
Speeding up Nash Equilibrium
finding with population-based FoReL

Timothé Boulet
Aaron Marciano

Axel Nguyen–Kerbel
Clement Wang

CentraleSupélec × Google DeepMind

Nov 2023 - Apr 2024

University supervisor:
Hana Baili
hana.baili@centralesupelec.fr

Company supervisor:
Paul Muller

paul.fm.muller@gmail.com

mailto:hana.baili@centralesupelec.fr
mailto:paul.fm.muller@gmail.com

Abstract

This project centers on the challenge of finding Nash equilibrium strate-
gies within zero-sum games with two players. Robust theoretical techniques,
like Follow the regularized leader (FoReL), have emerged to tackle this chal-
lenge, proving effective even in intricate games like Stratego, which has an
immense state space of 10535. Concurrently, Population-Based methods have
shown promise in resolving complex Multi-Agent Reinforcement Learning is-
sues. Our focus lies in leveraging population-based strategies to accelerate the
convergence of FoReL. Specifically, we introduce a novel algorithm, Population
Alternating Lyapunov FoReL (PAL-FoReL), which adheres to the dynamics of
FoReL while taking advantage of its trajectory population to improve conver-
gence speed. Our efforts were concentrated on Normal form games to design
and test our algorithm. However, scalability was a central consideration, en-
suring that PAL-FoReL could easily transition to more complex environments.
This required meticulous design to mitigate the excessive computational bur-
den and adaptability to complex scenarios, including imperfect information
and extensive form games. PAL-FoReL exhibited significant performance su-
periority over preceding algorithms across a spectrum of tested Normal form
games, including Kuhn Poker. Our code can be accessed in the GitHub repos-
itory: https://github.com/tboulet/Algorithms-for-Normal-Form-Games.

CS × DeepMind Research Project Report 1

https://github.com/tboulet/Algorithms-for-Normal-Form-Games

Acknowledgement
We would like to express our sincere gratitude to the following individuals and
organizations for their invaluable support and contributions to our project:

• Paul Muller, research scientist at Google DeepMind, for serving as our su-
pervisor throughout the project. His guidance, expertise, and willingness to
explain complex theoretical concepts were instrumental in our progress. We
are grateful for his continuous support, encouragement, and the freedom he
provided us to explore various avenues.

• Hana Baili, our university supervisor, for her support throughout the duration
of our project. Her feedback has been invaluable in shaping our research
endeavors.

• Google DeepMind for generously supporting our project and providing re-
sources that facilitated our research. We are grateful for the opportunity to
collaborate and for hosting several of our meetings at their facilities.

• CentraleSupelec, our university, for offering us the opportunity to pursue this
captivating project as part of our curriculum. We appreciate the academic
environment that fostered our intellectual growth and provided the necessary
resources for our work.

• Hub IA and Automatants, the AI student organization at CentraleSupélec, for
providing us with access to a cluster where we could conduct our experiments.
Their support was instrumental in the execution of our research activities.

CS × DeepMind Research Project Report 2

Contents

Contents
1 Introduction 4

2 Background Information 5
2.1 Game Theory . 5

2.1.1 Normal Form Games (NFG) 5
2.1.2 From NFG to EFG . 5
2.1.3 Nash Equilibrium . 6
2.1.4 Regret . 6

2.2 Literature review . 7

3 Extending FoReL 12
3.1 Intuitions and design of the algorithms 12

3.1.1 Premise of a better algorithm 12
3.1.2 Sampling and averaging . 13

3.2 Algorithms . 15
3.2.1 Iterated Lyapunov FoReL (IL-FoReL) 15
3.2.2 Population FoReL (Pop FoReL) 16
3.2.3 Population Alternating Lyapunov FoReL (PAL-FoReL) 17

4 Experiments and results 18
4.1 Experimental Protocol . 18
4.2 Model-Based benchmark . 19
4.3 The influence of the sampled population size 19
4.4 Sampling strategies comparison . 20
4.5 Monte Carlo estimation of Q-values 21

5 Future works 23
5.1 Improving PAL-FoReL . 23
5.2 Back to more general cases . 23
5.3 Other population-based ideas . 24

6 Conclusion 25

A Implemented games 28
A.1 Matching Pennies . 28
A.2 Rock Paper Scissors . 29
A.3 Kuhn Poker . 30

B Experiments logs 32
B.1 WandB sweep results . 32
B.2 WandB repository for all runs . 32

CS × DeepMind Research Project Report 3

1 Introduction

1 Introduction
In the last decades, convergence in adversarial multi-agents games has been a colossal
challenge in the field of Multi-Agent Reinforcement Learning (MARL). The Follow
the Regularized Leader (FoReL) algorithm has been a popular choice to solve those
games, because of its theoretically proven convergence of time-averaged policies to
a Nash equilibrium [1]. However, for large games, where the policies are modelized
by neural networks, averaging the policies is extremely costly or unfeasible, making
FoReL impractical. In 2021, Perolat et al. [2] proposed an improvement of FoReL
that theoretically guarantees convergence of the policy itself. This algorithm, which
we will call Iterated Lyapunov FoReL (IL-FoReL), has been used as the basis for
more complex algorithms to solve complex games such as Stratego [3].

In parallel, Population-Based methods have been used to solve very complex
MARL problems such as Starcraft [4] or the first-person shooter game Quake III [5].
The idea is to maintain a population of agents and to update policies based on the
performance of the whole population. This allows the algorithm to explore a larger
space of policies, which is particularly useful in the case of adversarial games, where
a policy is considered good when it is robust, i.e. it performs well against a wide
range of opponents.

The objective of this project is to improve the convergence speed of FoReL al-
gorithms thanks to population-based methods that have proven to be particularly
useful for this.

Our code can be accessed in the GitHub repository:
https://github.com/tboulet/Algorithms-for-Normal-Form-Games.

