
Docker in Action
and Architecture

张晋涛

1 / 50

Intros
I'm Jintao Zhang
Linuxer/Vimer
And more ...

Docker in Action and Architecture 2 / 50

Docker Overview
Why Containers
What is Docker
The history of Docker
First container

Docker in Action and Architecture 3 / 50

Docker in Action
Images (pull/create/build/push)
Layer
Containers (run/inspect etc.)

Docker in Action and Architecture 4 / 50

Dockerfile in Action
Dockerfile overview
How to use Dockerfile
Multi-stage build

Docker in Action and Architecture 5 / 50

Docker Architecture

Docker in Action and Architecture 6 / 50

Docker Internal

Docker in Action and Architecture 7 / 50

Docker Overview

Docker in Action and Architecture 8 / 50

Why Containers
Many different stacks:

languages
framworks
libs

Many different targets:

environments
dev, QA, staging, prod

Physical machine，cloud，hybrid

Docker in Action and Architecture 9 / 50

What is Docker
Docker provides a way to run applications securely isolated in a container, packaged
with all its dependencies and libraries.

Docker in Action and Architecture 10 / 50

The history of Docker
2008, LXC
March 20, 2013, PyCon, dotCloud released the first version of Docker
The same year, dotCloud changes name to Docker
March, 2014, New default driver: libcontainer (Docker 0.9)
June, 2014, Docker 1.0
Mesos, Kubernetes etc
Standardization around the OCI
Docker CE 17.03 (after 1.13.1 at Feb, 2017))

Docker in Action and Architecture 11 / 50

First container

Docker in Action and Architecture 12 / 50

Hello World
In your shell, just run the command:

➜ ~ docker run hello-world

Hello from Docker!

This message shows that your installation appears to be working correctly.

...

Maybe you will see a few extra lines if your Docker install is brand new.

Docker in Action and Architecture 13 / 50

That was our first container
We use the hello-world image.
The container just say Hello from Docker!

Docker in Action and Architecture 14 / 50

A more useful container
Let's run a container

➜ ~ docker run --rm -i -t debian:9

root@51ca967672e8:/#

This is a new container.
It runs a bare Debian system version 9.
--rm tells Docker that remove the container when it exits automatically.
-i tells Docker keep stdin open and connect us to the container's stdin.
-t tells Docker than we want a pseudo-TTY.

Docker in Action and Architecture 15 / 50

Do something in our container
Try to echo Hello and play fun with toilet command.

root@66fbe4fe71e1:/# echo Hello

Hello

root@66fbe4fe71e1:/# toilet

bash: toilet: command not found

Of course, we need to install it.

Docker in Action and Architecture 16 / 50

Package managemant in container
We need toilet, so let's install it:

root@66fbe4fe71e1:/# apt update && apt install -y toilet

Get:1 http://security.debian.org/debian-security stretch/updates InRelease [

...

One minute later, toilet is instaled.

Docker in Action and Architecture 17 / 50

Try to run toilet
The toilet takes a string as parameter. -f option to special font.

root@66fbe4fe71e1:/# toilet Docker -f mono9

 ▄▄▄▄ █

 █ ▀▄ ▄▄▄ ▄▄▄ █ ▄ ▄▄▄ ▄ ▄▄

 █ █ █▀ ▀█ █▀ ▀ █ ▄▀ █▀ █ █▀ ▀

 █ █ █ █ █ █▀█ █▀▀▀▀ █

 █▄▄▄▀ ▀█▄█▀ ▀█▄▄▀ █ ▀▄ ▀█▄▄▀ █

It's OK.

Docker in Action and Architecture 18 / 50

Compare the container and host
Enter exit or ^D to exit our container.
We can't find toilet command (if we never installed it on host).
They have different, independent packages.

Docker in Action and Architecture 19 / 50

Where's our container
It still exists on disk, but all compute resource have been freed up.
The container is now in a stopped state.
We can get back to the container.

Docker in Action and Architecture 20 / 50

Docker in Action

Docker in Action and Architecture 21 / 50

What is an Image?
Image is files.
These files form the root filesystem of our container.

Docker in Action and Architecture 22 / 50

Image contents
This is a debian:9's image.

(Tao) ➜ debian tree

.

