Report Checkpoint

By: Tatum Maston , Justin Harsono , Charlie Tran

Introduction

Viasat Inc. is an American communications company that provides high-speed satellite
broadband services and secure networking systems covering military and commercial markets.
Therefore, ensuring high quality network performance is crucial for their business success and
maintaining customer satisfaction. Fundamental factors that affect network performance are
packet loss and latency. When accessing the internet or any network, small units of data called
packets are sent and received. Packet loss occurs when one or more of these packets fails to
reach its intended destination. This results in slow service and network disruptions for the user.
Latency is the delay between a user’s action and a web application’s response to that action,
often referred to as the total round trip time it takes for a data packet to travel.

The problem we are trying to explore is: can we detect anomalies within network traffic,
whether it be an increase in the packet loss rate, larger latency or both. Packet loss can be caused
by a number of issues, including: network congestion, problems with network hardware,
software bugs and security threats. On the other hand, main factors that affect network latency
are: the transmission medium (copper cable-based networks vs. modern optic fibers),
propagation (how far apart the networks are), efficiency of routers and storage delays.
Ultimately, all of these can cause some form of network degradation and result in an increase in
packets being dropped and an increase in delay of data being sent from one computer to another.
If we observe a drastic change in packet loss, latency and variables correlated with the two (i.e.

an anomaly), then we would also likely expect to see network degradation causing the deviation

mailto:tmaston@ucsd.edu
mailto:jjharson@ucsd.edu
mailto:cht104@ucsd.edu
https://blog.stackpath.com/web-application/

from normal behavior. The ability to detect anomalies on a data stream would be extremely
useful as a monitoring & alerting system for poor network conditions.

We will be using data generated from DANE (Data Automation and Network Emulation
Tool), a tool that automatically collects network traffic datasets in a parallelized manner without
background noise and emulates a diverse range of network conditions that are representative of
the real world. Using DANE, we are able to configure parameters such as latency and the packet
loss ratio ourselves. More importantly, we are able to simulate an anomaly by changing the
configuration settings of the packet loss rate and latency mid run. The data collected is already
aggregated per second with these fields: timestamps, IP and port addresses of the source and
destination, number of bytes and packets sent for each direction of traffic, the milliseconds of
when each packet was sent, the size of each packet sent and the sequence of direction of each
packet. By having the ability to change the parameters within DANE, we are able to generate as
much data as we need with varying network conditions which is helpful in producing an accurate

model.

Methods

Prior Work

Last quarter our objective was to develop a machine learning model that can predict the
packet loss ratio & (0,1) and latency in milliseconds given a 10 second snapshot of network
traffic. Through this work, we engineered various useful features that correspond to packet loss,
allowing us to carry them over to our work with anomaly detection. Some findings from each of
our projects last quarter include a handful of useful features, a random forest classifier and a

regressor. Each of these models were highly dependent on the features we created, and also was

trained on data that was much more determinant than that we are using now. Since this quarter’s
work tries to avoid predicting packet loss and latency to determine an anomalous region, most of
the work salvaged from last quarter was the domain expertise, exploratory data analysis and
familiarity with the data generating tool DANE.
The Data

We ran only two scenarios at once to prevent overloading our CPU by running too many
DANE scenarios concurrently. Each DANE run is 5 minutes long. Key differences from last
quarter is that we are able to change the configuration settings mid-run and packets are now
dropped randomly, rather than
systematically. The configuration change
happens at the 180 second mark and what
we configure for our packet loss rate
determines the likelihood of each packet
being dropped. This way, we are able to
simulate an anomaly within our data and
are able to simulate packet loss in a more

realistic manner. Our steady state had a

packet loss ratio of 1/5,000 and a latency of
40 ms. We are focused on identifying changes of a factor of 4 and above. In our case a packet
loss ratio of 1/1,250 and a latency of 160 ms or greater or a packet loss ratio of 1/20,000 and
latency of 10 ms. First, we removed the first 20 seconds of each CSV file to get rid of the large
spikes that occur in the beginning. These large spikes occur because the computer pushes as

much data in the beginning of the DANE run but then the Internet provider slows it back down

The datasets generated include the following features:

DANE Features Description

Time Broken down into seconds (epoch)

Port 1 &2 Identifier of where the packets are being sent to and from. Can originate
from either.

