMXOWY7TDt3/WbKjSk4oIiIiInJabCEQEFb592/9GhwHyt6qvcR5ekE6ujvkpkBkxW8AeTKnHbp/T8z8y/2nu2SgiIiIiIh3GPDdgxDRFtoMg6RVsPJVGPnPU7/1omfhnUug6yUQEF523zn3VbiS0w7dH994VoUPLiIicsTmlJwzWv1KRKTCuoyBC5+Gb+7yjFqHRME5D0Cvy0/93p+f8VzImbLuJGupV2PoFhERqaz9Wfk8/c1WPrhhoNmliEhdNzOn7PO468pOLzldu3+B29d5gnoVUOgWEZFq5Sgq4YZ34/E55g7EIiI1XljTil+4+RcUukVEpNq43QYzPlnHtrQ8BrdvZHY5IiKnb9Bt8PFkGDAdAhsCxwwctB5c4cMpdIuISLX51w8JfL8lHZuvlYdHdzG7HBGR07fwDs/XPcvLbrdY4NHsCh9OoVtERKrFl+uSmf3TTgCeGd+DLk3PYNkvERFvm3moSg935rfXEREROc76/Ye49/MNAEwf1pbxfWJMrkhExFwK3SIiUqXScwu58b14ikrcjOgcxb0jO5tdkoiI6RS6RUSkyhQWu7jx3XjSc4voEBXCf67orVVLRERQ6BYRkSpiGAb3zdvA+qQcwoP8ePOaOEID/MwuS0SkRtCFlCIiUiVeXbaLL9el4Gu18MrkPrSKDDa7JBGRitv3B7QcCHt+K/81WjJQRETM8MOWdJ5fvB2AmZd0Y1A7rcktIrXU+xPgwSSYO/rk+7VkoIiImGFbWi53fLwWw4CrB7biqoGtzC5JRKTyHkzyfNWSgSIiUlMctBcx7Z14HE4Xg9pF8n9juppdkohI1Xjt7JNvf7FHpQ6nkW4REakUZ4mbmz9YQ1J2Aa0ig3hlch/8fDSWIyK1WFYi/DLL8+eM7bDglrL7i3KgpKBSh9a/jiIiUmGGYfDoV5v4c3cWIf6+vDkljvAgm9lliYicmYi2EBQBGGAYnq/HPoIbw4S3K3VojXSLiEiFvbNiDx/9uR+LBV76WywdokPNLklEpGpc8ITna8M2MOyeKjusQreIiFTIrzsyeOKbrQA8cFFnhneOMrkiEZFqMOweyEuDrN1guMvu05KBIiJSnRIz7NzywRpcboPL+sRww5C2ZpckIlI9Vs6BxQ+C21V2u5YMFBGR6pRTUMy0d+PJLSyhT8twnh7fHYtFt3gXkTrqj1dg1AsQezX4nHlkVugWEZFTKnG5ue2jtSRmOGjaIIDXru6Lv6+P2WWJiFQfx0Hocw1Yq2bdEa1eIiIip/TPRdv4JSGDQD8f3pgSR1RogNkliYhUr9Znw55fq+xwGukWEZG/9Omq/by1fDcAsyb1onvzBiZXJCLiBWFN4cNJ0HoIhESX3Tf25QofTqFbRETKtWpPFg8t2AjAHed1YFSPpiZXJCLiJSVF0P2yw0+MMz6cQreIiJxUUnY+N723mmKXwageTfjHiA5mlyQi4j3D7oWGravscJrTLSIiJ3AUlTDtnXgOOpx0axbGCxN7YbVqpRIRqUdeioO5F8P6T6C4crd+P5ZCt4iIlOF2G9z56Tq2peXRKMSfN6bEEWTTB6MiUs/cuQU6joQV/4UXOsFX/4D9f1b6cPpXVEREynhxSQKLN6dj87Ey5+q+NAsPNLskERHvC4mCQbd5HqnrYdM8+OImsPpA7FXQezIENzrtw2mkW0RESi1cn8JLS3cC8PT4HvRt1dDkikRETOYqgZwkOLQfHJngFwhJq+C/fWDdh6d9GI10i4gIABuSDnH3Z+sBuHFoWyb0jTG5IhERE+1fBRs+hs1fABboOQmmfgtNunv2b10IX94Kva88rcMpdIuICOm5hdzwbjxFJW6Gd2rMfRd2NrskERFzvX0htBsBF78InUaBj1/Z/U16erafJoVuEZF6rrDYxY3vrSY9t4j2USH892+x+GilEhGp7679FloOKH9/w1Yw7tXTPpzmdIuI1GOGYXD/vA2s33+IBoF+vDkljtAAv1O/UUSkrps7WksGiohI1XhtWSIL1qXgY7Xw6uQ+tG4UbHZJIiI1Q11YMnBLSi5Pf7uVjck5+PlYGdqhEQ9f3JWIYBtr92Uzc+EWdqTnERFs47YR7bm8X8vS936+OomXlu7gwOGPQWde0k1X14uIVMKSLek8t3gbADPHdGVQ+9Nf+kpEpM6r7UsGFha7uPbtP+nTqiGrHjqPH2YMJTvfyT2frScnv5ipc1dxWZ/mbHj0Ap67rCdPfL2VdfsPAfD7roPM/Gozsyb2YsPMC7i0dzNueDeeAqfL222IiNRq29PyuP3jtRgGXDWwJVef1drskkREaqYqWjLQ66E7+VABXZqGcfu5HbD5WmkYbOPKAa34c3cWizal0jDIxpSzWuPrY2VQ+0Zc2rsZ7/6+B4BPVu1jTK+mxLWOwM/HyrQhbWkY5MfCDSnebkNEpNbKcji5/p1VOJwuzmobyaNjupldkohIzbN/FXxzF8zq6JlaEtrEs2Tg9F/g8vdh7Mvw3QOnfTivTy9p1ziEd67rX2bboo2pdG/egIR0O52iQ8vs6xAVwifxSQAkpNuZFBdz3P5Qtqbmlns+p9OJ0+ksfe5wOACwF5WQV1h8Rr2IiNQ2xSVubnxvNUnZBcQ0DOS5CT0oLHZRWFz9nxhaLRDs7/2LNB1FxbiN6j9PXe8P6n6Pdb2/2sReVGJ2CXVryUDDMJj1fQJLtqbz6U1n8fbyPQTZfMq8JtDmQ77T8x/e4SwhyOZ74v6i8n9YzJkzh9mzZ5+w/bxZyyAo/MybEBGppZKyCxjy3M9eO1+3ZmF8848hXjvfEZPm/MHmlPIHZ6pKXe8P6n6Pdb2/WiX/EP5m1zBjs2d0uzwVXDLQtNCdV1jMPZ9tYGNyDp/edBadm4QRaPMhN7fs6HOB00Xw4aAd6OdDwXGjMQVOFw3DbeWeZ/r06UydOrX0eXp6OqNGjWLJXcOIjo6uwo5ERGq2D1fu45+LtmEBZl8Zy9COjb16frOW/v50+kCvjZKawVv9Qd3vsa73V5ukp6czerFJJ//52VO/5pz7KnxYU0L33oMOpr69imbhgSy87Wwigj2huVOTUH7dkVHmtTsO2OnUJLR0f0J63nH78xjeufwfHDabDZvtaCi32+0AhPj7ai1aEak3lu/I5LnF2wG4/6LOjO7ZzOSKvMeM6QLeVNf7g7rfY13vrzIc/iZOxvj5nxAQ5pk+Uq6Kh26vX0iZk1/MlW+spE+rhrx7Xf/SwA1wYbcmZOQV8dby3RS73KzYlcmX61KYeHge96S4Fny5LoUVuzIpdrl5a/luMu1ORnb7i6F/EZF6bnemg79/sBqX22B8bHNuHNrW7JJERGquC56EsBjIS4MOF8CEt+Har8s+KsHrv0Z8tno/yYcK+GZDKt9uTC2zb8vjF/L+tAE8tnALL/6QQESwjUfHdGVQO88aiIPbN+KJsd14eMEm0nIK6RAdytyp/QgPKn96iYhIfZZTUMz176wit7CE2JbhPD2+BxaLbvEuIlKuQbd6HsmrYe378MpAaDkQ+kyB9ueDtXJj1l4P3dOGtGXakPJHWXrGhDPv5kHl7h8XG8O42Jhy94uIHGv9/kOs2pNFi4gg2jUOoVVkEH4+9eNmvC63wT8+WktihoOmDQKYc3VfAvx8Tv1GERGB5n09j5FPw5Yv4ffZ8PUM6Hk5nPdohQ9n6uolIiLV6Z0Ve3hs4eYyFyj5Wi20jPQE8HaNQ2jbOJh2jUNo3ziEBkF1a17lP7/dyrKEDAL8rLwxJY6o0ACzSxIRqX38AqHzxeBywu+vwB+vKHSLiACUuNw88fUW3vl9LwD920RQ4HSRmGHH4XSRmOEgMcPBD6SXeV+jEBttD4fxdofDeLvGITRvGIiPWcsaVNKnq/bz5vLdAMya2JvuzRuYXJGISC206ydY9wFs+xYadYC466DHhEodSqFbROqUvMJibv1wLcsSMrBY4L4LOzN9aFssFguGYZCeW8SuDLvnccDOrgwHuzLspOYUkml3kmnP4s/dWWWOafO10rZRcJmR8SN/DjbzCvtyxO/J4qEFGwH4x7kdGN2zqckViYjUIgd3eYL2+k88o9s9JsK0HyD6zO7eW/N+WoiIVNL+rHyuf2cVCel2Avys/PvyWC7sfnR1I4vFQpMGATRpEMDg9o3KvNdRVMLuTMcJYTwx04GzxM22tDy2peUdf0qaNgg4IYy3iwqmSViAKRcsJmXnM/291RS7DC7q3oQ7zu3g9RpERGq12XEQFAk9JkHHC8DqBwWHYM9vR1/TenCFD6vQLSJ1wpp92dz4bjyZdidRof68dU0/esSc/pSKYH9fujdvcMI0DJfbIDm7gF2Zx4XxDDuZdiepOYWk5hSyfGdmmfcF2XxOGsZbRwZX28WMjqISbnh3NQcdTro2DWPWpF5Ya9m0GBER0xkGODI9c7f/eOXE/RYLPJpd4cMqdItIrffV+hTu/mw9zhI3XZuG8da1cTRtEFglx/Y5fOFly8gghneKKrPvUL6TXRkOEjOOhvFdGXb2Hswn3+liY3IOG5NzyrzHYoEWDYPKhvHGwbSLCiEy2Fbp0XG32+DOT9exNTWXRiE23rgmjiCb/okXEamwmYeq5bD6F1lEai3DMPjvjzt5cUkCAOd1ieY/V/T22jzr8CAbfVvZ6NuqYZntzhI3+7LyD4+IHw3jOw/YySssYV9WPvuy8vl5e9k78DYI9DtpGG8ZceplDv+9JIHFm9Ox+