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a b s t r a c t

Although many variants of local binary patterns (LBP) are widely used for face analysis due to their
satisfactory classification performance, they have not yet been proven compact. We propose an effective
code selection method that obtain a compact LBP (CLBP) using the maximization of mutual information
(MMI) between features and class labels. The derived CLBP is effective because it provides better
classification performance with smaller number of codes. We demonstrate the effectiveness of the
proposed CLBP by several experiments of face recognition and facial expression recognition. Our
experimental results show that the CLBP outperforms other LBP variants such as LBP, ULBP, and MCT
in terms of smaller number of codes and better recognition performance.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Face analysis, including face recognition and facial expression
recognition, is a very active research area in computer vision,
human computer interaction (HCI), and biometrics. There have
been many well-known statistical approaches for face analysis,
which include such techniques as principal component analysis
(PCA) [1], linear discriminant analysis (LDA) [2], independent
component analysis (ICA) [3], and support vector machine (SVM)
[4]. However, these methods suffer from the generalization
problem due to the unpredictable distribution of the face images
in real environment, which might be far different from that of the
training face images. To avoid this problem, non-statistical face
analysis method using local binary pattern (LBP) has been
proposed. It has been proven that the non-statistical face
analysis methods outperform the statistical face analysis
methods in terms of recognition performance and the robustness
to illumination change [8,9].

Initially, LBP was first introduced by Ojala et al. [5], which
showed a high discriminative power for texture classification due
to its invariance to monotonic gray level changes. Recently, Ojala
et al. [6] introduced the uniform local binary pattern (ULBP), which
extended their original LBP operator to a circular neighborhood of
different radius size and selected a small subset of LBP patterns.

After that, many variants of LBPs have been introduced by many
other researchers and applied to many areas such as face detection
[7,8], face recognition [9–12], face authentication [13,14], facial
expression recognition [15], gate recognition [17], image retrieval
[18], and object detection [19].

However, LBP contains many less informative codes. Fig. 1
shows the LBP codes sorted in the order of occurrence rates, which
is obtained from more than 64,000 face images. From Fig. 1, we
know that most LBP codes are rarely occurred, so that they do not
have the discriminative characteristics at all. Moreover, the original
LBP is not efficient because it has a fixed size of feature dimension.
In this circumstance, it is observed that certain LBP codes exhibiting
transitions from 1 to 0 or 0 to 1 in a circularly defined code are at
most two, have been occurred frequently (more than 90%) in the
natural images. Based on this observation, Ojala et al. [6] proposed
the uniform LBP (ULBP) and applied it to face recognition.
Lahdenoja et al. [10] proposed the symmetry ULBP which
reduces the number of codes in the ULBP using the symmetry
level of the code. However, it has not been proven that these
patterns are effective in both minimizing the number of codes and
reducing the classification error.

There have been some studies in the feature (pixel) selection for
face recognition [16,20]. Frank et al. [16] proposed an automatic
pixel selection for optimal facial expression recognition based on
PCA-based eigenfaces. Choi et al. [20] proposed a pixel selection for
optimal face recognition based on LDA-based discriminative
positions (pixels), where they used PCA and LDA method for
feature extraction, and then found discriminative positions
(pixels) in face images using eigenspace. These methods can be
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very sensitive to illumination variations because they used the
pixel intensity value directly. Moreover, both PCA and LDA
methods inherently assume the second order statistics of
Gaussian distribution. This prior assumption may not be
guaranteed well in the case of real face recognition task. To
overcome these problems, we proposed to use the information
theoretic feature selection method given below.

Information theoretic feature selection, which utilizes the
maximization of mutual information (MMI) between feature and
class label, has been widely used for determining the compact
features because it guarantees minimal classification error (details
are described in Section 3). Battiti [21] proposed mutual
information based feature selection (MIFS) and Kwak and Choi
[22] proposed an improved version of MIFS (MIFS-U). Both MIFS
and MIFS-U determine the compact features one by one using the
MMI. Principe [23] and Korkkola [24] used the steepest descent
method to find the optimal projection basis vectors using the
information theoretic error measures. Qiu and Fang [25] used the
MMI to determine the optimal projection basis vectors, and applied
these to face and car detection systems.

To find a compact LBP (CLBP) without redundancy, we propose
to use the information theoretic feature selection method based on
the maximization of mutual information between the codes and
the class labels. This approach to code selection iteratively selects
the LBP codes which maximize the mutual information with
respect to the class label, conditioned to codes previously selected.

This paper is organized as follows. Section 2 describes several
non-parametric local kernel-based image representation such as
LBP, ULBP, and MCT. Section 3 describes a feature selection method
using MMI. Section 4 describes a method of determining the
compact LBP (CLBP) codes using the MMI-based feature
selection method. Section 5 explains the experimental results to
demonstrate the effectiveness of the proposed CLBP in terms of

minimizing the number of codes and minimizing the classification
error. Section 6 describes a successful application of the proposed
CLBP method in gender recognition. Finally, we draw our
conclusion in Section 6.