1P IP address of the ports in communication

Proto IP protocol number that identifies the transport protocol for the packet

Port 1->2 Bytes

Total bytes sent from port 1 to 2 in given second

Port 2->1 Bytes

Total bytes sent from port 2 to 1 in given second

Port 1-> 2 Packets

Total packets sent from port 1 to 2 in given second

Port 2-> 1 Packets

Total packets sent from port 2 to 1 in given second

Packet times

Time in milliseconds that the packet arrived

Packet_size

Size of the bytes of the packet

Packet_dirs

Which endpoint was the source of each packet that arrived

Cleaning:

At first glance of the data, we notice a few duplicate time points with unusual IP

addresses. These rows include an insignificant amount of packets sent relative to the rest of the

data, causing us to believe that these are not anomalies — they are irrelevant data points. For this

reason, we have chosen to drop these points. We also perceive a large, sharp peak in the

beginning of the DANE runs that eventually begins to find the steady state of packet

transmission. This is due to the network initially overcompensating to understand how much

information it can handle in transmission to where a significant amount of data is not lost.

Because of this, we have chosen to exclude this period from our training set, since it does not
describe the steady state transitions that we are attempting to model.
Anomaly Definition

The type of behavior we are looking for is different from what a conventional anomaly
would behave like. Typical anomalies are characterized by significantly large spikes or drops in a
feature. The behavior we are looking for is more closely related to anomalous regions where the
degradation in the network continues; these anomalies resemble shifts. As we will show in the
next section spikes in our features that would normally resemble anomalous behavior are
perfectly random and not caused by any change in network quality. These anomalies would be
considered false positives if detected.
EDA and Feature Engineering

packets per second, conditions: 50 2500 300 1250 true

= packets 1->2

—— condition shift
2-=1 packet drop

2000 1->2 packet drop

1500

1000

packets per second

500

time

Figure 1: The packets per second sent from machine 1 — 2 with conditions of 50 ms latency and

1/2500 packets expected to be dropped with the conditions shifting to 300 ms latency and 1/1250

expected packet drops at 180 seconds.

Since the data generating process and the context we are using the features is different

from last quarter’s project, the features used to detect anomalies may have changed as well.

Comparing last quarter’s deterministic packet drops data with this quarter’s random packet drops

data, we can see that the correlation between packets per second and packet loss is still there.

Since packet loss and latency are our only ways of generating an anomaly, features such as

packets per second and other features correlated with packet loss and latency will be our basis for

determining whether there is an anomaly or not.

Exploring Packets Per Second Feature

First 180 seconds

Last 120 seconds

Mean 1783.72 428.43
Standard Deviation 710.10 260.22
Max 4404 1548
Min 680 152

In the figure 1 above the green lines at the bottom represent packet drops from the

machine sending data while the yellow lines represent packets dropped from the machine

sending acknowledgements. The spikes that would normally be looked at as anomalies happen

when there is a lack of packet drops for a relatively large number of packets being sent. This can

be roughtly modeled by the bernoulie distribution with the packet loss condition being the

probability of a “failure”. All the machine would see is the ratio of packet being dropped in the

last X amount of packets but not the actual probability that we set the packet loss ratio at. So if

we get a relatively low number of failures withing the last X packets this would signal to the

machine that the network could handle more packets sent and generate a spike in packets per
second without actually changing the network quality (probability a packets is dropped). These
unlucky low number of failures could be represented by the left tail in a bernouli distribution. As
we can see in figure 1, spikes occurs at 210s and 260s where there has not been a failure in a
relatively large amount of packets being sent but the probability of a packet drop has not
changed. A shift in packets per second occurs when there is a change in the probability of a
packet being dropped (the distribution of packet drops in a given number of packets changes). As
a result our features or models have to be robust to these kinds of spikes but still have the ability
to detect persistent shifts in the data generated. The change in network conditions happens at 180
seconds and as a result the usual packets per second shifts and stays low unlike a spike where the

packets per second would recover in a fairly short amount of time.

Exploration of Anomaly Detection Methods
I. Forecasting

Since we are dealing with time series data, we can create an anomaly detection model
through the use of forecasting techniques. The basic concept is that we will pick a feature, in this
case total packets sent per second (volume of traffic) and build a forecast. If the expected value is
outside of our prediction interval (threshold) we will flag it as an anomaly. We are employing a
multivariate time series forecast because we are using predictors other than the series (a.k.a
exogenous variables).

