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Problem: supervised binary classification

» Given pairs of inputs x € RP and outputs y € {0,1} can we
learn a score f(x) € R, predict y = 1 when f(x) > 0?

>
>

Example: email, x =bag of words, y =spam or not.
Example: images. Jones et al. PNAS 20009.
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Iterative Machine Learning

System presents cells to biologist for scoring, in batches
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Most algorithms (SVM, Logis-
tic regression, etc) minimize
a differentiable surrogate of
zero-one loss = sum of:

False positives: f(x) > 0 but
y = 0 (predict budding, but
cell is not).

False negatives: f(x) < 0
but y = 1 (predict not bud-
ding but cell is).



Receiver Operating Characteristic (ROC) Curves

» Classic evaluation method from the signal processing
literature (Egan and Egan, 1975).

» For a given set of predicted scores, plot True Positive Rate vs
False Positive Rate, each point on the ROC curve is a
different threshold of the predicted scores.

» Best classifier has a point near upper left (TPR=1, FPR=0),
with large Area Under the Curve (AUC).
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Research question and new idea

Can we learn a binary classification function f which directly
optimizes the ROC curve?
» Most algorithms involve minimizing a differentiable surrogate
of the zero-one loss, which is not the same.
» The Area Under the ROC Curve (AUC) is piecewise constant
(gradient zero almost everywhere), so can not be used with
gradient descent algorithms.
» We propose to encourage points to be in the upper left of
ROC space, using a loss function which is a differentiable
surrogate of the sum of min(FP,FN).
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Problem: unsupervised changepoint detection
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Data sequence zi,...,z7 at T points over time/space.

Ex: DNA copy number data for cancer diagnosis, z; € R.

The penalized changepoint problem (Maidstone et al. 2017)
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Larger penalty X
results in  fewer
changes/segments.

Smaller penalty
A results in more
changes/segments.



Problem: weakly supervised changepoint detection

» First described by Hocking et al. ICML 2013.
> We are given a data sequence z with labeled regions L.

» We compute features x = ¢(z) € RP and want to learn a
function f(x) = —log A € R that minimizes label error (sum
of false positives and false negatives), or maximizes AUC.
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Problem: weakly supervised changepoint detection

Data value

» First described by Hocking et al. ICML 2013.

> We are given a data sequence z with labeled regions L.
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Comparing changepoint algorithms using ROC curves

Hocking TD, Srivastava A. Labeled Optimal Partitioning. Accepted in Computational
Statistics, arXiv:2006.13967.
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LOPART algorithm (R package LOPART) has consistently larger
test AUC than previous algorithms.
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Algorithm inputs: predictions and label error functions

» Each observation i € {1,...,n} has a predicted value y; € R.
» Breakpoints b € {1,..., B} used to represent label error via
tuple (Vb, AFPy, AFNb,Ib).
» There are changes AFP,, AFN, at predicted value v, € R in
error function Zp € {1,..., n}.
Changepoint detection
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Proposed surrogate loss, Area Under Min (AUM)

» Threshold t, = v, — y7, = 7(¥)q is largest constant you can
add to predictions and still be on ROC point g.

» Proposed surrogate loss, Area Under Min (AUM) of total
FP/FN, computed via sort and modified cumsum:
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Small AUM is correlated with large AUC
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Proposed algorithm computes two directional derivatives

» Gradient only defined when function is differentiable, but
AUM s not differentiable everywhere (see below).
» Directional derivatives always computable (R package aum),

Vi(-1,)AUM(Y) =
Z min{ﬁb,mb} — min{ﬁb — AFPb,Wb — AFNb},

b:Ib:i
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AUM gradient descent results in increased train AUC for a
real changepoint problem
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» Left/middle: changepoint problem initialized to prediction
vector with min label errors, gradient descent on prediction
vector.

» Right: linear model initialized by minimizing regularized
convex loss (surrogate for label error, Hocking et al. ICML
2013), gradient descent on weight vector.



Learning algorithm results in better test AUC/AUM for
changepoint problems
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Five changepoint problems (panels from left to right).
Two evaluation metrics (AUM=top, AUC=bottom).

Three algorithms (Y axis), Initial=Min regularized convex loss
(surrogate for label error, Hocking et al. ICML 2013),
Min.Valid. AUM /Max.Valid. AUC=AUM gradient descent with
early stopping regularization.

Four points = Four random initializations.



Learning algorithm competitive for unbalanced binary
classification

(b) AUM compared to baselines
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» Squared hinge all pairs is a classic/popular surrogate loss
function for AUC optimization. (Yan et al. ICML 2003)

» All linear models with early stopping regularization.
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Discussion and Conclusions, Pre-print arXiv:2107.01285

>

>

ROC curves are used to evaluate binary classification and
changepoint detection algorithms.

We propose a new loss function, AUM=Area Under
Min(FP,FN), which is a differentiable surrogate of the sum of
Min(FP,FN) over all points on the ROC curve.

We propose new algorithm for efficient AUM and directional
derivative computation.

Implementations available in R and python/torch:
https://cloud.r-project.org/web/packages/aum/
https://tdhock.github.io/blog/2022/aum-learning/

Empirical results provide evidence that learning using AUM
minimization results in ROC curve optimization (encourages
monotonic/regular curves with large AUC).

Future work: exploiting piecewise linear structure of the AUM
loss, other model classes, other problems/objectives.


https://cloud.r-project.org/web/packages/aum/
https://tdhock.github.io/blog/2022/aum-learning/

Thanks to co-author Jonathan Hillman! (second from left)
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