2. Non-parametric local kernel-based image representation

The original LBP [5] uses a 3 by 3 kernel that summarizes the
local structure of an image. At a given pixel position (xc,yc), it takes
the 3 by 3 neighborhood pixels surrounding of the given pixel and
generates a binary 1 if the neighbor of the given pixel has a value
greater than or equal to the given pixel or a binary 0 if the neighbor
of the given pixel has a value smaller than the given pixel. The
decimal form of the resulting 8-bit word (LBP code) can be
expressed as

LBPP,Rðxc ,ycÞ ¼
X7

n ¼ 0

dðic$inÞ2n, ð1Þ

where ic is a pixel value positioned at (xc,yc), in is one of the eight
surrounding pixel values, and a sign function dð%Þ is defined such
that

dðxÞ ¼
1 if xo0,

0 otherwise;

(
ð2Þ

where the subscripts P and R represent the number of neighboring
pixels and the radius in multi-scale LBP, respectively [6]. For an
example, LBP8,2 denotes the LBP with eight equally spaced pixels on
a circle of radius 2.

Fig. 2 illustrates how to obtain the LBP code and the LBP feature
vector. First, we transform an original image into the LBP
transformed image by using Eq. (1). The LBP code has a certain
value from 0 to 255, which is a binary coded decimal value. When
we read the binary value in the 3&3 window in the circular
manner, it gives a 8-bit binary number (e.g., 11001011) and the LBP
code has a value of 203. Second, an original face image is divided
into M concatenated blocks, where each block has a size of 8&8
pixels commonly. We compute the histogram of LBP codes within
each block, i.e., count the number of pixels with a certain LBP code.
So, each block provides a 256 dimensional LBP histogram. Then, we
concatenate the LBP histograms of M blocks, which is the LBP
feature vector that represents the input image.

Liao et al. [12] proposed the multi-scale block LBP (MB-LBP). It
captures an n by n block-based local structure rather than pixel-
based local structure, so that it is less sensitive to noisy information.

Ojala et al. [6] observed that the natural images generally
contain a small number of LBP codes, which are called the uniform
LBP (denoted by superscript LBPu2). ULBP contains a maximum ofFig. 1. The LBP codes sorted in the order of occurrence rates.

Threshold

Binary : 11001011
LBP code : 203

LBP operation (Eq. 1)

LBP transform

Histogram

0 1 2 255254

LBP feature vectorLBP transformed image

Fig. 2. An illustration of LBP operation, LBP code, LBP transform and LBP feature vector.
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two bitwise transitions: 0–1 or 1–0. These uniform patterns
represent the majority of microstructures such as lines, edges,
and corners.

Lahdenoja et al. [10] proposed a method for reducing the
number of the codes in the ULBP by using the level of symmetry
Lsym of ULBP, which is expressed as

Lsym ¼min
XP

i ¼ 1

BðiÞ,
XP

i ¼ 1

BðiÞ

" #
, ð3Þ

where the first and second terms are the number of neighboring
pixels with a binary value 1 and 0 in ULBP, respectively. They
observed that the codes with high level of Lsym are more
discriminative than those with low level of Lsym by qualitative
visual inspection.

Zabih et al. [26] proposed the census transform (CT) that
summarizes the local image structure as a bit string, where it is
0 if the intensity value at a position in one image is less than the
intensity value at the corresponding position in another image. This
census transform has been extended to the modified census
transform (MCT) [27] as

GMCT ðxc ,ycÞ ¼
X8

n ¼ 0

dðin$icÞ2n, ð4Þ

where ic denotes the mean of pixel values in a 3 by 3 local kernel
positioned at (xc,yc), and in is one of the nine pixel values in the local
kernel. The function dð%Þ is the same as Eq. (2). MCT can be referred
to as an enlarged version of the original LBP, which means one pixel
in the image is represented by 9 bit length. Hence, there are 512
codes in MCT and 256 codes in the LBP.

Fig. 3 illustrates that the LBP, ULBP, and MCT provide the
transformed output images that are invariant to monotonic gray
level changes.

3. Feature selection using MMI

Maximization of mutual information (MMI) is a powerful way of
selecting the optimal features that simultaneously minimizes both
the lower and upper bound of the Bayes error. Let XAND&N be a
data matrix, where D is the number of images and N is the feature
size of each image. Let F¼{f1,y, fN} and C be a discrete valued
random variable for representing features and class labels, respec-
tively. Fig. 4 illustrates a typical example of the data matrix X,
where T is a set of the ordered pairs of feature vector and class label
vector as T¼{(f1,C),y, (fN,C)}.

