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ABSTRACT
In this paper, we describe a general learning architecture
for object detection especially car detection. In order to
build such a system, we first perform dimension reduction
for each example by using maximizing mutual information
criterion. The algorithm directly selects projection basis
from examples which can minimize Bayes error. This algo-
rithm is named as Maximizing Mutual Information(MMI)
method. Given projection basis, all of examples are pro-
jected onto these basis and then trained by Support Vec-
tor Machine(SVM). This approach can be applied to any
object with distinguishable patterns. In test process, we
find objects in a image by using our exhaustive search al-
gorithm which is called a Scale based Classifier Activation
Map(SCAM). We applied our detection scheme into UIUC
car/non-car database[2]. In this experiment we detect 181
cars in 170 images with 200 cars. This result is competitive
comparing with other papers[1, 12].

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Application

General Terms
algorithm, performance, experimentation

Keywords
object detection, maximizing mutual information, dimen-
sionality reduction, exhaustive search

1. INTRODUCTION
In surveillance system or mobile robot application, basi-

cally it is crucial to detect interesting or suspicious objects
correctly. The main process of object detection system par-
titioned into both feature extraction and searching objects.
The feature extraction process can be further categorized
into a sort of methods based on the representation. Inten-
sity based method is conventionally used for detect object
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such as human face[11, 13] or eigenvector and corresponding
coefficient by using Principle Component Analysis(PCA) is
used for object model[5]. Gradient also commonly applied
for representing objects. [6, 17] use Histogram of Oriented
Gradients(HoG) as their feature descriptor and then train
a classifier to detect objects. Shape based representation
that uses Active Shape Model(ASM) is also proposed by
[14]. In this paper, mutual information based feature ex-
tractor is applied for feature descriptor as if [5] make use
of PCA as their feature extractor. In general, mutual infor-
mation based descriptor shows more discriminative power
than PCA[12, 15]. Searching objects in a image is another
main process in order to detect object. This process inher-
ently rely on feature extractor and classifier so that there is
no generally applicable methods. We therefore introduce an
efficient detection scheme named as Scaled based Classifier
Activation Map(SCAM). The idea conceptually based on
ensanble classifier which means aggregation of classification
result corresponding weak classifiers gives more discrimina-
tive power comparing with the result of each classifier. The
remainder of this paper is organized as follows. Overview of
the approach is mentioned in section 2. Details of dimen-
sionality reduction methods and how to tune important pa-
rameters in Support Vector Machine(SVM) training process
are explained in section 3 and section 4, respectively. In
section 5, we propose our exhaustive search algorithm and
show that how to works. Section 6 is devoted to presenting
the experimental result of our car detection system as well
as the experimental configuration. Finally, we conclude our
approach and leave aspects of improvement in future work
in section 7.

2. OVERVIEW OF THE APPROACH
Our example based learning approach can be divided into

4 processes; Each process is explained briefly as follows:

1. Preprocessing : Training examples need to perform il-
lumination gradient correction and histogram equal-
ization so that they can reduce lighting components,
heavy shadow and compensate for differences in illumi-
nation, brightness, and camera gamma curve, respec-
tively[11]. It is used for mining pure pattern reducing
noise and illuminance.

2. Feature Extraction : A original training example in
general represented by tremendously high dimensional
vector so that it may contain noisy components which
have a bad influence on classification task as well as it
requires to spend large amount of time on processing or
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even it is impossible to handle. We therefore perform
dimensionality reduction using a criterion which is to
maximize mutual information between class label and
feature vector.[12] Because this criterion assures min-
imizing Bayes error, the algorithm reduces dimension
of each training example with high separability.

3. Training a classifier : Well trained classifier influences
the classification result directly. It is mandatory that
we tune all parameters related to the classifier. In our
case, we make use of Support Vector Machine(SVM)
and thus we should determine kernel type, kernel op-
tion and slack variable as well as the optimal number
of dimension. There is no analytic way to determine
such parameters so that we tune these parameters in
empirical manner.

4. Searching object in a image using trained classifier :
After training classifier, we proposed a detecting scheme
which is called Scale based Classifier Activation Map
(SCAM). In this scheme, it is commonly acceptable
that although searching window is not exactly matched
to the object, evaluated value by the trained classifier
is amount of positive value in case that there are an
object in arbitrary position at the window. In each it-
eration, we apply scaled window(actually fixed size of
window but scaled image) to find objects in whole im-
age. If the object is in the window per each scale, then
the evaluated value is to be positive and this value is
cumulated to the map at corresponding position and
size of the window. After searching the object with
variously scaled window, we normalize this map whose
peak value is to be one. And then by thresholding this
map in a certain value, we can detect the object.

