
Matura thesis

Teaching bots to play a game using artificial
intelligence

Applied deep reinforcement
learning in a realtime game

By Shivram Sambhus
shivram.sambhus[at]gmail.com
Gymnasium Oberwil
Class 4e

Supervisor
Mr. Stefan Greising

Co-supervisor
Mr. Jonas Gloor

September 2022

Foreword
From a young age, I was interested in software-related topics. I learned how to program for the web
and how to create scripts and mini-projects in Python. I tried my hand at various fields, but games
and a subfield of machine learning called reinforcement learning particularly intrigued me. So I decided
to try my hand at this area and familiarize myself with it a bit. As with learning and familiarizing
myself with most topics, I researched the Internet to learn more about these new areas that had sparked
my interest. I discovered how the use of games or simulations enables the application of reinforcement
learning to real-world problems. Reinforcement learning can produce complex but intelligent strategies
and behaviours. Examples include self-driving vehicles and recommender systems. But what intrigued
me much more was the groundbreaking work of OpenAI. They had developed an AI called OpenAI five
that plays the computer game Dota 2. Dota 2 is a famous multiplayer online battlefield computer game
developed and distributed by Valve. This game is an exceptionally complicated role-playing and strategy
game where two groups of 5 players each try to wipe out each other’s base. OpenAI 5, which defeated
the world champions in the Dota 2 tournament, was a testament to the power of reinforcement learning
and caught the attention of the AI community by storm.

I was interested in doing something with computer science as my Matura thesis. The sheer amount of
new advancements and impressive projects I had seen on the internet led me to an idea of developing
a project encompassing three areas: website development, backend development and machine learning.
So I came up with the idea of creating a browser-based real-time multiplayer snake game while building
computer-controlled players who could effectively play this game using artificial intelligence.

During this project, I learned about various technologies and concepts applicable in real-world, while
strengthening my foundations in programming and mathematics. I hope to give readers a brief insight
into the world of computer science, game development, artificial intelligence and reinforcement learn-
ing.

Acknowledgements
First of all, I would like to thank my thesis supervisor Mr. Stefan Greising from the Gymnasium
Oberwil for his technical support and guidance for which I remain always grateful. I am thankful to the
extraordinary community on the Internet without whom I would not have been able to complete this
project. I would also like to thank the people who contributed to the open-source projects and libraries
I used. Finally, I would also like to thank my family for their support and encouragement during this
project.

Contents

1 Introduction 5

2 Game 6
2.1 What is a bot? . 6
2.2 Rules of the game . 7
2.3 Multiplayer game . 7

2.3.1 What is a client? . 7
2.3.2 Structure and design of the game . 7

2.3.2.1 Game Class . 7
2.3.2.2 Snake Class . 8

2.3.3 Communication . 8
2.3.3.1 What are WebSockets? . 8
2.3.3.2 Why use WebSockets? . 8

2.3.4 Parallelism . 9
2.3.4.1 What are threads? . 9

2.4 Implementation . 9
2.4.1 Game Server . 10

2.4.1.1 What is Golang? . 10
2.4.1.2 Why use Golang? . 10
2.4.1.3 What is garbage collection? . 10
2.4.1.4 Static Typing . 11
2.4.1.5 Strong Typing . 11
2.4.1.6 Compilation . 11

2.4.2 Game Client . 11
2.4.2.1 What is SvelteJS? . 11
2.4.2.2 How was the game client created? . 12
2.4.2.3 Rendering the game . 12

2.4.3 Summary . 12

3 Artificial Intelligence 13
3.1 History of Artificial Intelligence . 13
3.2 Applications of Artificial Intelligence . 15

3.2.1 Recommendation and Personalization Systems . 15
3.2.2 Healthcare . 15
3.2.3 Content Moderation . 15
3.2.4 Maps and Navigation . 15

3.3 Classification of Artificial Intelligence . 16
3.3.1 Weak and Strong AI . 16

3.3.1.1 Weak AI . 16
3.3.1.2 Strong AI . 16

3.3.2 4 tiers of Artificial Intelligence . 16
3.3.2.1 Reactive Machines . 17
3.3.2.2 Limited Memory . 17

2

3.3.2.3 Theory of Mind . 17
3.3.2.4 Self-Awareness . 17

3.3.3 Subfields of Machine Learning . 18
3.3.4 AI vs Machine learning vs Deep learning . 18
3.3.5 Machine Learning subfields . 18

3.3.5.1 Supervised learning . 19
3.3.5.2 Unsupervised learning . 19
3.3.5.3 Ensemble learning . 19
3.3.5.4 Deep learning . 20
3.3.5.5 Reinforcement learning . 20

4 Deep Learning 21
4.1 Neural Networks . 21

4.1.1 Single Perceptron . 21
4.1.2 Multilayer Perceptron . 22

4.2 Activation Functions . 22
4.2.1 Binary Step Function . 22
4.2.2 Sigmoid Function . 23
4.2.3 Rectified Linear Unit (ReLU) . 24
4.2.4 Leaky ReLU . 25
4.2.5 Optimal Activation Functions . 25

4.3 Loss Function . 26
4.3.1 Mean Squared Error (MSE) . 26
4.3.2 Adaptive Loss Functions . 27

4.4 Optimization . 28
4.4.1 Gradient Descent . 28
4.4.2 Other Optimization Algorithms . 28
4.4.3 Brute Force Optimization . 28
4.4.4 Learning Rate . 29

4.5 Essence of Deep Neural Networks . 30

5 Reinforcement Learning 31
5.1 Introduction . 31
5.2 Formalization of the Problem . 31
5.3 Bellman Equation . 33
5.4 Overview of RL Algorithms . 33

5.4.1 Model-based RL . 33
5.4.1.1 Value iteration . 34
5.4.1.2 Policy iteration . 35

5.4.2 Model-free RL . 35
5.4.2.1 Q-Function . 35
5.4.2.2 Monte Carlo Learning . 35
5.4.2.3 Temporal Difference Learning . 36
5.4.2.4 Q-Learning . 37
5.4.2.5 Off-Policy vs. On-Policy . 37
5.4.2.6 Summary . 37

5.5 Deep Reinforcement Learning . 38
5.5.1 Deep Policy Networks . 38
5.5.2 Deep Q-Networks . 38
5.5.3 Deep Dueling Q-Networks . 39
5.5.4 Actor Critic Network . 39
5.5.5 Advantage Actor Critic Network . 40
5.5.6 Summary . 41

6 Development of the RL Agent: AI and Results 42
6.1 Technologies . 42

6.1.1 OpenAI Gym . 42
6.1.2 Stable Baselines 3 . 42
6.1.3 PyTorch . 43
6.1.4 TensorBoard . 43
6.1.5 Matplotlib . 43
6.1.6 Celluloid . 43
6.1.7 NumPy . 43

6.2 Local environment . 43
6.3 Procedure and Initial Conditions . 44
6.4 Experiments . 45

6.4.1 Baseline experiment . 45
6.4.2 DQN Baseline experiment . 45
6.4.3 DQN with Framestacking . 45
6.4.4 DQN with observation normalization . 45
6.4.5 DQN with observation normalization and framestacking 46
6.4.6 DQN with observation normalization, framestacking and a larger network 47
6.4.7 Scheduled Learning Rate . 47
6.4.8 Dynamic Exploration Rate . 48
6.4.9 Observation Space Reduction by Feature Extraction 48
6.4.10 Advantagous Actor Critic (A2C) . 49
6.4.11 Proximal Policy Optimization (PPO) . 49

6.5 Results . 50
6.5.1 Why did the DQN algorithm outperform the other algorithms? 50
6.5.2 Optimized Agent . 51

6.6 Conclusion . 52
6.6.1 Answering the problem statement . 52

7 Discussion 53

Chapter 1

Introduction

People have long been fascinated by the possibility of building machines that mimic the human brain.
The term "artificial intelligence" was coined by John McCarthy. Together with other computer scientists,
he organized a conference in 1956 called the Dartmouth Summer Research Project on Artificial Intelli-
gence. From these beginnings came the fields of machine learning, deep learning and deep reinforcement
learning.

In this paper, I will convert the popular arcade game Snake into a browser-based multiplayer variant.
Then, I will then create computer-controlled players (bots) that can play this game using reinforcement
learning and deep learning.

The specific problem statement of this project is: How to train bots with reinforcement learning to play
a multiplayer game with the shortest possible training time?

In the first part of this paper I will explain how I developed the game. In the next part, I will briefly
discuss the history, applications, and types of artificial intelligence. After that, I will delve deeper and
explain the concepts of reinforcement learning and deep learning. After that, I will explain how I trained
the bots to play the game. Finally, I will end with a summary of the project and a discussion of the
results.

5

Chapter 2

Game

The first part of this project is the development of the multiplayer video game "Snake". There are two
main parts in the game of this project:

1. An online game server that runs the game and communicates with the browser game client.

2. An offline game that serves as an environment for training the RL bots.

Figure 2.1: Overview of full game and RL bots

In the following sections I will explain what bots are, what the game rules are, describe the architecture
of the multiplayer game and finally explain how I implemented the game in code.

2.1 What is a bot?
A bot is a player that is directly controlled by a computer. In real world, they are often used to improve
the game experience for human players. For example, if there are too few players, bots pretending to be
real players can make the game more interesting for real human players.

6

Chapter 2 – Game Shivram Sambhus

2.2 Rules of the game
The snake game version of this project is a multiplayer video game where the player controls a snake
that consists of a series of blocks in a grid-like playing field. Each snake has only a limited view of the
playing field, which is the area in which the snake can move. The snake can move in any direction,
but not in the opposite direction of the previous movement. The snake tries to eat food blocks to grow
longer, its body or the body of another snake being the obstacle it must not bump into, as well as the
walls surrounding the playing field. The snakes compete to eat food in order to grow longer and obtain a
higher rank. Snakes that die are partially converted into food and removed from the playing field, which
encourages the snakes to kill other snakes.

2.3 Multiplayer game
Multiplayer games operate with a centralized game state stored on the game server. This allows a correct,
secure, and synchronized representation of the game state to be sent to each client. Each client can send
new actions (e.g. move the player) to the server. After all actions are collected from all clients, the server
runs the game logic or environment physics that uses the current game state, actions, and game rules to
update the game state.

Figure 2.2: Game logic & update

After each update, either the entire game state or a modified representation (e.g. limited view of the
playing field; night vision; ...) of it can be sent to the clients.

2.3.1 What is a client?
A client (in computer science) is a program that uses services provided by other programs. In the case
of the game client, the game client requests game data from the game server and provides input actions
to the game server. The client can use the data received from the game server for various purposes. A
game client can be a browser game client (e.g. the one created for this project) or a console game client
(e.g. PS4 or Xbox) that provides interfaces for humans to play the game. However, game clients can
also serve other purposes, such as providing an interface for a program or AI (e.g. a chess engine that
impersonates a human in an online chess tournament) to play the game.1

2.3.2 Structure and design of the game
In this section, I will explain the structure and design of the game. All entities in this game will be
encapsulated in a class-like structure. This allows the game to be easily extended and modified in the
future.

2.3.2.1 Game Class

My game class needs to keep track of all current snakes in the game and the entire playing field. The
game state is represented as a 2D array of cells. This data structure was chosen for its simplicity and

1What Is a Client?

7

Chapter 2 – Game Shivram Sambhus

fast read and write operations (explained later). Each cell can either be empty, contain a snake, contain
food, or contain a wall, each represented by a different number. The game class has some functions
assigned to it. These functions are needed to run the game and to update the game state. They include
the following:

updateSnakes()
This function updates snakes by calling their movement function, and eliminates them if they are
dead (which is determined by the snake’s movement function).

list(func(x,y))
These functions determine the state of the cell at a given position in the field. These functions set
the state of the cell at a given position in the field, ensuring that the constraints2 are met.

fieldsAround(x,y)
This function returns the state of the cells around a given position in the field, which is then passed
to the clients.

2.3.2.2 Snake Class

Each snake is represented by a class. This class contains the current direction, a temporary direction
to track direction changes (will be explained later), the snake’s head coordinates, a linked list (will be
explained later) with the snake’s body coordinates, a boolean value to store whether it is alive or not,
and finally a score to track the snake’s performance. There are also some functions assigned to the snake
class. These functions are needed to update the snakes position, change its direction, make it grow when
it takes food, and eliminate it when it dies. They include the following functions:

move()
This function updates the snake’s position by setting the current direction to the current temporary
direction (see setDirection), moving the last item in the body list to the top of the list, and then
updating the head position. This function also checks for collisions with food, walls, and snakes.

setDirection(direction)
This function checks if the new direction is valid (not the opposite direction of the current direction
& in the range of valid directions), and if so, sets it to the temporary direction (since many update
requests try to change the direction between game update steps).

createBody()
This function is called when eating, and adds a body to the snake.

toFood()
This function is called when the snake dies, and randomly converts any part of the snake’s body
into food.

2.3.3 Communication
The communication between the game server and the game client is done via WebSockets.

2.3.3.1 What are WebSockets?

WebSocket is the name of a Transmission Control Protocol (TCP)-based network protocol that can be
used to establish bidirectional connections between web applications and WebSocket servers. Once a
WebSocket connection is established, data can flow in both directions without the need for additional
requests or procedures to establish the connection.3

2.3.3.2 Why use WebSockets?

WebSockets make information exchange more efficient and faster. Unlike pure HTTP communication,
no client-side request is required to transfer new data from the server. The underlying TCP connec-

2Such as: input coordinates x and y cannot be larger than the field itself
3“WebSocket”.

8

Chapter 2 – Game Shivram Sambhus

tion persists throughout WebSocket communication. WebSocket can be used to implement real-time
applications like games between a client and a server.4

2.3.4 Parallelism
My game server has 3 main tasks:

1. Update the game state.

2. Send the game state to the clients.

3. Listen for new actions from the clients.

Some of these tasks must run in parallel to ensure that the game state is always up to date, that the
game does not get stuck if a client is slow or abruptly disconnects, that updates are registered by all
clients, and that updates to the game are sent to each client. All of these tasks are blocking tasks, which
means that they wait until all other tasks have finished before they can continue. This is a problem
because the game is constantly being updated and waiting for new actions at the same time, so no new
actions can be received while the game is being updated. For this reason, these two tasks are run in
parallel on separate threads. See image 2.3 for a visualization of the threads.

Figure 2.3: Visualization of the threads for my realtime snake game

2.3.4.1 What are threads?

A thread is a collection of instructions that are to be executed by the CPU separately from other
processes. For example, a program may have open threads waiting for a network request so that the
main program can perform other tasks.5

In this case, we have a thread that updates the game state and sends it to the clients, and a thread
that waits for new actions from the clients. These two threads are independent of each other and run in
parallel.

2.4 Implementation
In order to have a working game, the game structure and design needed to be translated into code that
could be executed on a computer. I will explain how the game server and clients were created in the
following sections.

4Blog, When to Use a HTTP Call Instead of a WebSocket (or HTTP 2.0).
5What Is a Thread?

9

Chapter 2 – Game Shivram Sambhus

2.4.1 Game Server
The game server is a program that runs on a computer and is responsible for updating the game state
and sending the game state to the clients while waiting for new actions from the clients. The game server
must be:

1. Be able to handle many TCP connections.

2. Be able to perform calculations to update the game state.

3. Ideally easy to learn, use, maintain and extend.

For the game server I chose to use Golang.