There are a multitude of different forecasting models to attempt and in our case, we will
be focusing on building an ARIMA (Auto Regressive Integrated Moving Average) model. This

model is actually a class of models that ‘explains’ a given time series based on its own past

values, that is, its own lags and the lagged forecast errors, so that equation can be used to
forecast future values. Any “non-seasonal” time series that exhibits patterns and is not a random
white noise can be modeled with ARIMA models. An ARIMA model can be characterized by 3
terms: p, d, g. P is the order of the “AR” term which refers to the number of lags of Y to be used
as predictors. Q is the order of the “MA” term which refers to the number of lagged forecast
errors that should go into the model. D is the number of differencing required to make the time
series stationary which is crucial because the term “AR” means that it is a linear regression
model and works best when the predictors are not correlated and are independent of each other.

To hypertune these parameters of (p,d,q), we performed a grid search method and chose
our model based on the AIC (Akaike Information Criteria). The AIC is a widely used measure of
a statistical model. It basically quantifies 1) the goodness of fit, and 2) the simplicity/parsimony,
of the model into a single statistic. When comparing two models, the one with the lower AIC is
generally a “better-fit model”.

To simulate a live stream of data, we chose to implement window intervals of n seconds
to train our ARIMA model on. With a focus on a lack of false positives and the perspective that
it’s better to let the occasional false negative occur, we found that window intervals of 20
seconds worked best. Therefore, we aggregated our data into 20 second intervals with the mean
of the total packet sent as our feature. Our training data consisted of eighteen 5 minute DANE
runs for a total of approximately an hour and a half of network traffic. The first 30 minutes of
data is our steady state with a latency of 40 ms and a packet loss ratio of 1/5000. Afterwards, we
had 5 separate, spaced out instances of simulated anomalies with a return to a steady state in
between each case. Each anomaly in our training data changed the latency to 160 ms and the

packet loss ratio to 1/1250.

Our test data consisted of twelve 5 minute DANE runs with half of them being steady
state traffic and the other half with anomalies simulated. These anomalies had different
configurations from our training set and had latency configurations of 320 ms and packet loss
ratios of either 1/1250 or 1/500.

To flag anomalous behavior, we calculated a 99% prediction interval around each
forecast. If the actual value falls outside this interval, it is flagged as an anomaly. We tuned our
prediction interval range from 95% - 99% and found that a 99% prediction interval was a wide
enough range to limit the amount of false positives and capture extreme anomalous behavior. In
addition, we also log transformed our data (mean of the total packets sent) to reduce the scale
because the original data range was in the thousands and since our model considers forecast
errors as part of the model, our prediction interval was much too wide. By transforming the data

onto a smaller scale, we are better able to capture anomalies.

II. Isolation Forest
In our pursuit to identify anomalies, we explored using an Isolation Forest model on

varying windows of our time series data to give an “anomaly score” for each data point. This
model tries to separate each point in the data built on the basis of decision trees. Partitions are
created by randomly selecting a feature, then a random split between the minimum and
maximum value of the selected feature. Since outliers are defined to be less frequent than most
regular observations, and are usually much different in terms of their values, we expect that this
random partitioning places outliers closer to the root of the tree. In essence, a normal point
requires more partitions to be identified than an abnormal point.

For each point, an anomaly score is calculated as:

E(h(z))
s(x,n) =27 "M
Where h(x) is the path length of observation, c(n) is the average path length of
unsuccessful search in a Binary Search Tree, and n is the number of external nodes.
To emulate a live stream of data, we chose to implement window intervals of n seconds
to train our models on. Using this approach would yield multiple anomaly scores for each data
point, as the window moves through the time series. To get a final anomaly score for a given

data point, we just average each score given by the windows including that point.

