
Introduction to machine learning and neural networks

Toby Dylan Hocking

toby.hocking@nau.edu

August 19, 2022

Objective. In this chapter we introduce basic concepts and algorithms from machine learning.

We explain how neural networks can be used for regression and classification problems, and how

cross-validation can be used for training and testing machine learning algorithms.

1 Introduction and applications of machine learning

Machine learning is the domain of computer science which is concerned with efficient algorithms

for making predictions in all kinds of big data sets. A defining characteristic of supervised machine

learning algorithms is that they require a data set for training. The machine learning algorithm

then memorizes the patterns present in those training data, with the goal of accurately predicting

similar patterns in new test data. Many machine learning algorithms are domain-agnostic, which

means they have been shown to provide highly accurate predictions in a wide variety of application

domains (computer vision, speech recognition, automatic translation, biology, medicine, climate

science, chemistry, geology, etc).

For example, consider the problem of image classification from the application domain of

computer vision. In this problem, we would like a function that can input an image, and output an

integer which indicates class membership. More precisely, let us consider the MNIST and Fashion-

1

g() = 0
g() = 1
g() = 1

h() = 0
h() = 0
h() = 1

Learn() g

Learn() h

Train
data

Learned
function

Learning
Algorithm

Predictions
on test data

Figure 1: A learning algorithm inputs a train data set, and outputs a prediction function, g or h.
Both g and h input a grayscale image and output a class (integer from 0 to 9), but g is for digits
and h is for fashion.

MNIST data sets (Figure 1), in which each input is grayscale image with height and width of 28

pixels, represented as a matrix of real numbers x ∈ R28×28 [LeCun et al., 1998, Xiao et al., 2017].

In both the MNIST and Fashion-MNIST data sets each image has a corresponding label which is

an integer y ∈ {0, 1, . . . , 9}. In the MNIST data set each image/label represents a digit, whereas in

Fashion-MNIST each image/label represents a category of clothing (0 for T-shirt/top, 1 for Trouser,

2 for Pullover, etc). In both data sets the goal is to learn a function f : R28×28 → {0, 1, . . . , 9}

which inputs an image x and outputs a predicted class f(x) which should ideally be the same as

the corresponding label y.

As mentioned above, a big advantage of supervised learning algorithms is that they are typically

domain-agnostic, meaning that they can learn accurate prediction functions f using data sets with

different kinds of patterns. That means we can use a single learning algorithm LEARN on both

the MNIST or Fashion-MNIST data sets (Figure 1, left). For the MNIST data set the learning

algorithm will output a function for predicting the class of digit images, and for Fashion-MNIST

the learning algorithm will output a function for predicting the class of a clothing image (Figure 1,

right). The advantage of this supervised machine learning approach to image classification is that

the programmer does not need any domain-specific knowledge about the expected pattern (e.g.,

2

shape of each digit, appearance of each clothing type). Instead, we assume there is a data set

with enough labels for the learning algorithm to accurately infer the domain-specific pattern and

prediction function. This means that the machine learning approach is only appropriate when it is

possible/inexpensive to create a large labeled data set that accurately represents the pattern/function

to be learned.

How do we know if the learning algorithm is working properly? The goal of supervised learn-

ing is generalization, which means the learned prediction function f should accurately predict

f(x) = y for any inputs/outputs (x, y) that will be seen in a desired application (including new

data that were not seen during learning). To formalize this idea, and to compute quantitative eval-

uation metrics (accuracy/error rates), we need a test data set, as explained in the next section.

1.1 K-fold cross-validation for evaluating prediction/test accuracy

Each input x in a data set is typically represented as one of N rows in a “design matrix” with

D columns (one for each dimension or feature). Each output y is represented as an element of

a label vector of size N , which can be visualized as another column alongside the design matrix

(Figure 2, left). For example, in the image data sets discussed above we have N = 60, 000 labeled

images/rows, each with D = 784 dimensions/features (one for each of the 28 × 28 pixels in the

image).

The goal of supervised learning is to find a prediction function f such that f(x) = y for all

inputs/outputs (x, y) in a test data set (which is not available for learning f). So how do we learn

f for accurate prediction on a test data set, if that test set is not available? We must assume that we

have access to a train data set with the same statistical distribution as the test data. The train data

set is used to learn f , and the test data can only be used for evaluating the prediction accuracy/error

of f .