CS × DeepMind Research Project Report 4

https://github.com/tboulet/Algorithms-for-Normal-Form-Games

2 Background Information

2 Background Information

2.1 Game Theory

Multi-agent reinforcement learning studies reinforcement learning methods applied
to cases where several agents interact, be it competitively or collaboratively, in order
to maximize their own profit. This falls under the scheme of Game Theory [6][7].
We introduce here the main concepts of Game Theory, namely strategy, regret,
Nash Equilibrium and Best Response, which will be at the heart of this project. We
also focus on the notion of Normal Form Games which are the most simple form of
games, and on which the project is focused.

2.1.1 Normal Form Games (NFG)

This project will give a lot of attention to normal-form games. A normal-form
game (NFG) is a one-step game that is represented using a matrix. It can be
defined as a tuple (Π,u,K) where Π = (Π1, . . . ,ΠK) is the set of policies or strategies
of the players K and u : Π→ RK is a utility function. Let us denote

{A1, . . . ,AK}

the action sets of the K players in the game. The payoff function

u :
K∏
k=1

Ak → RK

returns a numerical utility to a vector of K actions. Let us denote πk the mixed
strategy of the k-th player. πk is a vector of a size corresponding to the number of
actions available to the k-th player. We call a strategy profile the vector

(π1, . . . , πK)

Given a strategy profile, the expected utility for player k is

uk(π) = Eπ[u
k(a) | a ∼ π]

2.1.2 From NFG to EFG

The term extensive form game (EFG) extends the definition of NFG to sequen-
tial multi-step games. In practice, it makes more sense to model complex games
such as highly sequential games as EFG, which introduce a notion of state contex-
tualization, where the policy output also depends on the observation of the agent.
However, it is always possible (although not adapted for large games) to model an
EFG as an NFG.

CS × DeepMind Research Project Report 5

2 Background Information

In the NFG representation of an EFG, the set of actions becomes the entire set
of possible plans decided in advance by the agent. For example, Kuhn Poker, which
in its EFG form consists of around 5 different observations with 2 actions each, for
each player, becomes an NFG game with 32 actions for player 1 and 64 actions for
player 2 (but only 1 "state").

In this project, we chose to focus on the NFG framework, as this is a strong
theoretical framework for studying algorithm behavior, but we kept in mind that
the final application of our research would be on EFG games. Discussion about the
extension of our methods to more general games can be found in Section 5.2.

2.1.3 Nash Equilibrium

A Nash equilibrium is a situation where every player is playing optimally with
regard to the opponents’ strategies. In a Nash Equilibrium, each player is playing
the best response to opponents. A Nash Equilibrium corresponds to a profile of
robust strategies and acted convergence players to a rational behavior. For those
reasons, Nash Equilibrium is considered as the objective in Game Theory.

The best response is defined as such:

BRk(π−k) = argmax
πk

uk((πk, π
−k))

where π−k denotes the mixed strategies of the other players. A profile π∗ is said to
be a Nash Equilibrium if

πk
∗ = BRk(π−k

∗)

for all players k.
To evaluate policies, a commonly used convergence metric is the Nash con-

vergence metric. Intuitively, it measures the distance of a policy π from the Nash
equilibrium. It is defined as:

NashConv(π) =
∑
k

uk(BRk(π−k), π−k)− uk(π)

For a given player k, we denote the set of mixed strategies as:

χk = ∆(Ak)

2.1.4 Regret

Let us now define the regret. Intuitively, the regret indicates the difference between
a given utility or a given payoff, and the higher possible values of this utility if the
considered player had played other policies instead of the one we currently consider.
Unless otherwise stated, it is the average payoff difference between the player’s

CS × DeepMind Research Project Report 6

2 Background Information

mixed strategy at a time t and the player’s best strategy. At a given time, for a
given sequence of mixed strategies x(t), regret is defined as:

Regk(t̃) = max
pk∈χk

{
1

t̃

∫ t̃

0

[uk(pk;x−k(s))− uk(x(s))] ds

}
Thus, a player seeks to minimize his regret. A player k is said to have no regret

under x(t) if:

lim sup
t→∞

Regk(t) ≤ 0

2.2 Literature review

FoReL and Poincaré recurrent trajectories A well-known scheme that is
often applied to zero-sum normal form games is the Follow the Regularized Leader
algorithm (FoReL) [1]. It is an exploration-exploitation algorithm that seeks to
maximize the player’s cumulative pay-off (exploitation) minus a regularization term
(exploration). FoReL is renowned for its characteristic of no regret.

The dynamics of the Follow the Regularized Leader algorithm (FoReL) are de-
scribed by the following equations:

yk(t) =

∫ t

0

uk(π(s)) ds

πk(t) = argmaxπk∈χk

(
⟨yk(t), π

k⟩ −H(πk)
)

Here, χk represents the strategy space of the player k, H(πk) denotes the entropy
function of the strategy vector πk, and ⟨·, ·⟩ denotes the operation of the inner
product. Intuitively, the entropy function is minimized by the uniform distribution
so the entropy term biases the argmax towards the uniform distribution to allow the
exploration part.

In the case of the entropy regularizer, FoReL corresponds to the special case
of Replicator Dynamics. Replicator Dynamics is described with this differential
equation :

d

dt
πk(a) = πk(a)

[
u(a, π)− uk(π)

]
Throughout the rest of the report, we will present various algorithms based on

FoReL. When clarity on the version is required, we will refer to the fundamental
form as vanilla FoReL.

A trajectory is Poincaré recurrent if it returns arbitrarily close to itself in-
finitely many times in the future. In other words, every point of the trajectory is an
accumulation point of the trajectory.

Mertikopoulos et al. [1] offered two powerful theorems on the trajectories of the
policies taken by a FoReL algorithm:

CS × DeepMind Research Project Report 7

2 Background Information

Theorem 1. Let Γ be a 2-player zero-sum game that admits an interior Nash equi-
librium. Then, almost every solution trajectory of FoReL is Poincaré recurrent.
Specifically, for (Lebesgue) almost every initial condition π(0) ∈ χ, there exists an
increasing sequence of times tn →∞ such that π(tn)→ π(0).

Proof. The proof involves several intricate steps. Refer to Mertikopoulos et al. [1]
for a comprehensive understanding.