III. DBScan

The motivation behind using DBScan was to detect abnormal changes in the data. This
was before we had a proper definition of an anomaly. DBScan (density based) is particularly
sensitive to spikes since it uses distance and number of points within that distance. Spikes tend to
change rapidly and not have enough points near its peak to form a cluster. As a result spikes were
flagged as an anomaly because they were not in a cluster. Since we wanted to punish false

positives the most we did not use DBScan in our model

IV. MAD and Median

This model tries to take advantage of the differences in the features of spikes and shifts in
a time series. Median and median absolute deviation are transformations to the 1 — 2 packets
per second data using a rolling window. Some properties of this transformation: smoothens out
the data, depending on the window size median and MAD is robust against spikes, is sensitive to

shifts in the data. Median and MAD depend on the assumption that spikes are relatively short

and uncommon, and shifts are persistent. When a spike occurs the median would remain almost
unchanged since the data points outside the spike would make up more than 50% of the window
same applies to deviation from the median, hence why larger window sizes tend to do better.
Shifts in the data on the other hand eventually result in a shift in the median since they persist
much longer than 50% of the rolling window size. The model determines if a data point is an
anomaly if a transformation of the median and MAD are above a threshold based on the window
size. Deviation from the median was included in the transformation to limit the effect of large
variance in the window. If there is a lot of variance but no shift, the data would be above and
below the median so the sum of the deviations would be low in magnitude but in a shift the data
would be either strictly above or below the median and result in a high magnitude. All of these
transformations that picked at differences between spikes, shifts and data with high variance in a
window would be combined to make the presence of a shift more apparent. The transformation

used was:

MAD(window) *DM (window)
median(window)

Transformation(window) =

Where MAD is median absolute deviation and DM is the sum of the deviation from the median

Results

I. Metrics
We chose to use F1 score as our metric but also considered precision in our metrics. Our
motivation behind choosing F1 score and precision is because anomalous regions cause by
network degradation are assumed to be rare. Since the intended use for this ensemble model is to

alert ISP employees what connections are degraded if too many false positives are being flagged

then there would not be much signal for an anomaly in the alarm. Our goal is to have the users
trust that if there is an alarm they can be sure that there is network degradation, hence why
precision is considered. We also do not want our model to always predict negative, making it
trivial so F1 score was included.
II. Forecasting

We trained our model on the first 75 points of data (1,500 seconds or 25 minutes of
network traffic). The two graphs show the results of the ARIMA model on the training set
mentioned above. We can see that the model was able to detect whenever there was a
configuration change which caused the significant drops and in one instance it detected the
recovery when it jumped back to the steady state. One graph shows the results on the normal

scale and the other graph shows the results on the log scale.

Anomaly Detection 40-5000-320-1250 (99% ClI)

3500 —— actual
@ anomaly

3000

2500 A

2000 A

) J
1500 4

1000

ooy

Time (10s)

Total Packets Sent

Figure 2: ARIMA model anomaly detections using a 99% CI on the training set. The conditions
generating the data: 40ms latency and 1/5000 packets dropped shifting to 320ms latency and
1/1250 packets being dropped. Time is measured in units of 20s since the ARIMA model trains

on 20s aggregations of packets per second as a single data point.

Anomaly Detection 40-5000-320-1250 (99% Cl) - Log Scaled

—— actual
—— preds
@ anomaly
8.00

7.75

7.50 4 N}

7.25

Total Packets Sent

6.75 \4
6.50 ¢ ()

6.25 1

Time (10s)

Figure 3: ARIMA model 99% CI predictions on training data with a log scale. The conditions
generating the data: 40ms latency and 1/5000 packets dropped shifting to 320ms latency and
1/1250 packets being dropped. The ARIMA forecasts can be seen in orange.

We then ran the model on our test set concatenated to our train data. We can see in figure
4 that there were 2 instances of false negatives where our model did not flag the configuration
change as an anomaly. There was also a large spike in the middle of our steady state traffic which
was flagged as anomalous, representing one case of a false positive. This window of traffic just
so happened to have an extremely large volume of packets sent and was not due to a
configuration change. Once again, the first graph shows the results on a normal scale and the

second graph shows the results on the log scale.

Another observation is that our model never detects an anomaly during a resurgence back to a

steady state or during the timeframe soon after.

Anomaly Detection 40-5000-320-1250 (99% CI)

—— actual

[J @ anomaly
4000

3500 4

3000 +

2500

2000 4 J

1500 §

Total Packets Sent

1000 §

500 4

Figure 4: ARIMA model anomaly detections using a 99% CI on the test set. The conditions
generating the data: 40ms latency and 1/5000 packets dropped shifting to 320ms latency and

1/1250 packets being dropped. Time is measured in units of 20s since the ARIMA model trains

on 20s aggregations of packets per second as a single data point.