2.4.1.1 What is Golang?

Golang (or Go) is an open source programming language developed in 2009 by Robert Griesemer, Rob
Pike and Ken Thompson at Google. Go compiles like C/C++ and is static, but has garbage collection
and is strongly typed.6

2.4.1.2 Why use Golang?

I chose Go because of its simplicity, consistency, power, readability and concurrency. Along with a large
community of developers using Go, and a large number of tutorials and the popularity of this language,
it would be practical to learn and use Go. Go is also used by some of Google’s production systems, and
the popular open source projects Docker and Kubernetes are also programmed in Go.7

Figure 2.4: Golang Logo and Mascot8

2.4.1.3 What is garbage collection?

Garbage collection is the mechanism that frees the memory that is no longer needed. In some pro-
gramming languages, this task is left to the programmer. When you need memory (to store data), you
request it from the operating system, and when you no longer need it, you release it. This puts a lot
of responsibility on the programmer; if you don’t free the memory, a memory leak will occur. If you
accidentally keep a reference to freed memory, a dangling pointer is created, which can be a security
vulnerability.9

A garbage collector is a system that does all these tasks for you. Whenever you create an object,
the program automatically keeps track of all references to that object. When the object is no longer
referenced anywhere, it automatically frees it so that the memory is no longer occupied. This way the
user (mostly) doesn’t have to worry about memory resources.10

6“Go (Programming Language)”.
7What Is Go?
8start et al., Golang Logo » Open Up The Cloud
9“Garbage (Computer Science)”.

10Garbage Collection Comp Sci Wiki - Google Search.

10

Chapter 2 – Game Shivram Sambhus

2.4.1.4 Static Typing

Static typing means that the variable types in the program are known at compile time. Dynamic typing,
on the other hand, means that the value types are checked during execution. A badly typed operation
can cause the program to stop or report an error at runtime.11

2.4.1.5 Strong Typing

Strong typing generally means that there are no loopholes in the type system, while weak typing means
that the type system can be subverted (invalidating all guarantees).12

2.4.1.6 Compilation

Compilation is the creation of an executable program from code written in a compiled programming
language. Compilation allows the computer to run and understand the program without the programming
software used to create it.13

2.4.2 Game Client
The game client, as explained above, is a program that runs on the players computer and is responsible
for displaying the game on the screen and processing user input. The requirements for the game client
in this project are:

1. Light, which means that the program is easy on system resources.

2. Simple, which means that there is no need to download any software.

3. Cross-platform, which means that the program can be run on any computer with little or no
changes.

Using a web browser to run and render the game client is the best choice for this part of the project
because it is very lightweight and easy to use, the player enters the game simply by visiting the website
instead of downloading the game, and it is cross-platform. For the development of the game client, I
chose SvelteJS, a JavaScript framework that is very easy to use and has a very small footprint (meaning
it’s easy on system resources).

2.4.2.1 What is SvelteJS?

Svelte is a component-oriented JavaScript library like React and VueJS.14 Like most popular frontend
JS libraries, Svelte provides a lightweight framework with powerful features and syntax sugars that make
developers’ jobs easier. The main difference with Svelte is the engine in the library, as Svelte is primarily
a compiler.15

Figure 2.5: Svelte JS Logo16

11What’s the Difference between Being Statically versus Strongly Typed?
12Ibid.
13What Is Compile?
14Svelte • Cybernetically Enhanced Web Apps.
15Svelte, Why so Much Hype ?
16M. Gupta, Getting Started with Svelte

11

Chapter 2 – Game Shivram Sambhus

2.4.2.2 How was the game client created?

The game client is a single page application which either renders the welcome screen or the game screen.
In the background the client handles connecting to the server, sending and receiving data, and updating
the game state.17

Figure 2.6: Snake Game Homepage in Firefox

2.4.2.3 Rendering the game

The most important part of the data that the client receives from the server as an update is the rep-
resentation of the game (view of the snake). This view is sent as a 2D array of numbers, where each
number represents the type of cell (e.g. 0 = empty, 1 = food, 2 = snake, -1 = wall). The rendering is
done using the Canvas element. The Canvas element is part of HTML5 and enables dynamic, scriptable
rendering of 2D shapes and bitmap images. It is a low-level procedural model that updates a bitmap.18
HTML5 Canvas also helps in creating 2D games (which is why we are using it).19

Figure 2.7: Visualization of the rendering of the game from raw data

2.4.3 Summary
In this chapter, I have described and explained the requirements and implementation of the game server
and browser-based game client. The product of this chapter is a fully functional real-time multiplayer
game that can be deployed and run on any computer.

17See image 2.6 for viewing the browser client homepage
18“Canvas Element”.
19See image 2.7 for an example of how raw data is rendered via the canvas element

12

Chapter 3

Artificial Intelligence

Artificial intelligence (AI) refers to technologies that enable computers to help humans solve tasks that
require intelligence. An important subset of AI is "machine learning," which has its origins in statistical
and data-driven methods. In machine learning and deep learning, which we will discuss later, a computer
autonomously learns how to recognize patterns and regularities in data sets.

Such methods can provide valuable results, especially when dealing with very large or complex data sets
or problems. Artificial intelligence methods complement the creativity of researchers and often provide
surprising suggestions that had not been thought of before. AI is an attempt to transfer human learning
and thinking to computers and give them intelligence. Rather than being programmed for a specific
purpose, an AI can use machine learning to find answers and solve problems on its own.

In the following sections, we will take a look at the history of artificial intelligence, where AI is being
used today, and the different types of AI that exist.

3.1 History of Artificial Intelligence
The beginnings of artificial intelligence can be traced back over decades. The question of whether
computers can be intelligent in the sense in which we speak of human intelligence has been at the heart
of computer science as a discipline from the very beginning. In 1950, Alan Turing proposed the "imitation
game", a concept that later became known as the "Turing test"1. According to him, a computer could
be called "intelligent" if it could not be distinguished from another human in a conversation.2

In the summer of 1956, scientists gathered for a conference at Dartmouth College in New Hampshire.
They believed that aspects of learning and other features of human intelligence could be simulated by
machines. Programmer John McCarthy proposed the term "artificial intelligence" to describe this. By
the time of the conference, the world’s first artificial intelligence program, Logic Theorist, had been
written and could prove several dozen mathematical theorems.3

In 1966, German-American computer scientist Joseph Weizenbaum of the Massachusetts Institute of
Technology (MIT) invented a computer program called "ELIZA" that communicates with humans. Using
scripts, "ELIZA" simulates various human communicators, such as a psychotherapist.4 In the 1980s, a
form of artificial intelligence called "expert systems" was adopted by companies around the world, and
knowledge became the focus of artificial intelligence research. Expert systems are computer programs
that use formulas, rules, and a knowledge base to generalize knowledge in a particular area. For example,
artificial intelligence had entered the medical field, where it is used to aid in diagnosis and treatment.

1The Turing Test is an method in artificial intelligence that can be used to determine whether or not a computer is
capable of thinking like a human. The test is named after Alan Turing. What Is the Turing Test?

2“Turing Test”.
3“ELIZA”.
4Ibid.
5ibid.

13

Chapter 3 – Artificial Intelligence Shivram Sambhus

Figure 3.1: Example of an ELIZA conversation5

In 1997, artificial intelligence first attracted public attention. IBM’s artificial intelligence chess machine
Deep Blue defeated world chess champion Garri Kasparov in a tournament. This is considered a historic
success for machines in a field previously dominated by humans.6

In the 2000s, the world of artificial intelligence began to develop rapidly thanks to technology companies
such as Google, Facebook, Apple and others, as they began to invest heavily in artificial intelligence
and related research and scientific talent. This was largely thanks to the advanced computing power
of computers, which enabled the widespread use of artificial intelligence. One example is the artificial
intelligence developed by IBM called Watson, which understands our language and can answer difficult
questions very quickly. In 2011, Watson finally managed to beat human contestants on the American TV
quiz show Jeopardy and impress the public.7 In 2016, Google’s artificial intelligence "AlphaGo" caused
a sensation when it managed to beat the world’s best Go player, which until then had been considered
almost impossible due to the game’s high complexity.8 Since the 2010s, AI has been gaining momentum

Figure 3.2: AlphaGo vs. Lee Sedol (the world’s best Go player)9

and popularity. The world is now using artificial intelligence to solve problems that are not directly
related to human intelligence.

6IBM100 - Deep Blue.
7“History of Artificial Intelligence”.
8AlphaGo.
9Hern, “AlphaGo”

14

Chapter 3 – Artificial Intelligence Shivram Sambhus

3.2 Applications of Artificial Intelligence
In this section, we will take a look at some applications of artificial intelligence. Artificial intelligence
already plays an important role in most people’s daily lives. Often, we are not even aware of how often
we already use AI in our daily lives. In the following part we will look at some examples.

3.2.1 Recommendation and Personalization Systems
Intelligent recommendation and personalization systems use artificial intelligence to learn more and
more about our behavior and tailor recommendations to our interests. This creates a personalized
experience that constantly learns and improves through our own online behavior. Examples include
Netflix suggesting new shows and Amazon showing us which products might match our last purchase.
The algorithms of Google and the likes work in a similar way, providing us with an optimized web
experience. Here, AI serves as quality control and guarantees high-quality content at the top of the
search results.10

Figure 3.3: Example of Youtube’s recommendation system (Youtube algorithm)11

3.2.2 Healthcare
Proper diagnosis of disease requires years of medical training. But even then, diagnosis is often a
laborious and time-consuming process. In many areas, the demand for experts far exceeds the available
supply. This, in turn, increases the pressure on doctors and not infrequently delays life-saving patient
diagnostics. Machine learning, especially deep learning algorithms, have recently made great strides in
automatically diagnosing diseases using scans, images and patient data.12

3.2.3 Content Moderation
In social media or news forums, moderation is a major challenge. Identifying and removing trolls,
insults, and prohibited content is often beyond the scope of human manpower. AI-powered systems
can automatically analyze and classify potentially dangerous content, thereby improving the speed and
efficiency of the whole moderation process.13

3.2.4 Maps and Navigation
Before the use of artificial intelligence, route planning was very tedious for humans. Thanks to Google
Maps and other services, trip planning is no longer a problem. The artificial intelligence behind the apps
helps plan the optimal route, and user data helps predict traffic jams and problems. Traffic problems

10Top Applications of Artificial Intelligence (AI) in 2022 .
11YouTube
12Rangaiah, Artificial Intelligence in Healthcare.
13Darbinyan, Council Post .

15

Chapter 3 – Artificial Intelligence Shivram Sambhus

are predicted. User experience is at the heart of the application.14 Similar technology is behind Uber
and other ride-sharing apps, helping to identify the optimal route and the right vehicle.15

We have looked at just a few examples. There is much more AI in our daily lives than meets the eye. It
is used to help us, to make our lives easier and safer, or simply to learn.

3.3 Classification of Artificial Intelligence
In this section, we will take a look at the two different ways in which artificial intelligence can be
classified.

3.3.1 Weak and Strong AI
The first way to classify AI is to divide it into: weak and strong artificial intelligence.

3.3.1.1 Weak AI

Weak AI is a type of artificial intelligence that is specifically designed to focus on a particular task and
appear very intelligent. It lacks creative capabilities and has no apparent ability to learn on its own in
a universal sense.16

A very good example of weak AI is Apple’s Siri, which is backed by the Internet as a powerful database.
Siri appears to be very intelligent, as it can carry on conversations with real people and even make a few
little remarks and jokes, but in reality it functions in a very narrow, predetermined way. However, the
’limits’ of its function are evident in the inaccurate results when it engages in conversations for which it
is not programmed.17

Robots used in manufacturing can also appear very intelligent because of their precision and the fact
that they perform very complex actions that appear incomprehensible to the normal human mind. But
that is the extent of their intelligence; they know what to do in the situations for which they have been
programmed and do not have the ability to decide what to do beyond that. Even an artificial intelligence
that is capable of machine learning can only learn and apply what it has learned to the extent for which
it has been programmed.18

3.3.1.2 Strong AI

On the other hand, the realization of strong AI is not yet within reach: The goal of the strong AI
concept is for natural and artificial intelligence carriers (e.g. humans and robots) to build a common
understanding and trust when working in the same field of action.

For example, efficient human-machine collaboration could be learned and enabled. A strong AI can
autonomously recognize and define tasks and acquire and build knowledge about the corresponding
application domain to do so. It investigates and analyzes problems to find an adequate solution which
can also be new or creative.19

It is still disputed whether the development of such intelligence is even possible. However, the majority
of researchers now agree that powerful AI will be developed, but there is no consensus on when this will
happen. However, a time span of 20 to 40 years is considered realistic.20

3.3.2 4 tiers of Artificial Intelligence
The second way to classify AI is to divide it into four tiers. The four tiers are: reactive machines, limited
memory, theory of mind, and self-awareness.

14A Smoother Ride and a More Detailed Map Thanks to AI .
15Uber AI in 2019 .
16experience et al., Difference Between Strong and Weak AI | Difference Between.
17What Is Weak Artificial Intelligence (Weak AI)? .
18Weak vs. Strong AI .
19experience et al., Difference Between Strong and Weak AI | Difference Between.
20What’s the Difference between Being Statically versus Strongly Typed?

16

Chapter 3 – Artificial Intelligence Shivram Sambhus

3.3.2.1 Reactive Machines

Reactive machines AI is the first and most basic form of artificial intelligence. These machines have no
memory or perception of the world or time and are designed to perform a single task depending on the
current situation.

An example of reactive AI is Deep Blue, IBM’s chess-playing supercomputer that defeated international
grandmaster Garri Kasparov in the late 1990s.21 Deep Blue can identify pieces on a chessboard and knows
how they move. It can make predictions about what moves might follow for him and his opponent. And
it can choose the most optimal moves among the possible ones. But it has no knowledge of the past and
no memory of what happened before. Apart from the rarely used chess-specific rule of not repeating
the same move three times, Deep Blue ignores everything that happened before the present moment. It
simply looks at the pieces on the chessboard and chooses from the possible next moves. In this type of
intelligence, the computer perceives the world directly and responds to what it sees. It does not rely on
an internal concept of the world.22

3.3.2.2 Limited Memory

Unlike reactive machines, AIs with limited memory are able to apply collected data from past situations
to current events and incorporate it into their decisions. Machines with limited memory must relate
what they have learned to current events in order to make a decision.

Modern self-driving cars are based on this system. The computer in these cars knows from memory how
cars normally drive, what people or cyclists look like, and what the traffic rules are. At the same time,
it watches its surroundings for obstacles such as other cars, trees or people that complete its picture of
the world.

This is the most common form of artificial intelligence today: it is used by major technology companies
such as Google, Facebook and Amazon for tasks such as speech recognition, image recognition and
translation. It is also used in selfdriving cars and in many other applications.23

3.3.2.3 Theory of Mind

These artificial intelligence systems represent a very advanced technology that is able to interpret the
environment and the things in it. This type of artificial intelligence should be able to understand people’s
feelings, thoughts, beliefs and expectations and interact in a social environment. This requires a deep
understanding of how humans and other living things in the environment change their feelings and
behavior.24

R2-D2 from Star Wars is an example of the intelligent robot theory, as he was able to understand the
fear and anger of other humans and react fearfully or angrily in certain situations.