├── 0783bfd2d1fc35d2dd7c457d9c7195ef2512acabe6ffa78fd035cece65292b0e

│ ├── json

│ ├── layer.tar

│ └── VERSION

├── 3bbb526d26083e7a65a7a112ed72e1ec58e81384412f2d3fcdbbd87d49fd588d.json

├── manifest.json

└── repositories

1 directory, 6 files

Docker in Action and Architecture 23 / 50

+----------------------------------+

| read-write layer for container |

| |

| |

+----------------------------------+

+----------------------------------+

|read only layer for image |

|+-------------------------------+ |

|| 6bbb34566773 0 B | |

|| | |

|+-------------------------------+ |

| |

|+-------------------------------+ |

|| 3bbb526d2608 101 M | |

|| | |

|+-------------------------------+ |

+----------------------------------+

Base on debian:9 docker image.
Image is read only filesystem.
Images can share layers to optimize disk
usage and more.
docker run start a container from a
given image.

The read-write layer

Docker in Action and Architecture 24 / 50

Set of commands
Pull
(Tao) ➜ ~ docker pull debian:9

9: Pulling from library/debian

Digest: sha256:07fe888a6090482fc6e930c1282d1edf67998a39a09a0b339242fbfa2b602fff

Status: Image is up to date for debian:9

Run
(Tao) ➜ ~ docker run --rm -it --name debian debian:9

root@17bae8832e6f:/#

Build
(Tao) ➜ ~ docker commit debian local/debian:9

sha256:86fb2e51de2c8501c51d10f4839154464cba66afe69490da0723a0e0fecb2a35

Docker in Action and Architecture 25 / 50

Images namespaces
Official images

e.g. debian, centos

User images

e.g. taobeier/vim, taobeier/docker

Self-hosted images

e.g. registry.corp.youdao.com/infraop/openjdk

Docker in Action and Architecture 26 / 50

Dockerfile in Action

Docker in Action and Architecture 27 / 50

Building images interactively
Create a container with docker run .
Do somethings, and run docker commit to commit our changes.
Using docker tag to set images namespaces and name.

Docker in Action and Architecture 28 / 50

Docker tracks filesystem changes
As explained before:

An image is read-only.
Every changes happen in a copy of the image.
We can use docker diff to show difference between the image and its copy.
For performance, Docker uses copy-on-write systems.

Docker in Action and Architecture 29 / 50

When we want to make other changes
Create a new container base on the exist image.
Do somethings and commit our changes.
We don't know everything about it.

Docker in Action and Architecture 30 / 50

How can we improve this?
Automated process.
A Dockerfile is a text document that contains all the commands a user could call
on the command line to assemble an image.

Docker in Action and Architecture 31 / 50

Dockerfile in Action

Docker in Action and Architecture 32 / 50

Dockerfile overview
A Dockerfile is a text document.
It contains somethings about how an image is constructed.
We can use docker build command build an image from Dockerfile.

Docker in Action and Architecture 33 / 50

How to use it
A Dockerfile need to be a empty directory.

Create a new directory.

(Tao) ➜ ~ mkdir new-image

Create a Dockerfile inside this directory.

(Tao) ➜ ~ cd new-image

(Tao) ➜ new-image vim Dockerfile

Docker in Action and Architecture 34 / 50

The simplest usage
FROM debian:9

RUN apt update

RUN apt install -y toilet

A Dockerfile must start with a FROM instruction.
The FROM instruction specifies the Base Image from which you are building.
The RUN instruction will execute any commands in a new layer on top of the current
image and commit the results.

Docker in Action and Architecture 35 / 50

Build it
(Tao) ➜ new-image docker build -t local/toilet .

-t indicates the tag to apply to the image.
. indicates the build location of the build context.

Docker in Action and Architecture 36 / 50

More details:
http://dwz.cn/7JzMttGN

What happens
(Tao) ➜ new-image docker build -t local/toilet .

Sending build context to Docker daemon 2.048kB

Step 1/3 : FROM debian:9

 ---> f2aae6ff5d89

Step 2/3 : RUN apt update

 ---> Running in 677466dc02b1

...

Removing intermediate container 677466dc02b1

 ---> 49f7109e9c21

Step 3/3 : RUN apt install -y toilet

 ---> Running in 3d9dc635fd20

Setting up toilet (0.3-1.1) ...

...

Removing intermediate container 3d9dc635fd20

 ---> d8d2a8171e93

Successfully built d8d2a8171e93

Successfully tagged local/toilet:latest

Docker in Action and Architecture 37 / 50

http://dwz.cn/7JzMttGN

The build cache system
If you run this build again, what happens?

(Tao) ➜ new-image docker build -t local/toilet .