Anomaly Detection 40-5000-320-1250 (99% ClI) - Log Scaled

—— actual
—— preds
@ anomaly

8.0 1

7.5

Total Packets Sent

o1 |

[100 200 300 400
Time (10s)

Figure 5: ARIMA model anomaly detections using a 99% CI on the test set with a log scale and
forecast predictions.
III. Isolation Forest

Because of its good reputation with anomaly detection, we went to great lengths to get
the Isolation Forest model to perform well on our data. However, it continued to perform poorly,

leading us to depreciate it for our final anomaly detection approach.

Packets vs Time

8.4 4
82 1
8.0 1
78
b4}
Y76
(")
&
744
712
7.0 4
6.8 1
450 500 550 600 650 700 750
Time (s) +1.641855e9

Figure 6: Isolation forest anomaly predictions.

As described above, the Isolation Forest is based upon the principle that anomalies are far
and few. However, since our data is modeling real world instances of network traffic, we
experience drops in information that are caused by network degradations. These degradations are
the anomalies we are looking for. The nature of these degradations is that it lasts for more than a
few milliseconds, leading the packet transmission to be affected for a period of time. This leads
us to have anomalous regions rather than single anomalies, which is why Isolation Forests do not
work well. After a failed attempt at creating many new features, transformations, and smoothing,
we decided to not continue with Isolation Forests any further.

IV. DBScan

The anomalies we were looking for were shifts which generally had many points within
the eps i.e. distance, close enough and abundant enough to form a cluster. These would not be
flagged as anomalies. These two properties can be seen in the graph below. In order to make use
of DBScan we would have to exclusively use features that created a spike or trough when the
shift (an indicator of a change in latency or packet loss) happened and be robust agains spikes

that are a result of unlucky sequences of packet drops.

packets per second, conditions: 50 2500 300 1250 true

2000 1
E 1500
=
]
5
= 1000
g
(=
m
=1
500
g "ML WUNTRINE N I i um wy mmn o
0 0 100 150 200 250 300
time

Figure 7: DBScan anomaly predictions. Conditions used to generate data: 50 ms latency and
1/2500 packets expected to drop shifting to 300ms latency and 1/1250 packets dropped. The red
line indicated the time the condition shift happened. The ticks at the bottom indicate when a
packt was dropped, greenis 1 — 2 yellow is 2 — 1.

V. MAD and Median

The first graph shows the median transformation of 1 — 2 packets using a rolling

window. The second graph shows the MAD of the same graph. The vertical red line is where the
change in the network conditions happens. As shown in the first plot, the median is unaffected by
any large spikes in the data but responds to the shift in the data, albeit delayed. The delay is a
50% of the window size. Likewise the MAD is fairly resilient to spikes and creates a spike much
larger than any other as a result of the shift in packets per second. The third graph is a
combination of the first and second graph, showing where the anomaly was detected in the

second graph shifted by 50% of the window size (80s).

1->2 packets, conditions: 50 5000 200 1500 true

— 1->2pkis
median

3000 4

2500

2000 4

packets

1500 4

1000 4

500

T T T T T T T
o 50 100 150 200 250 300
time

Figure 8: Median on 1 — 2 packets per second with window size of 80s. Conditions used to
generate data: 50 ms latency and 1/5000 packets expected to drop shifting to 200ms latency and
1/1500 packets dropped. The red line indicated the time of the condition shift. The yellow line
indicates the median of the 80s before it. The first point in the yellow line would indicate the

median of the 80 data points without the yellow line.

MAD transformation, conditions: 50 5000 200 1500 true

1000 —— MAD transformation
~ threshald
= condition shift

anomaly detected
800
2 o
=3
o
A
=
<
S
=1
)
=
a
-3 400
B
5
=
c
=
2
7]
=
200
0 \\J \1\-—;

100 150 200 250 300
time

Figure 9: Transformation of statistics of a time window i.e. median. Since the transformation

uses a window the spike as a result of the shift is delayed by a function of the window size.

Anomalies detected on 1->2 packets generated on conditions: 50 5000 200 1500 true

—— 1->2 packets
anomolous region

3000

2500
B
kS

2 2000
A
1
2
5
o
&

@ 1500
o
2
s
a

1000

500

0

time

Figure 10: Anomalies detected using the transformation of the median absolute deviation.

