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Abstract

This paper proposes a pose robust human detection
method for sequences of stereo images using four direc-
tional 2D elliptical filters (4D2DEFs), which can detect hu-
mans regardless of scale and pose. Four 2D elliptical fil-
ters with specific orientations are applied to a 2D spatial-
depth histogram, and threshold values are used to detect
human candidates. These candidates are verified by either
detecting the face or matching head-shoulder shapes. Ex-
perimental results show that human detection using the pro-
posed method outperforms that of using the existing Object
Oriented Scale Adaptive Filter (OOSAF) by 15∼20%, es-
pecially in the case of posed humans.

1. Introduction

Human detection is an essential task for Human-Robot-
Interaction (HRI). Because intelligent robots should co-
exist with humans in a human-friendly environment, they
must be aware of humans in their proximity, and identify
them.

There are a variety of human detection methods using
a single camera. Tuzel et al.[7] proposed a covariance
descriptor-based human detection method, where humans
can be detected when their whole bodies appear in an im-
age. However, in mobile robot applications, we can not em-
ploy this algorithm because it is common to have their faces
and torsos only. Qiang Zhu et al.[8] integrated the cascade-
of-rejectors approach with histograms of oriented gradients
(HoG) features to achieve a fast and accurate human detec-
tion system. However, it only worked for detecting whole
bodies. Mikolajczyk et al. [6] proposed the part based hu-
man detection method, which was robust to detect partially
occluded humans. However, this method needed to train
each of human body parts independently, and to search them

at several scales. This required to a huge amount of compu-
tation time, which was not suitable for using their method
in mobile robot environment. Andriluka et al. [1] proposed
the human detection and tracking method using a hierarchi-
cal articulation model of human body, which was based on
a hierarchical Gaussian process latent variable model (hG-
PLVM). Their approach used prior knowledge on possible
articulations and temporal coherency of a walking people
for a probabilistic gait modeling. However, it may fail to
detect standing people.

There are a variety of human detection methods using
a stereo camera. BGavrila and Munder [2] proposed the
stereo-based pedestrian detection from a moving vehicle,
which detected ROI of humans using shape template from
the sparse disparity map, and then verified the detected
result using texture-based neural network classifier. This
method also used tree-based hierarchical shape-templates
for each pose, which provided the robustness of rotation
off-plane (ROP). However, this method was proposed for
detecting the people far away from an autonomous navigat-
ing vehicle. Li et al. [5, 4] designed the Object-Oriented
Scale-Adaptive Filter (OOSAF) and segmented the human
candidates by applying the OOSAF whose filter parameter
was changed in accordance with the distance between the
camera and the human. They verified human candidates us-
ing template matching of the human head-shoulder. Their
approach showed a good human detection rate and was suit-
able for a mobile robot platform because it did not use back-
ground subtraction and allowed to detect even upper-body
of a human. However, it had a poor human detection rate
when the humans were not facing the front.

We propose a pose robust human detection method of
a sequence of stereo images in a cluttered environment in
which the camera and the human are moving and the illumi-
nation conditions change. Fig. 1 outlines the proposed hu-
man detection system. It consists of consecutive two mod-
ules: human detection and human verification.
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Figure 1. The proposed human detection sys-
tem.

This paper is organized as follows. Section 2 describes
the proposed 4D2DEFs for human detection, and verifica-
tion using face detection and the head-shoulder template
matching. Section 3 shows the experimental results of the
human detection performances in terms of the accuracy of
the estimated human rotation, human detection rate. Fi-
nally, section 4 presents our conclusions.

2 Human Detection and Verification

The OOSAF[5, 4] extracted humans by using a scale-
adaptive filter whose adequate scale varied according to the
distance between the human and the camera. The OOSAF
performs the convolution of the 2D spatial-disparity his-
togram H(xd, d) with the scale adaptive filter along the xd

axis (i.e., horizontal direction of H(xd, d)), where the his-
togram H(xd, d) was obtained by projecting the disparity
map D(x, y) along the y axis (i.e., vertical direction of the
disparity map).

