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Chapter 1

Supervised Learning Formulations

In this chapter, we will set up the standard theoretical formulation of supervised learning and introduce the
empirical risk minimization (ERM) paradigm. The setup will apply to almost the entire monograph and
the ERM paradigm will be the main focus of Chapter 2, 3, and 4.

1.1 Supervised learning

In supervised learning, we have a dataset where each data point is associated with a label, and we aim to
learn from the data a function that maps data points to their labels. The learned function can be used to
infer the labels of test data points. More formally, suppose the data points, also called inputs, belong to
some input space X (e.g. images of birds), and labels belong to the output space Y (e.g. bird species).
Suppose we are interested in a specific joint probability distribution P over X × Y (e.g. images of birds in
North America), from which we draw a training set, i.e we draw a a set of n independent and identically
distributed (i.i.d.) data points {(x(i), y(i))}ni=1 from P . The goal of supervised learning is to learn a mapping
(i.e. a function) from X to Y using the training data. Any such function h : X → Y is called a predictor
(also hypothesis or model).

Given two predictors, how do we decide which is better? For that, we define a loss function over the
predictions. There are several ways to define loss functions: for now, define a loss function ` as a function
` : Y ×Y → R. Intuitively, the loss function takes two labels, the prediction made by a model ŷ and the true
label y, and gives a number that captures how different the two labels are. We assume ` is non-negative, i.e
`(ŷ, y) ≥ 0. Then, the loss of a model h on an example (x, y) is `(h(x), y), i.e. the difference (as measured
by `) between the prediction made by h and the true label.

With these definitions, we are able to formalize the problem of supervised learning. Precisely, we seek
to find a model h that minimizes what we call the expected loss (or population loss or expected risk or
population risk):

L(h)
∆
= E

(x,y)∼p
[`(h(x), y)]. (1.1)

Note that L is nonnegative because ` is nonnegative. Typically, the loss function is designed so that the
best possible loss is zero when ŷ matches y exactly. Therefore, the goal is to find h such that L(h) is as close
to zero as possible.

Examples: regression and classification problems. Here are two standard types of supervised learning
problems based on the properties of the output space:

• In the problem of regression, predictions are real numbers (Y = R). We would like predictions to be
as close as possible to the real labels. A classical loss function that captures this is the squared error,
`(ŷ, y) = (ŷ − y)2.

6



• In the problem of classification, predictions are in a discrete set of k unordered classes Y = [k] =
{1, · · · , k}. One possible classification loss is the 0− 1 loss: `(ŷ, y) = 1(ŷ 6= y), i.e. 0 if the prediction
is equal to the true label, and 1 otherwise.

Hypothesis class. So far, we said we would like to find any function that minimizes population risk.
However, in practice, we do not have a way of optimizing over arbitrary functions. Instead, we work within a
more constrained set of functions H, which we call the hypothesis family (or hypothesis class). Each element
of H is a function h : X → Y. Usually, we choose a set H that we know how to optimize over (e.g. linear
functions, or neural networks).

Given one particular function h ∈ H, we define the excess risk of h with respect to H as the difference
between the population risk of h and the best possible population risk inside H:

E(h)
∆
= L(h)− inf

g∈H
L(g).

Generally we need more assumptions about a specific problem and hypothesis class to bound absolute
population risk, hence we focus on bounding the excess risk.

Usually, the family we choose to work with can be parameterized by a vector of parameters θ ∈ Θ. In
that case, we can refer to an element of H by hθ, making that explicit. An example of such a parametrization
of the hypothesis class is H = {h : hθ(x) = θ>x, θ ∈ Rd}.