This type of AI still presents a challenge.Researchers struggle to mimic what happens in the human
brain. Social norms, emotions, and instincts create many variables that are difficult to replicate in a
machine.25

3.3.2.4 Self-Awareness

The highest form of artificial intelligence describes machines that have consciousness and self-awareness
and are sentient. In addition, these machines should be able to show a desire for certain things and
recognize their own feelings. At this level, computer thinking reaches the level of human consciousness
with a complete perception of the world, human feelings, intentions and reactions.26

This AI will move from "I think" to "I know I think." Robots with this AI will be as intelligent or even
more intelligent than humans and will be able to do all the normal tasks we do today if not better. This

21IBM100 - Deep Blue.
22Understanding the 4 Types of Artificial Intelligence (AI).
23Understanding the Four Types of Artificial Intelligence.
24Johnson, 4 Types of Artificial Intelligence.
25Understanding the 4 Types of Artificial Intelligence (AI).
26Understanding the Four Types of Artificial Intelligence.

17

Chapter 3 – Artificial Intelligence Shivram Sambhus

form of AI does not yet exist, but experts agree that this invention, if ever realized, will be one of the
greatest milestones in the history of artificial intelligence.27

3.3.3 Subfields of Machine Learning
In this section, we will clarify some terms and then take a look at the different subfields of machine
learning.

3.3.4 AI vs Machine learning vs Deep learning
In social media and news sites, the terms artificial intelligence, machine learning, and deep learning have
become confused. To avoid confusion, we will clarify some terms in this subsection.

Artificial intelligence is the ability of a computer system to mimic human cognitive functions such as
learning and problem solving. In AI, a computer system uses mathematics and logic to simulate the
thinking that humans use to learn from new information and make decisions.28

Machine learning is a subset of AI. It uses mathematical data models such as regression, clustering,
decision trees, and various other models that allow a computer to learn without direct instructions. In
this way, a computer system can continuously learn and improve based on experience.

Deep learning is a subset of machine learning. Deep learning works in a similar way, which is why the
two terms are often confused. Deep Learning algorithms are based on neural networks (which we will
discuss in more detail later).29

Figure 3.4: Artificial Intelligence subtopics30

3.3.5 Machine Learning subfields
Now, that we have distinguished artificial intelligence from machine learning, we’ll take a look at the
different machine learning subfields. There are 5 main machine learning subfields: Supervised learning,
Unsupervised learning, Ensemble learning, Reinforcement learning, and Deep learning.31

27Computer, What If AI Becomes Self-Aware?
28Understanding The Difference Between AI, ML, And DL.
29Kalavala, AI, ML and DL.
30Silvan, What Is the Difference between Artificial Intelligence, Machine Learning and Deep Learning?
31“Outline of Machine Learning”.
32Trekhleb, Homemade Machine Learning in Python

18

Chapter 3 – Artificial Intelligence Shivram Sambhus

Figure 3.5: Overview of the different machine learning subfields32

3.3.5.1 Supervised learning

Supervised learning is a machine learning technique in which the algorithm is presented with a data set
where the target variable is already known. The algorithm learns relationships and dependencies in the
data that explain these target variables. After training, the quality of the prediction is evaluated, and
then the learned patterns are applied to unknown data to produce forecasts and predictions.33

Supervised learning algorithms include regression (e.g. linear regression) and classification algorithms
(e.g. support vector machines or decision trees).

3.3.5.2 Unsupervised learning

Unsupervised learning methods are trained in the absence of existing knowledge. Unlike supervised
learning methods, there is no data sample with labels, instead, the model must recognize the model itself.
This type of method is often used for clustering tasks, such as classifying existing data into groups. This
is the case, for example, in marketing, where existing customers are classified into meaningful groups and
then advertisements are created specifically for those groups.34 Unsupervised learning algorithms include
clustering (e.g. K-means) and dimensionality reduction (e.g. principal component analysis).35

3.3.5.3 Ensemble learning

Ensemble learning models use multiple models to combine the results of the models. This is done, for
example, by averaging the results of the models. An example of ensemble learning is the random forest
algorithm, which combines the results of multiple decision trees.36

33Yalçın, 4 Machine Learning Approaches That Every Data Scientist Should Know .
34Trekhleb, Homemade Machine Learning in Python.
35Deep Learning vs. Machine Learning.
36Yalçın, 4 Machine Learning Approaches That Every Data Scientist Should Know .

19

Chapter 3 – Artificial Intelligence Shivram Sambhus

3.3.5.4 Deep learning

Deep Learning is currently one of the most exciting areas of research in machine learning. It is based on
the use of artificial neural networks. Artificial neural networks are algorithms modeled on the biological
model of the human brain. They are used to recognize patterns, interpret text, or help us form clusters
and classify objects on images. Of course, like any machine learning algorithm, a deep learning algorithm
is trained using data. Artificial neural networks are often very complex, making it difficult to interpret
individual decisions. Since Deep Learning plays an important role in this project, we will look at it in
more detail in a later section.37

3.3.5.5 Reinforcement learning

Reinforcement learning is another type of learning method. In this case, the model is trained with the
help of a reward. This is necessary when there is no given data set and the model has to learn from
self-generated data. This approach is mostly used to train AI for playing video games or interacting with
dynamic systems. Such models are also used in other fields such as robotics or finance. Since the focus
of this paper is on reinforcement learning, we will discuss it in more detail later in this paper.38

In this chapter, we have taken a general look at the history and the different types and subfields of
artificial intelligence. In the next chapter, we will take a closer look at Deep Learning and Reinforcement
Learning.

37What Is Deep Learning? | How It Works, Techniques & Applications - MATLAB & Simulink .
38What Is Reinforcement Learning?

20

Chapter 4

Deep Learning

We will now look at Deep Learning in more detail, as it plays an important role in our project. As
explained above, Deep Learning is a subfield of machine learning based on the use of neural networks.
Just like the biological neural network, the artificial neural network continuously learns and updates its
knowledge and understanding of the environment based on the experiences it has encountered. Each
deep learning algorithm usually consists of the following components: a neural network, an activation
function, a loss function, and an optimization algorithm.

4.1 Neural Networks
A neural network is a mathematical model of the human brain. It consists of a series of interconnected
neurons. Each neuron, much like a biological neuron, can store a state or value and has a series of
incoming and outgoing connections. To understand how a multilayer (or deep) neural network works, we
need to start small and approach slowly. We will start with a simple perceptron and build our knowledge
from there to a multilayer perceptron.

4.1.1 Single Perceptron
A single perceptron is the basic building block from which most further multilayer perceptrons (or deep
neural networks) are constructed. The perceptron computes a linear regression for a given input vector
x using a weight vector w and a bias vector b, which is then passed through an activation function ϑ
to produce an output y.1 The perceptron shown in the figure above is a feedforward neural network.

Figure 4.1: Single layer perceptron2

However, there are also variants such as the recurrent neural network (RNN) or long-term memory neural
networks (LSTM) that can be used to model time-dependent data.

1“Perceptron”.
2Single Layer Perceptron in TensorFlow - Javatpoint

21

Chapter 4 – Deep Learning Shivram Sambhus

y = ϑ(

n∑
i=1

xiwi + b) = ϑ(x ·w + b) (4.1)

Computation of a single perceptron

This simple perceptron is the basic framework. This building block can only perform linear regression
if the weights and bias are set correctly (which we will look at in the "Optimization" section). It is not
capable of solving more complex problems. To solve more complex tasks we need to have a look at the
activation function of the perceptron.

4.1.2 Multilayer Perceptron
Multilayer perceptrons are a combination of simple perceptrons. Depending on the task, they can
use different activation functions and different variants of the perceptron. The most common type of
multilayer perceptron is the feedforward neural network.3

4.2 Activation Functions
An activation function is a mathematical function used in a neural network to activate the neurons and
introduce nonlinearity by transforming the inputs. They are also called transfer functions because they
can transform (normalize, randomize, ...) the individual perceptron outputs. The reason why we need an
activation function is that a neural network consisting of several simple perceptrons could only compute
a linear regression without such a function.4

Let’s see why this happens when we don’t use an activation function. Let’s look at the following example.
We will combine 2 simple perceptrons into a multilayer feedforward neural network.

First layer takes input(x1) and multiplies it with weight(w1) and adds bias(b1):

z1 = w1 · x1 + b1

There is no activation function, meaning the output is the same as the input:

ϑ(z1) = z1

x2 = ϑ(z1)

The output of the first layer is the input of the second layer:

z2 = w2 · x2 + b2 = w2 · ϑ(z1) + b2 = w2z1 + b2

We can rewrite the equation above to a new linear equation:

z2 = w2 · (w1 · x1 + b1) + b2 = w2 ∗ w1 · x1 + w2b1 + b2

output = z2 = (w2 ∗ w1) · x1 + (w2 · b1 + b2)

We see that a non-existent or linear activation function results in the neural network being able to
compute only linear functions, regardless of how many layers your neural network has.5 To allow modeling
of more complex functions, we need to use a nonlinear activation function.6

4.2.1 Binary Step Function
Let’s take a look at the simplest nonlinear activation function: the binary step function.The binary step
function is a very simple threshold based activation function. It takes a value as input and returns either
0 or 1. The function is defined as follows: This activation function is sometimes used in the output

3“Multilayer Perceptron”.
4chowdhury, Demystifying Activation Functions in Neural Network .
5DeepLearningAI, Why Non-linear Activation Functions (C1W3L07).
6Activation Functions in Neural Networks.

22

Chapter 4 – Deep Learning Shivram Sambhus

ϑ(x) =

{
0 if x < 0

1 if x ≥ 0
(4.2)

Binary step function formula

Figure 4.2: Binary step function in a graph7

node of a binary classifier. It is not used in hidden layers of a neural network. The reason is that the
binary step function is not differentiable. The idea behind this is that we need to be able to calculate how
weight changes affect the output of the neural network. If the activation function is not differentiable, we
cannot calculate the derivative of the function, and thus we cannot calculate the gradient of the neural
network. (We will look at the gradient in the "Optimization" section.)8

So let’s take a look at other differentiable activation functions.

4.2.2 Sigmoid Function
The sigmoid function is a very common activation function. It is defined as follows: The sigmoid

ϑ(x) =
1

1 + e−x
(4.3)

Sigmoid function formula

function takes the input value and assigns it a value between zero and one. Although the sigmoid
function is suitable for many regression and classification tasks, it has some disadvantages. The main
disadvantage is that the sigmoid function goes into saturation and kills the gradients. For very small
input values, the gradient of the sigmoid function is very close to 0, and for a very large value, it is
close to 1. This means that the gradient is very small, and therefore the neural network weights are not
updated much (see the "Optimization" section). This can lead to a situation where the neural network
cannot learn anything. This is called the vanishing gradient problem.10

Another activation function with a similar problem is the Hyperbolic Tangent activation function. Both
functions suppress information and have increasingly smaller gradients for small or large values. One
way to solve this problem is to use a different activation function that does not squash information as
much as the sigmoid function.11

7chowdhury, Demystifying Activation Functions in Neural Network
8SHARMA, Activation Functions in Neural Networks.
9“Sigmoid Function”

10Activation Functions in Neural Networks [12 Types & Use Cases] .
11Wang, The Vanishing Gradient Problem.

23

Chapter 4 – Deep Learning Shivram Sambhus

Figure 4.3: Sigmoid activation function on a graph9

4.2.3 Rectified Linear Unit (ReLU)
The rectified linear unit is a very popular activation function. It is defined as follows:

ϑ(x) =

{
0 if x < 0

x if x ≥ 0
(4.4)

ReLU function formula

Figure 4.4: ReLU activation function on a graph12

It takes the input and returns the input if it is greater than 0, otherwise it returns 0. This means that
the ReLU activation function does not suppress the information as much as the sigmoid function. Even
though the ReLU activation function is not continuous at 0, it is differentiable. This means that we
can calculate the gradient of the ReLU activation function for positive inputs or return 0 for negative
inputs. This solves the vanishing gradient problem, but introduces a new problem: the dying ReLU
problem.13

12ReLU — PyTorch 1.12 Documentation
13Activation Functions in Neural Networks [12 Types & Use Cases] .

24

Chapter 4 – Deep Learning Shivram Sambhus

The ReLU activation function allows unaffected neurons to not be updated. Only neurons that are
activated are updated (see the "Optimization" section). This means that a neuron that is not activated
will never be updated. This can lead to a situation where the neural network cannot learn anything.
This is called the dying ReLU problem. The absolute loss of information is not as high as in the sigmoid
function, but it is still a problem.14

4.2.4 Leaky ReLU
The leaky ReLU activation function is a variant of the ReLU activation function. It is defined as
follows:

ϑ(x) =

{
ax if x < 0

x if x ≥ 0
(4.5)

Leaky ReLU function formula with a < 1

Figure 4.5: Leaky ReLU on a graph15

The leaky ReLU activation function differs from the ReLU activation function in that it does not return
0 for negative inputs, but a small value. This means that the leaky ReLU activation function does not
suppress the information as much as the sigmoid function and also does not have the problem of the
dying ReLU.16

However, there is a problem with both the ReLU and leaky ReLU activation functions: the exploding
gradient problem. The exploding gradient problem occurs when the gradient of the activation function is
very large. This means that the weights of the neural network are updated very strongly. This can result
in the neural network being unable to learn anything. This is called the exploding gradient problem.
The absolute loss of information is not as high as with the sigmoid function, but it is still a problem.
One could trim the gradient to a certain value, but this too would suppress the information and lead to
a problem similar to the dying ReLU problem.

4.2.5 Optimal Activation Functions
Currently, there is no perfect activation function. Each activation function has its advantages and
disadvantages. The best activation function depends on the task and the data. In practice, you try
different activation functions and see which one works best or give the desired outputs.

14Leung, The Dying ReLU Problem, Clearly Explained .
15Papers with Code - Leaky ReLU Explained
16Leung, The Dying ReLU Problem, Clearly Explained .
17SHARMA, Activation Functions in Neural Networks

25

Chapter 4 – Deep Learning Shivram Sambhus

Figure 4.6: Overview of common activation functions and their derivatives17

4.3 Loss Function
Neural networks or perceptrons themselves are not capable of learning or knowing how right or wrong
they are in the training phase. They simply compute values from their inputs and return an output. It is
the job of the loss function to determine how right or wrong the network is. The loss function is a function
that takes the predicted value and the actual value as input and returns a value indicating how wrong
the prediction was. The loss function is used to train the network. The network is trained by minimizing
the loss function. The loss function is also called the "cost function" or "objective function".

4.3.1 Mean Squared Error (MSE)
There are many different loss functions. The most common loss function is the mean squared error
(MSE). The MSE is a measure of the average of the squares of the errors. The MSE is calculated
by taking the difference between the predicted value and the actual value squared. The MSE is then
calculated from the average of all squared errors. The MSE is a good loss function for many regression
problems.18 The MSE is calculated as follows:

While the MSE is well suited for many regression problems, it has some problems in practice. The MSE
is not very robust to outliers. If you have some non-distributed outliers in your data, the MSE will be
very high because you are taking the sum of squares of the errors. This may mean that the network does
not generalize well. For this reason, there are several loss functions. Examples include: mean absolute

18Frost, Mean Squared Error (MSE).