Some benchmark data sets which are used for machine learning research, like MNIST and

Fashion-MNIST, have designated train/test sets. However, in most applications of machine learn-

3

Inputs
Features

Outputs
Labels

Tr
a
in

 s
e
t2

1
1
3
2
3
1
3
3
2
1
2

All data Split 1
2
2
2
2
3
3
3
3

1
1
1
1

Fold
IDs

Te
st

 s
e
t

Learning
Algorithm

f1
Predict labels

on test set

Compute
accuracy

with respect
to held out
test labels

Tr
a
in

 s
e
t

Split 2
1
1
1
1
3
3
3
3

2
2
2
2Te

st
 s

e
t

Learning
Algorithm

f2
Predict labels

on test set

Compute
accuracy

with respect
to held out
test labels

Tr
a
in

 s
e
t

Split 3
1
1
1
1
2
2
2
2

3
3
3
3Te

st
 s

e
t

Learning
Algorithm

f3
Predict labels

on test set

Compute
accuracy

with respect
to held out
test labelsA1 A2 A3

1

N

1 D

O
b
se

rv
a
ti

o
n
s

Figure 2: K = 3 fold cross-validation. Left: the first step is to randomly assign a fold ID from 1 to
K to each of the observations/rows. Right: in each of the k ∈ {1, . . . , K} splits, the observations
with fold ID k are set aside as a test set, and the other observations are used as a train set to learn
a prediction function (f1–f3), which is used to predict for the test set, and to compute accuracy
metrics (A1–A3).

ing to real data sets, train/test sets must be created. One approach is to create a single train/test

split by randomly assigning a set to each of the N rows/observations, say 50% train rows and 50%

test rows. The advantage of that approach is simplicity, but the drawback is that we can only report

accuracy/error metrics with respect to one test set (e.g., the algorithm learned a function which

accurately predicted 91.3% of observations/labels in the test set, meaning 8.7% error rate).

In addition to estimating the accuracy/error rate, it is important to have some estimate of vari-

ance in order to make statements about whether the prediction accuracy/error of the learned func-

tion f is significantly larger/smaller than other prediction functions. The other functions to com-

pare against may be from other supervised learning algorithms, or some other method that does not

use machine learning (e.g., a domain-specific physical/mechanistic model). A common baseline is

the constant function f(x) = y0 where y0 is the average or most frequent label in the train data.

This baseline ignores all of the inputs/features x, and can be used to show that the algorithm is

learning some non-trivial predictive relationship between inputs and outputs (for an example see

Figure 4).

The K-fold cross-validation procedure generates K splits, and can therefore be used to estimate

both mean and variance of prediction accuracy/error. The number of folds/splits K is a user-defined

4

integer parameter which must be at least 2, and at most N . Typical choices range from K = 3 to

10, and usually the value of K does not have a large effect on the final estimated mean/variance of

prediction accuracy/error. The algorithm begins by randomly assigning a fold ID number (integer

from 1 to K) to each observation (Figure 2, left). Then for each unique fold value from 1 to K,

we hold out the corresponding observations/rows as a test set, and use data from all other folds

as a train set (Figure 2, right). Each train set is used to learn a corresponding prediction function,

which is then used to predict on the held out test data. Finally, accuracy/error metrics are computed

in order to quantify how well the predictions fit the labels for the test data. Overall for each data

set and learning algorithm the K-fold cross-validation procedure results in K splits, K learned

functions, and K test accuracy/error metrics, which are typically combined by taking the mean

and standard deviation (or median and quartiles). Other algorithms may be used with the same

fold assignments, in order to compare algorithms in terms of accuracy/error rates in particular data

sets.

For example, Figure 4 uses K = 4-fold cross-validation to compare four learned functions

on an image classification problem. The accuracy rates of the “dense” and “linear” functions,

97.4 ± 1.6% and 96.3 ± 1.9% (mean ± standard deviation) are not significantly different. Both

rates are significantly larger than the accuracy of the “baseline” constant function, 16.4 ± 1.4%,

and smaller than the accuracy of the “conv” function, 99.3± 1.1%. We can therefore conclude that

the most accurate learning algorithm for this problem, among these four candidates, is the “conv”

method (which uses a convolutional neural network, explained later). It is important to note that

statements about what algorithm is most accurate can only be made for a particular data set, after

having performed K-fold cross-validation to estimate prediction accuracy/error rates.

