
Rapid Development of An
Assembler Using Python

Miki Tebeka
miki.tebeka@gmail.com

mailto:miki.tebeka@gmail.com

About Me

 Software Process Engineer in Qualcomm Israel
 Started using Python around 1998
 Use Python wherever I can

Currently around 90%+ of my code is in Python
 Written from small scripts to a linker and a

source level GUI debugger
 Little activity in Python + OSS development

Also wxPython, PLY, ...

Background I

 It all started from Conway's Law:
In every organization there will always be one

person who knows what is going on. That
person must be fired.

 Luckily for me, I wasn't that person
 However I found out that there is a team writing

code for a home grown micro processor in
machine code

 Promised to deliver them an assembler in two
days
Only way my boss would let me do it

Background II

 Did manage to pull it through
However I cheated :)

 This talk will teach you how to cheat as well

Main Idea

 Lexer?
We don't need no stinkin' lexer

 Parser?
We don't need no stinkin' parser

 The Python interpreter will do all the parsing for
us
Users actually write Python code
We'll execfile to execute the code

User Code Example

 MEM1 = 0x200
 add(r0, r2, r3)
 sub(r2, r4, r4)
 load(r2, MEM1)
label('L1')
 move(r2, r7)
 jmp(L1)

The Big Picture

 Each command is composed of four instruction
code bits and twelve data bits

 Labels are just location in memory
 We will use inheritance for similar commands
 Set execution environment before calling
execfile

 All commands will be stored in a list called
PROGRAM

Main Class

class ASM:

 '''Base ASM instruction'''

 def __init__(self):

 self.file, self.line = here()

 PROGRAM.append(self)

 def genbits(self):

 '''Generate bits, 'code' and '_genbits'

 will be defined in each derived class

 '''

 return (self.code << INST_SHIFT) |

 self._genbits()

ALU Operation

class ALU3(ASM):

 '''ALU instruction with 3 operands'''

 def __init__(self, src1, src2, dest):

 ASM.__init__(self)

 self.src1 = src1

 self.src2 = src2

 self.dest = dest

 def _genbits(self):

 return (self.src1 << SLOT1_SHIFT) | \

 (self.src2 << SLOT2_SHIFT) | \

 (self.dest << SLOT3_SHIFT)

Finally A “real” Instruction

class add(ALU3):

 '''`add' instruction'''

 code = 0

class sub(ALU3):

 '''`sub' instruction'''

 code = 1

Handling Labels

def label(name):

 '''Setting a label'''

 ENV[name] = len(PROGRAM)

Setting Up the Environment

Add registers

for i in range(8):

 ENV["r%d" % i] = i

Add operators

for op in (add, sub, move, load, store, label,

 jmp):

 ENV[op.__name__] = op

Parsing

 execfile(infile, ENV, {})

Generating Output (binary)

 a = array("H") # Unsigned short array

 for cmd in PROGRAM:

 a.append(cmd.genbits())

 open(outfile, "wb").write(a.tostring())

Debug Information

 Use Python's Exception mechanism to catch
errors

 If we get a SyntaxError we can use
e.filename and e.lineno

 For other exception we need to work a bit
harder

 During coding we store line information in each
instruction using inspect module

 Debug file is “filename:line” for each
address

Summary – The Good

 Can spit out an assembler very fast
 Supported assembler has a very strong macro

system
All of Python

 Cross platform
Check out for that byte order though

 Easy to extend
Took few hours to implement new commands in

version 0.2

Summary – The Bad

 Users find syntax unusual
 Only Python syntax is supported
 Labels are not “Natural”

You define it as string but use it as a variable
 Code can not be divided to modules

Can't separate compilation and linkage
 Code is position dependent

Resources

 Article in UnixReview
http://tinyurl.com/d62f3

 inspect module
http://docs.python.org/lib/module-inspect.html

 execfile
http://www.python.org/doc/2.4.2/lib/built-in-funcs.html

http://tinyurl.com/d62f3
http://docs.python.org/lib/module-inspect.html
http://www.python.org/doc/2.4.2/lib/built-in-funcs.html

Questions?

	Title
	Long-term Goal
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