Let a function be GðFÞ ¼ Ĉ , where Ĉ is an estimate of C and the C
has the class labels as n¼ f1, . . . ,Ncg, where Nc is a total number of
classes. Then, the lower and upper bounds of Bayes error prob-
ability Pe9PðĈ aCÞ are proven by Fano [28] and Hellman and Raviv
[29] as

HðCÞ$IðC; FÞ$1
logjnj rPer

1
2
ðHðCÞ$IðC; FÞÞ, ð5Þ

where Hð%Þ denotes entropy, Ið%; %Þ denotes mutual information, and
jnj is the number of classes. The Bayes error probability Pe can be
directly reduced by maximizing mutual information. From Eq. (5),
we know that the maximization of mutual information (MMI) is
equivalent to the minimization of the Bayes error probability. Also,
we know that the maximization of mutual information (MMI) is
equivalent to the minimization of the conditional entropy HðCjFÞ,
since IðC; FÞ ¼HðCÞ$HðCjFÞ. Therefore, the optimal feature selection
problem can be formulated to select the best feature whose mutual
information is largest or Bayes error is smallest as

argmax
fi A F

IðC; fiÞ or argmin
fi AF

HðCjfiÞ: ð6Þ

In practical applications, we usually take the best k5N features
whose joint mutual information is largest or joint Bayes error is
smallest as

argmax
Fk DF

IðC; FkÞ or argmin
Fk DF

HðCjFkÞ, ð7Þ

where Fk is a feature subset of F whose number of elements is k.
Thus, the feature subset Fk can be represented as Fk ¼ ff u1,f u2, . . . ,f ukg,
where f ui is the ith selected feature.

However, it is impossible to compute the joint mutual informa-
tion equation (7) because all possible combinations of feature sets
is huge (the exact number of possible subsets of selected features
is N!=ðN$kÞ!k!). To overcome this problem, many researchers
have tried to find approximated solutions. Battiti [21] proposed
an iterative greedy feature selection strategy called ‘mutual
information feature selection (MIFS)’. He used the greedy feature
selection criterion as

argmax
fi A F

IðC; fiÞ$b
X

fs AS

Iðfs; fiÞ

2

4

3

5, ð8Þ

where fi is a candidate feature in the feature set F, fs is a previously
selected feature, S is a set of the previously selected features, and
b is a regularization parameter that adjusts the amount of
redundance between the candidate features fi and previously
selected features fs. Table 1 shows a typical algorithm of the
MIFS method.

Kwak et al. [22] proposed the MIFS-U method that modifies the
selection criterion as

argmax
fi A F

IðC; fiÞ$b
X

fs AS

IðC; fsÞ
HðfsÞ

Iðfs; fiÞ

2

4

3

5: ð9ÞFig. 3. Robustness to monotonic gray level changes: (a) original image, (b) LBP,
(c) ULBP, and (d) MCT.

T={( fi ,C )}i=1,... ,N

Xf f f fD

CF

Fig. 4. A typical example of representing data matrix X.
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Peng et al. [30] proposed a modified MIFS method that uses the
max-relevance and min-redundancy (mRMR) criterion as

argmax
fi AF

IðC; fiÞ$
1
jSj

X

fs AS

Iðfs; fiÞ

2

4

3

5, ð10Þ

where jSj is the cardinality of the set S.
Estevez et al. [31] proposed another modified MIFS method that

uses the selection criterion as

argmax
fi AF

IðC; fiÞ$
1
jSj

X

fs AS

NIðfi; fsÞ

2

4

3

5, ð11Þ

where NI is the normalized mutual information such that

NIðfi; fsÞ ¼
Iðfi; fsÞ

minfHðfiÞ,HðfsÞg
: ð12Þ

4. Compact LBP code selection using MMI

We applied the MMI-based feature selection method to find the
CLBP code. In this work, we took Peng’s modified MIFS method that
used the max-relevance and min-redundancy (mRMR) as the selection
criterion because it showed outstanding classification performance in
comparison to the other iterative feature selection methods [32,33].
According to Peng’s modified MIFS method, we can regard the LBP
codes and the class label as two discrete random variables F and C,
respectively. So, we can easily compute the joint distribution p(C,F), and
each distribution of themp(C) and p(F) from the histogram (occurrence)
based density estimation. Subsequently, the mutual information can be
computed as

IðC; f Þ ¼
X

f AF

X

cAC

pðc,f Þlog
pðc,f Þ

pðcÞpðf Þ

! "
: ð13Þ

Fig. 5 shows the overall procedure of the proposed MMI-based
CLBP code selection method, which consists of three consecutive
stages given below.

4.1. Stage I: MMI-based feature reduction

Suppose that we have a set of D training images with Nc classes.
Each of the images has a size of N¼h&w. All training images are
transformed into LBP features. Then, we have a LBP feature matrix
with a size of D&N, FLBP¼{f1, f2,y,fN}, where fi is a D dimensional
LBP feature vector at the ith pixel position.