This convolution causes several problems as follows.
First, two coordinates xd and d have different natures be-
cause they represent the position and disparity, respectively.
Second, the size parameter of the scale adaptive filters
should be changed according to the distance between the
human and the camera. Third, the disparity is inversely pro-
portional to the distance between the human and the camera.
These problems can be avoided by using the proposed 2D
spatial-depth histogram H(xz, z) that can be obtained by an
appropriate transformation as follows.

Let xd and d be the horizontal spatial coordinate and
the disparity coordinate in the 2D spatial-disparity his-
togram H(xd, d), respectively, and xz and z be the hori-
zontal spatial coordinate and the depth coordinate in the 2D
spatial-depth histogram H(xz, z), respectively. Then, the
2D spatial-depth histogram is obtained from the 2D spatial-
disparity histogram by a scale change and translation be-
tween two coordinates as

H(xz, z) = H(xd, d), (1)

d =
CBCF

pz
, (2)

xd =
CF

pz
xz + cxd

, (3)

∴ H(xz, z) = H

(
CF

pz
xz + cxd

,
CBCF

pz

)
, (4)

where cxd
is the center of spatial axis xd of the 2D spatial-

disparity histogram, CF is the focal length of the stereo
camera, CB is a baseline of the stereo camera, and p is a
pixel width. In our case, we set CF , CB , and p to 3.8 mm,
120 mm, and 4.65 μm, respectively. Fig. 2 shows several
different images: (a) the original color image obtained from
a camera, (b) the disparity map obtained from a stereo cam-
era, (c) the 2D spatial-disparity histogram and (d) the 2D
spatial-depth histogram.

(a) Original image (b) Disparity map

x

d

(c) Spatial-disparity
histogram

x

z

(d) Spatial-depth
histogram

Figure 2. Some examples of different images.

Another problem of the existing OOSAF is that it does
not work well when the human is rotated from the frontal
direction. Thus, a new pose-robust 4D2DEF is proposed
which executes the convolution over the 2D spatial-depth
histogram. It has the following properties: 1) the shapes are
2D ellipses that mimic the contour of the human body in
the 2D spatial-depth space, 2) their weights are decreased
smoothly along the normal direction of the body contour,
and 3) they are oriented at 0◦, 45◦, 90◦, and 135◦. The fil-
ter whose orientation matches the human pose the best is
selected to segment the human candidates. The estimated
rotation of the human pose is also used as a cue for the hu-
man verification. A detailed explanation of how to design
the proposed 4D2DEF is given below.
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2.1 Four Directional 2D Elliptical Filter

The proposed 4D2DEF has an elliptical shape that re-
sembles the body contour of a human:

x2(
W
2

)2 +
z2(
T
2

)2 = V, (5)

where W and T are the average width and thickness of hu-
man bodies.

The proposed 4D2DEF has a 2D kernel function
F (x, z):

F (x, z) =

⎧⎨
⎩

V if 0 ≤ V ≤ 1,
2 − V if 1 < V ≤ 2,
0 otherwise.

(6)

The 2D kernel function F (x, z) represents the weight val-
ues of the 4D2DEFs, which is maximal (=1) on the contour
of the ellipse and it decreases as the (x, z) moves away from
the contour.

The proposed 4D2DEF contains an oriented 2D elliptical
filter to cope with the rotation of the humans. The shape of
the filter rotated by an angle θ can be represented by

(x cos θ + z sin θ)2(
W
2

)2 +
(−x sin θ + z cos θ)2(

T
2

)2 = Vθ. (7)

Similarly, the 2D kernel function Fθ(x, z) of the oriented
2D elliptical filter can be represented by

Fθ(x, z) =

⎧⎨
⎩

Vθ if 0 ≤ Vθ ≤ 1,
2 − Vθ if 1 < Vθ ≤ 2,
0 otherwise.