1.2 Empirical risk minimization

Our ultimate goal is to minimize population risk. However, in practice we do not have access to the entire
population: we only have a training set of n data points, drawn from the same distribution as the entire
population. While we cannot compute population risk, we can compute empirical risk, the loss over the
training set, and try to minimize that. This is, in short, the paradigm known as empirical risk minimization
(ERM): we optimize the training set loss, with the hope that this leads us to a model that has low population
loss. From now on, with some abuse of notation, we often write `(hθ(x), y) as `((x, y), θ) and use the two
notations interchangeably. Formally, we define the empirical risk of a model h as:

L̂(hθ)
∆
=

1

n

n∑
i=1

`(hθ(x
(i)), y(i)) =

1

n

n∑
i=1

`((x(i), y(i)), θ). (1.2)

Empirical risk minimization is the method of finding the minimizer of L̂, which we call θ̂:

θ̂
∆
= argmin

θ∈Θ
L̂(hθ). (1.3)

Since we are assuming that our training examples are drawn from the same distribution as the whole
population, we know that empirical risk and population risk are equal in expectation (over the randomness
of the training dataset):

E
(x(i),y(i))

iid∼P
L̂(hθ) = E

(x(i),y(i))
iid∼P

1

n

n∑
i=1

`(hθ(x
(i)), y(i)) (1.4)

=
1

n

n∑
i=1

E
(x(i),y(i))

iid∼P
`(hθ(x

(i)), y(i)) (1.5)

=
1

n
· n · E

(x(i),y(i))
iid∼P

`(hθ(x
(i)), y(i)) (1.6)

= L(hθ). (1.7)
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This is one reason why it makes sense to use empirical risk: it is an unbiased estimator of the population
risk.

The key question that we seek to answer in the first part of this course is: what guarantees do we have
on the excess risk for the parameters learned by ERM? The hope with ERM is that minimizing the
training error will lead to small testing error. One way to make this rigorous is by showing that the ERM
minimizer’s excess risk is bounded.

8



Chapter 2

Asymptotic Analysis

In this chapter, we use an asymptotic approach (i.e. assuming number of training samples n→∞) to achieve
a bound on the ERM. We then instantiate these results to the case where the loss function is the maximum
likelihood and discuss the limitations of asymptotics. (In future chapters we will assume finite n and provide
a non-asymptotic analysis.)

2.1 Asymptotics of empirical risk minimization

For the asymptotic analysis of ERM, we would like to prove that excess risk is bounded as shown below:

L(θ̂)− inf
θ∈Θ

L(θ) ≤ c

n
+ o

(
1

n

)
. (2.1)

Here c is a problem dependent constant that does not depend on n, and o(1/n) hides all dependencies except
n. The equation above shows that as we have more training data (i.e. as n increases) the excess risk of ERM
decreases at the rate of 1

n .

Let {(x(1), y(1)), · · · , (x(n), y(n))} be the training data and let H = {hθ : θ ∈ Rp} be the parameterized

family of hypothesis functions. Let the ERM minimizer be θ̂ as defined in Equation (1.3). Let θ∗ be the
minimizer of the population risk L, i.e. θ∗ = argminθ L(θ). The theorem below quantifies the excess risk

L(θ̂)− L(θ∗):

Theorem 2.1 (Informally stated). Suppose that (a) θ̂
p→ θ∗ as n→∞ (i.e. consistency of θ̂), (b) ∇2L(θ∗)

is full rank, and (c) other appropriate regularity conditions hold.1 Then,

1.
√
n(θ̂ − θ∗) = OP (1), i.e. for every ε > 0, there is an M such that supn P(‖

√
n(θ̂ − θ∗)‖2 > M) < ε.

(This means that the sequence {
√
n(θ̂ − θ∗)} is “bounded in probability”.)

2.
√
n(θ̂ − θ∗) d→ N

(
0, (∇2L(θ∗))−1 Cov(∇`((x, y), θ∗))(∇2L(θ∗))−1

)
.

3. n(L(θ̂)− L(θ∗)) = OP (1).

4. n(L(θ̂)− L(θ∗))
d→ 1

2 ||S||
2
2 where S ∼ N

(
0, (∇2L(θ∗))−1/2 Cov(∇`((x, y), θ∗))(∇2L(θ∗))−1/2

)
.

5. limn→∞ E
[
n(L(θ̂)− L(θ∗))

]
= 1

2 tr
(
∇2L(θ∗)−1 Cov(∇`((x, y), θ∗)

)
.