We compute the mutual information I(C; fi) between the class
label C and the feature vector fi for i¼1,2,y,N and obtain the
selected feature index set SLBP¼{p1,p2,y,pM} by applying the
maximization of the mutual information given in Eq. (10)
sequentially, where M is the number of selected LBP feature
vectors and the pi denotes the index of the selected LBP feature

vector at the ith iteration. Thus, we have a reduced LBP feature
matrix with a size of D&M, FuLBP ¼ ffp1 ,fp2 , . . . ,fpM g, where fpi

is a D
dimensional LBP feature vector at the pith pixel position. Because
M5N, we reduce the dimensionality of the original LBP feature
matrix while removing less discriminative features greatly.

Fig. 6 shows two examples of the feature dimensionality
reduction using the MMI-based feature reduction method on the
POSTECH Face 2007 database (PF07) [34], where the horizontal axis
denotes the number of selected features and the white pixels
denote the selected features. As you can see, some pixels
corresponding to eyes, eyebrows, and mouth are selected due to
their discriminative characteristics.

4.2. Stage II: feature transformation

Each row of the reduced LBP feature matrix FuLBP is a LBP
transformed training image with the reduced size of M. Each
dimensionality reduced training image is transformed into a
histogram of LBP (we call it histogram transformation). Then, we
have a LBP code frequency matrix with a size of D& 256, FCODE¼
{l0, l1, y, l255}, where li is a D dimensional LBP code frequency
vector at a specific LBP code i. Hence, the jth column of li has the
number of pixels whose LBP code is i in the jth training image.

4.3. Stage III: MMI-based code selection

We again compute the mutual information I(C; li) between the
class label C and the LBP code frequency vector li for i¼0,1,y,255
and then obtain the selected LBP code frequency set SCODE¼
{c1, c2,y,cK} using the maximization of the mutual information given
in Eq. (10), where K is the number of the selected LBP code frequency
vectors and the ci is the index of the selected LBP frequency vector at
the ith iteration. Therefore, SCODE is CLBP codes we want to find.

Fig. 7 illustrates how to obtain the CLBP transformed image. First,
we transform an original face image into the LBP transform image

Table 1
Battiti’s MIFS method.

1. Initialization
(1) S’f.

2. Computation of the mutual information
(1) argmaxfi A F IðC; fiÞ.

3. Selection of the first feature
(1) F’F\ffig, S’ffig.

4. Greedy selection
repeat until jSj¼ k

(1) For all pairs (fi,fs) with fi AF and fs AS,
select the feature fi AF using Eq. (8).

(2) Set F’F\ffig, and S’ffig.
end
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Fig. 5. Overall procedure of the proposed MMI-based CLBP code selection method.
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using Eq. (1) (see Fig. 2 for details). Second, we prepare the mapping
table that relates the ULBP code with CLBP code, which is the result of
the stage III in the proposed MMI-based CLBP code selection method.
All other LBP codes that are not selected in the CLBP, are set to a
pre-specified value (e.g., set to 0). In this illustration, the LBP code
values 2, 12 and 8 correspond to the CLBP code values 1, 2 and 3,

respectively, and all other LBP code values correspond to the CLBP
code value 0. Finally, we transform the LBP image into the CLBP image
using the mapping table by a simple correspondence.

Fig. 8 shows examples of four CLBP transformed images using
the CLBP codes that are obtained from the MMI-based CLBP code
selection method, where the horizontal axis denotes the number of
selected features. From Fig. 8, we know that the transformed
images represent many local structures in greater detail up to 40
features but they do not show a significant improvement of
representing local structures after 40 features. From this, we
guess that there exists an appropriate number of LBP codes that
balance the number of codes and the classification error.

5. Experimental results and discussion

To validate the effectiveness of the proposed MMI-based CLBP code
selection method, we performed two kinds of experiments: face
recognition and facial expression recognition. In these experiments,
all input images were transformed using the CLBP codes obtained by
the proposed MMI-based CLBP code selection method. We did not use
any preprocessing methods or postprocessing methods to show that
effectiveness of only the proposed CLBP code selection method in terms
of a number of codes and classification performance.

5.1. Database

For the experiments, we used the PF07 database1 [34] due to its
rich variants and publicly availability, which consists of 100 male

Number of selected features .
40 80 120 160 200 240

Fig. 6. Examples of feature dimensionality reduction.

LBP transformed image

Selected codes

CLBP transformed image

{ 2, 12, 8 }

Mapping table

LBP CLBP

Fig. 7. An illustration of CLBP transformation.

10 20 40 60 80
Number of selected features .

Fig. 8. Some examples of the CLBP transformed images.