26

Chapter 4 – Deep Learning Shivram Sambhus

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.6)

Mean squared error; yi is the actual value and ŷi is the predicted value

error (MAE), Huber loss, quantile loss, and many others.19

4.3.2 Adaptive Loss Functions
A new method that does not require you to manually figure out which loss function is appropriate for your
problem is that of adaptive loss functions. An adaptive loss function is a loss function that automatically
adapts to the problem.20

f(x, α, c) =
|α− 2|

α
·
((x

c

)2
+ 1

)α/2

− 1 (4.7)

Adaptive loss function formula21

Figure 4.7: General (adaptive) loss function (left) and its gradient (right) for dif-
ferent values of its shape parameter α. Several values of α reproduce existing loss
functions: L2 loss (α = 2), Charbonnier loss (α = 1), Cauchy loss (α = 0), Geman-
McClure loss (α = -2), and Welsch loss (α = − inf)22

α controls the robustness of the loss, c controls the scaling of the loss, and x is the difference between
the predicted value and the actual value. The adaptive loss function is a generalization of many loss

19Common Loss Functions in Machine Learning | Built In.
20Barron, A General and Adaptive Robust Loss Function.
22ibid.

27

Chapter 4 – Deep Learning Shivram Sambhus

functions, but they are not yet widely used in practice. However, they represent a promising new
development.23

4.4 Optimization
Optimization is possibly the most important key component in machine learning, as it controls the entire
learning or training process. The sub-steps of optimization sound complex at first, but they are usually
performed fully automatically by computers. Ultimately, the goal of our machine learning model is to
minimize our cost function to ensure a correct fit to a given observation. When the model adjusts its
weights and biases, it uses the cost function to figure out how much it is off by. But how should the
weights and biases be changed to reduce this loss?24

Imagine we are at a point in a 2D world with mountains and valleys. Our task is to find the lowest point in
the world. We can spawn anywhere, but we can only see what is in our immediate vicinity. So how do we
find our way to the desired (lowest or highest, depending on the problem) point? Let’s greedily go ahead
and just take steps in the direction with the steepest slope. But this might lead us to a local and small
valley (called local minima). This is a better position than our original position, but we want to tweak it
a bit in order to find a better position. So one option would be to scout the surrounding area first to get
a better feel for the landscape around us. One could also scout distant locations without knowing what
lies in between, hoping to discover more suitable positions. Optimization in neural networks addresses a
very similar problem, but in a much higher-dimensional space and with higher complexity.

4.4.1 Gradient Descent
The most common optimization algorithm is gradient descent. The idea is that we "trace" the error
through the network during a phase called "backpropgation". We start with the output layer and compute
the error. Then we compute the error for the previous layer and so on until we reach the input layer. To
find out to what extent the weights and biases need to be adjusted, we calculate (using derivatives and
the chain rule25) the gradient of the cost function with respect to the weights and biases. The gradient is
a vector pointing in the direction of the largest increase in the cost function. The algorithm then adjusts
the weights and biases in the opposite direction of the gradient. This process is repeated until the cost
function is minimized. Once this is done, we can use the trained model for predictions.26

4.4.2 Other Optimization Algorithms
Depending on the type of objective function, there are different approaches to solving the optimization
problem. For some functions (continuous and differentiable), optima can be determined via the deriva-
tives of the function (necessary and sufficient criterion for gradients). However, for a large parameter
space, this problem cannot be solved in a mathematically closed way. Instead, gradient descent methods
can be used here, in which the optimum is approached step by step. Starting from a starting position,
the gradient is alternately calculated with the current parameters, and a change of the parameters in
the direction of the gradient is made until no more improvement can be achieved. For most neural net-
works the current gradient is only estimated stochastically (for a part of the data). Accordingly, fewer
predictions and gradient calculations are needed. This speeds up the stepwise optimization.28

4.4.3 Brute Force Optimization
If no gradients can be determined, one can try to search the parameter space systematically. Well-known
representatives of this idea are the interval bisection method, the golden section method and the Nelder-

23Bhattacharyya, The Most Awesome Loss Function ?
24A. Gupta, A Comprehensive Guide on Deep Learning Optimizers.
25which states that the derivative of a function is the product of the derivative of the inner function and the derivative

of the outer function: ∂
∂w

f(g(x)) = ∂f
∂g

∂g
∂x

2612.3. Gradient Descent — Dive into Deep Learning 1.0.0-Alpha1.Post0 Documentation.
27Hardt, Understanding Optimization in Deep Learning by Analyzing Trajectories of Gradient Descent
2812. Optimization Algorithms — Dive into Deep Learning 1.0.0-Alpha1.Post0 Documentation.

28

Chapter 4 – Deep Learning Shivram Sambhus

Figure 4.8: Good vs poor local minimum27

Mead method. They iteratively partition the parameter space and try to find lower and lower values for
the objective function.31

Gradient descent and search methods, on the other hand, usually find only local minima, depending on
the selected starting point. With multithreading methods, several optimizations can be performed in
parallel. Thus, several local optima can be found, among which a global optimum can also be found.
Evolutionary algorithms, which are based on the theory of evolution, follow a similar idea. These
methods gradually change (generations) a group (population) of parameter assignments (individuals).
Through certain mutation and recombination procedures, new assignments are generated, a part of which
(depending on their usefulness) "survives" in the next generation.32

4.4.4 Learning Rate
As explained in this section, optimization is about figuring out how to change the weights and biases
of our neural network to reduce the loss function during the backpropagation phase. One of the most
important parameters used to determine how much to change the weights and biases is the learning rate.
If the learning rate is too high, the weights and biases may change too much and the gradient descent
may not converge. If the learning rate is too low, it may take too long for the neural network to converge.
While the learning rate is usually set manually, there are also methods to slowly change the learning rate
during training. This is called an adaptive learning rate.33

31“Brute-Force Search”.
32Evolutionary Optimization Algorithms | Wiley.
33Reducing Loss.
34Setting the Learning Rate of Your Neural Network.

29

Chapter 4 – Deep Learning Shivram Sambhus

Figure 4.9: Global vs local minimum29

Fig. 1. A Typical Energy Landscape Depicting Position
of Several Local... Figure 4.10: Example function with two

parameters.30

Stewart, Neural Network Optimization

Figure 4.11: Optimization algorithms try to find the global minimum efficiently in
a much higher-dimensional and complex space.

Figure 4.12: How different learning rates affects gradient descent34

4.5 Essence of Deep Neural Networks
Let us briefly summarize what has been described in the above pages. Neural networks are a class of
machine learning models inspired by the human brain. They are composed of neurons that are connected
to each other. Each neuron has a weight and a bias. Optimization algorithms such as gradient descent,
along with parameters such as learning rate, figure out how to optimize the weights and biases to reduce
the loss function and thus improve the model’s predictions.

Neural networks are universal function approximators. This means that they can approximate any
function by approximating a polynomial Taylor series. This is why neural networks are so powerful.

30

Chapter 5

Reinforcement Learning

In this section, we will take an in-depth look at reinforcement learning (RL). This area is very important
because the techniques and methods of RL are used in many areas such as robotics, video games,
autonomous vehicles and also in this project to solve the problem statement.

5.1 Introduction
RL describes numerous individual methods in which an algorithm or machine learning agent learns strate-
gies independently. The goal is to maximize reward in a simulation environment. Within this simulation
environment, the computer performs an action and then receives feedback. The machine-learning agent
receives no information in advance about which action is most promising and must determine its own
course of action in a trial-and-error process.

Instead, the computer receives rewards at various points in time that influence its strategies. Through
these events, the machine learning agent learns to estimate the sequence of certain actions within the
simulation environment. The whole thus forms the basis for the machine-learning agent to develop
long-term strategies and maximize rewards in the same process. Several components come into play in
decision making. How do we gather experience? How do we make decisions? How do we learn from our
decisions? How do we know if we are making the right decisions? These are all questions that RL seeks
to answer. To develop algorithms for RL, we need to define the problem systematically.

5.2 Formalization of the Problem
Conventionally, an RL problem is modeled as a Markov decision process. In mathematics, a Markov
decision process (MDP) is a discrete-time stochastic control process. This means that the process is
governed by a stochastic process (a random process for the agent) and that updates must be made at
each point in time. MDP provides a mathematical framework for modeling decision making in situations
where outcomes are partially random and partially controlled by a decision maker such as in the real
world and many RL environments.

An MDP must satisfy the Markov property, which means that the future state of the system depends
only on the current state and not on the sequence of events that led to the current state. A state St

is Markov if P(St+1|St, St−1, . . . , S0) = P(St+1|St).1 In simpler terms, the future state of the system
depends only on the current state and not on the sequence of events that led to the current state and is
thus memoryless.

Once this Markov property is satisfied we can model a MDP using four variables. A state space S, an
action space A, a transition function P and a reward function R. The state and action space are a set of

1Jagtap, Understanding Markov Decision Process (MDP).
2Choudhary, Dynamic Programming In Reinforcement Learning

31

Chapter 5 – Reinforcement Learning Shivram Sambhus

Figure 5.1: Markov decision process illustrated2

all possible states or actions of the system. The transition function (also called probability function) P
describes the probability of transitioning from one state to another given an action. The reward function
R describes the reward received by the agent for taking an action in a given state.3

Figure 5.1 shows how the MDP is modeled. The agent receives a state from the environment that depends
solely on the previous state (Markov property) and on the action that the agent performed and with
which the environment transitions to the next state (can be stochastic). The agent receives a reward for
its actions. In addition to the variables described above for RL problems, we also define other variables
and functions that are important for the RL problem.

In most RL problems, we want to maximize the expected cumulative reward Gt. To tune how much
weight we place on future rewards, we add a discount factor. If the discount factor is 0, we only care
about the immediate reward which will lead to a greedy strategy. If the discount factor is 1, we care
about all future rewards which will lead to a long-term strategy. The discount factor is usually set to
0.9 or 0.99.4 In this equation T is the current time step, k is the number of steps in the future and γ is

Gt =

∞∑
k=0

γkRt+k+1 (5.1)

Expected cumulative reward

the discount factor (0 being greedy and 1 being long-term).

The strategy of our agent is called a policy and denoted by π. A strategy can be deterministic or
stochastic and can be represented as a mapping from a state space s to an action space a.5

So now let’s formalize the problem that RL is trying to tackle. We have an agent that is in a state s and
wants to maximize the expected cumulative reward Gt. The agent can take an action a and transition
to a new state s′. The agent receives a reward R for taking action a in state s. The agent’s strategy is
a policy π that maps states to actions. The agent’s goal is to find the optimal policy π∗ that maximizes
the expected cumulative reward Gt.

3Silver, “Lecture 2: Markov Decision Processes”.
4blackburn, Introduction to Reinforcement Learning.
5“Markov Decision Process”.
6Silver, “Lecture 2: Markov Decision Processes”

32

Chapter 5 – Reinforcement Learning Shivram Sambhus

π∗ = argmax
π

E[Gt|π] (5.2)

Optimal policy which the agent is trying to find6

5.3 Bellman Equation
The Bellman equation is a dynamic programming equation (algorithms that use recursive functional ap-
proaches to solve problems) used for discrete-time optimization problems such as the MDP optimization
problem.7 The Bellman equation attempts to answer the following questions:

• If an agent is in a state and it is assumed that the agent performs the best possible action in each
substep, what long-term reward can I expect?

• What is the value of a particular state?

V (s) = max
a

(
R(s, a) + γ

∑
s′

P (s′, r|s, a)V (s′)

)
(5.3)

Bellman equation for stochastic environments8

In this equation R(s, a) is the immediate reward for taking action a in state s, P (s′, r|s, a) is the prob-
ability of transitioning from state s to state s′ given action a and reward r, V (s) is the value of state s
and γ is the discount factor.

The Bellman equation presented here applies to stochastic environments. It states that the value of any
state is the immediate reward of that state together with the discounted expected reward of all the next
states, maximized over all possible actions. Reason being that the we maximize over a and then sum
over s′.9

5.4 Overview of RL Algorithms
We’re now at a point where using the concepts from MDP and Bellman we can start to look at different
RL approaches which are then used in Deep RL. The first distinction we can make is between model-
based and model-free RL. Model-based RL assumes that the environment is known and the agent can
use this knowledge to plan ahead. Model-free RL assumes that the environment is unknown and the
agent has to learn the environment by interacting with it.

5.4.1 Model-based RL
Model-based RL attempts to circumvent the problem of lack of prior knowledge about the environment
by allowing the agent to construct a fictitious representation of its environment. This means that we have
a model of the transition function (or likelihood function) that describes how the environment transitions
from one state to another (P (s′, s, a) = Pr(st+1|st = s, at = a)) and a model of the reward function
that describes how the agent is rewarded for its actions (R(s, a) = Pr(rt+1|st = s, at = a)). Using this
model, the agent can then plan ahead and find the optimal strategy. With this strategy, the agent can
then interact with the environment and update the model. This process is repeated until the agent finds
the optimal strategy.

7“Bellman Equation”.
8Tanwar, Bellman Equation and Dynamic Programming
9Skowster the Geek, Bellman Equation Basics for Reinforcement Learning.

33

Chapter 5 – Reinforcement Learning Shivram Sambhus

Given here a model of the environment as an MDP (since we assume that the environment is an MDP),
Bellman equations can be used to solve the problem. There are two main approaches to this: Value
Iteration and Policy Iteration.

5.4.1.1 Value iteration

Value iteration is an algorithm that iteratively improves an estimate of the value function. The value
function is a function that gives the expected value of a given state. Using the rewritten Bellman
equation, we can write the value function as a recursive function for a known reward: The value function

V (s) = max
a

E

(∞∑
t=0

γtrt|s0 = s, a0 = a

)
(5.4)

Value function for a known reward

is the discounted reward of this and all future rewards (for the best action). The value function can
be rewritten as: We can now replace the last sum with the value function for the next state V (s′) and

V (s) = max
a

E

(
r0 +

∞∑
t=1

γtrt|s0 = s, a0 = a

)
(5.5)

Value function rewritten to include the reward of the next state

obtain a recursive function: This is called the Bellman optimality condition. It states that the value

V (s) = max
a

E (r0 + γV (s′)|s0 = s, a0 = a) (5.6)

Bellman optimality condition: Value function rewritten as a recursive function

function is the expected reward of the current state plus the discounted value of the next state. This is
the same as the Bellman equation, but now we have defined the value function as a function of strategy
π.

This is very useful because now one can use dynamic programming (devide and concur recursive algo-
rithms) to solve the problem. One can start with the value function of the last state and work backwards
to the first state. This is called backward induction. Or one can start with the value function of the
first state and work forward to the last state. This is called forward induction. This approach is better
than a pure brute force approach because the value function only needs to be calculated once for each
state.

A simpler approach is to use a random value function, which is then iteratively improved. We create
a value table that contains randomly initialized "bad estimates" for the value function of each possible
state. With such a value table, we can technically evaluate the value function of each state, even if it
is wrong. Now, if we let our agent make the best move (using our current strategy derived from the
bad value function), we can update the value function of the state we are in. We can then repeat this
process until the value function converges (which is why this method is called value "iteration"). This
algorithm is an "on-policy" algorithm (algorithms that evaluate and improve the same strategy used to
select actions). This method is only suitable for environments with a small number of states. For larger
environments, we can use Deep RL methods (which we will discuss later).10

10Steve Brunton, Model Based Reinforcement Learning.