1Xn
p→ X implies that for all ε > 0, P (‖Xn −X‖ > ε)→ 0, while Xn

d→ X implies that P(Xn ≤ t)→ P(X ≤ t) at all points
t for which P(X ≤ t) is continuous. These two notions of convergence are known as convergence in probability and convergence
in distribution, respectively. These concepts are not essential to this course, but additional information can be found by reading
the Wikipedia article on convergence of random variables.

9

https://en.wikipedia.org/wiki/Convergence_of_random_variables


Remark: In the theorem above, Parts 1 and 3 only show the rate or order of convergence, while Parts
2 and 4 define the limiting distribution for the random variables.

Theorem 2.1 is a powerful conclusion because once we know that
√
n(θ̂−θ∗) is (asymptotically) Gaussian,

we can easily work out the distribution of the excess risk. If we believe in our assumptions and n is large
enough such that we can assume n → ∞, this allows us to analytically determine quantities of interest in
almost any scenario (for example, if our test distribution changes). The key takeaway is that our parameter

error θ̂ − θ∗ decreases in order 1/
√
n and the excess risk decreases in order 1/n. While we will not discuss

the regularity assumptions in Theorem 2.1 in great detail, we note that the assumption that L is twice
differentiable is crucial.

2.1.1 Key ideas of proofs

We will prove the theorem above by applying the following main ideas:

1. Obtain an expression for the excess risk by Taylor expansion of the derivative of the empirical risk
∇L̂(θ) around θ∗.

2. By the law of large numbers, we have that L̂(θ)
p→ L(θ), ∇L̂(θ)

p→ ∇L(θ) and ∇2L̂(θ)
p→ ∇2L(θ) as

n→∞.

3. Central limit theorem (CLT).

First, we state the CLT for i.i.d. means and a lemma that we will use in the proof.

Theorem 2.2 (Central Limit Theorem). Let X1, · · · , Xn, be i.i.d. random variables, where X̂ = 1
n

∑n
i=1Xi

and the covariance matrix Σ is finite. Then, as n→∞ we have

1. X̂
p→ E[X], and

2.
√
n(X̂ − E[X])

d→ N (0,Σ). In particular,
√
n(X̂ − E[X]) = OP (1).

Lemma 2.3.

1. If Z ∼ N(0,Σ) and A is a deterministic matrix, then AZ ∼ N(0, AΣA>).

2. If Z ∼ N(0,Σ−1) and Z ∈ Rp, then Z>ΣZ ∼ χ2(p), where ∼ χ2(p) is the chi-squared distribution with
p degrees of freedom.

2.1.2 Main proof

Let us start with heuristic arguments for Parts 1 and 2. First, note that by definition, the gradient of the
empirical risk at the empirical risk minimizer, ∇L̂(θ̂), is equal to 0. From the Taylor expansion of ∇L̂ around
θ∗, we have that

0 = ∇L̂(θ̂) = ∇L̂(θ∗) +∇2L̂(θ∗)(θ̂ − θ∗) +O(‖θ̂ − θ∗‖22). (2.2)

Rearranging, we have

θ̂ − θ∗ = −(∇2L̂(θ∗))−1∇L̂(θ∗) +O(||θ̂ − θ∗||22). (2.3)

Multiplying by
√
n on both sides,

√
n(θ̂ − θ∗) = −(∇2L̂(θ∗))−1

√
n(∇L̂(θ∗)) +O(

√
n||θ̂ − θ∗||22) (2.4)

≈ −(∇2L̂(θ∗))−1
√
n(∇L̂(θ∗)). (2.5)
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Applying the Central Limit Theorem (Theorem 2.2) using Xi = ∇`((x(i), y(i)), θ∗) and X̂ = ∇L̂(θ∗), and

noticing that E[∇L̂(θ∗)] = ∇L(θ∗), we have

√
n(∇L̂(θ∗)−∇L(θ∗))

d→ N (0,Cov(∇`((x, y), θ∗))). (2.6)