1 The PF07 database is available on the web, http://imlab.postech.ac.kr
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and 100 female subjects, with 320 images per subject. The 320
images all have a size of 40&50 pixels that consist of 16
illuminations, five poses and four facial expressions. Fig. 9 shows
some example images from the PF07 database. All of these images
were aligned according to the two eye locations, which were
obtained manually. This database used for our experiment without
any preprocessing or manual labeling.

5.2. Face recognition

For doing the face recognition experiments, we prepared the
databases for training, gallery, and probe set as follows. For a strict
performance evaluation, we separated 200 subjects into two disjoint
groups: GROUP1 and GROUP2. The training set consisted of 32,000
images ð ¼ 100 GROUP1 subjects& 16 different illuminations& 5
different poses &4 different facial expressionsÞ. A gallery set con-
sisted of 100 images of GROUP2 subjects under normal illumination,
frontal pose, and neutral expression. The probe set consisted of
three different types of images: TYPE1 probe set consisted of 1500
images ð ¼ 100 GROUP2 subjects& 15 non-normal illuminationsÞ
under frontal pose and neutral expression. TYPE2 probe set
consisted of 400 images ð ¼ 100 GROUP2 subjects& 4 non-
frontal posesÞ under normal illumination and neutral expression.
TYPE3 probe set consisted of 300 images ð ¼ 100 GROUP2 subjects
&3 non-neutral facialexpressionsÞ under normal illumination and
frontal pose. Hence, we performed three different experiments
with three different types of probe sets and the gallery set.

Fig. 10 illustrates the overall process of the face recognition
experiment, which consists of three stages.

1. Training stage: We obtained the LBP transformed images by
converting the training images with LBP, and determined the K
CLBP codes by using the MMI-based CLBP code selection method
described in the Section 4. In this experiment, we empirically
reduced the dimensionality of the training images from 2000 to
240 in the MMI-based feature reduction stage. The 240 features

included discriminative facial components such as eyes,
eyebrows, mouth, and nose (see Fig. 4).

2. Enrollment stage: We transformed the gallery images into CLBP
transformed gallery images with the CLBP codes which are
obtained in the training stage. Then, we converted the CLBP
transformed gallery images into a set of gallery feature vectors
using the spatially enhanced histogram method [11], which is
explained as follows: (1) each CLBP transformed gallery image
was divided into 30 local regions Ri,i¼1,y,30 (We empirically
divided the image into 30 regions.), (2) the CLBP histograms of
these 30 local regions were computed independently in each
CLBP transformed gallery image, and (3) the gallery feature
vector was obtained by sequentially concatenating the CLBP
histograms of 30 local regions.

3. Recognition stage: By using the CLBP codes, we transformed the
probe image into the CLBP transformed probe image. Then, we
converted the CLBP transformed probe image into a probe
feature vector computed by the same method used in the
enrollment stage. Then, we measured the weighted w2 distance
between the probe feature vector ðFPk,l

Þ and the gallery feature
vector ðFi

Gk,l
,i¼ 1, . . . ,100Þ to find the best matched gallery image

as

8i argmin
i
½w2

wðFPk,l
,Fi

Gk,l
Þ(, ð14Þ

where the weighted w2 distance is computed as

w2
wðFPk,l

,Fi
Gk,l
Þ ¼
X

k,l

wk

ðFPk,l
$Fi

Gk,l
Þ2

ðFPk,l
þFi

Gk,l
Þ

, ð15Þ

where the indices k and l refer to the lth bin in the histogram
within the kth local region, and wk is the weight that represent
the importance of the kth block for face recognition. The value of
wk is set empirically. Initially, we set all weights wk to the same
value (8k,wk40). Then, we obtain the value of w1 by finding the
value that provides the best recognition accuracy while chan-
ging w1 except the other weights and set the optimal value of w1

to the found value. Then, we obtain the value of w2 by finding the
value that provides the best recognition accuracy while chan-
ging w2 except the other weights (w1 is fixed) and set the
optimal value of w2 to the second found value. We continue this
process until all weight values are found.

The classification error for the face recognition could be
computed such that

Classification error ð%Þ ¼ 1$
NCRI

NT

! "
& 100, ð16Þ

where NCRI and NT are the number of correctly recognized images
and the number of test images, respectively.

To prove the robustness of the proposed CLBP code to the
illumination changes, we performed the face recognition experi-
ment using the TYPE1 probe set and the gallery set. Fig. 11
compares the classification errors of face recognition among four
different representation methods such as CLBP, ULBP, LBP, and MCT
using the TYPE1 probe set, when the number of CLBP codes
changes. The horizontal axis denotes the number of CLBP codes.
From Fig. 11, we noticed that the classification error decreases
drastically as the number of CLBP codes increases up to 23, and does
not change much as the number of CLBP codes increases from 23 to
59. From the viewpoint of the number of codes and the
classification error, the compact number of CLBP code was 31.
The classification error using 31 CLBP codes was 16.00%, which is
the smallest than those of other representation methods such as
ULBP (18.73%), LBP (18.07%), and MCT (18.27%).