34

Chapter 5 – Reinforcement Learning Shivram Sambhus

Once we have found a sufficiently good, i.e., reasonably good, approximation to the value function, as
well as an incorrigible change in the old and new value functions, we can use the value function to find
the optimal strategy: π = argmaxπ E(r0 + γV (s′)).

5.4.1.2 Policy iteration

Policy iteration is a very similar approach to value iteration. It is a two-step process (unlike the 1 step
process of value iteration). We first create a random policy and then we use the policy to find the value
function the way we did in value iteration. Once we have found a sufficiently good value function, we
can then use the value function to find the optimal policy. So effectively we’re "locking" the policy,
finding out the value function, then "locking" the value function and finding out the policy. This method
typically converges faster than value iteration. However, it is more computationally expensive than value
iteration. This method is also "on-policy".11

5.4.2 Model-free RL
Model-free RL is a more practical approach to RL. It assumes that the environment is unknown and the
agent must learn the environment by interacting with it. This means that we do not have a model for the
transition function or the reward function. This means that we cannot plan ahead and must learn the
environment by interacting with it. While this is more practical, it is also more computationally intensive
because we have to learn the environment by interacting with it. There are two main approaches to this:
On-Policy and Off-Policy.

5.4.2.1 Q-Function

Before we jump into the various different model-free RL algorithms, we need to talk about the Q-function.
The Q-function (it can be thought of as a quality function) is a function that gives the joint quality or
value of performing an action in a given state, given the probabilities. Using the Q-function the Bellman

Q(s, a) =
∑
s′

P (s′|s, a) (R(s, a, s′) + γV (s′)) (5.7)

Quality function12

equation can be rewritten as V (s) = maxa Q(s, a). The policy function of our agent (stated above)
π(a|s) = argmaxaQ(s, a) is the action that maximizes the Q-function for a given state s. The reason
we’re creating this function is because it encompasses both the immediate reward and the discounted
value of the state. This allows us to not need a model of the environment. This is why this method is
called a model-free approach. It’s a very useful approach because it allows us to use RL in environments
where we don’t have a model of the environment. Through a given Q-function, both the value function
(V (s) = maxa Q(s, a)) and the policy function (π(a|s) = argmaxaQ(s, a)) can be derived.13

5.4.2.2 Monte Carlo Learning

The first algorithm we will look at is the Monte Carlo learning algorithm, which executes random moves
and learns to approximate the value or Q function by playing episodes. In Monte Carlo learning, we try
to approximate the value function V (s) or the Q function Q(s, a) by running a large number of episodes
and averaging the rewards.14 The reward function R∑ is a discounted reward function of the complete
episode. The value function is now defined as a recursive function which allows us to use environment
episode (completed game play) observations to update our value function. The Q function can be updated
in a similar way. In these two cases, we can approximate our function using a neural network. The loss

11Steve Brunton, Model Based Reinforcement Learning.
12Steve Brunton, Q-Learning
13Shyalika, A Beginners Guide to Q-Learning.
14Team, Reinforcement Learning.

35

Chapter 5 – Reinforcement Learning Shivram Sambhus

R∑ =

n∑
t=0

γtrt (5.8)

Monte Carlo reward function

Vnew(St) = Vold(St) +
1

n
(R∑ − Vold(St)) (5.9)

Monte Carlo value function approximation

Qnew(St, At) = Qold(St, At) +
1

n
(R∑ −Qold(St, At)) (5.10)

Monte Carlo Q function approximation

function would be the last part of the above equation (for value function: 1
n (R

∑ − Vold(St); for Q
function: 1

n (R
∑ −Qold(St, At)). During the neural network training, the old function should converge

against the new function (Vnew(St) or Qnew(St, At)). In principle this algorithm should converge given
enough episodes.

5.4.2.3 Temporal Difference Learning

Temporal difference (TD) learning is an algorithm that also uses episodes to learn the value function.
However, it does not use the entire episode to update the value function. Instead, a single step of the
environment is used to update the value function. This is referred to as the TD(0) algorithm. The TD
algorithm is a model-free algorithm, which means that it does not require a model of the environment.
The TD algorithm can be written as follows:

V (s) = E[R(s, a, s′) + γV (s′)] (5.11)

TD value function

To approximate the value function, we can write it in a recursive form together with a learning rate
α: Thus, the loss function can be viewed as the TD target estimator (R∑ = rk + γVold(Sk+1)) minus

Vnew(St) = Vold(St) + α(rt + γVold(St+1)− Vold(St)) (5.12)

TD value function approximation

the old value function (Vold(St)) with a learning rate α. You will notice that this is very similar to the
Monte Carlo algorithm. The difference is that the TD algorithm uses a single step in the environment to
update the value function, while the Monte Carlo algorithm uses the entire episode to update the value
function.

TD(0) looks one step ahead, while Monte Carlo looks at the entire episode. But we don’t have to stop
here. We can look more than one step into the future. TD(n) looks n steps ahead. The TD(n) algorithm
can be written as follows: What does n mean? n represents the number of steps we look forward in
the environment. As n approaches infinity, the TD(n) algorithm approaches the Monte Carlo algorithm.

36

Chapter 5 – Reinforcement Learning Shivram Sambhus

Vnew(St) = Vold(St) + α(rt + γrt+1 + γ2rt+2 + · · ·+ γn−1rt+n−1 + γnVold(St+n)− Vold(St)) (5.13)

TD(n) value function approximation

TD(n) algorithms are on-policy algorithms, meaning they must choose the best perceived action to
converge. The TD algorithm must act greedily. We can modify the TD algorithm to be off-policy, which
means we can choose suboptimal actions. This is called a Q-learning algorithm.15

5.4.2.4 Q-Learning

Q-learning is an algorithm that is almost identical to the TD(0) algorithm. The only difference is that the
TD(0) algorithm uses the value function to update the value function, while the Q-learning algorithm
uses the Q-function to update the Q-function. The Q learning algorithm can be written as follows:
This equation, which is similar to the TD equation above, states that the new Q-function updates itself

Qnew(St, At) = Qold(St, At) + α(rt + γmax
a′

Qold(St+1, a
′)−Qold(St, At)) (5.14)

Q learning algorithm

by comparing its estimated Q-value with the actual Q-value obtained (reward and Q-value of the next
state). Similar to model-based algorithms, we can approximate the Q-value by randomly initializing the
Q-function (by creating a table of states and Q-values) and then iteratively updating our Q-values by
interacting with the environment.16

It is important to note that the Q learning algorithm also allows for suboptimal actions. This is because
the Q-learning algorithm uses the maximum Q-value of the next state to update the Q-value of the current
state. The new Q-value includes the reward and the maximum Q-value of the next state, regardless of
which action was chosen, thus allowing exploration and transfer learning.17

5.4.2.5 Off-Policy vs. On-Policy

We have seen that there are two main types of RL algorithms: off-policy and on-policy. Which one
should we use? The answer is that it depends on the problem.

Off-policy algorithms allow for suboptimal actions. On-policy algorithms do not allow suboptimal actions.
Off-policy algorithms are more flexible, while on-policy algorithms are more stable and online. In general,
off-policy algorithms are better suited for problems with a large state space and learn faster, while on-
policy algorithms are better suited for problems with a small state space and are more stable because
they do not allow suboptimal actions.18

5.4.2.6 Summary

In this section, we have seen that RL algorithms can be categorized into two main types: model-based
and model-free. Model-based algorithms use a model of the environment to learn the value function
independently or together with the strategy. Model-free algorithms do not use a model, such as the time
difference of the environment, to learn the value function. Algorithms can be divided into two main types:
Off-Policy and On-Policy. Off-policy algorithms allow suboptimal actions, while on-policy algorithms do
not allow suboptimal actions. These algorithms are theriotic algorithms that work in simple environments
such as tic-tac-toe. However, these algorithms are unsuitable for complex environments with large state
spaces. In the next section, we will see how Deep Learning can be used to solve these problems.

15Steve Brunton, Q-Learning.
16Shyalika, A Beginners Guide to Q-Learning.
17Steve Brunton, Q-Learning.
18Causevic, A Structural Overview of Reinforcement Learning Algorithms.

37

Chapter 5 – Reinforcement Learning Shivram Sambhus

5.5 Deep Reinforcement Learning
Deep reinforcement learning (DRL) is a subfield of reinforcement learning that uses deep neural networks
to approximate functions, as they are capable of learning complex functions as universal function approx-
imators. The use of neural networks in classical RL algorithms has several massive advantages.

First, unlike tabular value pairs, neural networks can represent many more states. Think of an 8x8
checkerboard as our state space. Such an environment would have (conservatively estimated) 10120

states.19 (That’s more states than there are atoms in the universe.20) That’s a huge state space, and
it’s impossible to represent all those states in tabular form. However, neural networks can represent this
state space with ease. This is because the entire state space can be represented with 64 input nodes in
a single layer. This greatly facilitates the solution of complex RL problems.

Another major advantage of neural networks is automatic feature extraction. Neural networks extract
helpful, low-dimensional patterns by finding intrinsic relationships in the data. In chess, for example, this
would mean identifying motives or tactics. This and the ability to develop complex strategies through
the breadth and depth of the network make neural networks very powerful and a great tool for solving
complex RL problems.

5.5.1 Deep Policy Networks
The simplest and most straightforward way to use Deep Learning in RL is to approximate the best
strategy π using a neural network. The difficulty is in determining the loss function. If one takes only
the negative reward (or something similar) as the loss function, the network will not learn in the long
run and will only learn greedy actions. This will not lead to good performance and is not practical in
many environments because of the sparse rewards. What you need to do is to include the future rewards
in our approximation equation: This equation states that our neural networks with parameters (weights

Policy Network: πθ(s, a) ⇒ θnew = θold + αδθRΣ,θ (5.15)

Deep Policy Network algorithm

and biases) θ should be updated by the gradient of expected return RΣ,θ with respect to parameters θ.
This is a very powerful equation, but it is not easy to implement. The problem is that the expected
return RΣ,θ is not known. So this is where different algorithms come into play. For example, if one
represents this expected future return by a value function, one is dealing with an Actor-Critic algorithm.
Methods such as the Actor-Critic algorithm (AC; and A2C, A3C), the Trust Region Policy Optimization
algorithm (TRPO), and the Proximal Policy Optimization algorithm (PPO) are all similar algorithms.
These algorithms are called policy gradient algorithms because they use the gradient of expected return
to update the policy network.21

5.5.2 Deep Q-Networks
Deep Q-networks (DQN) are a type of DPN that use a neural network to approximate the Q-function.
These algorithms (and their variations) have been used to solve many complex RL problems, such
as Atari games22, robotics, and finance. The DQN algorithm can be written as follows: You will
notice that this is almost the same equation as the Q learning algorithm. The basic loss function
(which you can plug into other functions like MSE) is the same as the Q learning algorithm: l =
(rt + γmaxa′ Qold(St+1, a

′)−Qold(St, At)). Typically the neural network in DQNs uses MSE L = l2 =
(rt + γmaxa′ Qold(St+1, a

′) − Qold(St, At))
2 as the loss function. The difference is that the Q-learning

algorithm uses a Q-table (with state-action and value pairs) to update the Q-function, while the DQN

19“Shannon Number”.
20Which Is Greater? The Number of Atoms in the Universe or the Number of Chess Moves? | National Museums

Liverpool .
21AI, Reinforcement Learning Algorithms — an Intuitive Overview .
22Mnih et al., Playing Atari with Deep Reinforcement Learning.

38

Chapter 5 – Reinforcement Learning Shivram Sambhus

Qnew(St, At) = Qold(St, At) + α(rt + γmax
a′

Qold(St+1, a
′)−Qold(St, At)) (5.16)

Deep Q-Network algorithm

algorithm uses a neural network to approximate the Q-function. The DQN algorithm is an off-policy
algorithm, which means that it can choose suboptimal actions. This is because the DQN algorithm uses
the maximum Q-value of the next state to update the Q-value of the current state. The new Q-value
contains the reward and the maximum Q-value of the next state, regardless of which action was chosen,
enabling exploration and transfer learning.23

5.5.3 Deep Dueling Q-Networks
Deep Dueling Q-networks (DDQN) is a advantagous type an extension of the DQN algorithm which
uses policy gradients. The main difference is that the DDQN algorithm uses two neural networks to
approximate the Q-function. One network is used to estimate the state value function V (s), and the
other network is used to estimate the advantage function A(s, a). The Q-function is then calculated as
follows: 25

Q(s, a) = V (s) + (A(s, a)− 1

|A|
∑
a′

A(s, a′)) (5.17)

DDQN Q-function

Lactor =
1

2
(rt + γV (st+1)− V (st))

2 (5.18)

DDQN actor loss function

Lcritic =
1

2
(rt + γmax

a′
Q(st+1, a

′)−Q(st, at))
2 (5.19)

DDQN critic loss function derived from the policy gradient equation24

The DDQN is now training two seperate neural networks, one to estimate the value of being in a state and
one to estimate the relative advantage of taking an action. This decoupling technique is very powerful and
allows the DDQN to learn the value of being in a state without having to learn the effect of each action
at each state. This is a very powerful technique that can be used to solve complex RL problems.26

5.5.4 Actor Critic Network
The actor critic network (ACN) is a type of policy gradient algorithm that uses a neural network to
approximate the value function V (s) and the policy function π(s) at the same time. Actor-critic methods
are TD methods that have a separate memory structure to explicitly represent the policy independent
of the value function. The idea is that we do policy iteration and value iteration at the same time.

23Steve Brunton, Overview of Deep Reinforcement Learning Methods.
25Steve Brunton, Overview of Deep Reinforcement Learning Methods
26Yoon, Double Deep Q Networks.

39

Chapter 5 – Reinforcement Learning Shivram Sambhus

The "actor" tries to find the best policy, and the "critic" tries to find the best value function.27 The
ACN algorithm can be written as follows: The policy function is using the temporal difference error

Vnew(St) = Vold(St) + α(rt + γVold(St+1)− Vold(St)) (5.20)

Critic approximation algorithm

πnew(St) = πold(St) + α(rt + γVold(St+1)− Vold(St)) (5.21)

Actor approximation algorithm

as the loss function, and the value function is using the same loss function as the DQN algorithm. The
ACN algorithm is an on-policy algorithm, which means that it can only choose optimal actions. This
is because the ACN algorithm uses the value function of the next state to update the value function of
the current state. The new value function contains the reward and the value function of the next state,
which is only possible if the optimal action was chosen. The ACN algorithm is a very powerful algorithm
that can be used to solve complex RL problems.28

The loss of the actor is the negative log probability of the action taken because the actor is trying to
maximize the probability of taking the optimal action. The loss of the critic is the mean squared error
of the value function. The actor and critic are trained at the same time, and the actor is trained to
maximize the critic’s loss. This is called the actor-critic method. The actor-critic method is a very
powerful algorithm that can be used to solve complex RL problems.29

5.5.5 Advantage Actor Critic Network
The advantage actor critic network (A2CN) is a type of ACN that uses a neural network to approximate
the advantage function A(s, a) and the policy function π(s) at the same time. It has a similar idea to the
DDQN algorithm, where the A2CN algorithm uses two neural networks to approximate the advantage
function and the policy function. The A2CN algorithm can be written as follows: The policy function

Anew(St, At) = Aold(St, At) + α(rt + γmax
a′

Aold(St+1, a
′)−Aold(St, At)) (5.22)

Advantage approximation algorithm

πnew(St) = πold(St) + α(rt + γmax
a′

Aold(St+1, a
′)−Aold(St, At)) (5.23)

Policy approximation algorithm

is using the temporal difference error as the loss function, and the advantage function is using the same
loss function (derived from policy gradient equation) as the DDQN algorithm. The A2CN algorithm
is an on-policy algorithm, which means that it can only choose optimal actions. This is because the
A2CN algorithm uses the advantage function of the next state to update the advantage function of the
current state. The new advantage function contains the reward and the advantage function of the next

276.6 Actor-Critic Methods.
28Causevic, A Structural Overview of Reinforcement Learning Algorithms.
29Karunakaran, The Actor-Critic Reinforcement Learning Algorithm.