(8)

Then, the designed 2D kernel function is normalized
such that the sum of the 2D kernel function is 1 in order
to keep the sum of the filtering results as the same. Fig. 3
illustrates the 2D kernel functions of the four directional 2D
elliptical filters rotated by 0◦, 45◦, 90◦, and 135◦. As shown
in Fig. 3, only half of the 2D kernel functions are shown be-
cause the camera can only see the front of the person.

Fig. 4 shows the filtered results that are obtained by the
convolution of the spatial-depth histogram (Fig. 2-(d)) with
the four oriented 2D elliptical filters (Fig. 3) as

Ψθ(x, z) = H(x, z) ∗ Fθ(x, z), (θ = 0, 45, 90, 135), (9)

where ∗ is a convolution operator, and Fθ(·, ·) is the 2D
kernel function.

2.2 Human Candidate Segmentation

After obtaining the filtered spatial-depth histograms
Ψθ(x, z), the human candidate segmentation is performed
as follows.

(a) F0. (b) F45. (c) F90. (d) F135.

Figure 3. Four directional 2D elliptical filters
with four type of poses.
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Figure 4. Example of filtered results using
four different 2D kernel functions.

(a) Filtered 2D spatial-depth
histogram Ψθ(x, z).

(b) 1D depth his-
togram Hθ(z).

90

(c) 1D spatial histogram
Hθ(x).

90

(d) 1D depth his-
togram H′

θ(z).

Figure 5. Several histograms used for the hu-
man candidate segmentation.
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First, a 1D depth histogram Hθ(z) is obtained by pro-
jecting Ψθ(x, z) along the spatial axis. (Fig. 5-(b)) The
value on the 1D depth histogram corresponds to the area of
the human body’s X-Y cross section.

Second, the value of Hθ(z) is scanned along the depth
direction and the front-end of the human body is found by
using the inequality

Hθ(z) > τθ, (10)

where τθ is a threshold that is determined appropriately as
τθ = 1

5Aθ. Here, we use the subscript θ to clarify that the
threshold is a function of the orientation of the filter and Aθ

is the average cross section area of human bodies of a spe-
cific rotation angle θ. Preliminary experiments showed that
a value of 1

5 gave the best results. The depth that satisfies
the inequality first is denoted as the front-end depth z̃f . The
back-end of the human body z̃b can be obtained as

z̃b = z̃f + T,

where T is the average thickness of a human body.
Third, the 1D histogram Hθ(x) is obtained by project-

ing Ψθ(x, z) along the depth axis within [z̃f , z̃b], as shown
Fig. 5-(c). The position whose Hθ(x) value is maximal is
considered to be the center xc of the body. We estimate the
left-end x̃l and the right-end x̃r of a body as

x̃l = xc − ξ × W, (11)

x̃r = xc + ξ × W, (12)

where W is the average width of the human body and ξ
is a width factor. We set it to 0.4 rather than 0.5 in order
not to merge two adjacent people into one in the disparity
map. The front-end, back-end, left-end and right-end make
a bounding box where the human body is plausibly located.

Fourth, the 1D depth histogram H ′
θ(z) is computed by

projecting Ψθ(x, z) along the spatial axis within [x̃l, x̃r]
(Fig. 5-(d)), and the true front-end zf and the true back-
end zb are obtained by finding the sign changing point of
the slope of H ′

θ(z) within the interval of [z̃f , z̃b] along the
depth direction, starting from the peak value of H ′

θ(z). Sim-
ilarly, the true left-end xl and the true right-end xr are ob-
tained by finding the sign changing point of the slope of
H ′

θ(x) within the interval of [x̃l, x̃r] along the spatial direc-
tion, starting from the peak value of H ′

θ(x). The true front-
end, back-end, left-end, and right-end make a true bounding
box where the human body is really located.