To prove the robustness of the proposed CLBP code to the pose
changes, we performed the face recognition experiment using the
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Fig. 9. Example images of PF07.
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TYPE2 probe set and the gallery set. Fig. 12 compares the
classification errors of face recognition among four different
representation methods such as CLBP, ULBP, LBP, and MCT using
the TYPE2 probe set, when the number of CLBP codes changes. The
horizontal axis denotes the number of CLBP codes. From Fig. 12, we
noticed that the classification error decreases drastically as the
number of CLBP codes increases up to 19, and does not change
much as the number of CLBP codes increases from 19 to 59. From

the viewpoint of the number of codes and the classification error,
the appropriate number of CLBP code was 27. The classification
error using 27 CLBP codes was 14.75%, which is the smallest than
those of other representation methods such as ULBP (19.00%), LBP
(20.25%), and MCT (20.00%).

To prove the robustness of the proposed CLBP code to the facial
expression changes, we performed the face recognition experi-
ments using the TYPE3 probe set and the gallery set. Fig. 13

Probe image

LBP transformed images

Training Stage Recognition Stage

Training images

LBP transform CLBP transform

CLBP codes

CLBP transformed
probe image

MMI-based
CLBP code

selection
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Fig. 11. Comparison of classification errors among four different representation
methods using the TYPE1 probe set.
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compares the classification errors of face recognition among four
different representation methods such as CLBP, ULBP, LBP, and MCT
using the TYPE3 probe set, when the number of CLBP codes
changes. The horizontal axis denotes the number of CLBP codes.
From Fig. 13, we noticed that the classification error decreases
drastically as the number of CLBP codes increases up to 19, and does
not change much as the number of CLBP codes increases from 19 to
59. From the viewpoint of the number of codes and the
classification error, the appropriate number of CLBP code was
35. The classification error using 35 CLBP codes was 18.16%, which
is the smallest than those of other representation methods such as
ULBP (21.50%), LBP (20.83%), and MCT (20.72%).

Furthermore, we compared the classification error between the
proposed CLBP and the symmetry ULBP (SLBP) method [10] using
TYPE1, TYPE2, and TYPE3 probe sets. In this experiment, the SLBP
has 25 codes (24 ULBP codes and 1 dummy code) since we take the
symmetry levels 3 and 4 in Eq. (3). Table 2 shows that the error rate
of the proposed CLBP code is slight smaller than that of the SLBP
(Lsym3,4) in the cost of slightly larger code size. This improvement is
obtained from the compactness of the proposed CLBP that is
derived from Eq. (5), which is a direct minimization criterion of
Bayes error rate. However, the SLBP (Lsym3,4) is not justified by any
theoretical principle but is only originated from the observation of
human’s visual inspection.

Finally, we compared the classification error of many different
face recognition methods using the well-known FERET [35] face
database. In this experiment, we take two different data sets: Fa
image set (¼1195 randomly selected face image) for a gallery set
and Fb image set (¼1195 different images corresponding to the
selected gallery images but alternative facial expression) for a
probe set. Fa image set contains the frontal images and Fb image set
contains alternative facial expression than in Fa image set. All of
these images are normalized by two eye points. Table 3 compares
the classification error and the size of code vectors among many

other methods. In this table, the classification error rates using PCA,
elastic bunch graph matching (EGBM) [36] and LDA method were
referred from Lahdenoja’s paper [10], which were used as the
baseline algorithms. From Table 3, we know that the proposed CLBP
is optimal because the classification error is smallest and the size of
code vectors is the second smallest. The original LBP shows the
smallest classification error but relatively a large size of code
vectors and the SLBP shows the smallest size of code vectors but a
larger classification error.

The proposed CLBP code also reduced the computation time for
face recognition. In Ahonen’s face recognition method [11], the w2

distance based matching equation (15) is the most time-consuming
part in the computation time for face recognition. The time
complexity of Eq. (15) is represented by a linear function OðvÞ,
where the parameter v is the multiplication of the number of local
regions (k) and the number of bins (l) per region.

Fig. 14 compares the computation times for face recognition
among four different representation methods such as CLBP, ULBP,
LBP, and MCT using the TYPE1 probe set, when the number of CLBP
codes changes. The horizontal axis denotes the number of CLBP
codes. From Fig. 14, we noticed that the computation time
increases almost linearly as the number of CLBP codes increases.
The recognition time using 31 CLBP codes was 3.26 s, which is
significantly less than those of other representation methods such
as ULBP (4.95 s), LBP (15.65 s), and MCT (43.07 s). Therefore, the
use of 31 CLBP codes enables us to reduce computation times
approximately 1.5 times, 5 times, and 13 times, which were
achieved with ULBP, LBP, and MCT, respectively.