Note that ∇L(θ∗) = 0 because θ∗ is the minimizer of L, so
√
n(∇L̂(θ∗))

d→ N (0,Cov(∇`((x, y), θ∗))). By

the law of large numbers, ∇2L̂(θ∗)
p→ ∇2L(θ∗). Applying these results to (2.5) (together with an application

of Slutsky’s theorem),

√
n(θ̂ − θ∗) d→ ∇2L(θ∗)−1N (0,Cov(∇`((x, y), θ∗))) (2.7)

d
= N

(
0,∇2L(θ∗)−1 Cov(∇`((x, y), θ∗))∇2L(θ∗)−1

)
, (2.8)

where the second step is due to Lemma 2.3. This proves Part 2 of Theorem 2.1.

Part 1 follows directly from Part 2 by the following fact: If Xn
d→ P for some probability distribution P ,

then Xn = OP (1).
We now turn to proving Parts 3 and 4. Using a Taylor expansion of L with respect to θ at θ∗, we find

L(θ̂) = L(θ∗) + 〈∇L(θ∗), θ̂ − θ∗〉+
1

2
〈θ̂ − θ∗,∇2L(θ∗)(θ̂ − θ∗)〉+ o(‖θ̂ − θ∗‖22). (2.9)

Since θ∗ is the minimizer of the population risk L, we know that ∇L(θ∗) = 0 and the linear term is equal to
0. Rearranging and multiplying by n, we can write

n(L(θ̂)− L(θ∗)) =
n

2
〈θ̂ − θ∗,∇2L(θ∗)(θ̂ − θ∗)〉+ o(‖θ̂ − θ∗‖22) (2.10)

≈ 1

2
〈
√
n(θ̂ − θ∗),∇2L(θ∗)

√
n(θ̂ − θ∗)〉 (2.11)

=
1

2

∥∥∥∇2L(θ∗)1/2
√
n(θ̂ − θ∗)

∥∥∥2

2
, (2.12)

where the last equality follows from the fact that for any vector v and positive semi-definite matrix A
of appropriate dimensions, the inner product 〈v,Av〉 = v>Av = ‖A1/2v‖22. Let S = ∇2L(θ∗)1/2

√
n(θ̂ − θ∗),

i.e. the random vector inside the norm. By Part 2, we know the asymptotic distribution of
√
n(θ̂ − θ∗) is

Gaussian. Thus as n→∞, n(L(θ̂)− L(θ∗))
d→ 1

2‖S‖
2
2 where

S ∼ ∇2L(θ∗)1/2 · N
(
0,∇2L(θ∗)−1 Cov(∇`((x, y), θ∗))∇2L(θ∗)−1

)
(2.13)

d
= N

(
0,∇2L(θ∗)−1/2 Cov(∇`((x, y), θ∗))∇2L(θ∗)−1/2

)
. (2.14)

This proves Part 4, and Part 3 follows directly from the definition of the OP notation.
Finally, for Part 5, using the fact that the trace operator is invariant under cyclic permutations, the fact

that E[S] = 0, and some regularity conditions,

lim
n→∞

E
[
n(L(θ̂)− L(θ∗))

]
=

1

2
E
[
‖S‖22

]
=

1

2
E
[
tr(S>S)

]
(2.15)

=
1

2
E
[
tr(SS>)

]
=

1

2
tr
(
E[SS>]

)
(2.16)

=
1

2
tr (Cov(S)) (2.17)

=
1

2
tr
(
∇2L(θ∗)−1 Cov(∇`((x, y), θ∗))

)
. (2.18)
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2.1.3 Well-specified case

Theorem 2.1 is powerful because it is general, avoiding any assumptions of a probabilistic model of our data.
However in many applications, we assume a model of our data and we define the log-likelihood with respect
to this model. Formally, suppose that we have a family of probability distributions Pθ, parameterized by
θ ∈ Θ, such that Pθ∗ is the true data-generating distribution. This is known as the well-specified case. To
make the results of Theorem 2.1 more applicable, we derive analogous results for this well-specified case in
Theorem 2.4.