1.2 Other applications

So far we have only discussed machine learning algorithms in the context of a single prediction

problem, image classification. In this section we briefly discuss other applications of machine

5

learning. In each application the set of possible inputs x and outputs y are different, but machine

learning algorithms can always be used to learn a prediction function f(x) ≈ y.

[Jones et al., 2009] proposed to use interactive machine learning for cell image classifica-

tion in the CellProfiler Analyst system. This application is similar to the previously discussed

digit/fashion classification problem, but with only two classes (binary classification). In this con-

text the input is a multi-color image of cell x ∈ Rh×w×c where h,w are the height and width of the

image in pixels, and c = 3 is the number of channels used to represent a color image (red, green,

blue). The output y ∈ {0, 1} is a binary label which indicates whether or not the image contains

the cell phenotype of interest.

Some email programs use machine learning for spam filtering, which is another example of a

binary classification problem. When you click the “spam” button in the email program you are

labeling that email as spam (y = 1), and when you respond to an email you are labeling that

email as not spam (y = 0). The input x is an email message, which can be represented using a

“bag-of-words” vector (each element is the number of times a specific word occurs in that email

message).

Russell et al. [2008] proposed the LabelMe tool for creating data sets for image segmentation,

which is more complex than the previously discussed image classification problems. In this context

the input x ∈ Rh×w×c is typically a multi-color image, and the output y ∈ {0, 1}h×w is a binary

mask (one element for every pixel in the image) indicating whether or not that pixel contains an

object of interest.

Machine learning can be used for automatic translation between languages. In this context

the input is a text in one language (e.g., French) and the output is the text translated to another

language (e.g., English). The desired prediction function f inputs a French text and outputs the

English translation.

Machine learning can be used for medical diagnosis. For example Poplin et al. [2017] showed

that retinal photographs can be used to predict blood pressure or risk of heart attack. Since the

6

output y is a real number (e.g., blood pressure of 120 mm mercury), we refer to this as a regression

problem.

2 Avoiding under/overfitting in a neural network for regression

In this section we begin by explaining the prediction function and learning algorithm for a simple

neural network. We then demonstrate how the number of iterations of the learning algorithm can

be selected using a validation set, in order to avoid underfitting and overfitting.

We consider a simple regression problem for which the input x ∈ R is a single real number

(D = 1 feature/column in the design matrix), and the output y ∈ R is as well. Using a neural

network with a single hidden layer of U units, there are two unknown parameter vectors which

need to be learned using the training data, w ∈ RU and v ∈ RU . The prediction function f is then

defined as

f(x) = w⊺σ(xv) = w⊺z, (1)

where σ : RU → RU is a non-linear activation function, and z ∈ RU is the vector of hidden

units. Typical activation functions include the logistic sigmoid σ(t) = 1/(1 + exp(−t)) and the

rectifier (or rectified linear units, ReLU) σ(t) = max(0, t). The prediction function is learned using

gradient descent, which is an algorithm that attempts to find parameters w,v which minimize the

mean squared error between the predictions and the corresponding labels in the N train data,

L(w,v) =
1

N

N∑
i=1

[w⊺σ(xiv)− yi]
2. (2)

Gradient descent begins using un-informative parameters w0,v0 (typically random numbers close

to zero). The algorithm then attempts to compute model parameters that result in more accurate

predictions (smaller mean squared error on train data). To do that, we first compute the gradient

at the current model parameters ∇L(w0,v0), which is a vector (same size as the model param-

7

eters w,v) that indicates the direction of steepest ascent (where the mean squared error is most

increasing). If we move the parameters a small amount in the opposite direction (steepest descent),

then we are guaranteed to get new parameters which result in smaller mean squared error. The

main idea of the gradient descent learning algorithm is to iteratively apply this procedure. More

precisely, if we let t ∈ {1, . . . , T} be the iteration number, and we let α > 0 be the step size, then

the gradient descent algorithm computes the following new parameters at each iteration,

wt = wt−1 − α∇wL(wt−1,vt−1), (3)

vt = vt−1 − α∇vL(wt−1,vt−1). (4)

The algorithm described above is referred to as “full gradient” because the gradient descent di-

rection is defined using the full set of N samples in the train set. Other common variants include

“stochastic gradient” (gradient uses one sample) and “minibatch” (gradient uses several samples).

When doing gradient descent on a neural network model, one “epoch” includes computing gradi-

ents once for each sample (e.g., 1 epoch = 1 iteration of full gradient, 1 epoch = N iterations of

stochastic gradient).