3. FEATURE EXTRACTION
Extracting feature efficiently is very important problem

in computer vision as well as machine learning and pattern
recognition area. If we use whole image vectors in training
process, there may be noisy features that disturb reducing
Bayes error rate. We therefore need to reduce input dimen-
sion especially considering discriminative property. However
in practice reducing too many dimensions can return unde-
sirable result. Reducing too less dimension also can give a
problem because we in general have limited number of sam-
ples and thus it occurs “curse of dimensionality”. Therefore,
we should find optimal number of dimension empirically
by using efficient feature extraction method. The method
should be able to transform original data into compact and
discriminative feature. In order to meet both requirements,
we make use of relative entropy between joint probability
of class label and feature value, and product of both mar-
ginal probabilities with respect to these two random vari-
ables. It is known as mutual information. The theoretical
background is explained in following section.

3.1 Mutual information
Suppose continuous random variable yi ∈ Y, where Y ∈

R
d, and class labels ci ∈ C, where C = {1, 2, . . . , Nc}, i =

[0, N ]. Nc, and N is the number of classes and samples,
respectively. In Shannon’s definition, information is referred

to as uncertainty and its expected value is known as entropy

H(c) = −
�
c∈C

p(c) log p(c) (1)

Assume that we draw one sample in Y at random. And
then the uncertainty in terms of class prior probability is
formulated as (1). If we observe continuous random variable
y, then this entropy is to be conditional entropy

H(c|y) = − �
y∈Y

p(y)
��

c∈C p(c|y) log p(c|y)
�
dy

= −�c∈C

�
y∈Y p(c,y) log p(c|y) (2)

The mutual information I(C, Y ) is defined as

=
�

c

�
y

p(c,y) log p(c,y)
p(c)p(y)

dy (3)

= −�c

�
y

p(c,y) log p(c)dy − �−�
c

�
y

p(c,y) log p(c|y)dy
�

= H(C) − H(C|Y ) (4)

It easily can be derived such that (4), via simple Bayes rule.
It means the amount of entropy in terms of class label re-
duced by conditional entropy is referred to as mutual in-
formation. (3) is analogous to Kullback-Leibler divergence
so that it can be interpreted as distance measure between
joint distribution with respect to c, y and product of each
marginal distribution of these two random variables. It is
noticeable fact that if the amount of (3) becomes close to
one, the random variables c and y become more statistically
dependent each other. This phenomenon therefore quite in-
tuitively say that if we can maximize mutual information,
then these two random variable c and y can be statistically
related to each other which we desire. One thing remarkable
is that if we only want to maximize(or minimize) I(C, Y ), it
is alternatively sufficient to minimize(or maximize) H(C|Y )
stated in (2), since the expected uncertainty of class label,
H(C) is the same which is independent of y.

3.2 Relation between mutual information and
Bayes error rate

Relation between mutual information and Bayes error is
given by Fano[7] and Hellman,Raviv[8] such that

H(C) − I(C, Y ) − 1

log m
≤ Pe(Y ) ≤ 1

2

�
H(C) − I(C, Y )

�
, (5)

where Pe(Y ) is classification error. And m is the number
of classes. These Bayes lower and upper error bounds com-
monly represent the fact that maximizing mutual informa-
tion with respect to class label C and feature Y can optimize
Bayes error, directly. It is key role in justifying the usage of
I(C,Y ) as a proxy to classification error.

3.3 Dimensionality Reduction
In this section, we explain the method of computing trans-

formation function which performs dimensionality reduc-
tion with compaction and discrimination by using a crite-
rion that maximizes mutual information between class label
and feature value. There are two major algorithms con-
ducting dimension reduction by using information theoretic
criterion[12, 15]. One is to select transform basis maximiz-
ing mutual information from training examples directly[12].
The other is to find rotation parameter with respect to all
examples using gradient ascent method[15]. These two algo-
rithms commonly use information theoretic criterion, how-
ever, their approach is quite different. In this paper, we use
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Figure 1: An illustration of Maximizing Mutual Information(MMI) method