Theorem 2.4. In addition to the assumptions of Theorem 2.1, suppose there exists a parametric model
P (y | x; θ), θ ∈ Θ, such that {y(i) | x(i)}ni=1 ∼ P (y(i) | x(i); θ∗) for some θ∗ ∈ Θ. Assume that we performing
maximum likelihood estimation (MLE), i.e. our loss function is the negative log-likelihood `((x(i), y(i)), θ) =

− logP (y(i) | x(i); θ). As before, let θ̂ and θ∗ denote the minimizers of empirical risk and population risk,
respectively. Then

θ∗ = θ∗, (2.19)

E [∇`((x, y), θ∗)] = 0, (2.20)

Cov (∇`((x, y), θ∗)) = ∇2L(θ∗), and (2.21)

√
n(θ̂ − θ∗) d→ N (0,∇2L(θ∗)−1). (2.22)

Remark 1: You may also have seen (2.22) in the following form: under the maximum likelihood
estimation (MLE) paradigm, the MLE is asymptotically efficient as it achieves the Cramer-Rao lower bound.
That is, the parameter error of the MLE estimate converges in distribution to N (0, I(θ)−1), where I(θ) is
the Fisher information matrix (in this case, equivalent to the risk Hessian ∇2L(θ∗)) [Rice, 2006].

Remark 2: (2.21) is also known as Bartlett’s identity [Liang, 2016].
Although the proofs were not presented in live lecture, we include them here.

Proof. From the definition of the population loss,

L(θ) = E
[
`((x(i), y(i)), θ)

]
(2.23)

= E [− logP (y | x; θ)] (2.24)

= E [− logP (y | x; θ) + logP (y | x; θ∗)] + E [− logP (y | x; θ∗)] (2.25)

= E
[
log

P (y | x; θ∗)

P (y | x; θ)

]
+ E [− logP (y | x; θ∗)] . (2.26)

Notice that the second term is a constant which we will express as H(y | x; θ∗). We expand the first term
using the tower rule (or law of total expectation):

L(θ) = E
[
E
[
log

P (y | x; θ∗)

P (y | x; θ)

∣∣∣∣x]]+H(y | x; θ∗). (2.27)

The term in the expectation is just the KL divergence between the two probabilities, so

L(θ) = E [KL (y | x; θ∗‖y | x; θ)] +H(y | x; θ∗) (2.28)

≥ H(y | x; θ∗), (2.29)

since KL divergence is always non-negative. Since θ∗ makes the KL divergence term 0, it minimizes L(θ)
and so θ∗ ∈ argminθ L(θ). However, the minimizer of L(θ) is unique because of consistency, so we must have
argminθ L(θ) = θ∗ which proves (2.19).
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For (2.20), recall ∇L(θ∗) = 0, so we have

0 = ∇L(θ∗) = ∇E
[
`((x(i), y(i)), θ∗)

]
= E

[
∇`((x(i), y(i)), θ∗)

]
, (2.30)

where we can switch the gradient and expectation under some regularity conditions.
To prove (2.21), we first expand the RHS using the definition of covariance and express the marginal

distributions as integrals:

Cov (∇`((x, y), θ∗)) = E
[
∇`((x, y), θ∗)∇`((x, y), θ∗)>

]
(2.31)

=

∫
P (x)

(∫
P (y | x; θ∗)∇ logP (y(i) | x(i); θ∗)∇ logP (y(i) | x(i); θ∗)>dy

)
dx (2.32)

=

∫
P (x)

(∫
∇P (y | x; θ∗)∇P (y | x; θ∗)>

P (y | x; θ∗)
dy

)
dx. (2.33)

Now we expand the LHS using the definition of the population loss and differentiate repeatedly:

∇2L(θ∗) = E
[
−∇2 logP (y | x; θ∗)

]
(2.34)

=

∫
P (x)

(∫
−∇2P (y | x; θ∗) +

∇P (y | x; θ∗)∇P (y | x; θ∗)>

P (y | x; θ∗)
dy

)
dx. (2.35)

Note that we can express ∫
∇2P (y | x; θ∗)dy = ∇2

∫
P (y | x; θ∗)dy = ∇1 = 0 (2.36)

so we find

∇2L(θ∗) =

∫
P (x)

(∫
∇P (y | x; θ∗)∇P (y | x; θ∗)>

P (y | x; θ∗)
dy

)
dx = Cov (∇`((x, y), θ∗)) . (2.37)

Finally, (2.22) follows directly from Part 2 of Theorem 2.1 and (2.21).