40

Chapter 5 – Reinforcement Learning Shivram Sambhus

state, which is only possible if the optimal action was chosen. The A2CN algorithm is a very powerful
algorithm that can be used to solve complex RL problems.30

5.5.6 Summary
In this section we have taken a brief look at some DRL algorithms. There are many more methods and
algorithms in this area, however this does not fit into the scope of this paper. What should be taken
away from this is that classical RL algorithms can be strengthened by neural networks and that many
algorithms can be derived from each other and from equations such as the policy gradient equation
or the Bellman equation. This is a very powerful technique that can be used to solve complex RL
problems.31

30Steve Brunton, Overview of Deep Reinforcement Learning Methods.
31Causevic, A Structural Overview of Reinforcement Learning Algorithms.

41

Chapter 6

Development of the RL Agent: AI and
Results

We are now at a point where we know enough about DRL to begin developing our AI bots. In this
chapter, I will describe the practical development of our AI. The goal of this thesis is to develop a bot
(computer controlled player) that uses knowledge from artificial intelligence and RL to play our game.
I have developed a web-based real-time game (see the "Game" chapter) for which I want to develop a
bot.

In the first part, I discuss the technologies used, then I explain what systems and experiments were per-
formed to find good algorithms, and finally the best bot created is described and analyzed hgvghv

6.1 Technologies
Lets take a look at the different technologies and tools I used. In order to create the AI-controlled bot,
I needed to use a relatively efficient language with great ML support and a large community. I chose
Python1 because it is the most widely used language in the field. Below, I’ll go over some of the libraries
I used.

6.1.1 OpenAI Gym
OpenAI Gym is a toolkit for developing and comparing RL algorithms. It supports teaching agents
in everything from walking to playing games like pong or pinball. It is a great tool for testing and
comparing different RL algorithms. It also provides a large number of environments in which to test the
algorithms. I used the OpenAI Gym library to create my own custom environment that met its API
requirements. This allowed me to connect to with other libraries that are compatible with the OpenAI
Gym library.2

6.1.2 Stable Baselines 3
This library provides a large number of state-of-the-art RL algorithms. It is a useful tool for testing and
comparing different RL algorithms. I used it to train and test, tune and compare different RL algorithms.
Additionally, Stable Baselines 3 offers a wide range of useful wrappers and functions around OpenAI
Gym, such as Framestacking, Normalizing, and Logging.3

1Van Rossum and Drake, Python 3 Reference Manual .
2Brockman et al., OpenAI Gym.
3Raffin et al., “Stable-Baselines3: Reliable Reinforcement Learning Implementations”.

42

Chapter 6 – Development of the RL Agent: AI and Results Shivram Sambhus

6.1.3 PyTorch
PyTorch is an open source ML library based on the Torch library, used for applications such as computer
vision and natural language processing, primarily developed by Facebook’s AI Research lab. I used
PyTorch under the hood of Stable Baselines 3 to create and train the neural networks.4

6.1.4 TensorBoard
Tensorboard is a visualization tool for ML experiments. It allows you to track and visualize metrics such
as loss and accuracy, visualize the model graph, view histograms of weights, biases, or other tensors as
they change over time, project embeddings to a lower dimensional space, and much more. I used this to
visualize the training process metrics such as the reward, episode length and loss.5

6.1.5 Matplotlib
Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in
Python. I used Matplotlib to visualize the game as a heatmap.6

6.1.6 Celluloid
Celluloid is a Python library for creating animations. I used Celluloid to create the animations of the
game from Matplotlib heatmaps.7

6.1.7 NumPy
NumPy is the fundamental package for scientific computing with Python. It contains among other things
a powerful N-dimensional array object and useful linear algebra, Fourier transform, and random number
capabilities. I used NumPy extensively in the environment to handle the game state and the observation
space.8

6.2 Local environment
Now that we’ve taken a look at the technologies used, let’s look at how I developed a system that allows
the AI bots to train. Since I want to train our AI in an efficient way, I needed to be able to run through
the game quickly. Doing this via network calls to the server is very inefficient. In general, network
response times vary between 100 and 200 milliseconds9, which is too slow for our purposes. Doing 100k
network calls would take more than 2.5 hours. Also, our game runs at about 60 frames per second,
which means we would be limited to 60 network calls per second, which in turn would cause 100k game
iterations to take more than 3.2 hours. 100k game iterations is a very small number in RL.

In order to train the AI efficiently, I decided to create an exact copy of the game (without the entire
network) for local training. This way, I can play through the game as fast as my computer can. This is
a very common practice in RL, where the environment is simulated locally.

The local environment is modular, so it is easy to extend and replace components. To allow our agent to
train against other players (e.g., agents with random rules), I created a central instance where all games
are stored and managed. This way I can easily create multiple games and run them in parallel. Whenever
an environment is instantiated, it participates in a game of the central control instance. Each player or
the corresponding environment instance can only have a limited view of the entire environment.

The environment (which is technically an abstract wrapper around the actual game) can modify the
observation and state space as well as the reward function in a limited way. In this way, we can adjust
the environments to optimize the learning process.

4Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library”.
5Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems”.
6Hunter, “Matplotlib: A 2D graphics environment”.
7Kvam, Celluloid .
8Harris et al., “Array programming with NumPy”.
98 Ways to Effectively Reduce Server Response Time.

43

Chapter 6 – Development of the RL Agent: AI and Results Shivram Sambhus

Figure 6.1: Local architecture of the game

6.3 Procedure and Initial Conditions
In order to systematically develop our AI, I have conducted some mini-experiments that show how certain
approaches work and how they can be improved. These experiments are described in the following
sections. In order to compare different approaches, I had to create uniform initial conditions. These
include the environment reward function, the viewing distance (which defines the observation space),
the number of randomly moving players (to simulate other bad players), the size of the field, the food in
that field, and finally the number of training steps each agent is allowed to use.

Let’s start with the reward function for all our environments. This equation states that if the agent dies,

δt = (scoret − scoret−1) ∗ 10 + δt−1 ∗ 0.2− 0.25

R =

{
δt if alive
−20 if dead

(6.1)

Equation for the reward function

he receives a deduction of 20. If the agent lives, he receives a reward equal to the difference between
the current score and the previous score multiplied by 10. Reward gained at the previous timestep
attenuated by a factor (here 0.2) is then added so as to encourage activities like eating. Lastly we add
an asymptotic penalty of -0.25. This ensure that the agent is penalized (in the long run) for not eating
long enough. This equation is a good starting point for the reward function, but can be modified as
needed.

The visibility d is the number of units in each direction that the agent can see. The observation space
would be (2d+1) ∗ (2d+1), since the agent can see in all directions. The observation space is the input
to the neural network. The observation space is a 2D array of flattened integers. The integers represent
the type of object at that position. The integers are as follows: −1 is a wall, 0 is empty, 1 represents
food, and 2 represents a snake body unit.

The number of players moving randomly is the number of players not controlled by the agent. These
players are controlled by a random strategy. This is done to simulate other bad players and make the
game more challenging. For the following experiments, I used 4 randomly moving players.

The field size is the size of the field on which the game is played. The field is a square, so the field size
is the length of one side. The field size is 20 units. Food is placed randomly on the playing field. The
number of food pieces is also 20, which gives a food density of 5%.

44

Chapter 6 – Development of the RL Agent: AI and Results Shivram Sambhus

The number of training steps is the number of steps the agent is allowed to take. This is the number of
times the agent can choose an action. The number of training steps is 200k, which means that the agent
can choose an action 200k times (when the game ends, a new game is started). Then the performance
is measured over 200 games (each game lasts until the agent dies). This is done to get a more accurate
measure of the agent’s performance.

6.4 Experiments
I conducted experiments on the following topics: environment, observation, network architecture, hyper-
parameters, and algorithm types. The experiments are described in the following sections.

6.4.1 Baseline experiment
The first experiment I performed was to create a random agent. This agent simply chooses a random
action from the set of possible actions. This is a very simple approach, but it is a good basis for comparison
with other approaches. The random agent is a good basis because it is vry simple to implement and is
a good indicator of how simple the environment would be.

Results: An agent with a random strategy received an average reward of -9.7 with a standard deviation
of 17.5. This is a reward very close to the reward for dying, which is -20, but a bit more since it is possible
to stumble across food randomly. This is a good starting point to compare other approaches.

6.4.2 DQN Baseline experiment
In this and the next experiments, a DQN is used. DQNs are a very common approach and will be
used later to compare different parameters. In order to compare different approaches, I once again
needed a baseline. The baseline for this experiment is a DQN with a network architecture of 64x64 fully
connected neurons and an input dimension of 17x17=289 (derived from the 8 units of visual distance in
each direction) with a ReLU activation function, a learning rate of 0.0001, and the Adam Optimizer (a
commonly used algorithm based on gradient descent).

Results: The DQN with the above architecture received an average reward of 40.02 after 200k training
steps (or iterations) with a standard deviation of 60.41. This is certainly an improvement over the
random agent.

6.4.3 DQN with Framestacking
In this experiment, I used the same DQN as in the previous experiment, but I added framestacking.
Framestacking is a technique that allows the agent to see the previous n frames. This allows the agent
to see the the difference between the previous state and next state. This is useful for the agent to learn
the dynamics of the game. In this experiment, I used n = 2. This inturn increases the observation space
to 2x17x17=578.

Results: By doubling the observation space by adding framestacking one could have either expected
a increase in performance due to inreased information or an decrease in performance due to increased
complexity and observation space. In this case, the agent received an average reward of 42.74 with a
standard deviation of 65.75. This is a very small increase in performance, but can be considered negligible
due to the small sample size and unknown variance.

6.4.4 DQN with observation normalization
In this experiment, I used the same DQN as in the previous experiment (without framestacking), but I
added observation normalization. Observation normalization is a technique that normalizes the observa-
tion space. This was done by subtracting the average mean and dividing by the standard deviation. In
our case, the average mean and standard deviation are calculated using the moving average and moving
standard deviation. An important reason for normalizing the values is to avoid problems like exploding,
disappearing or vanishing gradients. This is done to make the observation space more stable and to

45

Chapter 6 – Development of the RL Agent: AI and Results Shivram Sambhus

µ =
1

N

N∑
i=1

xi

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2

xnorm =
x− µ

σ

(6.2)

Equation for observation normalization (N is the number of observations from which
the mean and standard deviation are calculated, x is the observation, µ is the mean,
σ is the standard deviation, and xnorm is the normalized observation)

stabilize the learning process. In this experiment, I used the mean and standard deviation of the entire
observation space.

Results: The agent received an average reward of 45.96 with a standard deviation of 73.22. Once again
this is only a small increase in performance.

6.4.5 DQN with observation normalization and framestacking
In this experiment, I combined the use of framestacking and observation normalization.

Results: This time the results did improve much more than in the previous experiments. The agent
received an average reward of 73.27 with a standard deviation of 94.00. We can see that the combination
of framestacking and observation normalization is very effective.

Figure 6.2: Comparison of the baseline DQN with the DQN with framestacking and
observation normalization. (Orange: Baseline DQN, Red: DQN with framestacking
and observation normalization)

46

Chapter 6 – Development of the RL Agent: AI and Results Shivram Sambhus

6.4.6 DQN with observation normalization, framestacking and a larger net-
work

In this experiment, I used the same DQN as in the previous experiment, but I increased the size of
the network. The network architecture is now 512x512 fully connected neurons. This is a very large
network, but it is still a fully connected network. This is done to see if a larger network can improve the
performance of the agent by increasing the ratio of input nodes to hidden nodes.

Results: This change in network architecture did improve the performance of the agent by a good
amount. The agent received an average reward of 89.21 with a standard deviation of 107.75.

Figure 6.3: Comparison of different network architectures for DQN with frames-
tacking and observation normalization. (Orange: 64x64, Blue: 512x512)

6.4.7 Scheduled Learning Rate
In this experiment, I used the same DQN as in the previous experiment, but I added a scheduled learning
rate. A scheduled learning rate is a learning rate that changes over time. This allows the neural network
to make bigger gradient descent steps at the beginning of the training process and smaller gradient
descent steps at the end of the training process. This is done to make the learning process more stable
and to avoid the agent getting stuck in a local minimum. In this experiment, I used a learning rate that
starts at 0.001 and approaches 0 at the end of the training process. This is done by using the following
equation:

Progress: p = 1 → 0

Initial learning rate: α0 = 0.0011/3

Decay amount: δ = 0.000011/3

Learning rate: (α = (α0 − δ) · p)3

(6.3)

Scheduled learning rate for DQN with framestacking and observation normalization

Results: This change in learning rate did improve the performance of the agent. The agent received an
average reward of 98.72 with a standard deviation of 113.22.

47

Chapter 6 – Development of the RL Agent: AI and Results Shivram Sambhus

Figure 6.4: Comparison of small DQN (64x64, Yellow), big DQN (512x512, Red)
and big DQN with scheduled learning rate (512x512, Blue)

6.4.8 Dynamic Exploration Rate
In this experiment, I used the same DQN as in the previous experiment, but I added a dynamic explo-
ration rate. A dynamic exploration rate is an exploration rate that changes over time. This allows the
agent to explore more at the beginning of the training process and less at the end of the training process.
This allows the agent to find a good balance between exploration and exploitation. In this experiment, I
used an exploraion rate that starts at 0.5 and approaches 0.0001 at the end of the training process.

Results: This change in exploration rate did improve the performance of the agent. The agent received

Figure 6.5: Comparison of DQN without dynamic exploration rate and DQN with
dynamic exploration rate. (Blue: DQN without dynamic exploration rate, Yellow:
DQN with dynamic exploration rate)

an average reward of 105.83 with a standard deviation of 263.87.

6.4.9 Observation Space Reduction by Feature Extraction
In this experiment, I decided to change the way the AI can observe the environment. Currently, the AI
observes the environment in a 17x17 grid with its current position in the center. This is a very large
observation space. I made the observation space smaller using feature extraction. Feature extraction
is a technique that can be used to reduce the dimensionality of the observation space. I switched from

48

Chapter 6 – Development of the RL Agent: AI and Results Shivram Sambhus

a grid-based observation to a direction and distance-based observation. I manually extracted the type
of object and the distance to the object for the 8 directions top, bottom, left, right, top-left, top-right,
bottom-left, and bottom-right. This reduced the observation space from 17x17 to 8x2 for any grid-based
observation. This is a very large reduction in observation space. The purpose of this is to determine if
a smaller observation space can improve agent performance by reducing the amount of information the
agent must process and learn from.