Figure 2: Examples of training database which rep-
resent two people’s face

the former which is depicted in figure 1. First of all, we
perform min-max normalization for all training examples in
which values are ranged from 0 to 1. The training examples
then are transformed into a feature space such that

fT
i = xT

i · X, for all i ∈ {1, . . . , N}, (6)

where xi is ith example, X is total examples in R
din×N , din

is a dimension of original training example and N is total
number of training images. We compute joint probability
between this transformed feature value fi and class label
c. And then both distributions p(fi) and p(c) can be com-
puted straightforwardly by marginalizing this joint proba-
bility with respect to these two random variables. These
three distributions, p(fi, c), p(c) and, p(fi), are used for com-
puting mutual information formulated in (3). Among this
I(fi, c) for all i ∈ {1, . . . , N}, we select ith example which
is the maximum value of I(fi, c). This ith example is the
most suitable for minimizing Bayes error. The reason that
we select ith example is already justified in (4). This se-
lected example of course should be normalized such that
gi = xi/||xi||. And then all remaining examples should be
orthogonalized with respect to the selected basis gi such that

xN\i = xN\i −
�
xT

N\igi

�
gi (7)

(6) can be think of as approximation to the orthogonaliza-
tion between selected basis and reminder of total examples,
xN\i. This process may be fused by random projection.[3,
10]. It means all selected basis gi may be orthogonalized by
the Gram-Schmidt process. All of the consecutive processes

Figure 3: Demonstration of dimensionality reduc-
tion using Maximizing Mutual Information(MMI)
and PCA. Left-top: Dimension reduction using
MMI. Right-top: Dimension reduction using PCA.
Left-bottom: first and second basis computed by us-
ing MMI. Right-bottom: first and second basis com-
puted by using PCA

are iterated until we get d number of basis. The d is the
number of reduced dimension such that din >> d. As we
know in figure 1, total complexity of the Maximizing Mu-
tual Information(MMI) method is O(dn2) because in order
to transform original data into a feature space, we needs
O(n2) times and this process is repeated up to d times.
In figure 3, we demonstrate the effectiveness of maximiz-
ing mutual information criterion. In this demonstration, we
trained 600 images which represent two people’s face that
is shown in figure 2. It contains various pose and illumi-
nance. The original training examples in R

64×48 space are
transformed into R

2 feature space that is plotted in figure
3. In figure 3, we can easily recognize that dimensional-
ity reduction using maximizing mutual information outper-
forms comparing with Principle Component Analysis(PCA).
In this case, the first and second basis generated by MMI
which represent each of classes are more desirable than the
first and second basis of PCA. It is quite nature because

41



Figure 4: Demonstration of dimensionality reduc-
tion Left: Dim. reduction using MMI. Right: Dim.
reduction using PCA.

Table 1: Classification result(%) as changing the
number of reduced dimension

Dimension 1 2 4 8 16 32 64
PCA+SVM 57.0 65.2 86.0 88.0 93.0 94.0 80.4
MMI+SVM 80.2 86.2 88.8 91.0 93.8 97.0 67.6

Principle Component Analysis(PCA) only considers maxi-
mizing variance of training data. However, Maximizing Mu-
tual Information(MMI) considers not only compaction but
also minimizing classification error. In figure 4, we also ap-
ply MMI method to the Landsat image database in UCI
Machine Learning Repository[16]. The result shows the fact
that MMI method is more effective than PCA as well.

4. TRAINING A CLASSIFIER
When training a classifier, we should tune the optimal

number of dimension and certain parameters used for clas-
sifier. In our system, we use Support Vector Machine(SVM)
implemented by [4] as our classifier. In such a case, we
should tune parameters such as kernel type, correspond-
ing kernel variables and slack variable as well as the op-
timal number of dimension. In our system, we take Ra-
dial Basis Function(RBF) kernel and corresponding kernel
variance(σRBF ) is 2.5. And soft margin variable is set to
100. These parameters are selected empirical manner. And
the optimal number of dimension also is selected experi-
mentally. In order to set optimal number of dimension, we
trained original UIUC car/noncar database.[2] This data-
base contains 500 car images and 500 noncar images whose
dimension is R

20×50. Half of the images are used for training
and reminders of the images are used for testing. Table 1
and figure 5 shows the result of classification rate and corre-
sponding Bayes error rate as varying the number of reduced
dimension, respectively. In figure 5, we can recognize that
MMI in general is more effective than PCA. One thing no-
ticeable is that PCA shows better Bayes error rate in 64
dimension because the amount of mutual information corre-
sponding each basis is reduced gradually as shown in figure
6. Thus we can know that basis vector that represented by
small amount of mutual information is of no use for classifi-
cation task.