1. It establishes the incompressibility of the dynamics of the score sequence y(t),
ensuring that the volume of initial conditions remains constant over time. This
property, coupled with Poincaré’s recurrence theorem, guarantees recurrence
if the solution orbit y(t) remains within a compact set for all t ≥ 0.

2. To prevent solutions from escaping to infinity, a transformed system based
on score differences is introduced. Although the level sets of this system’s
coupling G(y) = [h∗(yi) − yi, x

∗
i] are unbounded, the score transformation

described ensures compactness, ultimately leading to recurrence.

Theorem 2. Let Γ be a two-player zero-sum game that does not admit an interior
Nash equilibrium. Then, for every initial condition of FoReL, the induced trajectory
of π(t) converges to the boundary of χ. Specifically, if π∗ is a Nash equilibrium of Γ
with maximal support, π(t) converges to the relative interior of the face of π spanned
by supp(π∗).

Proof. Similar to the preceding theorem, we only depict the basic understanding of
the proof. For a comprehensive understanding, refer to Mertikopoulos et al. [1].

1. It can be established that the coupling G(y) =
∑

i∈N [h
∗
i (yi) − yi, x

∗
i] strictly

increases under (FoReL) for certain conditions, ensuring boundedness of the
dynamics.

2. By analyzing the dynamics of the primal-dual coupling L(t) = G(y(t)), it is
shown that it is Lipschitz continuous and exhibits a finite limit, indicating
convergence.

3. By further analyzing the properties of L(t), it is concluded that any limit point
of the dynamics must lie on the boundary of the strategy space, as the game
does not admit an interior equilibrium.

CS × DeepMind Research Project Report 8

2 Background Information

Figure 2: Example of Poincaré recurrent trajectory: FoReL on Rock-Paper-Scissors

Converging with FoReL. Perolat et al. [2] introduced a method to make the
FoReL algorithm with entropy regularization converge with a simple reward trans-
formation.

The intuition behind this approach stems from the previous theorems, which
demonstrated that a reward independent of policies inevitably leads to a Poincaré
recurrent trajectory. To induce convergence in the trajectory, the expected payoff
has to incorporate a term that makes the Nash policy attractive. In simpler terms,
we aim to introduce a "friction" component to the trajectory to prevent it from
cycling endlessly. This is achieved through the following reward transformation:

Rk
π(a

k, a−k) = rk(ak, a−k)− η log

(
πk(ak)

µk(ak)

)
+ η log

(
π−k(a−k)

µ−k(a−k)

)
where µ is a reference distribution over the actions and η is a scaling factor. Given
specific assumptions outlined in Perolat et al. [2], which are validated in our games,
the reward transformation guarantees exponential convergence rates. While we re-
frain from delving into the specifics here, all details are thoroughly provided in
Perolat et al. [2].

However, since this method alters the reward function, it consequently modifies
the game, thereby slightly changing the Nash policy as well. Perolat et al. [2]
introduced two algorithms aimed at determining a Nash policy of the original game.

Decaying Lyapunov FoReL (DL-FoReL) (Alg.1). When η = 0 in the reward
transformation, the game returns to its original state. Consequently, we could solve

CS × DeepMind Research Project Report 9

2 Background Information

the Replicator Dynamics equation with η → 0 to identify the Nash policy of the
original game. However, in practice, this algorithm exhibits limitations as it stops
learning after a predefined number of iterations, making it challenging to apply to
complex games.

Algorithm 1 Decaying Lyapunov FoReL (DL-FoReL)
1: Initialize niteration, the total number of iterations
2: Initialize ηstart, the initial value of η
3: Initialize π
4: µ← π
5: η ← ηstart
6: ηend ← 0
7: for iteration in 1 to niteration do
8: Q← estimate_utility_with_reward_transformation(π, η, µ)
9: π ← update_pi(π,Q)

10: η ← ηstart + (ηend − ηstart)× iteration
niteration

11: end for

Iterated Lyapunov FoReL (IL-FoReL) (Alg.2). Unlike DL-FoReL, this al-
gorithm does not involve decaying η. Instead, it focuses on correcting the reward
transformation by iteratively updating µ to match the current π after a certain num-
ber of steps. In a way, IL-FoReL can be viewed as a fixed-point iteration algorithm,
where we sequentially update µ to πk to obtain πk+1. For a detailed proof of the
algorithm’s convergence, please refer to Perolat et al. [2]. In practice, IL-FoReL
demonstrated superior convergence performance and exhibited greater robustness
to variations in its hyperparameters.

Algorithm 2 Iterated Lyapunov FoReL (IL-FoReL)
1: Initialize niteration, the total number of iterations
2: Initialize nL

steps, the number of Lyapunov steps between each update of µ
3: Initialize η
4: Initialize π
5: µ← π
6: for iteration in 1 to niteration do
7: for step in 1 to nL

steps do
8: Q← estimate_utility_with_reward_transformation(π, η, µ)
9: π ← update_pi(π,Q)

10: end for
11: µ← π
12: end for

CS × DeepMind Research Project Report 10

2 Background Information

Scaling up FoReL to more complex games Neural Replicator Dynamics
(NeuRD) [8] is the application of Replicator Dynamics equations along with pol-
icy gradient. This association results in a powerful approach that benefits from
both the theory behind FoReL and the function approximation capabilities of neu-
ral networks. It also unlocks the possibility of using FoReL in imperfect information
games (IIG), such as the Kuhn Poker in [2]. Similar theorems to those found in Nor-
mal Form Games were also established for IIG in [2]. Particularly noteworthy is its
application in mastering Stratego, as illustrated in [3], an IIG with an astronomical
state space of 10535 states, surpassing even the complexity of Go, which stands at
10360 states.

Population based algorithms Population-based algorithms, such as Fictitious
Play and Leagues, offer dynamic frameworks for learning and adapting strategies in
multiagent environments. Fictitious Play, introduced by Brown in 1951 [9], involves
players repeatedly engaging in a game and adjusting their strategies based on oppo-
nents’ average strategies. This approach is guaranteed to converge towards a Nash
equilibrium in two-player zero-sum games. The essence of Fictitious Play lies in its
utilization of a growing population of agents to explore the policy space within a
game. At each iteration, agents select actions based on their opponents’ average
strategies. This iterative process enables agents to gradually refine their strategies
over time, with the ultimate goal of finding a Nash policy capable of maximizing
its reward against all other policies on average. Leagues, on the other hand, involve
organizing agents into groups or "leagues" where they compete and learn from each
other’s strategies.