Sending build context to Docker daemon 2.048kB

Step 1/3 : FROM debian:9

 ---> f2aae6ff5d89

Step 2/3 : RUN apt update

 ---> Using cache

 ---> 49f7109e9c21

Step 3/3 : RUN apt install -y toilet

 ---> Using cache

 ---> d8d2a8171e93

Successfully built d8d2a8171e93

Successfully tagged local/toilet:latest

Docker in Action and Architecture 38 / 50

(Tao) ➜ new-image docker history local/toilet:latest

IMAGE CREATED CREATED BY SIZE

d8d2a8171e93 25 minutes ago /bin/sh -c apt install -y toilet 4.36MB

49f7109e9c21 25 minutes ago /bin/sh -c apt update 16.2MB

f2aae6ff5d89 4 days ago /bin/sh -c #(nop) CMD ["bash"] 0B

<missing> 4 days ago /bin/sh -c #(nop) ADD file:58d5c21fcabcf1eec… 101MB

History of image

Docker in Action and Architecture 39 / 50

Two forms
RUN <command> (shell form, the command is run in a shell, which by default is
/bin/sh -c on Linux or cmd /S /C on Windows)
RUN ["executable", "param1", "param2"] (exec form)

Docker in Action and Architecture 40 / 50

Parser directives
escape

escape=`

FROM microsoft/nanoserver

COPY testfile.txt c:\

RUN dir c:\

Docker in Action and Architecture 41 / 50

CMD and ENTRYPOINT
The CMD instruction has three forms:

CMD ["executable","param1","param2"] (exec form, this is the preferred form)
CMD ["param1","param2"] (as default parameters to ENTRYPOINT)
CMD command param1 param2 (shell form)

There can only be one CMD instruction in a Dockerfile.

ENTRYPOINT has two forms:

ENTRYPOINT ["executable", "param1", "param2"] (exec form, preferred)
ENTRYPOINT command param1 param2 (shell form)

The ENTRYPOINT same as CMD. Only the last one will take effect.

Docker in Action and Architecture 42 / 50

Multi-stage builds
Each stage is a separate image, and can copy files from previous stages. Each stage is
numbered, starting at 0.

FROM debian AS builder

LABEL maintainer="Jintao Zhang <zhangjintao9020@gmail.com>"

...

RUN ./configure \

 --with-compiledby="Jintao Zhang <zhangjintao9020@gmail.com>" \

 && make \

 && make install

FROM debian

COPY --from=builder /usr/local/bin/ /usr/local/bin

...

ENTRYPOINT ["executable"]

CMD ["--help"]

Docker in Action and Architecture 43 / 50

Docker Architecture

Docker in Action and Architecture 44 / 50

Docker Engine

Docker in Action and Architecture 45 / 50

Docker Engine
Client - docker(CLI)

Docker in Action and Architecture 45 / 50

Docker Engine
Client - docker(CLI)

REST API - Over UNIX sockets or a network interface

Docker in Action and Architecture 45 / 50

Docker Engine
Client - docker(CLI)

REST API - Over UNIX sockets or a network interface

Server - dockerd

Docker in Action and Architecture 45 / 50

docker version
(Tao) ➜ ~ docker version

Client:

 Version: 17.06.0-ce

 API version: 1.30

 Go version: go1.8.3

 Git commit: 02c1d87

 Built: Fri Jun 23 21:15:15 2017

 OS/Arch: linux/amd64

Server:

 Version: dev

 API version: 1.39 (minimum version 1.12)

 Go version: go1.10.3

 Git commit: e8cc5a0b3

 Built: Tue Sep 11 02:09:53 2018

 OS/Arch: linux/amd64

 Experimental: false

Docker in Action and Architecture 46 / 50

Docker Engine architecture

Docker in Action and Architecture 47 / 50

All tools
List all tools about docker.

(Tao) ➜ ~ ls /usr/bin |grep docker

docker # docker cli

docker-containerd

docker-containerd-ctr # containerd cli

docker-containerd-shim

dockerd

docker-init # init injects

docker-proxy

docker-runc

Docker in Action and Architecture 48 / 50

Docker Engine internal
 +-------------------------+

 | dockerd |

 +-------------------------+

 |

 +-------------------------+

 | containerd |

 +-------------------------+

 | |

 +---------------+ +---------------+

 |containerd-shim| |containerd-shim|

 +---------------+ +---------------+

 | |

 +---------------+ +---------------+

 | runc | | runc |

 +---------------+ +---------------+

Docker in Action and Architecture 49 / 50

Q&A

Docker in Action and Architecture 50 / 50