In the algorithm above, the number of hidden units U , the number of iterations T , and the

step size α must be fixed before running the learning algorithm. These hyper-parameters affect

the learning capacity of the neural network. An important consideration when using any machine

learning algorithm is that you most likely need to tune the hyper-parameters of the algorithm

in order to avoid underfitting and overfitting. Underfitting occurs when the learned function f

neither provides accurate predictions for the train data, nor the test data. Overfitting occurs when

the learned function f only provides accurate predictions for the train data (and not for the test

data). Both underfitting and overfitting are bad, and need to be avoided, because the goal of any

learning algorithm is to find a prediction function f which provides accurate predictions in test

data.

8

Figure 3: Illustration of underfitting and overfitting in a neural network regression model (single
hidden layer, 50 hidden units). Left: noisy data with a nonlinear sine wave pattern (grey circles),
learned functions (colored curves), and residuals/errors (black line segments) are shown for three
values of epochs (panels from left to right) and two data subsets (panels from top to bottom).
Right: in each epoch the model parameters are updated using gradient descent with respect to the
subtrain loss, which decreases with more epochs. The optimal/minimum loss with respect to the
validation set occurs at 64 epochs, indicating underfitting for smaller epochs (green function, too
regular/linear for both subtrain/validation sets) and overfitting for larger epochs (purple function,
very irregular/nonlinear so good fit for subtrain but not validation set).

How can we select hyper-parameters which avoid overfitting? Note that the choice of hyper-

parameters such as number of hidden units U and iterations T affect the learned function f , so

we can not use the test data to learn these hyper-parameters (by assumption that the test data are

not available at train time). Then how do we know which hyper-parameters will result in learned

functions which best generalize to new data?

A general method which can be used with any learning algorithm is splitting the train set into

subtrain and validation sets, then using grid search over hyper-parameter values. The subtrain set is

used for parameter learning, and the validation set is used for hyper-parameter selection. In detail,

we first fix a set of hyper-parameters, say U = 50 hidden units and T = 100 iterations. Then the

subtrain set is used with these hyper-parameters as input to the learning algorithm, which outputs

the learned parameter vectors w,v. Finally the learned parameters are used to compute predictions

f(x) for all inputs x in the validation set, and the corresponding labels y are used to evaluate the

accuracy/error of those predictions. The procedure is then repeated for another hyper-parameter

9

set, say U = 10 hidden units with T = 500 iterations. In the end we select the hyper-parameter

set with minimal validation error, and then retrain using the learning algorithm on the full train set

with those hyper-parameters. A variant of this method is to use K-fold cross-validation to generate

K subtrain/validation splits, then compute mean validation error over the K splits, which typically

yields hyper-parameters that result in more accurate/generalizable predictions (when compared to

hyper-parameters selected using a single subtrain/validation split). Note that this K-fold cross-

validation for hyper-parameter learning is essentially the same procedure as shown in Figure 2, but

we split the train set into subtrain/validation sets (instead of splitting all data into train/test sets as

shown in the figure).

For example we simulated some data with a sine wave pattern (Figure 3), and used the R

package nnet to fit a neural network with one hidden layer of U = 50 units [Venables and Ripley,

2002]. We demonstrate the effects of under/overfitting by varying the number of iterations/epochs

from T = 1 to 1000. In this example K = 4-fold cross-validation was used, so each data point

was randomly assigned a fold ID integer from 1 to 4. The result for only the first split is shown, so

observations assigned fold ID=1 are considered the validation set, and other observations (folds 2–

4) are considered the subtrain set (which is used at input to the nnet R function which implements

the gradient descent learning algorithm). We then used the predict function in R to compute

predictions for subtrain and validation data, and analyzed how the prediction error changes as

a function of the number of iterations/epochs T of gradient descent. The data exhibit a non-

linear sine wave pattern, but the learned function for T = 4 iterations/epochs is mostly linear

(underfitting, large error on both subtrain/validation sets). For T = 512 iterations/epochs the

learned function is highly non-linear (overfitting, small error for the subtrain set but large error for

the validation set). When the error rates are plotted as a function of a model complexity hyper-

parameter such as T (Figure 3, right), we see the characteristic U shape for the validation error,

and the monotonic decreasing subtrain error. The hyper-parameter with minimal validation error is

T = 64 iterations/epochs; smaller T values underfit or are overly regularized, and larger T values

10

overfit or are under-regularized.