In the context of Self-Play, these population-based algorithms can be instru-
mental in enhancing learning and convergence speed. In Fictitious Self-Play [10], by
incorporating Fictitious Play to Self-Play, agents can explore a wider range of strate-
gies by interacting with a growing population of opponents, leading to more diverse
gameplay experiences and potentially faster convergence to optimal strategies.

Leagues for more complex games For more complex games like Starcraft II
even fictitious self-play techniques can be insufficient to produce strong agents. To
address this challenge, DeepMind developed a more sophisticated general-purpose
solution, which they detailed in a recent Nature article [4]. Their approach called
the League, extends the concept of self-play by introducing a collaborative dynamic
among agents. Unlike conventional self-play, where agents solely aim to win against
opponents, the League incorporates the idea of collaborative training akin to humans
partnering with friends to improve their gameplay. In this framework, main agents
strive to win against all opponents, while exploiter agents focus on exposing flaws in
the main agent’s strategy to facilitate improvement, rather than maximizing their
win rate against all players.

This novel approach recognizes the importance of collaborative learning dynam-

CS × DeepMind Research Project Report 11

3 Extending FoReL

ics beyond mere competition. By including exploiter agents dedicated to assisting
the main agent’s growth, the League creates a more comprehensive and effective
training environment. Through this collaborative training process, the League learns
complex strategies in StarCraft II autonomously and end-to-end.

3 Extending FoReL
IL-FoReL has a strong theoretical foundation and we know that it works well. But
how can we improve it? Lately, people have been interested in algorithms that use
populations of policies, so we thought about adding this idea to FoReL. What would
be in our population and how could we use it to improve FoReL? To keep things
simple, we decided to stick to basic game types, namely, Normal Form Games, in-
stead of getting tangled up in using fancy methods with neural networks, such as
NeuRD [8] or DeepNash [3]. In this way, we can focus on improving the core of
the algorithm with methods that converge quickly, without having to worry about
training neural networks. We also made sure to think about how well our methods
would work on larger scales, and we will talk more about that in Section 5.2. There-
fore, most of our experiments will solve the replicator dynamics equation with the
Euler method. We will focus our study on Matching Pennies, Rock-Paper Scissors,
and Kuhn Poker. It is important to note that by default, the Q-values (or expected
utility) are "model-based," implying that we possess precise knowledge of the utility
matrices’ values of all games.

3.1 Intuitions and design of the algorithms

3.1.1 Premise of a better algorithm

Getting better convergence? Our primary focus was on preserving all policies
generated by replicator dynamics to form our population. The subsequent consid-
eration was how to utilize this population effectively, keeping in mind the eventual
manipulation of neural networks for scalability. Hence, averaging the policies is not
a straightforward task. The underlying idea behind FoReL with reward transfor-
mation is to introduce a friction term into replicator dynamics, preventing the joint
policy from diverging significantly from the reference policy µ. But what happens
if µ is π∗ the Nash policy? Theoretically, even if the game is modified, the modified
Nash is still the one from the original game and we would have π(t) → π∗. We
will call this purely theoretical and not practical algorithm variation L*-FoReL for
convenience.

CS × DeepMind Research Project Report 12

3 Extending FoReL

(a) L*-FoReL on Rock-paper-scissors
(b) NashConv plots: L*-FoReL (pink),

IL-FoReL (blue), and DL-FoReL (black)

Figure 3: Comparison of L*-FoReL with IL-FoReL and DL-FoReL on
rock-paper-scissors

L*-FoReL demonstrates faster convergence compared to IL-FoReL and DL-FoReL.
This suggests that there’s potential for enhancing the selection of µ, leading to the
proposal of employing a population to approximate π∗, given that the time-average
of the replicator dynamics trajectory yields π∗. Additionally, it’s worth noting that
L*-FoReL can serve as a pseudo lower bound for methods using populations, as
setting µ = π∗ is intuitively the most favorable constant µ choice available.

Adapting L*-FoReL with a population While averaging over time provides an
approximation of the Nash policy, this isn’t feasible when employing neural networks.
Instead, our idea involves averaging policies over time to obtain a µ that closely
resembles π∗. Subsequently, IL-FoReL can be applied using this µ. In this context,
µ can be the mean of n neural networks. This mean will facilitate learning a policy
through a single neural network trained using IL-FoReL.

3.1.2 Sampling and averaging

Taking the average of all the visited policies can be computationally very expensive,
especially for neural networks. To limit the computation overhead, we opted for
sampling nsamples policies and taking the average over these policies Psampled.

CS × DeepMind Research Project Report 13

3 Extending FoReL

Sampling How should we approach policy sampling? If FoReL tends to cycle
around π∗ [1], an intuitive strategy would involve maximizing the volume of the
polyhedron outlined by the nsamples policies. However, maximizing volume poses an
NP-hard challenge, leading us to explore simpler methods:

• Random. A straightforward approach involves randomly selecting nsamples

policies from the trajectory.

• Periodic. Another approach involves selecting nsamples policies at regular
intervals.

• Greedy. The greedy strategy approach involves initializing the sampled set
Psampled with the last policy and iteratively adding policies from the trajectory
based on maximizing a certain criterion. We devised two versions of the greedy
strategy. The first, referred to as "greedy-to-sum," entails selecting

argmaxπ∈T

 ∑
π′∈Psampled

d(π, π′)

while the second, dubbed "greedy-to-average", involves selecting

argmaxπ∈Td(π, average(Psampled))

Here, T represents the Replicator Dynamics trajectory, average denotes either
the arithmetic or geometric average, and d denotes a distance metric between
distributions such as KL divergence, L1, or L2 distances. Interestingly, both
methods are the same for the KL divergence and the L2 distance.

Averaging Regarding the averaging method, the geometric average is preferable
for the reward transformation, as it resembles summing the reward transformations
due to the logarithmic nature. However, the time average of the trajectory, resulting
in the Nash policy, follows an average akin to a sum.