5. SEARCHING OBJECT IN A IMAGE
USING TRAINED CLASSIFIER

In this section, we discuss on an efficient detection scheme.
Detection process depicted in figure 7 is referred to as an
aggregation of all classification results which can be com-
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puted by moving detection window with variously scaled
size. This process substantially need to so many matching
trials(classification). Although we train a classifier with a
fancy algorithm, detection result may be pool in real appli-
cation since in order to detect a certain object in a image we
may try to evaluate up to thousands of time depending on
several factors such as image size, scaling factor, searching
interval and so on. In short, even thought we achieve 99%
of classification rate, in detection process we statistically
fail to detect objects 10 times in case we perform a thou-
sand of trials(SVM evaluation) in a image. Consequently,
at the detection perspective, 99% of classification rate is
not outstanding at all. Detection process thus is critical as
well as training process. We hence introduce an efficient
detection scheme named as Scale based Classifier Activa-
tion Map(SCAM). In this scheme, we in advance know the
fact that although searching window is not exactly matched
to the object, evaluated value by the trained classifier is
amount of positive value. It plays a key role in sustaining
our SCAM method. The SCAM method can be formulated
as follow

M(i, j) = sig

	
1

C

T�
k

(skH−h)�
i

(skW−w)�
j

y(nij)



, (8)

where nij is a window vector positioned at i, j in a scaled
image. T is a number of classification stage corresponding
image scale. sk is scale parameter corresponding stage k.
H and h are height of original image and the window, re-
spectively. W and w are width of original image and the
window, respectively. C is normalization constant makes
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Figure 7: An illustration of the general detection
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the peak value of the cumulated map is to be one such that

C = max

	
T�
k

(skH−h)�
i

(skW−w)�
j

y(nij)



(9)

And y(nij) is a degree evaluated from trained Support Vec-
tor Machine(SVM) with respect to the window, nij . Figure
8 illustrates an example of our detection scheme. The win-
dow, nij moves its position toward horizontal(indexed by j)
and vertical(indexed by i) direction in order to find object
in whole image with scale factor, sk depicted in second row
of figure 8. The reason we need to scale the original image
is that there is no way to estimate the size of the object we
want to detect. Then the evaluated value by trained SVM is
cumulated at the corresponding position and size of window
providing that the evaluated value is positive. The third
row-right of figure 8 shows an example of the result. Fi-
nally, by normalizing and thresholding the cumulated map
sequentially, we can get SCAM result as depicted in third
row-left of figure 8.

6. EXPERIMENT
We applied our detection scheme into UIUC car/non-car

database[2]. This database contains 500 car and non-car im-
ages, respectively. And each training example shows 4000
dimensions. We resized all training examples to 1000 di-
mension that aims to reduce noisy pixel as well as dimen-
sionality. These examples are used for training our car de-
tection system. In test images, the UIUC car/non-car data-
base contains 170 images with 200 cars. The detection rate
metric is number of correct positive

total number of car in the data set
. By using the met-

ric, our detection scheme shows 92.5% of correct detection
rate. Corresponding false positive rate is 0.05% which is
calculated by the metric, number of false positive

total number of negatives in the data set
.

Some examples of detection result are shown in figure 10.
And our method was successfully applied to automated car
detection system. There are several video clips of our de-
tection result in real application which is posted in http :
//home.postech.ac.kr/∼ taey16/publication/carDetection.htm.
We demonstrated that our method practically can be used
for detecting car in videos as well as still images. Several
still images of detection result of automated car detection
system is shown in figure 11.

Normalization &
Thresholding

Masking

Figure 8: An example of detection result. 1st row:
Original image. 2nd row: Searching an object with
variously scaled image. 3rd row-left: Cumulated
searching result. 3rd row-right: SCAM. Bottom:
Detection result.
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Reject with
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Figure 9: Our SCAM method at the point of ensan-
ble classifier
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7. DISCUSSION AND CONCLUSION
We introduced an effective searching scheme in a image.

Theoretically, our algorithm is motivated by an ensanble
classifier. In other words, classifier in a certain scaled image
is referred to as a weak classifier conceptually. The result of
weak classifiers in each scale is aggregated so that we can get
more accurate result which is illustrated in figure 9. In order
to achieve more desirable result, it may be good to combine
both our method and component based approach introduced
by [1, 9]. This component based approach basically assume
that each component shows little variation comparing with
whole object itself as varying camera pose or illuminance.
Therefore this approach can be applied to our system suc-
cessfully. In this work, we only focused on the application
to the car detection however it may be applicable to detect
human, since it can discriminate any objects showing sepa-
rable patterns. Challenging goal of our research in feature is
to detect car and human in an application simultaneously.
Another thing we want to discuss is time complexity. The
dimension reduction method we used shows O(dn2) time
complexity. It can be a problem in real application in case
that we have lots of training examples we should train. In
order to reduce time complexity, the method which is used
for large scale Support Vector Machine(SVM) can be com-
putationally practicable.
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Figure 10: UIUC image database; Examples of detection result using Scale based Classifier Activation
Map(SCAM)
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Figure 11: Real road database; Some detection results of automated car detection system
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