Finally, the current segmented human body is extracted
from the filtered spatial-depth histogram Ψθ(x, z) by setting
all values within the current bounding box to zero. This
process will be repeated until all humans are found.

The above section has explained how to segment the hu-
man candidates using one 2D elliptical filter. All of the

above procedures are repeated for the other differently ori-
ented filters. This is advantageous because while one spe-
cific filter may fail to segment a human the other filters may
succeed. Fig. 6 shows a typical example of the human
candidate segmentation result, where the left and the right
sub-figures are the segmented human body within the true
bounding box in the Ψθ(x, z) and the corresponding human
body in the disparity map, respectively.

(a) The seg-
mented human
body in the
Ψθ(x, z).

(b) The corre-
sponding human
body in the dis-
parity map.

Figure 6. A typical example of the human can-
didate segmentation method.

2.3 Human Verification

2.3.1 Human Verification using Face Detection

Before the face detection is performed, the head candidate
segmentation is performed using the method of Li et al.
[5] within the bounding boxes of the segmented human
candidates. Then, face detection is performed using the
Adaboost-based face detector [3] in the region of the head
candidates. If a face is found, the segmented human can-
didate is a real human. However, the face detector cannot
find the face when it is not frontally posed. This problem is
solved by head-shoulder shape matching.

2.3.2 Human Verification using Head-Shoulder Shape
Matching

We perform human verification using Active Shape Model
(ASM) based scale invariant matching. To surmount rota-
tion off-plane pose variation, we trained 4 head-shoulder
shape models correspond to the specific orientations ( 0·,
45·, 90·, and 135· ). We use Mahalanobis distance for effi-
cient feature matching.

3 Experimental Results and Discussion

Our experiments used four different types of image se-
quences. TYPE1 image sequences consisted of four im-
age sequences where each image sequence consisted of one
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human moving back and forth with arbitrary human poses.
TYPE2 image sequence consisted of two image sequences
where each image sequence consisted of three humans who
were moving back and forth with arbitrary human poses and
were allowed to overlap with each other. TYPE3 image se-
quences consisted of four image sequences where each im-
age sequence consists of one human moving back and forth
with four different human poses. TYPE4 image sequences
consisted of two image sequences where each image se-
quence consisted of one human moving back and forth un-
der the clutter background environment.

The proposed human detection system was implemented
on a PC platform with 3.4GHz Pentium-4 CPU and 2GB
RAM.

3.1 Human Detection

We measured the human detection method performance
using four different types of images sequences: TYPE1,
TYPE2, TYPE3, and TYPE4. We defined the detection ac-
curacy fd by the ratio of the number of detected humans Nd

over the total number of humans Nt as fd = Nd

Nt
, where Nd

and Nt was counted manually by human’s visual inspection.
Table 1 compares the human detection performances of

the existing OOSAF and the proposed 4D2DEF using the
TYPE1 image sequence. It shows that (1) the human de-
tection rate of the proposed 4D2DEF is higher than that of
the existing OOSAF by almost 20%, and (2) the face detec-
tor is not effective at improving the human detection rate in
the case of the TYPE2 image sequence because the image
sequence does not contain frontally posed face images.

Table 1. Comparison of human detection
rates (%) between the OOSAF and the
4D2DEF using the TYPE1 image sequence.

OOSAF 4D2DEFs
Without With Without With

face detection face detection face detection face detection

Sequence 1 73.25 75.58 96.05 96.05
Sequence 2 75.27 75.27 90.63 90.63
Sequence 3 75.00 75.50 96.50 97.00
Sequence 4 77.57 79.00 91.41 93.08

Average 75.27 76.34 93.65 94.19

TYPE2 image sequences show three human’s walking.
The detection of multiple humans has an additive problem.
When the humans are overlapped while moving, the ex-
tracted shape of the human candidate can not be obtained
exactly. In this case, the face detection method shows its
ability to verify humans.