Experimenting sampling strategies Now, we will delve into an in-depth anal-
ysis of all these methods using the Matching Pennies Biased game. The experiment
proceeded as follows: Initially, we executed FoReL without reward transformation
on MP Biased to generate a Poincaré recurrent trajectory. Subsequently, our objec-
tive was to evaluate the proximity of each method to the Nash policy, quantified by
the NashConv metric.

CS × DeepMind Research Project Report 14

3 Extending FoReL

(a) Periodic vs Random & Arithmetic
vs geometric average

(b) Greedy vs periodic sampling with
arithmetic average

Figure 4: Comparison of NashConv with different sampling and averaging methods

Our experiments revealed that the geometric average yields significantly less rel-
evant results compared to the arithmetic average (Fig. 4a). Regarding the compar-
ison between periodic and geometric strategies, the former exhibits greater stochas-
ticity. Since our primary interest lies in their performance with small populations,
we opt to retain the periodic strategy. In Fig. 4b, we observe that the greedy-to-
average approach with the KL divergence metric outperforms all others with larger
population sizes. For smaller population sizes, the greedy strategy surpasses the
periodic strategy, and the choice of metric is less critical. Based on these findings,
we conclude that the greedy-to-average sampling with the KL divergence metric for
policies is the most suitable approach for our purposes.

Analysis of Greedy Sampling Complexity It is noteworthy that greedy sam-
pling can exhibit non-negligible time complexity. Specifically, greedy-to-average
sampling operates at O(nsamples × npopulation), while greedy-to-sum sampling shares
the same complexity but with dynamic programming. Given that FoReL generates
small steps while solving the Replicator Dynamics differential equation, the size of
npopulation can grow significantly, leading to extended computational time. To miti-
gate this issue, a straightforward approach would involve periodic sub-sampling or
clustering.

3.2 Algorithms

3.2.1 Iterated Lyapunov FoReL (IL-FoReL)

IL-FoReL was developed in [2]. More details are given in Section 2.2. This algorithm
will serve as a comparison to our algorithms.

CS × DeepMind Research Project Report 15

3 Extending FoReL

3.2.2 Population FoReL (Pop FoReL)

This algorithm takes its inspiration directly from FoReL and the work on sampling
and averaging (Section 3.1.2). We start with a Poincaré recurrent cycle during
which we accumulate a population. After a fixed number of steps, we sample the
population and take the average of the sampled population. And we restart from
there each time (See Alg. 3).

Algorithm 3 Population FoReL (pop FoReL)
1: Initialize niteration, the number of iterations
2: Initialize nPC

steps, the number of steps in each recurrent phase
3: Initialize the sampling and averaging method
4: Initialize empty population P
5: Initialize π
6: for iteration in 1 to niteration do
7: for step in 1 to nPC

steps do
8: π ← FoReL_iteration(π)
9: Add π to the population P

10: end for
11: π ← sample_and_average_population(P)
12: Reset population P
13: end for

It is worth noting that Population FoReL is purely here to test our hypothesis
that we can reach the Nash policy solely with the vanilla Poincaré recurrent FoReL
and averaging after subsampling the trajectory. Indeed, population FoReL is the
most basic algorithm with a population derived from FoReL but it can hardly be
scaled up as it is impossible to take the average of neural networks.

(a) Trajectory visualization (b) Nashconv metric

Figure 5: Population FoReL on MP biased

CS × DeepMind Research Project Report 16

3 Extending FoReL

3.2.3 Population Alternating Lyapunov FoReL (PAL-FoReL)

The concept underlying this algorithm involves alternating between Poincaré Re-
currence phases and phases comprising Lyapunov iterations. During the Poincaré
Recurrence phase, the algorithm cyclically explores around the Nash Equilibrium,
facilitating a more accurate estimation of µ through sampling and averaging. This
way, we expect µ to be close to π∗. Then, in the Lyapunov FoReL phase, the
algorithm uses the updated µ to converge towards the modified Nash Equilibrium.

Algorithm 4 Population Alternating Lyapunov FoReL (PAL-FoReL)
1: Initialize niteration the number of iterations
2: Initialize nPC

steps, the number of steps in the recurrent phase
3: Initialize nL

steps the number of steps in Lyapunov phase
4: Initialize the sampling & averaging method
5: Initialize empty population P
6: Initialize π
7: µ← π
8: for iteration in 1 to niteration do
9: for pc_step in 1 to nPC

steps do
10: π ← FoReL_iteration(π)
11: Add π to the population P
12: end for
13: µ← sample_and_average_population(P)
14: Reset population P
15: for l_step in 1 to nL

steps do
16: π ← Lypunov_FoReL_iteration(π, η, µ)
17: end for
18: end for

CS × DeepMind Research Project Report 17

4 Experiments and results

(a) Trajectory visualization (b) Nashconv metric

Figure 6: PAL-FoReL on MP biased

4 Experiments and results
Here, we outline our experiments and provide our analysis of the results.

4.1 Experimental Protocol

We trained our algorithms using two modes of Q-value (or utility u) estimation :

• Model-based, where the true Q-values are directly computed from the game
so that we have the exact values needed for Replicator Dynamics.

• Monte-Carlo estimation, where the Q-values are estimated using a Monte-
Carlo (model-free) method. This method is more general and can be used for
more complex games, even games where we do not directly know the rewards.

The model-based method is considerably faster than the Monte-Carlo method
because of its minimum variance but requires the knowledge of the game’s tree.
We chose to focus on the model-based method during our project, as the problem
of convergence with exact Q-values is already a challenging one, and because the
Monte Carlo method converges to the true Q-values if the number of Monte Carlo
iterations becomes large enough.

We trained our algorithms on Kuhn’s Poker for 500k games for the model-based
method, and 1M games for the Monte Carlo method.

We performed a hyperparameter sweep for PAL-FoReL and IL-FoReL using the
WandB platform to pick our hyperparameters for the final benchmark. The sweep
results are accessible in the appendix (Section B.1).