Overall in this section we have seen how a neural network for regression can be trained

using gradient descent (for learning parameter vectors, given fixed hyper parameters) and sub-

train/validation splits (for learning hyper-parameter values to avoid under/overfitting).

3 Comparing neural networks for image classification

In this section we provide a comparison of several other neural networks for image classification.

In general in a neural network with L − 1 hidden layers we can represent the prediction function

as the composition of L intermediate fl functions, for all layers l ∈ {1, . . . , L}:

f(x) = fL[· · · f1[x]]. (5)

Each of the intermediate functions has the same form,

fl(t) = Al(W
⊺
l t), (6)

where Al is an activation function and Wl ∈ Rul×ul−1 is a weight matrix with elements that must

be learned based on the data. This model includes several hyper-parameters which must be fixed

prior to learning the neural network weights:

• The number of layers L.

• The activation functions Al.

• The number of units per layer ul.

• The sparsity pattern in the weight matrices Wl.

The number of units in the input layer is fixed, u0 = D, based on the dimension of the inputs

11

x ∈ RD. The number of units in the output layer uL is also fixed based on the outputs/labels

y. The numbers of units in the hidden layers (u1, . . . , uL−1) are hyper-parameters which control

under/overfitting. Increasing the numbers of hidden units ul results in larger weight matrices Wl,

which in general means more parameters to learn, and larger capacity for fitting complex patterns

in the data. The sparsity pattern of Wl means which entries are forced to be zero; this technique is

used in “convolutional” neural networks for avoiding overfitting and reducing training/prediction

time. When the matrix is not sparse (all entries non-zero), we refer to the layer as dense or fully

connected.

For example in the previous section we used a neural network for regression with one hidden

layer, which in this more general notation means using L = 2 intermediate functions; the input

dimension is u0 = D = 1, the number of hidden units is u1 = U = 50, and there is a single

output u2 = 1 to predict. The weight matrices are dense/fully connected (no convolution/sparsity),

of dimension W1 ∈ R50×1,W2 ∈ R1×50. The hidden layer activation function A1 used by the

R nnet package is the logistic sigmoid, σ(t) = 1/(1 + exp(−t)), and the output activation for

regression (real-valued outputs) is the identity, A2(t) = t.

In this section we implement three other neural networks for image classification. Using the

“zip.train” data set of N = 7291 handwritten digits [Hastie et al., 2009], each input is a greyscale

image of 16× 16 pixels which means that number of input units is u0 = 256. As in Figure 1 (top)

there are ten output classes, one for each digit. For the activation function AL in the output layer

we use the “softmax” function which results in a score/probability for each of the ten possible

output classes, so the number of output units is uL = 10.

The three neural networks that we consider are

linear L = 1 intermediate function with 2,570 parameters to learn (linear model, inputs fully

connected to outputs, no hidden units/layers).

dense L = 9 intermediate functions with 97,410 parameters to learn (nonlinear model, each hid-

12

den layer dense/fully connected with 100 units).

sparse L = 3 intermediate functions with 99,310 parameters to learn (nonlinear model, one con-

volutional/sparse layer followed by two dense/fully connected layers).

We defined and trained each neural network using the keras R package [Allaire and Chollet,

2020]. We used the fit function with argument validation_split=0.2, which creates a

single split (80% subtrain, 20% validation). We selected the number of epochs hyper-parameter by

minimizing the validation loss, and we used the selected number of epochs to re-train the neural

network on the entire train set (no subtrain/validation split).

We did this entire procedure K = 4 times, once for each fold/split in K-fold cross-validation.

Note that even though these data have a pre-defined split into “zip.train” and “zip.test” files, we

used K-fold cross-validation on the “zip.train” file, yielding K train/test splits that we used to

estimate mean and variance of prediction accuracy for these models (the “zip.test” file was ig-

nored). In each split we used the test set to quantify the prediction accuracy of the learned models.

It is clear that the test accuracy of all three neural networks is significantly larger than the base-

line model which always predicts the most frequent class in the train set (Figure 4, left); they are

clearly learning some non-trivial predictive relationship between inputs and outputs. Furthermore

it is clear from Figure 4 (right) that the dense neural network is slightly more accurate than the

linear model (p = 0.032 in paired one-sided t3-test), and the sparse/convoluational neural network

is significantly more accurate than the dense model (p = 0.009).