5.3. Facial expression recognition

For doing the facial expression recognition experiments, we
prepared the training and test image set as follows. First, we
prepared 800 randomly selected images (¼200 persons& a normal
illumination&4 different facial expressions& a frontal pose). From
800 images, we selected 700 images (¼175 persons& a normal
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Fig. 13. Comparison of classification errors among four different representation
methods using the TYPE3 probe set.

Table 2
Comparison of the classification error and the size of code vectors using PF07
database.

DB TYPE1 TYPE2 TYPE3

Method CLBP SLBP CLBP SLBP CLBP SLBP

Classification error (%) 16.00 17.90 14.75 15.18 18.16 19.88
# of codes 31 25 27 25 35 25

Table 3
Comparison of the classification error and the size of code vectors using FERET
database.

Method CLBP SLBP LBP PCA EBGM LDA

Classification error (%) 3.00 6.00 3.00 15.00 10.00 27.00
# of codes 27 25 256 NA NA NA
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Fig. 14. Comparison of computation times for face recognition among four different
representation methods using the TYPE1 probe set.
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illumination&4 facial expressions& a frontal pose) for the training
image set and selected the remaining 100 images (¼the remaining
25 persons& a normal illumination&4 facial expressions& a fron-
tal pose) for the test image set. We performed the eightfold cross
validation method to avoid the data tweak problem.

Fig. 15 illustrates the overall process of the facial expression
recognition experiment, which consists of two stages.

1. Training stage: We obtained the LBP transformed images by
converting the training images with LBP and found the K CLBP
codes using the MMI-based CLBP code selection method
described in the Section 4. In this experiment, we empirically
reduced the dimensionality of the training images from 2000 to
240 in the feature reduction stage. These 240 features included
discriminative facial components such as eyes, eyebrows, and
mouth (see Fig. 4). We converted the LBP transformed training
images into the CLBP transformed training images by using the
obtained K CLBP codes. Then, we converted the CLBP
transformed training images into a set of training feature
vectors using the spatially enhanced histogram method [11],
which is the same as the method described in Section 5.2.
Finally, we obtained four person-independent feature vectors,
one per facial expression, by averaging all training feature
vectors with a specific facial expression [15].

2. Recognition stage: We transformed the input image into the
CLBP transformed input images by the K CLBP codes. We
converted the CLBP transformed training images into input

feature vectors using the spatially enhanced histogram method
[11], which is the same as the method described in the Section
5.2. Finally, we measured the w2 distance between the input
feature vector (FI) and the person-independent feature
vectors of four facial expressions (Fe,eAfneutral; happy;
surprised; angryg) to find the best matched facial expression
such that

8e argmin
e
½w2ðFI ,FeÞ(, ð17Þ

where the w2 distance is computed as

w2ðFI ,FeÞ ¼
X

l

ðFIðlÞ$FeðlÞÞ2

ðFIðlÞþFeðlÞÞ
, ð18Þ

where l is the component index of the feature vectors FI and Fe.

To achieve reliable facial expression recognition performance,
we performed the eightfold cross-validation method. In the ith trial
(i¼1,y,8), we had 100 test input images, 25 images for each facial
expression and we counted the number of correctly recognized
images in facial expression. Then, the classification error for the
facial expression recognition could be computed such that

Classification error ð%Þ ¼ 1$
1
8

X8

i ¼ 1

NCRIi

NTi

 !
& 100, ð19Þ

where NCRIi
and NTi

is the number of correctly recognized images
and the number of test images, respectively, at the ith trial. Fig. 16
compares the classification errors of facial expression recognition
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among four different representation methods such as CLBP, ULBP,
LBP, and MCT when the number of CLBP codes changes. The
horizontal axis denotes the number of CLBP codes. From Fig. 16,
we noticed that the classification error decreases drastically as the
number of CLBP codes increases up to 23, and does not change
much as the number of CLBP codes increases from 23 to 80. From
the viewpoint of the number of codes and the classification error,
the appropriate number of CLBP code was 23. The classification
error using 23 CLBP codes was 8.00%, which is the smallest than
those of other representation methods such as ULBP (12.73%), LBP
(14.20%), and MCT (15.07%).

In this facial expression recognition, the time complexity is the
same as the face recognition experiments because the w2 distance is
used for finding correct matching. Fig. 17 compares the
computation times for face recognition among four different
representation methods such as CLBP, ULBP, LBP, and MCT when
the number of CLBP codes changes. The horizontal axis denotes the
number of CLBP codes. From Fig. 17, we noticed that the
computation time increases almost linearly as the number of
CLBP codes increases. The recognition time using 23 CLBP codes
was 0.5928 s, which is the smallest than those of other
representation methods such as ULBP (0.8892 s), LBP (2.3088 s),
and MCT (4.3056 s). Hence, the use of 23 CLBP codes enables us to
reduce computation times approximately 1.5 times, 4 times, and

7.2 times, which were achieved with ULBP, LBP, and MCT,
respectively.