Window size: 80s

V1. Ensemble Model

Our method to combine our ARIMA and MAD model followed a simple logic. We ran
both models independently and compared the results of each model. We used an AND operator
to see where both models detected an anomaly and labeled it as an anomaly. Otherwise, if the
condition is not met, then we do not label it as an anomaly. First, we look at the result of our
MAD model on the same dataset used earlier in the ARIMA section. The MAD model utilized a

window size of 80 with a threshold of 100 and ‘total packets’ as our feature.

MAD Anomaly Detection Output

—— Total Packets
® anomaly

5000

4000 4

w
=3
=3
=3

Total Packets

2000 -

1000 4

0 1000 2000 3000 4000 5000
Time(s)

Figure 11: MAD anomaly detection model with window size 80s. Several dane runs were

stitched together.

Here we can see that the MAD model captured every configuration shift and some of the
timeframes when the network goes back to a steady state. However, there are several instances of
false positives that occurred as well. Since MAD takes one second inputs and our ARIMA takes
in 20 second windows as inputs, we had to transform our ARIMA results back into one second
outputs. Our method of doing this was to go back and transform our 20 second window into one
second windows and for each anomaly in our 20 second window, we labeled the entire 20

seconds as an anomaly.

ARIMA Anomaly Detection Output

—— Total Packets
® anomaly

5000

4000 -

w
=3
=3
=3

Total Packets

2000 -

1000)

0 1000 2000 3000 4000 5000
Time(s)

Figure 12: ARIMA anomaly detection model with window size 80s. Several dane runs were
stitched together.

This graph represents the same results generated in the ARIMA section but our x-axis now
represents one second windows rather than 20 second windows. Now, using the ensemble logic

described above, our results show that we are able to detect anomalies early on when they occur.

However, we have one false negative where no anomaly appears due to the fact that our ARIMA

model detects the anomalies early on but the MAD model detects the anomalies later, so there is

no overlap for our ensemble logic to agree on an anomaly.

Ensemble Anomaly Detection Output

—— Total Packets
® anomaly

5000

4000

w
o
=3
=3

Total Packets

2000

1000 § H F

5000

fl) 10‘00 20‘00 Time) 30‘00 40‘00
Figure 13: Ensemble of the MAD and ARIMA model. The two models were combined using the

AND operator with the anomaly prediction from each model as input.

Discussion

A major portion of work that our group was not able to venture into was to generate a
more realistic dataset to test our model on. Our methodology of concatenating multiple runs of
DANE to “simulate” about an hour and a half of network traffic is not exactly accurate because

we do not know if networks jump back to a steady state as quickly and abruptly as shown in our

dataset. Also, we were only able to train and test our model on one configuration for our steady
state which was a network with a latency of 40 ms and a packet loss ratio of 1/5000. It would
have definitely been interesting to see how our model would perform on a test set with a new
steady state so we can further hypertune our model. For example, the ARIMA model only uses
“total packets™ as its feature and we know from our results from last quarter that different latency
and packet loss ratios results in different behavior for total packets sent over the network.
Therefore, the parameters for our ARIMA model would most likely change if our steady state
changes. As we have it right now, our ARIMA model is only trained on one configuration so an
addition we would have to make is to continuously or periodically retrain the ARIMA model to
make sure that it is correctly hypertuned. Moreover, our ensemble logic was very naive and
rough and it would’ve been extremely useful to flush our ensemble model out even further. As
we currently have it, our MAD model is hypertuned to have a window size of 80 seconds while
our ARIMA model is hypertuned to take in inputs of 20 seconds. The different inputs of each

model may need the development of different data pre-processors for each.

Resources:

https://towardsdatascience.com/outlier-detection-with-isolation-forest-3d190448d45¢

https://towardsdatascience.com/anomaly-detection-with-isolation-forest-visualization-23¢d75¢28

https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/

https://people.duke.edu/~rnau/411arim.htm

https://coolstatsblog.com/2013/08/14/using-aic-to-test-arima-models-2/

https://towardsdatascience.com/outlier-detection-with-isolation-forest-3d190448d45e
https://towardsdatascience.com/anomaly-detection-with-isolation-forest-visualization-23cd75c281e2
https://towardsdatascience.com/anomaly-detection-with-isolation-forest-visualization-23cd75c281e2
https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
https://people.duke.edu/~rnau/411arim.htm

