Docker In Action
and Architecture

KE A

Intros

e I'm Jintao Zhang
e Linuxer/Vimer
e And more ...

Docker in Action and Architecture

Docker Overview

Why Containers
What is Docker

The history of Docker
First container

Docker in Action and Architecture

Docker In Action

e Images (pull/create/build/push)
o Layer
e Containers (run/inspect etc.)

Docker in Action and Architecture

Dockerfile In Action

o Dockerfile overview
e How to use Dockerfile
e Multi-stage build

Docker in Action and Architecture

Docker Architecture

Docker in Action and Architecture

Docker Internal

Docker in Action and Architecture

Docker Overview

Docker in Action and Architecture

Why Containers

» Many different stacks:

o languages
o framworks
o libs

« Many different targets:

o environments
o dev, QA, staging, prod

o Physical machine, cloud, hybrid

Docker in Action and Architecture

What is Docker

e Docker provides a way to run applications securely isolated in a container, packaged
with all its dependencies and libraries.

Docker in Action and Architecture

The history of Docker

e 2008, LXC

e March 20, 2013, PyCon, dotCloud released the first version of Docker
 The same year, dotCloud changes name to Docker

e March, 2014, New default driver: libcontainer (Docker 0.9)

e June, 2014, Docker 1.0

 Mesos, Kubernetes etc

» Standardization around the OCI

e Docker CE 17.03 (after 1.13.1 at Feb, 2017))

Docker in Action and Architecture

First container

Docker in Action and Architecture

Hello World

In your shell, just run the command:

-+ ~ docker run hello-world

Hello from Docker!
This message shows that your installation appears to be working correctly.

Maybe you will see a few extra lines if your Docker install is brand new.

Docker in Action and Architecture

That was our first container

e We use the hello-world image.
e The container just say Hello from Docker!

Docker in Action and Architecture

A more useful container

Let's run a container

- ~ docker run --rm -1 -t debian:9
root@51ca967672e8:/#

This is a new container.

It runs a bare Debian system version 9.

- - rm tells Docker that remove the container when it exits automatically.
-1 tells Docker keep stdin open and connect us to the container's stdin.
- T tells Docker than we want a pseudo-TTY.

Docker in Action and Architecture

Do something in our container

Try to echo Hel Lo and play fun with toilet command.

root@ob6fbed4fe71el:/# echo Hello

Hello
root@e6fbed4fe7lel: /# toilet
bash: toilet: command not found

Of course, we need to install it.

Docker in Action and Architecture

Package managemant in container

We need toillet, so let's install it:

root@o6fbedfe7lel:/# apt update && apt install -y toilet
Get:1 http://security.debian.org/debian-security stretch/updates InRelease |

One minute later, toilet is instaled.

Docker in Action and Architecture

Try to run tollet

The toilet takes a string as parameter. - T option to special font.

root@ob6fbed4fe71el:/# toilet Docker -f mono9

Docker

It's OK.

Docker in Action and Architecture

Compare the container and host

e Enter exit or ”D to exit our container.
« We can't find toilet command (if we never installed it on host).
e They have different, independent packages.

Docker in Action and Architecture

Where's our container

o It still exists on disk, but all compute resource have been freed up.
e The container is now in a stopped state.
e \We can get back to the container.

Docker in Action and Architecture

Docker in Action

Docker in Action and Architecture

What is an Image?

e Image is files.
e These files form the root filesystem of our container.

Docker in Action and Architecture

Image contents

Thisisa debian:9's image.
(Tao) » debian tree

0783bfd2d1fc35d2dd7c457d9c7195ef2512acabebffa78fd035cece65292b0e

— json

— layer.tar

— VERSION
3bbb526d26083e7a65a7all2ed72elec58e81384412f2d3fcdbbd87d491d588d. json
manifest.json

repositories

1 directory, 6 files

Docker in Action and Architecture

The read-write layer

I e + . . :
| read-write layer for container | - Base on debian:9 docker image.