CS × DeepMind Research Project Report 18

4 Experiments and results

4.2 Model-Based benchmark

The Nash Conv metric in log scale is represented in Figure 7 for the different al-
gorithms. We observe that PAL-FoReL (green) outperforms IL-FoReL (orange)
in terms of convergence. This result is consistent with our expectations, as the
population-based approach of PAL-FoReL allows for a more accurate approxima-
tion of the Nash policy.

Figure 7: NashConv for different algorithms on Kuhn’s Poker

These results hint at the potential of population-based algorithms in enhancing
the convergence of FoReL-based methods. The superior performance of PAL-FoReL
compared to IL-FoReL underscores the importance of leveraging populations to ap-
proximate the Nash policy more accurately. This approach enables the algorithm to
explore a broader range of strategies, leading to faster convergence. It’s noteworthy
that Population FoReL demonstrates even quicker convergence than PAL-FoReL,
emphasizing that population sampling and averaging are at the heart of the success
of PAL-FoReL.

4.3 The influence of the sampled population size

The ability of our algorithm to perform well with a small sampled population size
is crucial for scalability.

Here, we present the influence of the size of the sampled population on the
convergence of Population FoReL (Fig. 8) and PAL-FoReL (Fig. 9). In both plots,
for reference, we included PAL-FoReL (green) and Population FoReL (purple) with a
sampled population size of 10, as well as IL-FoReL (orange). For population-based
algorithms, as stated in the previous section we only used the greedy-to-average
strategy with the KL-divergence and arithmetic average.

CS × DeepMind Research Project Report 19

4 Experiments and results

Figure 8: Population FoReL performance for different population sizes

Figure 9: PAL-FoReL performance for different population sizes

Our experiments revealed two distinct patterns for Population FoReL. With large
sampled population sizes (nsample > 50), increasing nsample enhances the convergence
rate. However, for smaller population sizes (nsample < 20), the impact is less evident.
This trend extends to PAL-FoReL, where the size of the sampled population appears
to have no discernible effect on the convergence rate.

4.4 Sampling strategies comparison

We verified the conclusions drawn in section 3.1.2 on the different sampling strategies
for our algorithms. The results are presented in Fig.10 for Population FoReL and in
Fig.11 for PAL FoReL. We note significant enhancements in algorithm convergence
through the adoption of the greedy strategy compared to random or periodic policy

CS × DeepMind Research Project Report 20

4 Experiments and results

sampling methods. This outcome is readily understandable because both periodic
and random sampling strategies depend on the Poincaré recurrent trajectory. How-
ever, given the complexity of Kuhn Poker, it’s probable that vanilla FoReL doesn’t
have ample time to complete a full loop during the recurrent phase. In such scenar-
ios, the greedy sampling strategy remains the only approach to effectively leveraging
the population.

Figure 10: Population FoReL performance for different sampling method

Figure 11: PAL-FoReL performance for different sampling method

4.5 Monte Carlo estimation of Q-values

We also tested our algorithms using the Monte Carlo estimation of the Q-values.
The results are presented in Fig.12.

CS × DeepMind Research Project Report 21

4 Experiments and results

Figure 12: NashConv for different algorithms on Kuhn’s Poker using MC method
for Q-value estimation

An initial observation is that all algorithms encounter considerable difficulty in
achieving accurate results in the Model-free setting. This outcome was somewhat
anticipated since all updates involve noise due to the evaluation of the Q-value.
Population FoReL encounters significant challenges in convergence despite exhibit-
ing the best convergence rate in the model-based setting. However, PAL-FoReL
demonstrates resilience to the noise and continues to converge more effectively than
IL-FoReL.

CS × DeepMind Research Project Report 22

5 Future works

5 Future works

5.1 Improving PAL-FoReL

(a) Size: 2 (b) Size: 10 (c) Size: 20 (d) Size: 50

Figure 13: Greedy sampling with KL divergence on MP Biased with different
population sampling sizes

While the greedy-to-average sampling method with KL-divergence shows im-
proved performance, it still falls short of being optimal. Even with nsample = 10, the
sampling strategy behaves similarly to having nsample = 2. Therefore, although not
tested, a potentially more effective approach could involve a combination of greedy
and random sampling during the initial steps.

5.2 Back to more general cases

When designing our algorithms, scalability was always a key consideration. As a
result, our method, PAL-FoReL, can be effectively scaled up to tackle more com-
plex games using the NeuRD framework [8]. This involves leveraging policy gradient
techniques alongside Replicator dynamics. Notably, by maintaining a low popula-
tion size, PAL-FoReL can be deployed with minimal computational overhead, as the
algorithm’s performance isn’t significantly impacted by small population size. To
avoid retaining all states of the neural networks, one could consider periodic sav-
ing steps in addition to methods described in Section 3.1.2. Moreover, within the
NeuRD framework, PAL-FoReL gains the capability to address sequential games
and imperfect information games by integrating observations as inputs to the pol-
icy network. While the formulas remain consistent, they are now conditioned on
the input state. When employing greedy sampling, obtaining a distribution of the
observations becomes necessary. The distance metric across distributions is substi-
tuted by an average of π conditioned by the action, weighted by the distribution of
observations.

Moving forward, the next phase of this project involves implementing PAL-
FoReL with NeuRD on the Kuhn Poker game to directly assess its scalability on
imperfect information games with neural networks. [2] could inspire this upcoming
work since IL-FoReL was implemented on Kuhn Poker.

CS × DeepMind Research Project Report 23

5 Future works

5.3 Other population-based ideas

Population-based approximation of Q instead of µ The concept behind PAL-
FoReL involves aligning µ closely with π∗ using population-based concepts. An
intriguing proposition would be to directly assess the feasibility of this approach for
u within the Replicator Dynamics equation:

d

dt
πk(a) = πk(a)

[
u(a, π)− uk(π)

]
Here, u relies on the current policy. Similar to µ, it would be insightful to examine
the potential impact on π(t) if u were replaced by u∗, the utility for π∗. However,
substituting both u terms in the equation renders it trivial. Hence, the focus should
be on studying the behavior when one term is replaced while the other remains
unchanged. If the outcomes prove noteworthy, a similar population-based strategy
could be employed to substitute u with a population-based estimation.