ViZc3VfmodXzS8dIiK1iiMT3jwPLnkJ2gzxbEuKh0X3woFtEBwJQ+/xrLntZQrdIlIrFRa7uH/eBhasSwHghiFtuP+iLjVilRGbr5X2USG0jwops90wDDLtztIQfmwgT8ouIKegmLX7DrF236Ey7/O1WmgVGVR2ZZWoENo18ixzuHB9Cv9duhOAp8Z1p2+rCG+1KiJSc+z7A764CbJ3H91WkA0fTIDhD0HfqbD3N/h4MkR1g5i+Xi1PoVtEap2D9iKmv7ea+L3Z+FotPDG2O3/r39Lssk7JYrHQONSfxqH+DGwbWWZfYbHrmAs5HSRm2kv/XFDsOjx95eTLHOYWlgCeXzwmxrXwWj8iIjXGug/hp6fh/Mfg8+uObt/yFQRGQP8bPM/bDoOeE2HVGwrdIiJ/ZUd6Hte9s4r9WQWEBvjy2lV9T1iJpDYK8POhS9MwujQNK7Pd7TZIyy0ss6pKYqYnjKflepY5BDinU2Puv6iLGaWLiFQfpx0Kc48+9/X3PI7X7lzPaiM+vmVDd8Y2iO5a9rWNO8Oa96qn3r+g0C0itcavOzL4+wdryCssoVVkEG9d0++EKRx1jdVqoVl4IM3CAxnSoXGZfXmFxezOdJCWU8jQjo1rxNQaEZGqFDInDvyOua3wsPth+AMnvjA0+uQHKMoDv+Cy2/wCPWHeyxS6RaRWeP+PvTz61WZcboP+rSN47eq+RATbzC7LVKEBfvSMCadnjNmViIhUD/v0eEKijlk56mSj3H/FFgy5KWW3FReAv/cHbBS6RaRGc7kNnvpmK//7zXNhzPg+zfnn+B74+1bPWtciIlKD2EIgIOzUrytPVBfYtbTstoxtENX15K+vRn+9BpWIiInsRSXc+G58aeC+Z2QnZk3spcAtIiKnp8slYE+H318BVzHs/gU2fAaxV3m9FI10i0iNlHKogOvfiWdrai7+vlb+Nak3o3s2NbssERGpTYIi4OoF8N39ntVNgiPhomehzVCvl6LQLSI1zvr9h5j2bjwZeUU0CvHnzWvi6N0i3OyyRESkNphZ9k7ANO8D139vTi3HUOgWkRrl242p3PnpOgqL3XRuEspb1/bT3RVFRKTWU+gWkRrBMAxe+XkXzy/eDsCIzlH892+xhHjplu4iIiLVST/NRMR0zhI3D8zfyLw1SQBMHdyah0d31brTIiJSZyh0i4ipsh1Opr+/mj93Z+FjtTDzkm5cPbCV2WWZw+0Cq5dXZjHjnCIi9ZBCt4iYZleGnevnrmLPwXxC/X2ZPbkPwzo2PvUb6yqrD8ybBpkJ3jlfo45w2ZveOZeISD2n0C0iplixK5Ob3ltNbmEJMQ0D+d+1/egYHWp2WebLTIDU9WZXISIiVUyhW0S87pNV+3joi02UuA36tAzn9SlxNAqp4K19RUREahGFbhHxGrfb4NnvtjHnl0QALunVjOcm9CTAT3OKRUSkblPoFhGvyHeWcMfH6/h+SzoAd5zXgdvP7YDFohVKRESk7lPoFpFql5ZTyLR3V7EpORebr5XnJ/Tk0t7NzS5LRETEaxS6RaRabUrO4fp3VpGeW0RksI3Xp/Slb6sIs8sSERHxKoVuEak2329O4/aP11FQ7KJDVAj/u7YfLSKCzC5LRETE6xS6RaTKGYbBG78m8s9F2zAMGNKhES9P7kNYgJ/ZpYmIiJhCoVtEqpSzxM0jCzbxSfx+AK4e2IpHx3TF18dqcmUiIiLmUegWkSqTk1/MTe+v5vfEg1gt8MjFXbl2UGutUCIiIvWeQreIVIk9mQ6um7uKxEwHwTYfXroylhGdo80uS0REpEZQ6BaRM7Yy8SDT31/NofximjUI4K1r+9GlaZjZZYmIiNQYCt0ickY+X53EA/M3UOwy6NUinDem9CUqNMDsskRERGoUhW4RqRS32+CF77fzys+7ABjdoymzJvXSLd1FREROQqFbRCqswOnirs/W8e3GNABuHd6eO8/viNWqCyZFRERORqFbRCrkQG4hN7wbz/qkHPx8LDwzvieX9Y0xuywREZEaTaFbRE7blpRcpr2zipScQhoG+THn6jj6t9Et3UVERE5FoVtETsuPW9P5x0drcThdtG0czP+u6UfrRsFmlyUiIlIrmBq6D9qLGP/qCp4Z35Oz2kUC8NAXG/ksPglfn6NzQx8e3ZUrB7QEPCslvLR0Bwdyi2gfFcLMS7rRt1VDU+oXqQ8Mw+B/v+3hqW+24DZgcPtIXrmyLw2CdEt3ERGR02Va6I7fk8Vdn61n78H8Mts3JOXw9PgeTDjJHNHfdx1k5lebmTu1H71ahPPOij3c8G48v903gkCbVkwQqWrFLjczv9rMByv3AfC3/i15/NJu+OmW7iIiIhViSuj+fHUSL/6QwP0Xdea2j9aWbi8qcbE9LY+eMQ1O+r5PVu1jTK+mxLX2zCGdNqQtH/25j4UbUpgU1+Kk73E6nTidztLnDocDAHtRCXmFxVXVkkidk1tQzN2fbeD3xINYgLsu6MiUs1pRWOyisNhldnl1jtUCwf7mfHrgKCrGbVT/eczqUf1VnbreY13vrzaxF5WYXUKVMyV0D+3YiLG9m+HrYy0Turem5lHsdvOv7xOI35tFaIAfk+JaMH1oW6xWCwnpdibFlR0B7xAVytbU3HLPNWfOHGbPnn3C9vNmLYOg8CrrSaQuM4AXvk/ghe8TzC6lzurWLIxv/jHElHNPmvMHm1PK/3e0qpjVo/qrOnW9x7reX62Sfwh/s2uoYqaE7vLuVpdXWMzANpFcO7g1L10Zy+aUXKa/F4/VAtOHtcPhLCHIVrbkQJsP+UXlj7pNnz6dqVOnlj5PT09n1KhRLLlrGNHR0VXTkEgdsnZfNrd/vI7s/GKiQv2ZfWWsbunuBWYucf7p9IFeG0U0g/qrOnW9x7reX22Snp7O6MVmV1G1atTqJUM6NGZIh8alz3u3COe6wW34ekMq04e1I9DPh4LjPtYucLpoGG4r95g2mw2b7eh+u90OQIi/L6EBuhBM5FgL1iZz7+cbcLrc9GjegDeviSM6TLd0r+vMmtbiLeqv9qvrPdb1/irD4V+jImqVqFFXQy3enMYHK/eW2eYscRPg5ymzU5NQEtLzyuzfcSCPTk1CvFajSF1kGAb/+n47d3yyDqfLzchu0XwyfaACt4iISBWpUaHbMOCJr7fw285MDMNg9d5s3l6xp3S5wElxLfhyXQordmVS7HLz1vLdZNqdjOzWxOTKRWqvwmIXt320lv8u3QnATcPa8erkvidM5RIREZHKq1E/VS/s3oRHHF15ZMEmUnMKaRzqz4zzOjAu1nPx5OD2jXhibDceXrCJtJxCOkSHMndqP8KDyp9eIiLlW703i8e/3sr6/YfwtVp4elwPJvU7+UpAIiIiUnmmh+49z4wu83zygFZMHtCq3NePi40pDeEiUnGGYfD7roO8tHQnvyceBKBBoB+vXdW39CZVIiIiUrVMD90i4h2GYfDz9gxeWrqDNfsOAeBrtXBZnxhuHdGeFhFB5hYoIiJShyl0i9RxbrfB91vSeGnpztJ1YG2+Vq7o14Lpw9rRPDzQ5ApFRETqPoVukTqqxOXmm42pzF66kx0HPEtlBvr5cNXAltwwpC1RWplERETEaxS6ReoYZ4mbBWuTeeXnnew5mA9AqL8v1wxqzXVntyEiWBcei4jUW24XWH3q7vlqMIVukTqisNjFZ/H7eW1ZIsmHCgAID/Lj+sFtmDKoNQ0CdfMFEZF6z+oD86ZBZkL1n6tRR7jszeo/Ty2h0C1Sy+U7S/hw5T5e/yWRA3lFADQK8efGoW2YPKAVwXXwrl4iInIGMhMgdb3ZVdQ7+mksUkvlFhbz3u97eWv5brIcTgCaNQjgpnPaMSmuBQF++jhPRESkplDoFqllsh1O3v5tN2+v2ENeYQkALSOCuGV4O8bFxmDzrVE3mhUREREUukVqjQN5hbz1627e+2Mv+U4XAO2jQrhleDvG9GyGr4/CtoiISE2l0C1Sw6UcKuD1XxL56M99FJW4AejaNIzbRrRnZLcmWK0WkysUERGRU1HoFqmh9h3M59VlO/l8dRLFLgOA3i3CuW1Ee0Z0jsJiUdgWERGpLRS6RWqYnQfyeOWnXXy5PgWX2xO2B7aN4LYRHRjULlJhW0REpBZS6BapIbak5PLyTzv5dlMqhidrM6xjY24d0Z5+rSPMLU5ERETOiEK3iMnW7T/E7KU7WLL1QOm2C7pGc+uI9vSMCTevMBEREakyCt0iJlmZeJDZP+3k1x2ZAFgscHHPZtwyvB2dm4SZXJ2IiIhUJYVuES8yDINfd2Qye+lO/tyTBYCP1cK42ObcfE472jUOMblCERGRWmjTPJh3A/gGHN3W5WIY/7p5NR1HoVvECwzDYMnWA8xeuoP1STkA2HysTIyL4aZh7WgREWRyhSIiIrVY8hrodQWMfcXsSsql0C1SjVxug0WbUpm9dCfb0vIACPCzcmX/Vtw4tC1NGgSc4ggiIiL1mNMOhblHn/v6ex7HS1kL3cZ5r65KUOgWqQbFLjdfrUvh5Z93kpjhACDY5sOUQa25/uw2NAo5yT8YIiIiUkbInDjwM45uGHY/DH+g7IvcbkhdD35B8Nt/wO2CDufD+Y9BYEPvFvwXFLpFqlBRiYt5q5N5ddlO9mcVANAg0I+pg1tz7aDWhAfZTK5QRESk9rBPjyckKurohpONcudnQpOe0PVS6P4u5B+EBTfD/Bth8mfeK/YUFLpFqkCB08XHq/YxZ1kiabmFAEQG25g2pC1XDWxJaICfyRWKiIjUQrYQCDjFil4hUXDdomPeE+QZ5X7jXCjKA//Q6q3xNCl0i5wBe1EJ7/+xlzd/TSTT7gQgOsyf6UPb8bf+LQm0+ZhcoYiISB2Xtgk2fgbnzfSsvwtQ4gSLFXxqzifMCt0ilZCTX8zcFXv432+7ySkoBiCmYSA3n9OOCX1j8PdV2BYREfGKwIbw5xuer2fdCnmp8MMj0PvKk09HMYlCt0gFHLQX8dby3bz7+17sRSUAtG0UzN+Ht+fS3s3w87GaXKGIiEg906A5TP4UljwGv7zgCdrdL4PzHze7sjIUukVOQ3puIa//ksgHK/dSWOwGoHOTUG4Z3p5RPZriY7WYXKGIiEg91vpsmPaD2VX8JYVukb+QllPI7J928OmqJJwuT9juGdOAW4e357wu0VgVtkVEROQ0KHSLnESB08XrvyTy2rJdFBS7AOjXuiG3jujA0A6NsFgUtkVEROT0KXSLHMMwDL5an8Izi7aRmuNZ+q9vq4bcM7ITA9tGmlydiIiI1FYK3SKHrd2XzeNfb2HtvkMANA8P5IFRnRndo6lGtkVEROSMKHRLvZeaU8Bz323ni7XJAATZfPj7Oe2YNqQtAX5a+k9ERETOnEK31FsFThdzftnFa8t2la5IMqFvDPeM7ER0WIDJ1YmIiEhdotAt9Y7b7Zm3/ex3R+dt92vdkP+7uBs9YhqYXJ2IiIjURQrdUq+s2ZfN4wu3sG7/IcAzb/vBUV0Y1aOJ5m2LiIhItVHolnoh5VABz363jS/XpQCeedu3DG/P9We30bxtERERqXYK3VKn5TtLmLMskTm/eOZtWywwsW8Md1/QiSjN2xYREREvUeiWOsntNvhyfTLPLtpOWq5n3nb/1hE8cnFXzdsWERERr1Poljpn9V7PetvrD8/bjmnombd9UXfN2xYRERFzKHRLnZFyqIBnFm3jq/WeedvBNh9uGdGe6wZr3raIiIiYy9TQfdBexPhXV/DM+J6c1c5zi+21+7KZuXALO9LziAi2cduI9lzer2Xpez5fncRLS3dwILeI9lEhzLykG31bNTSrBakB8p0lvLYskdePmbc9qW8L7hrZkahQzdsWERER85kWuuP3ZHHXZ+vZezC/dFtOfjFT567izvM7cmX/lvy5O4sb31tNpyZh9G4Rzu+7DjLzq83MndqPXi3CeWfFHm54N57f7htBoE0jmfWN222wYF0yz363jfTcIgD6t4ng/y7uSvfmmrctIiIiNYfVjJN+vjqJ2z9ex90XdCqzfdGmVBoG2ZhyVmt8fawMat+IS3s3493f9wDwyap9jOnVlLjWEfj5WJk2pC0Ng/xYuCHFhC7ETKv3ZjHuld+489P1pOcW0SIikFcn9+GTGwcqcIuIiEiNY8pI99COjRjbuxm+PlZu+2ht6faEdDudokPLvLZDVAifxCeV7p8UF3Pc/lC2puaWey6n04nT6Sx97nA4ALAXlZBXWHzGvYh3pR4q4MUlO1i0KQ3wrLd949C2XDWgJf5+PtiLSkyuUKqLBQi2WbFYvfepluF24XC6MbxwLqsFgv39vHCmEzmKinF7oUmzelR/Vaeu96j+qkdl+quLP89NCd3lzbN1FJUQdNw0kUCbD/lOz394h7OEIJvvifuLXOWea86cOcyePfuE7efNWgZB4RWsXGqafKeLfy/Zwb+X7DC7FKlm3ZqF8c0/hsC8aZCZUP0nbNQRy2VvcvnrK9icUv4v9lWltD8TTJrzR53uUf1Vnbreo/qrHpXqL/8Q/tVTjmlq1OolgTYfcnPLjj4XOF0EHw7agX4+FBS7TtjfMNxW7jGnT5/O1KlTS5+np6czatQoltw1jOjo6CqsXqqD223w9YZU/vPjDg7keeZtx7VqyL0XdqJL0zCTqxNvsh5Z7TEzAVLXe+28n04f6LURKLPU9R7VX9Wp6z2qv+pRmf7S09MZvbh66jFLjQrdnZqE8uuOjDLbdhyw06lJaOn+hPS84/bnMbxz43KPabPZsNmOhnK73Q5AiL8voQHmfJQrpyd+TxaPf72FDUk5ALSICOShUV0Y2U3rbYv3mDXlw5vqeo/qr/ar6z2qvxM5/GtURK0SplxIWZ4LuzUhI6+It5bvptjlZsWuTL5cl8LEw/O4J8W14Mt1KazYlUmxy81by3eTaXcyslsTkyuXqpSUnc+tH65hwmu/syEphxB/X+6/qDM/zBjGhd2bKnCLiIhIrVOjfo1oGGzj/WkDeGzhFl78IYGIYBuPjunKoHaNABjcvhFPjO3Gwws2kZZTSIfoUOZO7Ud4UPnTS6T2cBSV8OrPu3jj10SKSjzrbV8e14