I I e Image is read only filesystem.
e i e Images can share layers to optimize disk
fommoasscccoomon oS ccoomonnosnoo oo + usage and more.

| read only layer for image | .
TP . « docker run start a container from a

|| 6bbb34566773 0 B | | given image.

|l | |

|[+------- e + |

| |

|[+------- e + |

|| 3bbb526d2608 101 M ||

| | |

|[+-----m e + |

R e +

Docker in Action and Architecture

Set of commands
Pull

(Tao) » ~ docker pull debian:9

9: Pulling from library/debian

Digest: sha256:07fe888a6090482fc6e930c1282d1edf67998a39a09a0b339242fbfa2b602fff
Status: Image is up to date for debian:9

Run

(Tao) » ~ docker run --rm -it --name debian debian:9
root@l17bae8832e6f: /#

Build

(Tao) » ~ docker commit debian local/debian:9
sha256:86fb2e51de2c8501c51d10f4839154464cbabbafe69490da0723a0eOfecb2a35

Docker in Action and Architecture

Images namespaces

» Official images

e.g. debian, centos
e User images

e.g. taobeier/vim, taobeier/docker
e Self-hosted images

e.g. registry.corp.youdao.com/infraop/openjdk

Docker in Action and Architecture

Dockerfile In Action

Docker in Action and Architecture

Building images interactively

« Create a container with docker run.
e Do somethings, and run docker commit to commit our changes.
e Using docker tag to setimages namespaces and name.

Docker in Action and Architecture

Docker tracks filesystem changes

As explained before:

An image is read-only.
Every changes happen in a copy of the image.

We can use docker diff to show difference between the image and its copy.
For performance, Docker uses copy-on-write systems.

Docker in Action and Architecture

When we want to make other changes

e Create a new container base on the exist image.
e Do somethings and commit our changes.
« We don't know everything about it.

Docker in Action and Architecture

How can we improve this?

« Automated process.

e ADockerfile is atext document that contains all the commands a user could call
on the command line to assemble an image.

Docker in Action and Architecture

Dockerfile In Action

Docker in Action and Architecture

Dockerfile overview

« ADockerfile is a text document.
e It contains somethings about how an image is constructed.
e« We can use docker build command build an image from Dockerfile.

Docker in Action and Architecture

How to use It

A Dockerfile need to be a empty directory.

e Create a new directory.
(Tao) » ~ mkdir new-image
e Create a Dockerfile inside this directory.

(Tao) » ~ cd new-image
(Tao) » new-1image vim Dockerfile

Docker in Action and Architecture

The simplest usage

FROM debian:9

RUN apt update
RUN apt install -y toilet

« ADockerfile must start with a FROM instruction.
 The FROM instruction specifies the Base Image from which you are building.

e The RUN instruction will execute any commands in a new layer on top of the current
Image and commit the results.

Docker in Action and Architecture

Build it
(Tao) » new-image docker build -t local/toilet

e -T indicates the tag to apply to the image.
e . Indicates the build location of the build context.

Docker in Action and Architecture

What happens

(Tao) » new-image docker build -t local/toilet . e More details:

Sending build context to Docker daemon 2.048kB htto://dwz.ch/7JzM N

Step 1/3 : FROM debian:9 ttp://dwz.cn/7JzMUG
---> f2aae6ff5d89

Step 2/3 : RUN apt update
---> Running in 677466dc02bl

Removing intermediate container 677466dc02bl
---> 4917109e9c21

Step 3/3 : RUN apt install -y toilet
---> Running in 3d9dc635fd20

Setting up toilet (0.3-1.1)

Removing intermediate container 3d9dc635fd20
---> d8d2a8171e93

Successfully built d8d2a8171e93

Successfully tagged local/toilet:latest

Docker in Action and Architecture

http://dwz.cn/7JzMttGN

The build cache system

If you run this build again, what happens?