6. Real-time gender recognition

To validate the general applicability of the proposed CLBP
method, we implemented a real-time gender recognition system.
In this experiment, we used 28,800 randomly selected images
(¼7200 male images on the web+7200 female images on the
web+7200 male images on the PF07+7200 female images on the
PF07). Among 28,800 images, we selected 14,400 images (¼3600
male images on the web+3600 male images on the PF07+3600
female images on the web+3600 female images on the PF07) for the
training image set, and selected the remaining 14,400 images for
the test image set. We empirically selected 25 CLBP codes and we
divided each face image into 20 blocks. This induces 500 dimen-
sional CLBP feature vector per one face image. We took Hinton’s
deep belief network which is pre-trained by restrict Boltzman
machine [37] as a male/female classifier.

Fig. 18 compares the classification errors of gender recognition
among four different representation methods such as OLBP, ULBP,
LBP, and MCT. The horizontal axis denotes the number of epoches of
training Hinton’s deep belief network. From Fig. 18, we know that
the classification error using 24 CLBP codes was 10.09% which is the
smallest than those of other representation methods such as
ULBP(13.02%), LBP(14.23%), and MCT(14.00%). Moreover, 25
OLBP codes allowed to reduce dimension of feature vector as
500 which is the smallest size of dimension than other repre-
sentation methods (ULBP: 1180 dimension, LBP: 5120 dimension,
MCT: 10,240 dimension).

Fig. 19 shows several screen-captured images of real-time
gender recognition system. All of these images are totally
different from the training image set. The resulting images
explicitly showed that the real-time gender recognition system
is almost invariant to person-identity and scale. It also could
recognize genders with slight pose changes (7201). You can see
the gender classification result using the proposed CLBP method in
the video clip: http://imlab.postech.ac.kr/video/lipreading/demo/
gender.wmv.

7. Conclusion

This paper proposes the MMI-based code selection method for
the compact LBP, which simultaneously improves recognition
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performance and reduces recognition time. Because the maximiza-
tion of mutual information (MMI) between feature and class label
assures the minimal classification error, we selected the codes of
the compact LBP iteratively, in the order of mutual information
per code.

The proposed CLBP code selection method consisted of three
stages: MMI-based feature reduction, feature transformation, and
MMI-based code selection. In the first stage, we reduced the
dimensionality of training images by using mutual information.
The selected LBP feature vectors were the most discriminative than
any other remaining features. In the second stage, the dimension-
ality reduced training images were transformed into histograms of
LBP by the histogram transformation. Then, we had a LBP code
frequency matrix. Each column vector of the matrix represented a
feature vector of corresponding LBP code. In the last stage, we
selected several LBP code frequency vectors using MMI-based code
selection, allowing to obtain the indices of the selected LBP
frequency vectors.

To validate the effectiveness of the MMI-based CLBP code
selection method, we applied it to two applications: face recogni-
tion and facial expression recognition. First, in face recognition
experiments, we used three different probe sets, TYPE1, TYPE2, and
TYPE3. In the first experiment using TYPE1 probe set, the appro-
priate number of CLBP codes was 31. The classification error using
31 CLBP codes was 16.00%, which is the smallest than those of other
representation methods such as ULBP (18.73%), LBP (18.07%), and
MCT (18.27%). In this experiment, we showed that the use of 31
CLBP codes enables us to reduce computation times approximately
1.5 times, 5 times, and 13 times, which were achieved with ULBP,
LBP, and MCT, respectively. In the second experiment using
TYPE2 probe set, the appropriate number of CLBP codes was 27.

The classification error using 27 CLBP codes was 14.75%, which is
the smallest than those of other representation methods such as
ULBP (19.00%), LBP (20.25%), and MCT (20.00%). In the third
experiment using TYPE3 probe set, the appropriate number of
CLBP codes was 35. The classification error using 35 CLBP codes was
18.16%, which is the smallest than those of other representation
methods such as ULBP (21.50%), LBP (20.83%), and MCT (20.27%).
Moreover, we validated that the Bayes error rate of the proposed
CLBP method is better than that of the symmetry ULBP, Lsym3,4.

In the facial expression recognition experiments, the appro-
priate number of CLBP codes was 23. The classification error using
23 CLBP codes was 8.00%, which is the smallest than those of other
representation methods such as ULBP (12.73%), LBP (14.20%), and
MCT (15.07%). Moreover, we showed that the use of 23 CLBP codes
enables us to reduce computation times approximately 1.5 times, 4
times, and 7.2 times, which were achieved with ULBP, LBP, and
MCT, respectively. From these experimental results, we conclude
that the CLBP outperform other features such as LBP, ULBP, and
MCT in terms of minimizing the number of codes, minimizing the
classification error, and reducing computation time.
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