Results: This change in observation space improved the agents performance substantially. The agent
received an average reward of 182.3 with a standard deviation of 94.84. We can see that feature extraction
has really boosted the performance of our AI. We’ll be using this observation space for the rest of the
experiments since it is the most efficient and effective observation space currently observed. In the
following experiments, I’ll be using the same environment architecture as in this experiment but test out
different DRL algorithms.

Figure 6.6: Comparison of different observation spaces for DQN with framestacking
and observation normalization. (Black: 17x17x2, Blue: 8x2x2)

6.4.10 Advantagous Actor Critic (A2C)
In this experiment, I used the same environment as in the previous experiment, but I used the Advan-
tagous Actor Critic (A2C) algorithm. A2C is a policy gradient algorithm that uses a neural network
to approximate the value function. It is a combination of value and policy iteration based methods
(see RL theory chapter), which allows for more stability in the network by decoupling the value and
policy networks. I used the A2C algorithm with 512x512 architecture and 8x2 observation space. I used
the same hyperparameters as in the previous experiment. The only difference is that I used the A2C
algorithm instead of the DQN algorithm.

Results: This change of algorithm decreased the agents performance substancially. The agent received
an average reward of 66.33 with a standard deviation of 84.65. We can see that A2C is not a good
algorithm for this environment.

6.4.11 Proximal Policy Optimization (PPO)
In this experiment, I used the same environment as in the previous experiment, but I used the Proximal
Policy Optimization (PPO) algorithm. PPO is a on-policy policy gradient algorithm. Here too, I use
the same parameters as in the previous experiment.

Results: This change of algorithm decreased the agents performance similar to the previous experiment.
The agent received an average reward of 72.77 with a standard deviation of 62.31. We can see that PPO
is not a good algorithm for this feature extracted environment.

49

Chapter 6 – Development of the RL Agent: AI and Results Shivram Sambhus

6.5 Results
I have conducted many experiments and found that the best algorithm for this environment is the
DQN algorithm with the following hyperparameters: 512x512 architecture, 8x2 observation space, frame
stacking, observation normalization, dynamic exploration rate, and scheduled learning rate.

Table 6.1: Comparison of different methods and algorithms (trained for 200k steps)

Experiment Description Reward Relative Change
Random Policy Randomly choosing actions -9.6 -5.27% Base
Basic DQN DQN with 64x64 architecture,

17x17 observation space
40.02 21.94% Improvement

DQN with Frames-
tacking

DQN with 64x64 architecture,
17x17x2 observation space, frames-
tacking

42.74 23.44% Improvement

DQN with Obser-
vation Normaliza-
tion

DQN with 64x64 architecture,
17x17 observation space, observa-
tion normalization

45.96 25.21% Improvement

DQN with Obser-
vation Normaliza-
tion and Frames-
tacking

DQN with 64x64 architecture,
17x17x2 observation space, obser-
vation normalization, framestack-
ing

73.27 40.19% Improvement

+ larger network DQN with 512x512 architecture,
17x17x2 observation space, obser-
vation normalization, framestack-
ing

89.21 48.94% Improvement

+ scheduled learn-
ing rate

DQN with 512x512 architecture,
17x17x2 observation space, obser-
vation normalization, framestack-
ing, scheduled learning rate

113.22 62.11% Improvement

+ dynamic explo-
ration rate

DQN with 512x512 architecture,
17x17x2 observation space, obser-
vation normalization, framestack-
ing, dynamic exploration rate

105.83 58.05% No Improvement

+ manual feature
extraction

DQN with 512x512 architecture,
8x2x2 observation space, observa-
tion normalization, framestacking,
dynamic exploration rate

182.3 100% Best

Replace DQN with
A2C

A2C with 512x512 architecture,
8x2x2 observation space, observa-
tion normalization, framestacking,
dynamic exploration rate

66.33 36.39% Deterioration

Replace DQN with
PPO

PPO with 512x512 architecture,
8x2x2 observation space, observa-
tion normalization, framestacking,
dynamic exploration rate

72.77 29.92% Deterioration

6.5.1 Why did the DQN algorithm outperform the other algorithms?
We saw that the (relatively) simple DQN algorithm outperformed more sophisticated algorithms such
as A2C and PPO. Let us consider some possible reasons for this: First, we are dealing with a relatively
small observation space (8 ∗ 2 ∗ 2 = 32) and a relatively small discrete action space (4). DQN’s primitive
exploration and exploitation mechanism is sufficient for this environment. The other algorithms are more
complex and require more data to learn from. Therefore, the DQN algorithm outperforms the other
algorithms. Second, the DQN algorithm is an off-policy algorithm, unlike the two on-policy algorithms

50

Chapter 6 – Development of the RL Agent: AI and Results Shivram Sambhus

(A2C and PPO) can learn from exploratory and previous experiences. DQN is more sample efficient.10
Another reason why other algorithms did not perform as well as DQN is that those algorithms are very
sensitive to hyperparameters. The DQN algorithm is more robust to setting hyperparameters.11

6.5.2 Optimized Agent
Since this algorithm outperforms all others in this environment, I will use this algorithm to train the
final optimized agent. I trained this agent for 5 million steps. The agent received an average reward of
791.34 with a standard deviation of 142.56. Training this AI took about 4.5 hours on a computer with
Intel CPU i5-8250U processor with 1.6 GHz. The following figure shows the reward over time for this
agent. Figure 6.7 shows the average reward over time for this agent.

Figure 6.7: Reward over time for the final optimized agent

If you look at how this agent acts visually (see figure 6.8), you can confidently say that it is a good agent
that is able to play the game at a pretty good level. Due to the observation limitation, the agent cannot
survey the entire playing field and develop a long-term strategy.

Figure 6.8: The final optimized agent (yellow head) playing a local multiplayer game

10Tewari, Which Reinforcement Learning-RL Algorithm to Use Where, When and in What Scenario?
11Krishna, “COMPARISON OF REINFORCEMENT LEARNING ALGORITHMS”.

51

Chapter 6 – Development of the RL Agent: AI and Results Shivram Sambhus

6.6 Conclusion
In this project, I created an environment for the multiplayer game Snake. Then I tested different
DRL algorithms and different hyperparameters in mini-experiments to find out which combination of
algorithm and hyperparameters is most effective for this environment: the following algorithms: DQN,
A2C and PPO, different techniques such as frame stacking, normalization of observations, scheduled
learning rate, dynamic exploration rate and reduction of observation space by manual feature extraction,
network architectures: 64x64 and 512x512 and the following observation spaces: 17x17x2, 8x2x2. I found
that the DQN algorithm with a 512x512 network architecture, an 8x2x2 observation space, observation
normalization, frame stacking, and dynamic exploration rate was the best algorithm for this environment,
achieving an average reward of 791.34 with a standard deviation of 142.56 after 5 million training steps.
This agent was successfully able to play the game at a good level.

Video of the final optimized agent: https://youtu.be/Hu7CmQLyZvc

6.6.1 Answering the problem statement
The problem for this project was: How can bots be trained with RL to play a multiplayer game in the
shortest possible time? There is no universal answer to this question. It depends heavily on the game
or the environment. Given my computational and time constraints, I systematically tested different
approaches to find out what works and what doesn’t. In this way, I was able to reduce training time and
increase performance. In this project case, I can summarize the ideas that worked:

• Use robust (not sensitive to hyperparameters) algorithms like DQN.

• Reduce the observation space and complexity of the environment.

• Add input normalization to avoid optimization problems.

• Use frame stacking to provide more past information (memory) for the agent to learn from

• Have a ratio between the dimensionality of the inputs and the number of neurons in the network
that is not too large or too small

• Have a reward function that rewards optimal behavior

By implementing these aspects, I was able to train an agent who was able to play the game at a
good level after 4.5 hours of training, which is a very good result considering the training time for RL
problems.

52

https://youtu.be/Hu7CmQLyZvc

Chapter 7

Discussion

The goal of this project was to develop a multiplayer Snake game for which AI-controlled bots would be
created in an efficient manner. While developing the video game, I was first able to learn networking,
game design, and architecture concepts, as well as deepen my Golang and web stack programming
experience. In the next part, I explored Deep Learning and Reinforcement Learning and implemented
a simple environment. Through trial and error and some research, I was able to initially port my game
to a Python version and create simple AI bots. However, these were not very powerful. I began to
further optimize my code and environment. I managed to create a bot that worked well, but the way
the problem was solved can be further discussed. Although Deep Reinforcement Learning methods have
proven to be very effective in many areas, they are not the only way to solve this problem.

Since the rules of the game are simple, one could also use a simple heuristic approach. For example, one
could use a simple greedy algorithm to find the shortest path to food while avoiding other players and
obstacles. Such an algorithm would not require much computational power and would be much simpler
and easier to transfer than a deep learning approach. Another approach to such a game would be an
evolutionary algorithm. One could use a genetic algorithm like NEAT to evolve a population of agents
and select the best ones. Another idea would be to use data from an already trained AI or human player
and teach a more complex AI through transfer learning to learn from the simpler AI’s data and then
improve the AI’s performance. This would be a very interesting approach because it reduces the overall
computation and training time.

These are certainly interesting ideas, but they are beyond the scope of this project. Given the time,
computational, and data constraints, it was not possible for me to implement these ideas. However, I
believe that these approaches could be explored in the future. I feel that in spite of its narrow scope and
limitations, this project was a successfull learning experience. Future opportunities for improvement and
expansion are available.

53

List of equations

4.1 Computation of a single perceptron . 22
4.2 Binary step function formula . 23
4.3 Sigmoid function formula . 23
4.4 ReLU function formula . 24
4.5 Leaky ReLU function formula with a < 1 . 25
4.6 Mean squared error; yi is the actual value and ŷi is the predicted value 27
4.7 Adaptive loss function formula1 . 27

5.1 Expected cumulative reward . 32
5.2 Optimal policy which the agent is trying to find . 33
5.3 Bellman equation for stochastic environments . 33
5.4 Value function for a known reward . 34
5.5 Value function rewritten to include the reward of the next state 34
5.6 Bellman optimality condition: Value function rewritten as a recursive function 34
5.7 Quality function . 35
5.8 Monte Carlo reward function . 36
5.9 Monte Carlo value function approximation . 36
5.10 Monte Carlo Q function approximation . 36
5.11 TD value function . 36
5.12 TD value function approximation . 36
5.13 TD(n) value function approximation . 37
5.14 Q learning algorithm . 37
5.15 Deep Policy Network algorithm . 38
5.16 Deep Q-Network algorithm . 39
5.17 DDQN Q-function . 39
5.18 DDQN actor loss function . 39
5.19 DDQN critic loss function derived from the policy gradient equation 39
5.20 Critic approximation algorithm . 40
5.21 Actor approximation algorithm . 40
5.22 Advantage approximation algorithm . 40
5.23 Policy approximation algorithm . 40

6.1 Equation for the reward function . 44
6.2 Equation for observation normalization (N is the number of observations from which the

mean and standard deviation are calculated, x is the observation, µ is the mean, σ is the
standard deviation, and xnorm is the normalized observation) 46

6.3 Scheduled learning rate for DQN with framestacking and observation normalization . . . 47

1Barron, A General and Adaptive Robust Loss Function.

54

List of Figures

2.1 Overview of full game and RL bots . 6
2.2 Game logic & update . 7
2.3 Visualization of the threads for my realtime snake game 9
2.4 Golang Logo and Mascot . 10
2.5 Svelte JS Logo . 11
2.6 Snake Game Homepage in Firefox . 12
2.7 Visualization of the rendering of the game from raw data 12

3.1 Example of an ELIZA conversation . 14
3.2 AlphaGo vs. Lee Sedol (the world’s best Go player) . 14
3.3 Example of Youtube’s recommendation system (Youtube algorithm) 15
3.4 Artificial Intelligence subtopics . 18
3.5 Overview of the different machine learning subfields . 19

4.1 Single layer perceptron . 21
4.2 Binary step function in a graph . 23
4.3 Sigmoid activation function on a graph . 24
4.4 ReLU activation function on a graph . 24
4.5 Leaky ReLU on a graph . 25
4.6 Overview of common activation functions and their derivatives 26
4.7 General (adaptive) loss function (left) and its gradient (right) for different values of its

shape parameter α. Several values of α reproduce existing loss functions: L2 loss (α =
2), Charbonnier loss (α = 1), Cauchy loss (α = 0), Geman-McClure loss (α = -2), and
Welsch loss (α = − inf) . 27

4.8 Good vs poor local minimum . 29
4.9 Global vs local minimum . 30
4.10 Example function with two parameters. 30
4.11 Optimization algorithms try to find the global minimum efficiently in a much higher-

dimensional and complex space. 30
4.12 How different learning rates affects gradient descent . 30

5.1 Markov decision process illustrated . 32

6.1 Local architecture of the game . 44
6.2 Comparison of the baseline DQN with the DQN with framestacking and observation nor-

malization. (Orange: Baseline DQN, Red: DQN with framestacking and observation
normalization) . 46

6.3 Comparison of different network architectures for DQN with framestacking and observa-
tion normalization. (Orange: 64x64, Blue: 512x512) . 47

6.4 Comparison of small DQN (64x64, Yellow), big DQN (512x512, Red) and big DQN with
scheduled learning rate (512x512, Blue) . 48

6.5 Comparison of DQN without dynamic exploration rate and DQN with dynamic explo-
ration rate. (Blue: DQN without dynamic exploration rate, Yellow: DQN with dynamic
exploration rate) . 48

55

Chapter 7 – LIST OF FIGURES Shivram Sambhus

6.6 Comparison of different observation spaces for DQN with framestacking and observation
normalization. (Black: 17x17x2, Blue: 8x2x2) . 49

6.7 Reward over time for the final optimized agent . 51
6.8 The final optimized agent (yellow head) playing a local multiplayer game 51

56

Bibliography

12. Optimization Algorithms — Dive into Deep Learning 1.0.0-Alpha1.Post0 Documentation.
https://d2l.ai/chapter_optimization/index.html.

12.3. Gradient Descent — Dive into Deep Learning 1.0.0-Alpha1.Post0 Documentation.
https://d2l.ai/chapter_optimization/gd.html.

6.6 Actor-Critic Methods. http://www.incompleteideas.net/book/ebook/node66.html.
8 Ways to Effectively Reduce Server Response Time.

https://datadome.co/learning-center/how-to-reduce-server-response-time/.
A Smoother Ride and a More Detailed Map Thanks to AI.

https://blog.google/products/maps/google-maps-101-ai-power-new-features-io-2021/. May 2021.
Abadi, Martın et al. “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed

Systems”. In: (), p. 19.
Activation Functions in Neural Networks. Jan. 2018.
Activation Functions in Neural Networks [12 Types & Use Cases].

https://www.v7labs.com/blog/neural-networks-activation-functions,
https://www.v7labs.com/blog/neural-networks-activation-functions.

AI, SmartLab. Reinforcement Learning Algorithms — an Intuitive Overview. Feb. 2019.
AlphaGo. https://www.deepmind.com/research/highlighted-research/alphago.
Barron, Jonathan T. A General and Adaptive Robust Loss Function. Apr. 2019. arXiv: 1701.03077
[cs, stat].