(Tao) » new-image docker build -t local/toilet .
Sending build context to Docker daemon 2.048kB
Step 1/3 : FROM debian:9
---> f2aaeb6ff5d89
Step 2/3 : RUN apt update
---> Using cache
---> 49f7109e9c21
Step 3/3 : RUN apt install -y toilet
---> Using cache
---> d8d2a8171e93
Successfully built d8d2a8171e93
Successfully tagged local/toilet:latest

Docker in Action and Architecture

History of image

(Tao) » new-image docker history local/toilet:latest

IMAGE CREATED CREATED BY SIZE
d8d2a8171e93 25 minutes ago /bin/sh -c apt install -y toilet 4.36MB
4917109e9c21 25 minutes ago /bin/sh -c apt update 16.2MB
f2aaebff5d89 4 days ago /bin/sh -c #(nop) CMD ["bash"] 0B
<missing> 4 days ago /bin/sh -c #(nop) ADD file:58d5c21fcabcfleec.. 101MB

Docker in Action and Architecture

Two forms

« RUN <command> (shell form, the command is run in a shell, which by default is
/bin/sh -conLinuxorcmd /S /Con Windows)

« RUN ["executable", "paraml", "param2"] (exec form)

Docker in Action and Architecture

Parser directives

e escape

escape="

FROM microsoft/nanoserver
COPY testfile.txt c:\

RUN dir c:\

Docker in Action and Architecture

CMD and ENTRYPOINT

The CMD instruction has three forms:

e CMD ["executable","paraml", "param2"] (exec form, this is the preferred form)
e CMD ["paraml", "param2"] (as default parameters to ENTRYPOINT)
e CMD command paraml param2 (shell form)

There can only be one CMD instruction in a Dockerfile.

ENTRYPOINT has two forms:

e ENTRYPOINT ["executable", "paraml", "param2"] (exec form, preferred)
e ENTRYPOINT command paraml param2 (shell form)

The ENTRYPOINT same as CMD. Only the last one will take effect.

Docker in Action and Architecture

Multi-stage builds

Each stage is a separate image, and can copy files from previous stages. Each stage is
numbered, starting at O.

FROM debian AS builder
LABEL maintainer="Jintao Zhang <zhangjintao9020@gmail.com>"

RUN ./configure \
--with-compiledby="Jintao Zhang <zhangjintao9020@gmail.com>" \
&& make \
&& make install

FROM debian
COPY --from=builder /usr/local/bin/ /usr/local/bin

ENTRYPOINT ["executable"]
CMD [""help"]

Docker in Action and Architecture

Docker Architecture

Docker in Action and Architecture

Docker Engine

Docker in Action and Architecture

Docker Engine

e Client - docker(CLI)

Docker in Action and Architecture

Docker Engine

e Client - docker(CLI)

e REST API - Over UNIX sockets or a network interface

Docker in Action and Architecture

Docker Engine

e Client - docker(CLI)
e REST API - Over UNIX sockets or a network interface

e Server - dockerd

Docker in Action and Architecture

docker version

(Tao) » ~ docker version

Client:

Version: 17.06.0-ce

API version: 1.30

Go version: gol.8.3

Git commit: 02c1d87

Built: Fri Jun 23 21:15:15 2017
0S/Arch: linux/amd64
Server:

Version: dev

API version: 1.39 (minimum version 1.12)
Go version: gol.10.3

Git commit: e8cc5alb3

Built: Tue Sep 11 02:09:53 2018
0S/Arch: linux/amd64

Experimental: false

Docker in Action and Architecture

Docker Engine architecture

Cient) DOCKER_H057) M
docker build /,,- Docker daemon @
docker pull - I| r : : !

sz

docker run —f

Docker in Action and Architecture

All tools

List all tools about docker.

(Tao) » ~ ls /usr/bin |grep docker
docker # docker cli

docker-containerd

docker-containerd-ctr # containerd cli
docker-containerd-shim

dockerd

docker-init # init injects
docker-proxy

docker-runc

Docker in Action and Architecture

Docker Engine internal

T -
| dockerd
R T -
|
L T +
| contalinerd |
T R +
| |
R - oo -
| containerd-shim| | containerd-shim|
R + R T +
| |
R T + R T +
runc runc
R - oo -

Docker in Action and Architecture

Docker in Action and Architecture