K7LuhE49C6NrNLRERE6hPTQ/eeZ0aXed4zJpx5Nw8q9/XjYmMYFxtT7n6pfdxug/lrk3nuu22l87YHto3gkYu70q2Zlv8TERGR2s/00C3126o9WTy+cAsbkz3ztltGBPHgqC6M7BataSQiIiJSZyh0iyn2Z+XzzHfb+GZDKuC5sPW2Ee25dnBr/H11d1ERERGpWxS6xavsRSW8+vNO3vh1N87D87av6NeSO8/vqHnbIiIiUmcpdItXuN0Gn69J4vnF28k4PG/7rLaRPHJxV7o203rbIiIiUrcpdEu1+3N3Fo9/vZlNyZ67UbWK9MzbvqCr5m1XObcLvHibdK+fT0REpJZS6JZqsz8rn2cWbeObjZ5526H+vtx2bnuuGaR529XG6uPV26Rz2ZvVfx4REZE6QKFbqpy9qIRXftrJm8s987atFriiv2fedqMQzduudl6+TbqIiIicmkJ3NUs+VEC2w0mAnw/+vlYC/HwI8PN89fOpUTcEPWNut8Hnq5N4bvF2Mu2eeduD2nnmbXdpqnnbIiIiUn8pdFejLSm5jPrvr+Xu97FaCCgN4p5Q7n8klPseDefHBnb/0n3H7rfi73v0ff5+J39vgK8V32oK+isTD/L411vYnHJ03vZDo7pwvuZti4iIiCh0V6eoMH/iWjVkf3Y+hcVuCotdFJW4S/e73AYOpwuH0+W1mnytljJB3f8kAf/Y8H786PzxvyTYfK3MW5PEtxvTAM+87X+c24Epg1pp3raIiIjIYQrd1ahRiD+fH3dLe8MwKCrxBPDCYjdFJa7SQF5Y7KKw5Oifi0rcFBUfs7/Ma4++1/P1xNcVHT6e85igX+I2sBeVcHj2R5WxWuBv/VsyQ/O2RURERE6g0O1lFouldKTYW9zuY4J+STlh/7jwXnRcwC88vK/omBH7I8drHh7IjPM70rmJ5m2LiIiInIxCdz1gtVoItPkQaNN0DxEREREz1K3lM0REREREaiCFbqk/3N67YNXUc4qIiEiNo+klUn94826NoDs2ioiISCmFbqlfdLdGERERMYGml4iIiIiIVDOFbhERERGRaqbQLSIiIiJSzRS6RURERESqmUK3iIiIiEg1U+iWo7y9prTWsBYREZF6QksGylHeXMdaa1iLiIhIPaLQLWVpHWsRERGRKqfQXRFul2c0uK6eT0RERKQ2smfAwtthz3JPdup5OVzwJPjUnKhbcyqpDTT9QkRERKTm+XwqhDaFu7aBPR0++hv88TIMvt3sykrVu9DtdrsByMjIqND7rFYrQUFBUFgCRe7qKK2swhKw28nPzy+tuTqV9hfSFiK80F9I27rdH9T9HtVfldLf0Wqg/qpcXe9R/VWxM+jvSE5zF+ZCYdDRHb7+nsexDu6CPb/CndvAFgQRbWDYPfDDozUqdFsMwzDMLsKbNm7cyIQJE8wuQ0REREROYdmlB2gSdExgH3Y/DH+g7Iu2fQNf3gL37Tm6LX0zvDoI7tsLgeHeKPWU6t1Id5cuXfj888+JjIzEatWKiSIiIiI1jdvt5uCBVBp1aFN2Xvbxo9wARXbwCy67zS/Q89XpUOg2i6+vLz169DC7DBERERH5C82aNTu9F9qCoDi/7LbiAs9X/5CqLeoMaKhXRERERGqvqK5QkAX2A0e3ZWyDsOYQ0MC8uo6j0C0iIiIitVdkO2h5Fnx3PxTlQfYeWPY8xF5tdmVl1LsLKUVERESkjrEfgG/vht2/gsUKva6A8x+vUfc7UegWEREREalmml4iIiIiIlLNFLpFRERERKqZQreIiIiISDVT6BYRERERqWYK3ZWQlZXF+eefz8qVK0u3LVu2jLFjxxIbG8sll1zCDz/8ULrP7Xbz4osvMnToUPr27cukSZP4888/S/e7XC6effZZBg0aRGxsLDfffDMHDhzALFXd3xEul4tbb72Vl156ySt9lKeq+8vOzub+++9n8ODB9OvXj2uuuYatW7d6tafjVXWPycnJ3HTTTfTr14+4uDj+/ve/s3//fq/2dKzq+jsK8OKLLzJixIhq7+FUqrrHzMxMOnXqRGxsbOnDzD6ruj+3283s2bMZNmwYsbGxTJw4kbVr13q1p2NVZX8pKSllvm+xsbH07NmTTp061ZkejxxvxowZDBgwgAEDBvD3v/+dlJQUr/Z0rKruLy8vj4cffpizzjqLAQMG8MADD5Cbm+vVno5V0f4Mw+CNN95gxIgR9OnTh2uvvZaEhITS/TUty9RIhlRIfHy8cd555xkdO3Y0/vjjD8MwDGPTpk1Gt27djE8//dQoLi42Vq1aZcTGxpbu/+CDD4xRo0YZaWlphsvlMt5++22jd+/eRmFhoWEYhvHSSy8ZY8aMMVJSUoy8vDzjjjvuMG644YY6059hGEZycrJx3XXXGR07djT++9//mtKbYVRPfzfffLNx4403GllZWUZRUZHx73//2xg0aJDhcDjqTI/jxo0zHnnkEaOgoMDIz8837r77bmPy5Ml1pr8jVqxYYXTr1s0YPny41/s6VnX0uHTpUtP7OqK6/h0dOXKkkZiYaJSUlBhz5swx+vfvbxQVFdWJ/o5VXFxsTJkyxXjwwQe92texqqPH22+/3bjzzjsNh8NhOBwO44477jCmTJlSZ/q75ZZbjAkTJhgpKSmG3W437rzzTuOqq66qNf298847Rv/+/Y3Vq1cbxcXFxrvvvmsMGDDAOHjwoGEYNSvL1FQa6a6AL774grvvvpsZM2aU2b5o0SL69OnDxIkT8fX1JS4ujjFjxvDRRx8BkJiYiNvtxu12YxgGFouFgICA0vd/9tln3HDDDTRt2pSQkBAeeughfvnlF6+PJFZXf7t372bcuHH06tWL2NhYr/Z0rOro78jz22+/nYYNG2Kz2bj++uvJzMxkz5493m6x2r6HH330EY888ggBAQHY7XYcDgcRERFe7Q2qrz/wjAQ//PDDXH21uTdTqK4eN27cSPfu3b3ay8lUR38ul4t33nmHRx55hDZt2uDj48P111/Pm2++WSf6O96rr77KwYMHefTRR6u9n5Oprh537dqFYRilD6vVSmBgoFd7g+rpr6CggB9//JF7772Xpk2bEhwczAMPPMCff/7Jrl27akV/X3/9NVdffTV9+vTB19eXq6++moYNG/Ldd98BNSfL1GS+ZhdQm5x99tmMGTMGX1/fMn9ZXS4XQUFBZV5rtVpJTEwE4IorruDHH3/knHPOwcfHB39/f15//XX8/f3Jy8sjLS2Njh07lr63UaNGNGjQgO3bt9OiRQvvNEf19AfQuHFjlixZQmhoKKtWrfJaP8errv5efvnlMu/97rvvCAoKok2bNtXc0Ymqq8cjX++66y6++eYbGjduzNy5c73T1DGqqz+3283dd9/NDTfcgM1mY/Hixd5r6jjV1ePGjRvJycnh4osvJjMzkx49enDffffRvn177zVH9fS3a9cucnNzyc3NZfz48SQnJ9O1a1ceeOABbDZbre/vWPv27eP111/nvffe83pvR1RXjzfffDMPPfQQffv2BaBVq1a8//77XurqqOroz+FwYBhGmV8irFbPuGdiYiLt2rXzQmcele3vr/bXpCxTk2mkuwIaN26Mr++Jv6ecf/75LF++nMWLF1NSUsLq1av59ttvKSoqAqC4uJj+/fuzaNEi1qxZw7Rp0/jHP/5BRkYGDocD4IS/yAEBAaX7vKU6+gMICQkhNDTUq72cTHX1d6wff/yRJ598kkcffdSUEZrq7vGpp55izZo1XHTRRUyZMoW8vDyv9HVEdfX36quvEhoayhVXXOHVfk6munoMCwujb9++vPvuuyxZsoTWrVszderUOvE9PHToEADvvfceL730EsuWLaNbt25cf/31daK/Y7322msMGzaM3r17e6Odk6quHt1uN5dffjkrV65kxYoVtG3bljvuuMObrQHV019wcDCDBw/mxRdfJCMjA7vdznPPPYePjw+FhYW1or+RI0fy3nvvsXXrVoqLi/noo4/YvXs3RUVFNSrL1GQK3VWgT58+PPfcc8yePZvBgwfz1ltvMX78eMLCwgC49957GTp0KG3btiUgIIBbbrmF0NBQvvvuu9JgVlBQUOaYhYWFBAcHe72XkzmT/mqDqujPMAxeeeUV7r77bp5++mnGjh1rUjcnV1Xfw4CAAIKCgrjvvvvIz8/njz/+MKOdE5xJf6tWrWL+/Pk8+eSTJnfx1870ezhr1izuu+8+IiIiCAkJ4YEHHsDhcBAfH29mW6XOpL8jI7633norzZs3JyAggDvvvBO73c6aNWvMbKtUVfw/6HA4+Oabb5gyZYpZbfylM+kxIyOD+++/n+uvv54GDRoQERHBzJkziY+PZ/v27SZ35nGm38Pnn3+ehg0bcumll3LZZZfRu3dvQkNDS99vtlP1d9111zF27FhuueUWhg8fTmJiImeffTZhYWG1IsvUBJpeUgUOHTpEhw4dWLhwYem2O+64o3T+ZEpKCk6ns8x7fH198fPzo0GDBkRHR7Nz587Sj2WOjNwc+zGNmc6kv9rgTPsrKChgxowZ7Nixgw8++ICuXbt6r/jTdCY9FhYWcumll/L888/Ts2dPwPMxo9vtpkGDBt5r4i+cSX9fffUVWVlZnHvuuYBntKqoqIi4uDhee+014uLivNfIXziTHu12Oy+//DJXXXUVzZs3Bzzfw5KSknLnDXvbmfTXpk0bfH19y+w/dm5wTVAV/44uW7aMiIgI+vXr552iK+hMeszIyKC4uLjM/iOjsTXlZ8mZfg8zMjJ45JFHSv/d3LVrFzk5OTXiWgs4dX/p6elMmDCB22+/HYCSkhJGjBjBuHHjakWWqQk00l0F9u7dy6RJk9i2bRslJSV8++23/PTTT1x55ZUAjBgxgldffZX9+/dTXFzMO++8Q0ZGBsOHDwdg/PjxpfvtdjtPP/00/fv3p2XLlma2VepM+6vpzrS/GTNmkJaWxrx582pk4IYz6zEgIID27dvz/PPPk5WVhcPh4PHHH6d169amfsR9rDPp74knnmDt2rXEx8cTHx/Po48+SrNmzYiPj68xgRvOrMeQkBBWrFjBs88+S15eHg6HgyeeeIKYmJga0+OZ9nfxxRfzz3/+k6SkJJxOJy+88AJhYWEMHDjQ5M48quLf0TVr1tC3b18sFotZbfylM+mxffv2tGjRgqeeegq73V76s7Bnz560bt3a3MYOO9Pv4fPPP88zzzyD0+kkPT2dxx57jNGjRxMZGWlmW6VO1d8333zD3//+d7Kzs3E4HMyaNQubzVa69GhNzzI1gpdXS6kzjl1mxzAM48MPPzSGDx9u9O7d2xg/fryxYsWK0n12u9144oknjCFDhhhxcXHG5MmTjfXr15fudzqdxvPPP28MGTLE6NOnj3HzzTcbmZmZXu3neFXZ37GuuuoqU5cMPKKq+tu0aZPRsWNHo3v37kbv3r3LPFatWuX1vo5Vld/DnJwc44EHHjAGDhxonHXWWcadd95ppKene7Wf41XX39F58+bVmKX1qrLHpKQk45ZbbjH69+9vxMbGGjfddJORlJTk1X6OV5X9FRUVGS+88ELp+6+66iojISHBq/0cr6r/jt54443Gc88957X6T0dV9rhnzx7j5ptvNgYMGGCcddZZxowZM+rUvzOpqanGDTfcYPTt29cYOHCg8dhjjxkFBQVe7ed4FenP6XQaM2fONAYOHGj07dvXmD59urF///4y+2talqlpLIZRQz57ExERERGpozS9RERERESkmil0i4iIiIhUM4VuEREREZFqptAtIiIiIlLNFLpFRERERKqZQreIiIiISDVT6BYRERERqWYK3SIiIiIi1UyhW0RERESkmil0i4iIiIhUM4VuEREREZFq9v9EUkWfOGcFZAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Indeksi viivakaaviona.\n", "# 'C0' viittaa vörikartan ensimmäiseen väriin.\n", "df['Indeksi'].plot(color='C0', figsize=(8, 5))\n", "plt.ylabel('Indeksi', color='C0')\n", "\n", "# Vaakasuuntainen taustaviivoitus.\n", "plt.grid(axis='y', color='C0')\n", "\n", "# Jakoviivojen nimiöt.\n", "plt.tick_params(axis='y', labelcolor='C0')\n", "\n", "# Toinen kaavio, jolla on oma arvoakseli, mutta yhteinen x-akseli indeksin kanssa.\n", "plt.twinx()\n", "\n", "# Myynti pylväinä.\n", "# 'C1' viittaa värikartan toiseen väriin.\n", "(df['Myynti'] / 1000000).plot(kind='bar', color='C1')\n", "plt.ylabel('Myynti miljoonaa euroa', color='C1')\n", "\n", "# Jakoviivojen nimiöt.\n", "plt.tick_params(axis='y', color='C1', labelcolor='C1')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lisätietoa\n", "\n", "Seuraavassa osassa 4/7 opit laatimaan usean kaavion yhdistelmiä:\n", "\n", "- [Usean kaavion yhdistelmä](https://github.com/taanila/kaaviot/blob/master/matplotlib4.ipynb)\n", "\n", "Löydät kaikki muistiot osoitteesta https://tilastoapu.wordpress.com/python." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.9" } }, "nbformat": 4, "nbformat_minor": 4 }