Overall from this comparison it is clear that, among these three neural networks, the sparse

model should be preferred for most accurate predictions in this particular “zip” data set. However,

we must be careful to not generalize these conclusions to other data sets — even for some other

image classification data sets such as MNIST (Figure 1), the most accurate algorithm may be

different. For very difficult data sets, it may even be the case that these three neural networks

are no more accurate than the baseline model which always predicts the most frequent class in

13

Figure 4: Prediction accuracy of functions learned for image classification of handwritten digits.
The baseline function always predicts the most frequent class in the train set; other three learned
functions are neural networks with different numbers of hidden layers (linear=0, conv=2, dense=8).

the train set. In general we always need to use computational cross-validation experiments to

determine which machine learning algorithm is most accurate in any given data set. To learn

a predictive model with maximum prediction accuracy, machine learning algorithms other than

neural networks should be additionally considered (e.g., regularized linear models, decision trees,

random forests, boosting, support vector machines).

4 Cross-validation for evaluating predictions of earth system

model parameters

As a final example application, we consider using cross-validation to evaluate a neural network

that predicts carbon cycle model parameters [Tao et al., 2020]. In this context there is a data set

with N = 26, 158 observations, each one a soil sample with D = 60 input features. There are 25

real-valued output variables to predict; each is the value of an earth system model parameter at the

location of the soil sample. We want a neural network that will be able to predict the values of these

earth system parameters at new locations. Tao et al. [2020] proposed using a neural network with

L = 4 fully connected layers and dropout regularization for this task (see paper for details). In this

section the “multi-task” model uses the same number of layers/units as described in that paper;

14

Figure 5: Cross-validation for estimating error rates of machine learning algorithms that predict
earth system model parameters. Top: fold IDs were assigned to each observation using longitude
(left) or randomly (right). Bottom: prediction error for four of the 25 outputs. Please see [Tao
et al., 2020] for meanings of abbreviations (cryo, maxpsi, tau4s3, fs2s3).

the term multi-task means that the neural network outputs a prediction for all 25 outputs/tasks.

For comparison, we additionally consider “single-task” models with the same number of hidden

layers/units, but only one output unit. We expect the multi-task model to sometimes be more

accurate, because of the expected correlation between outputs (earth system model parameters).

To see whether or not these neural networks learn any non-trivial predictive relationship between

inputs and output, we consider a baseline model which always predicts the mean of the train set

label/output values (and does not use the inputs at all).

Here we show how K = 5 fold cross-validation can be used to evaluate how well these neural

networks predict each of the outputs at new locations. We first assign a fold ID from 1 to 5 to

each observation/row, either systematically using the longitude coordinate, or randomly (Figure 5,

top). We can define a cross-validation procedure using both sets of fold IDs, in order to answer the

question, “is it more difficult to predict at new longitudes, or new random locations?” We expect

that predicting at new longitudes should be more difficult, because that involves more extrapola-

15

tion (predicting outside the range of observed data values). In detail, for each fold ID from 1 to 5,

we define the test set as the data points which have been assigned that fold ID using both meth-

ods (longitude and random). For these data with N = 26, 158 observations total, each fold has

approximately 5000 observations, so each resulting test set has approximately 1000 observations.

As described in the last section on image classification, we used the R keras package to

compute the neural network parameters and predictions (using a maximum of 100 epochs, and a

single 80% subtrain 20% validation split to choose the optimal number of epochs for re-training

on the entire train set). For each fold/model/output we computed mean squared error with respect

to the test set, and we plot these values for four of the 25 outputs (Figure 5, bottom). It is clear

that some outputs are more difficult to predict than others; for cryo and maxpsi outputs the neural

networks show little or no improvement over baselines, whereas for tau4s3 and fs2s3 outputs we

observed substantial improvements over baselines. As expected, there is a difference in test error

between fold assignment methods (random has lower error rates than Lon for several outputs),

indicating that it is indeed easier to predict at new random locations, and harder to predict at new

longitudes. Finally, the multi-task models are slightly more accurate than the single task models,

indicating that the neural network is learning to exploit the correlations between outputs. Overall

this comparison has shown how cross-validation can be used to quantitatively evaluate and compare

machine learning algorithms for predicting earth system model parameters.