“Bellman Equation”. In: Wikipedia (May 2022).
Bhattacharyya, Saptashwa. The Most Awesome Loss Function ?

https://towardsdatascience.com/the-most-awesome-loss-function-172ffc106c99. Sept. 2020.
blackburn. Introduction to Reinforcement Learning : Markov-Decision Process.

https://towardsdatascience.com/introduction-to-reinforcement-learning-markov-decision-process-
44c533ebf8da. May 2022.

Blog, Windows Developer. When to Use a HTTP Call Instead of a WebSocket (or HTTP 2.0).
https://blogs.windows.com/windowsdeveloper/2016/03/14/when-to-use-a-http-call-instead-of-a-
websocket-or-http-2-0/. Mar. 2016.

Brockman, Greg et al. OpenAI Gym. June 2016. arXiv: 1606.01540 [cs].
“Brute-Force Search”. In: Wikipedia (Nov. 2021).
“Canvas Element”. In: Wikipedia (June 2022).
Causevic, Siwei. A Structural Overview of Reinforcement Learning Algorithms.

https://towardsdatascience.com/an-overview-of-classic-reinforcement-learning-algorithms-part-1-
f79c8b87e5af. Aug. 2021.

Choudhary, Ankit. Dynamic Programming In Reinforcement Learning. Sept. 2018.
chowdhury, sourajit roy. Demystifying Activation Functions in Neural Network. Jan. 2021.
Common Loss Functions in Machine Learning | Built In.

https://builtin.com/machine-learning/common-loss-functions.
Computer, Express. What If AI Becomes Self-Aware? Dec. 2021.
Darbinyan, Rem. Council Post: The Growing Role Of AI In Content Moderation.

https://www.forbes.com/sites/forbestechcouncil/2022/06/14/the-growing-role-of-ai-in-content-
moderation/.

Deep Learning vs. Machine Learning: Deep Dive.
https://www.educative.io/blog/deep-vs-machine-learning.

57

https://arxiv.org/abs/1701.03077
https://arxiv.org/abs/1701.03077
https://arxiv.org/abs/1606.01540

Chapter 7 – BIBLIOGRAPHY Shivram Sambhus

DeepLearningAI. Why Non-linear Activation Functions (C1W3L07). Aug. 2017.
“ELIZA”. In: Wikipedia (Sept. 2022).
Evolutionary Optimization Algorithms | Wiley.

https://www.wiley.com/en-us/Evolutionary+Optimization+Algorithms-p-9780470937419.
experience, nature He believes everyone is a learning et al. Difference Between Strong and Weak AI |

Difference Between.
Fig. 1. A Typical Energy Landscape Depicting Position of Several Local...

https://www.researchgate.net/figure/A-typical-energy-landscape-depicting-position-of-several-local-
minima-which-indicate-the_fig3_45900660.

Frost, Jim. Mean Squared Error (MSE). Nov. 2021.
“Garbage (Computer Science)”. In: Wikipedia (May 2022).
Garbage Collection Comp Sci Wiki - Google Search.

https://www.google.com/search?q=garbage+collection+comp+sci+wiki.
“Go (Programming Language)”. In: Wikipedia (Sept. 2022).
Gupta, Ayush. A Comprehensive Guide on Deep Learning Optimizers. Oct. 2021.
Gupta, Mayank. Getting Started with Svelte. Aug. 2020.
Hardt, Moritz. Understanding Optimization in Deep Learning by Analyzing Trajectories of Gradient

Descent. http://offconvex.github.io/2018/11/07/optimization-beyond-landscape/.
Harris, Charles R. et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020),

pp. 357–362. doi: 10.1038/s41586-020-2649-2. url:
https://doi.org/10.1038/s41586-020-2649-2.

Hern, Alex. “AlphaGo: Its Creator on the Computer That Learns by Thinking”. In: The Guardian
(Mar. 2016). issn: 0261-3077.

“History of Artificial Intelligence”. In: Wikipedia (Sept. 2022).
Hunter, J. D. “Matplotlib: A 2D graphics environment”. In: Computing in Science & Engineering 9.3

(2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.
IBM100 - Deep Blue. http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/. CTB14.

Mar. 2012.
Jagtap, Rohan. Understanding Markov Decision Process (MDP).

https://towardsdatascience.com/understanding-the-markov-decision-process-mdp-8f838510f150. Feb.
2021.

Johnson, Jonathan. 4 Types of Artificial Intelligence.
https://www.bmc.com/blogs/artificial-intelligence-types/.

Kalavala, Bala. AI, ML and DL: What’s the Difference? Aug. 2022.
Karunakaran, Dhanoop. The Actor-Critic Reinforcement Learning Algorithm. Sept. 2020.
Krishna, Velivela Vamsi. “COMPARISON OF REINFORCEMENT LEARNING ALGORITHMS”. In:

(), p. 30.
Kvam, Jacques. Celluloid. Sept. 2022.
Leung, Kenneth. The Dying ReLU Problem, Clearly Explained.

https://towardsdatascience.com/the-dying-relu-problem-clearly-explained-42d0c54e0d24. Sept. 2021.
“Markov Decision Process”. In: Wikipedia (Aug. 2022).
Mnih, Volodymyr et al. Playing Atari with Deep Reinforcement Learning. Dec. 2013. arXiv: 1312.5602
[cs].

“Multilayer Perceptron”. In: Wikipedia (Sept. 2022).
“Outline of Machine Learning”. In: Wikipedia (Sept. 2022).
Papers with Code - Leaky ReLU Explained. https://paperswithcode.com/method/leaky-relu.
Paszke, Adam et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:

Advances in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates,
Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

“Perceptron”. In: Wikipedia (Aug. 2022).
Raffin, Antonin et al. “Stable-Baselines3: Reliable Reinforcement Learning Implementations”. In:

Journal of Machine Learning Research 22.268 (2021), pp. 1–8. url:
http://jmlr.org/papers/v22/20-1364.html.

Rangaiah, Mallika. Artificial Intelligence in Healthcare: Applications and Threats | Analytics Steps.
https://www.analyticssteps.com/blogs/artificial-intelligence-healthcare-applications-and-threats.

58

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://jmlr.org/papers/v22/20-1364.html

Chapter 7 – BIBLIOGRAPHY Shivram Sambhus

Reducing Loss: Learning Rate | Machine Learning.
https://developers.google.com/machine-learning/crash-course/reducing-loss/learning-rate.

ReLU — PyTorch 1.12 Documentation.
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html.

Setting the Learning Rate of Your Neural Network. https://www.jeremyjordan.me/nn-learning-rate/.
Mar. 2018.

“Shannon Number”. In: Wikipedia (Sept. 2022).
SHARMA, SAGAR. Activation Functions in Neural Networks.

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6. July 2021.
Shyalika, Chathurangi. A Beginners Guide to Q-Learning.

https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c. July 2021.
“Sigmoid Function”. In: Wikipedia (Sept. 2022).
Silvan. What Is the Difference between Artificial Intelligence, Machine Learning and Deep Learning?

Aug. 2019.
Silver, David. “Lecture 2: Markov Decision Processes”. In: Markov Processes (), p. 57.
Single Layer Perceptron in TensorFlow - Javatpoint.

https://www.javatpoint.com/single-layer-perceptron-in-tensorflow.
Skowster the Geek. Bellman Equation Basics for Reinforcement Learning. Sept. 2018.
start, Lou Bichard Hey I’m Lou! I’m a Cloud Software Engineer From London I. created Open Up

The Cloud to help people get their et al. Golang Logo » Open Up The Cloud.
https://openupthecloud.com/wp-content/uploads/2020/01/Golang.png.

Steve Brunton. Model Based Reinforcement Learning: Policy Iteration, Value Iteration, and Dynamic
Programming. Jan. 2022.

– Overview of Deep Reinforcement Learning Methods. Jan. 2022.
– Q-Learning: Model Free Reinforcement Learning and Temporal Difference Learning. Jan. 2022.
Stewart, Matthew. Neural Network Optimization.

https://towardsdatascience.com/neural-network-optimization-7ca72d4db3e0. July 2020.
Svelte • Cybernetically Enhanced Web Apps. https://svelte.dev/.
Svelte, Why so Much Hype ? https://dev.to/zenika/svelte-why-so-much-hype-2k61.
Tanwar, Sanchit. Bellman Equation and Dynamic Programming. Jan. 2022.
Team, Towards AI. Reinforcement Learning: Monte-Carlo Learning – Towards AI.
Tewari, Ujwal. Which Reinforcement Learning-RL Algorithm to Use Where, When and in What

Scenario? https://medium.datadriveninvestor.com/which-reinforcement-learning-rl-algorithm-to-use-
where-when-and-in-what-scenario-e3e7617fb0b1. Apr. 2020.

Top Applications of Artificial Intelligence (AI) in 2022.
https://www.interviewbit.com/blog/applications-of-artificial-intelligence/. Jan. 2022.

Trekhleb, Oleksii. Homemade Machine Learning in Python.
https://medium.datadriveninvestor.com/homemade-machine-learning-in-python-ed77c4d6e25b. Feb.
2019.

“Turing Test”. In: Wikipedia (Sept. 2022).
Uber AI in 2019: Advancing Mobility with Artificial Intelligence.

https://www.uber.com/blog/uber-ai-blog-2019/. Dec. 2019.
Understanding the 4 Types of Artificial Intelligence (AI).

https://www.linkedin.com/pulse/understanding-4-types-artificial-intelligence-ai-bernard-marr.
Understanding The Difference Between AI, ML, And DL: Using An Incredibly Simple Example.

https://www.advancinganalytics.co.uk/blog/2021/12/15/understanding-the-difference-between-ai-ml-
and-dl-using-an-incredibly-simple-example.

Understanding the Four Types of Artificial Intelligence.
https://www.govtech.com/computing/Understanding-the-Four-Types-of-Artificial-Intelligence.html.
Nov. 2016.

Van Rossum, Guido and Fred L. Drake. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace,
2009. isbn: 1441412697.

Wang, Chi-Feng. The Vanishing Gradient Problem.
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484. Jan. 2019.

Weak vs. Strong AI. https://www.citibeats.com/center-for-knowledge/weak-strong-ai.
“WebSocket”. In: Wikipedia (Aug. 2022).

59

Chapter 7 – BIBLIOGRAPHY Shivram Sambhus

What Is a Client? https://www.computerhope.com/jargon/c/client.htm.
What Is a Thread? https://www.computerhope.com/jargon/t/thread.htm.
What Is Compile? https://www.computerhope.com/jargon/c/compile.htm.
What Is Deep Learning? | How It Works, Techniques & Applications - MATLAB & Simulink.

https://www.mathworks.com/discovery/deep-learning.html.
What Is Go? An Intro to Google’s Go Programming Language (Aka Golang).

https://acloudguru.com/blog/engineering/what-is-go-an-intro-to-googles-go-programming-language-
aka-golang. May 2021.

What Is Reinforcement Learning? Working, Algorithms, and Uses.
What Is the Turing Test? https://www.techtarget.com/searchenterpriseai/definition/Turing-test.
What Is Weak Artificial Intelligence (Weak AI)? - Definition from Techopedia.

http://www.techopedia.com/definition/31621/weak-artificial-intelligence-weak-ai.
What’s the Difference between Being Statically versus Strongly Typed?

https://www.quora.com/What’s-the-difference-between-being-statically-versus-strongly-typed.
Which Is Greater? The Number of Atoms in the Universe or the Number of Chess Moves? | National

Museums Liverpool. https://www.liverpoolmuseums.org.uk/stories/which-greater-number-of-atoms-
universe-or-number-of-chess-moves.

Yalçın, Orhan G. 4 Machine Learning Approaches That Every Data Scientist Should Know.
https://towardsdatascience.com/4-machine-learning-approaches-that-every-data-scientist-should-
know-e3a9350ec0b9. Feb. 2021.

Yoon, Chris. Double Deep Q Networks.
https://towardsdatascience.com/double-deep-q-networks-905dd8325412. July 2019.

YouTube. https://www.youtube.com/.

60

Originality statement

I hereby declare that I have written this thesis independently and have not used any sources, aids or
assistants other than those indicated. All text passages in the paper that have been taken verbatim or
in spirit from sources are marked as such.

61

	Introduction
	Game
	What is a bot?
	Rules of the game
	Multiplayer game
	What is a client?
	Structure and design of the game
	Game Class
	Snake Class

	Communication
	What are WebSockets?
	Why use WebSockets?

	Parallelism
	What are threads?

	Implementation
	Game Server
	What is Golang?
	Why use Golang?
	What is garbage collection?
	Static Typing
	Strong Typing
	Compilation

	Game Client
	What is SvelteJS?
	How was the game client created?
	Rendering the game

	Summary

	Artificial Intelligence
	History of Artificial Intelligence
	Applications of Artificial Intelligence
	Recommendation and Personalization Systems
	Healthcare
	Content Moderation
	Maps and Navigation

	Classification of Artificial Intelligence
	Weak and Strong AI
	Weak AI
	Strong AI

	4 tiers of Artificial Intelligence
	Reactive Machines
	Limited Memory
	Theory of Mind
	Self-Awareness

	Subfields of Machine Learning
	AI vs Machine learning vs Deep learning
	Machine Learning subfields
	Supervised learning
	Unsupervised learning
	Ensemble learning
	Deep learning
	Reinforcement learning

	Deep Learning
	Neural Networks
	Single Perceptron
	Multilayer Perceptron

	Activation Functions
	Binary Step Function
	Sigmoid Function
	Rectified Linear Unit (ReLU)
	Leaky ReLU
	Optimal Activation Functions

	Loss Function
	Mean Squared Error (MSE)
	Adaptive Loss Functions

	Optimization
	Gradient Descent
	Other Optimization Algorithms
	Brute Force Optimization
	Learning Rate

	Essence of Deep Neural Networks

	Reinforcement Learning
	Introduction
	Formalization of the Problem
	Bellman Equation
	Overview of RL Algorithms
	Model-based RL
	Value iteration
	Policy iteration

	Model-free RL
	Q-Function
	Monte Carlo Learning
	Temporal Difference Learning
	Q-Learning
	Off-Policy vs. On-Policy
	Summary

	Deep Reinforcement Learning
	Deep Policy Networks
	Deep Q-Networks
	Deep Dueling Q-Networks
	Actor Critic Network
	Advantage Actor Critic Network
	Summary

	Development of the RL Agent: AI and Results
	Technologies
	OpenAI Gym
	Stable Baselines 3
	PyTorch
	TensorBoard
	Matplotlib
	Celluloid
	NumPy

	Local environment
	Procedure and Initial Conditions
	Experiments
	Baseline experiment
	DQN Baseline experiment
	DQN with Framestacking
	DQN with observation normalization
	DQN with observation normalization and framestacking
	DQN with observation normalization, framestacking and a larger network
	Scheduled Learning Rate
	Dynamic Exploration Rate
	Observation Space Reduction by Feature Extraction
	Advantagous Actor Critic (A2C)
	Proximal Policy Optimization (PPO)

	Results
	Why did the DQN algorithm outperform the other algorithms?
	Optimized Agent

	Conclusion
	Answering the problem statement

	Discussion