Leagues training Originally, the project considered employing leagues to enhance
FoReL, but this avenue was not explored further. Given FoReL’s tendency for
chaotic behavior when dealing with more than two players, we decided to pursue
PAL-FoReL instead. PAL-FoReL appeared to offer greater stability and promise.
Leagues training involves organizing agents into groups or "leagues" and having
them compete against each other, to improve their performance through competition
and collaboration within their respective leagues [4].

CS × DeepMind Research Project Report 24

6 Conclusion

6 Conclusion
This research project introduced two innovative algorithms for identifying Nash
Equilibrium strategies in two-player zero-sum games: Population FoReL and PAL-
FoReL. These algorithms leverage the robust theoretical underpinnings of FoReL in
conjunction with population-based concepts. Through a series of experiments, we
explored various iterations of our algorithms. Both approaches demonstrated faster
convergence compared to IL-FoReL. The efficacy of Population FoReL and PAL-
FoReL can largely be attributed to the efficient greedy sampling technique. The
success of Population FoReL and PAL-FoReL algorithms can be largely attributed
to the effectiveness of the greedy sampling method.

Furthermore, our research focused on designing an algorithm that could be easily
adapted for the neural networks to more complex games, such as imperfect informa-
tion games and extensive form games. We also discovered that PAL-FoReL exhibits
consistent behavior regardless of the population size, achieving equivalent NashConv
values. This scalability aspect is a significant finding, as it enables PAL-FoReL to
operate with minimal computational overhead even when utilizing a small popula-
tion. Consequently, PAL-FoReL exhibits promise for scalability to more intricate
games and environments. We also discovered that PAL-FoReL exhibits consistent
behavior regardless of the population size, achieving equivalent NashConv values.

CS × DeepMind Research Project Report 25

References

References
[1] Panayotis Mertikopoulos, Christos Papadimitriou, and Georgios Piliouras. Cy-

cles in adversarial regularized learning. In Proceedings of the twenty-ninth an-
nual ACM-SIAM symposium on discrete algorithms, pages 2703–2717. SIAM,
2018.

[2] Julien Perolat, Remi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei,
Mark Rowland, Pedro Ortega, Neil Burch, Thomas Anthony, David Balduzzi,
Bart De Vylder, et al. From poincaré recurrence to convergence in imperfect
information games: Finding equilibrium via regularization. In International
Conference on Machine Learning, pages 8525–8535. PMLR, 2021.

[3] Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub,
Vincent de Boer, Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony,
et al. Mastering the game of stratego with model-free multiagent reinforcement
learning. Science, 378(6623):990–996, 2022.

[4] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu,
Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo
Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Dani-
helka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jader-
berg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dal-
ibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar
Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yo-
gatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Tim-
othy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David
Silver. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 575(7782):350–354, November 2019. ISSN 1476-4687.
doi: 10.1038/s41586-019-1724-z. URL https://www.nature.com/articles/
s41586-019-1724-z. Number: 7782 Publisher: Nature Publishing Group.

[5] Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy
Lever, Antonio Garcia Castañeda, Charles Beattie, Neil C. Rabinowitz, Ari S.
Morcos, Avraham Ruderman, Nicolas Sonnerat, Tim Green, Louise Dea-
son, Joel Z. Leibo, David Silver, Demis Hassabis, Koray Kavukcuoglu, and
Thore Graepel. Human-level performance in 3D multiplayer games with
population-based reinforcement learning. Science, 364(6443):859–865, May
2019. doi: 10.1126/science.aau6249. URL https://www.science.org/doi/
10.1126/science.aau6249. Publisher: American Association for the Advance-
ment of Science.

[6] John Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295,
1951. ISSN 0003486X. URL http://www.jstor.org/stable/1969529.

CS × DeepMind Research Project Report 26

https://www.nature.com/articles/s41586-019-1724-z
https://www.nature.com/articles/s41586-019-1724-z
https://www.science.org/doi/10.1126/science.aau6249
https://www.science.org/doi/10.1126/science.aau6249
http://www.jstor.org/stable/1969529

References

[7] C. A. B. Smith, John Von Neumann, and Oskar Morgenstern. Theory of games
and economic behavior. Journal of the American Statistical Association, 40:
263, 1945. URL https://api.semanticscholar.org/CorpusID:124430577.

[8] Daniel Hennes, Dustin Morrill, Shayegan Omidshafiei, Remi Munos, Julien
Perolat, Marc Lanctot, Audrunas Gruslys, Jean-Baptiste Lespiau, Paavo Par-
mas, Edgar Duenez-Guzman, et al. Neural replicator dynamics. arXiv preprint
arXiv:1906.00190, 2019.

[9] G.W. Brown. Iterative solutions of games by fictitious play. Activity Analysis
of Production and Allocation, 1951.

[10] Lanctot Heinrich and Silver. Fictitious self-play in extensive-form games. Pro-
ceedings of Machine Learning Research, 2015.

CS × DeepMind Research Project Report 27

https://api.semanticscholar.org/CorpusID:124430577

A Implemented games

A Implemented games
For our experiments, we picked some simple yet non-trivial games. Those games are
not highly complex because the purpose of the project was to perform a proof of
concepts on relatively simple games (which are already a challenge for state-of-the-
art MARL algorithms) in order to open extension ideas on bigger games.

A.1 Matching Pennies

Matching Pennies is a common two-player zero-sum game studied in game the-
ory. As a matrix can represent it, this game is a normal-form game. The usual
way to define this game is through its payoff matrix (Tab.1).

Each player can choose two actions: head or tail. If both players choose the
same action, the "even" player wins a reward of 1 and the odd player loses 1. The
opposite happens in the case where the players choose opposite actions. The mixed
strategy that leads to a Nash Equilibrium is (1

2
, 1

2
) for both players. There is no

pure strategy leading to a Nash Equilibrium in this game.