Table 2 compares the human detection performances of
the existing OOSAF and the proposed 4D2DEF using the
TYPE3 image sequence. The human detection rates of the
4D2DEF are higher than those of the OOSAF. However, the
human detection rates using the TYPE2 image sequence are
less than those of using the TYPE1 image sequence, be-
cause there are some detection failures when two humans
overlap each other. The human detection rate for the image
sequence 2 is poorer than that for the image sequence 1,
because image sequence 2 has a higher frequency of over-
lapped humans. The human detection accuracy with the
face detector increases a little rather than that of without
face detector in the case of the TYPE2 image sequence,
because the face detector is more effective than the shape
matching method for human verification when the humans
overlap.

Table 2. Comparison of human detection
rates (%) between the OOSAF and the
4D2DEF using the TYPE2 image sequence.

OOSAF 4D2DEFs
Without With Without With

face detection face detection face detection face detection

Sequence 1 70.70 73.18 92.09 94.19
Sequence 2 65.16 66.04 88.28 89.38

Average 67.93 69.61 90.19 91.79

Figure 7. Examples of the distant human de-
tection results.

If the proposed human detection method is applied for
the human robot interaction (HRI), it should be work even
when the camera (i.e., robot) is far away from people. Fig.
7 shows that the proposed algorithm can detect humans al-
though they are far from the camera, up to 4 meters, where
the figures below the detected humans are the estimated dis-
tance between the camera and the people. The distance (Z)
was obtained by following equation Z = CBCF

pd , where CB

is a baseline and CF is a focal length of the stereo camera,
d is a disparity value positioned at the center of the detected
human, and p is a pixel width. As the human is far from
the camera (i.e., robot), the size of human decreases. This
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makes the human detection difficult, because the small hu-
man size decreases the amount of detailed information for
stereo matching. Moreover, it makes the human face detec-
tion and the head-shoulder shape matching for human ver-
ification difficult. If the human is too close to the camera
(i.e., robot), the size of the human increases. This makes
the human detection slow, because the large size of human
increases the stereo matching time. Therefore, there is an
appropriate distance range that the proposed human detec-
tion method works, i.e., from 1 to 4 meters.

Figure 8. Examples of the human detection
results in spot-like illuminations and clut-
tered background conditions.

Basically, the proposed human detection method does
not use any background information at all. This makes
our algorithm insensitive to cluttered background environ-
ments. We carried out the human detection task under spot-
like illuminations and clutter background conditions using
the TYPE4 image sequence. Fig. 8 shows the human detec-
tion results, which proves that the proposed human detec-
tion method still works well in a the cluttered background
conditions.

3.2 Execution time

From the viewpoint of practical applications, execu-
tion time is very important. Table 3 shows execu-
tion times for TYPE1 through TYPE3 sequences. The
execution time was measured by the following metric,

FPS = Total execution time(sec.)
Total number of frames . We note that TYPE1

and TYPE3 sequences show almost the same FPS, but
TYPE2 sequences show roughly half of them, because there
is only one human in the TYPE1 and TYPE2 sequences and
there are three humans in the TYPE3 sequences. As the
number of detected humans increases, we inevitably need
more computational time.

4 Conclusion

We proposed a pose robust human detection method
from a sequence of stereo images using four directional 2D
elliptical filters (4D2DEFs), which detects and identifies hu-
mans regardless of scale and pose.

The experimental results show that the human detec-
tion rate using the 4D2DEF is better than that of using the

Table 3. Execution time (FPS) on TYPE1
through TYPE3 sequences.

TYPE1 TYPE2 TYPE3
Sequence 1 12.87 7.07 13.12
Sequence 2 12.81 6.91 12.97
Sequence 3 12.82 N/A 13.04
Sequence 4 12.86 N/A 13.82

OOSAF by approximately 20% in most types of image se-
quences, and the execution time is more than 6 FPS.
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