In comparison to the neural network practice in unit 10, the main difference is that here we

discussed how held-out test sets can be used to estimate prediction accuracy/error rates of learning

algorithms. Unit 10 discusses how a validation set can be used to avoid overfitting, as we have

done in this chapter as well. We have additionally discussed how K = 5 fold cross-validation can

be used to generate several train/test splits, which can be used to estimate prediction error rates

for each fold/data/algorithm combination (e.g., Figure 5, bottom). This technique is useful since

it allows us to see which algorithms are significantly more/less accurate than others on given data

sets.

16

5 Quiz questions

1. When using a design matrix to represent machine learning inputs, what does each row and

column represent? What other data/options does a supervised learning algorithm such as

gradient descent need as input, and what does it yield as output?

2. When splitting data into train/test sets, what is the purpose of each set? When splitting a

train set into subtrain/validation sets, what is the purpose of each set? What is the advantage

of using K-fold cross-validation, relative to a single split?

3. In order to determine if any non-trivial predictive relationship between inputs and output has

been learned, a comparison with a baseline that ignores the inputs must be used. How do

you compute the baseline predictions, for regression and classification problems?

4. How can you tell if machine learning model predictions are underfitting or overfitting?

5. When using the nnet function in R to learn a neural network with a single hidden layer, do

large or small values of the number of iterations hyper-parameter result in overfitting? Why?

6. When using the nnet function in R learn a neural network with a single hidden layer, and

you do not yet know how many iterations to use, what data set should you use as input to

nnet? How should you learn the number of iterations to avoid underfitting and overfitting?

After having computed the number of iterations to use, what data set should you then use as

input to nnet to learn your final model? Hint: possible choices for set to use are all, train,

test, subtrain, validation.

6 Additional reading

Machine learning is a large field of research with many algorithms, and there are several useful

textbooks that provide overviews from various perspectives [Bishop, 2006, Hastie et al., 2009,

17

Wasserman, 2010, Murphy, 2013, Goodfellow et al., 2016].

Reproducibility statement. Code for figures in this chapter can be freely downloaded from

https://github.com/tdhock/2020-yiqi-summer-school

References

J. Allaire and F. Chollet. keras: R Interface to ’Keras’, 2020. R package version 2.3.0.0.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.

I. J. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, Cambridge, MA, USA,

2016.

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. Springer Series in

Statistics. Springer, Springer Science+Business Media, LLC, 233 Spring Street, New York NY

10013, USA, second edition, 2009.

T. R. Jones, A. E. Carpenter, M. R. Lamprecht, J. Moffat, S. J. Silver, J. K. Grenier, A. B. Ca-

storeno, U. S. Eggert, D. E. Root, P. Golland, and D. M. Sabatini. Scoring diverse cellular

morphologies in image-based screens with iterative feedback and machine learning. Proceed-

ings of the National Academy of Sciences, 106(6):1826–1831, 2009.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. In Proceedings of the IEEE, volume 86, pages 2278–2324, November 1998.

K. P. Murphy. Machine learning: a probabilistic perspective. MIT Press, Cambridge, MA, 2013.

R. Poplin, A. Varadarajan, K. Blumer, Y. Liu, M. McConnell, G. Corrado, L. Peng, and D. Web-

ster. Predicting cardiovascular risk factors from retinal fundus photographs using deep learning.

arXiv:1708.09843, 2017.

18

https://github.com/tdhock/2020-yiqi-summer-school

B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. LabelMe: a database and web-based

tool for image annotation. International Journal of Computer Vision, 77(1–3):157–173, May

2008.

F. Tao, Z. Zhou, Y. Huang, Q. Li, X. Lu, S. Ma, X. Huang, Y. Liang, G. Hugelius, L. Jiang,

R. Doughty, Z. Ren, and Y. Luo. Deep learning optimizes data-driven representation of soil

organic carbon in earth system model over the conterminous united states. Frontiers in Big

Data, 3:17, 2020. ISSN 2624-909X. doi: 10.3389/fdata.2020.00017.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, fourth

edition, 2002. ISBN 0-387-95457-0.

L. Wasserman. All of statistics: a concise course in statistical inference. Springer, New York,

2010.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a Novel Image Dataset for Benchmarking

Machine Learning Algorithms. arXiv:1708.07747, 2017.

19

	Introduction and applications of machine learning
	K-fold cross-validation for evaluating prediction/test accuracy
	Other applications

	Avoiding under/overfitting in a neural network for regression
	Comparing neural networks for image classification
	Cross-validation for evaluating predictions of earth system model parameters
	Quiz questions
	Additional reading