Player 1 \Player 2 Head: H Tail: T
Head: H (1, -1) (-1, 1)
Tail: T (-1, 1) (1, -1)

Table 1: Payoff matrix of MP

This game is one of the most basic non-trivial 2-player 0-sum games. It was
widely used in our project as a toy game to test our implementation. In addition,
the low number of actions (2 for each player) allows easy visualization (Fig. 14) of
the player’s policies through the training.

Matching Pennies Biased Because the Nash equilibrium was at (1
2
, 1

2
), this

could hide some kind of bias in training. For example, an algorithm that only
tries to maximize its entropy would converge to the Nash Equilibrium, without
understanding the game. To have a relevant game, we introduced a bias in the
rewards while keeping the game 0-sum, so that the Nash Equilibrium is not at any
particular point. Biased Matching Pennies is a version of the previous game with
a slightly different payoff table (Tab.2) while preserving the general dynamic and
purpose of the game. The Nash Equilibrium of this biased game is at (2

7
, 5
7
) for both

players.

CS × DeepMind Research Project Report 28

A Implemented games

Player 1 \Player 2 Head: H Tail: T
Head: H (4, -4) (-1, 1)
Tail: T (-1, 1) (1, -1)

Table 2: Payoff matrix of MP Biased

(a) FoReL Poincaré cycling (b) IL-FoReL converging to Nash

Figure 14: FoReL and IL-FoReL visualization on MP Biased

A.2 Rock Paper Scissors

Rock Paper Scissors is a two-player zero-sum normal-form game in which each
player can choose among three items: rock, paper, and scissors. There is an inherent
order to this game: rock wins against scissors, scissors wins paper, and paper wins
against rock.

Player 1 \Player 2 Rock Paper Scissors
Rock (0, 0) (-1, 1) (1, -1)
Paper (1, -1) (0, 0) (-1, 1)
Scissors (-1 , 1) (1, -1) (0, 0)

Table 3: Payoff matrix of Rock-paper-scissors

The mixed strategy leading to a Nash Equilibrium is (1
3
,1
3
,1
3
)

Rock Paper Scissors Biased is a version of the previous game in which the
rewards are modified with the pay-off table 4 so that the Nash policy is not a
uniform distribution over the actions.

CS × DeepMind Research Project Report 29

A Implemented games

Player 1 \Player 2 Rock Paper Scissors
Rock (0, 0) (-4, 4) (1, -1)
Paper (4, -4) (0, 0) (-1, 1)
Scissors (-1 , 1) (1, -1) (0, 0)

Table 4: Payoff matrix of biased Rock-paper-scissors

A.3 Kuhn Poker

Kuhn Poker is a simplified version of poker. In this version, the card deck contains
only three cards: Jack, Queen, and King. Here is the process that describes this
game:

• Each player antes 1

• Each player is dealt a card, the third one is put aside unseen

• Player 1 can check or bet 1

– If player one checks, then player two can check or bet 1

∗ If player two checks, there is a showdown: the higher card wins 1
from the other player.

∗ If player two bets, then player one folds or calls.
· If player one folds, then player two takes the pot of 3
· If player one calls there is a showdown for the pot of 4:the higher

wins two from the other player

– If player one bets, then player two can fold or call

∗ If the player two folds, then player one takes the pot of 3.
∗ If player two calls, there is a showdown for the pot of 4.

Figure 15: Illustration of the Game Tree of Kuhn Poker

CS × DeepMind Research Project Report 30

A Implemented games

Kuhn’s Poker is our main objective for this project, since it is already far from a
trivial game for a human being. We accomplished our final benchmark in this game.

The choice for implementing the algorithms in this game results from the greater
complexity of this zero-sum normal-form game. It allows us to test our algorithms
not only on elementary games like the ones above but also on a still simple but
slightly, more complex game.

CS × DeepMind Research Project Report 31

B Experiments logs

B Experiments logs

B.1 WandB sweep results

• Sweep results for PAL-FoReL with model-based Q value extraction, on Kuhn’s
Poker: here.

• Sweep results for IL-FoReL with model-based Q value extraction, on Kuhn’s
Poker: here.

• Sweep results for PAL-FoReL with Monte Carlo Q value estimation, on Kuhn’s
Poker: here.

• Sweep results for IL-FoReL with Monte Carlo Q value estimation, on Kuhn’s
Poker: here.

B.2 WandB repository for all runs

• All our model-based runs are available here.

• All our Monte Carlo runs are available here

CS × DeepMind Research Project Report 32

https://wandb.ai/timotheboulet/Algorithms-for-Normal-Form-Games/sweeps/5mhd5l5i?nw=nwusertimotheboulet
https://wandb.ai/timotheboulet/Algorithms-for-Normal-Form-Games/sweeps/4r16cd72?nw=nwusertimotheboulet
https://wandb.ai/timotheboulet/Algorithms-for-Normal-Form-Games/sweeps/u70vtykz?nw=nwusertimotheboulet
https://wandb.ai/timotheboulet/Algorithms-for-Normal-Form-Games/sweeps/mwo0otj1?nw=nwusertimotheboulet
https://wandb.ai/timotheboulet/Algorithms-for-Normal-Form-Games%20Benchmark/workspace?nw=nwusertimotheboulet
https://wandb.ai/timotheboulet/Algorithms-for-Normal-Form-Games%20Benchmark%20MC?nw=nwusertimotheboulet

	Introduction
	Background Information
	Game Theory
	Normal Form Games (NFG)
	From NFG to EFG
	Nash Equilibrium
	Regret

	Literature review

	Extending FoReL
	Intuitions and design of the algorithms
	Premise of a better algorithm
	Sampling and averaging

	Algorithms
	Iterated Lyapunov FoReL (IL-FoReL)
	Population FoReL (Pop FoReL)
	Population Alternating Lyapunov FoReL (PAL-FoReL)

	Experiments and results
	Experimental Protocol
	Model-Based benchmark
	The influence of the sampled population size
	Sampling strategies comparison
	Monte Carlo estimation of Q-values

	Future works
	Improving PAL-FoReL
	Back to more general cases
	Other population-based ideas

	Conclusion
	Implemented games
	Matching Pennies
	Rock Paper Scissors
	Kuhn Poker

	Experiments logs
	WandB sweep results
	WandB repository for all runs