Using similar logic to our proof of Part 4 and 5 of Theorem 2.1, we can see that n(L(θ̂)−L(θ∗))
d→ 1

2‖S‖
2
2

where S ∼ N(0, I). Since a chi-squared distribution with p degrees of freedom is defined as a sum of the

squares of p independent standard normals, it quickly follows that 2n(L(θ̂)− L(θ∗)) ∼ χ2(p), where θ ∈ Rp
and n → ∞. We can thus characterize the excess risk in this case using the properties of a chi-squared
distribution:

lim
n→∞

E
[
L(θ̂)− L(θ∗)

]
=

p

2n
. (2.38)

2.2 Limitations of asymptotic analysis

One limitation of asymptotic analysis is that our bounds often obscure dependencies on higher order terms.
As an example, suppose we have a bound of the form

p

2n
+ o

(
1

n

)
. (2.39)

(Here o(·) treats the parameter p as a constant as n goes to infinity.) We have no idea how large n needs to
be for asymptotic bounds to be “reasonable.” Compare two possible versions of (2.39):

p

2n
+

1

n2
vs.

p

2n
+
p100

n2
. (2.40)
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Asymptotic analysis treats both of these bounds as the same, hiding the polynomial dependence on p in
the second bound. Clearly, the second bound is significantly more data-intensive than the first: we would

need n > p50 for p100

n2 to be less than one. Since p represents the dimensionality of the data, this may be an
unreasonable assumption.

This is where non-asymptotic analysis can be helpful. Whereas asymptotic analysis uses large-sample
theorems such as the central limit theorem and the law of large numbers to provide convergence guarantees,
non-asymptotic analysis relies on concentration inequalities to develop alternative techniques for reasoning
about the performance of learning algorithms.
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Chapter 3

Concentration Inequalities

In this chapter, we take a little diversion and develop the notion of concentration inequalities. Assume that
we have independent random variables X1, . . . , Xn. We will develop tools to show results that formalize the
intuition for these statements:

1. X1 + . . .+Xn concentrates around E[X1 + . . .+Xn].

2. More generally, f(X1, . . . , Xn) concentrates around E[f(X1, . . . , Xn)].

These inequalities will be used in subsequent chapters to bound several key quantities of interest.
As it turns out, the material from this chapter constitutes arguably the important mathematical tools

in the entire course. No matter what area of machine learning one wants to study, if it involves sample
complexity, some kind of concentration result will typically be required. Hence, concentration inequalities
are some of the most important tools in modern statistical learning theory.

3.1 The big-O notation

Throughout the rest of this course, we will use “big-O” notation in the following sense: every occurrence of
O(x) is a placeholder for some function f(x) such that for every x, |f(x)| ≤ Cx for some absolute/universal
constant C. In other words, when O(n1), . . . , O(nk) occur in a statement, it means that there exist absolute
constants C1, . . . , Ck > 0 and functions f1, . . . , fk satisfying |fi(x)| ≤ Cix for all x, such that after replacing
each occurrence O(ni) by fi(ni), the statement is true. The difference from traditional “big-O” notation is
that we do not need to send n → ∞ in order to define “big-O”. In nearly all cases, big-O notation is used
to define an upper bound; then, the bound is identical if we simply substitute Cx in place of O(x).

Note that the x in our definition of big-O is a surrogate for an arbitrary variable. For instance, later on
in this chapter, we will encounter the term O(σ

√
log n). The definition above, applied with x = σ

√
log n,

yields the following conclusion: O(σ
√

log n) = f(σ
√

log n) for some function f and constant C such that
|f(σ
√

log n)| ≤ Cσ
√

log n for all values that σ
√

log n can take.
Lastly, for any a, b ≥ 0, we will let a . b mean that there is some absolute constant c > 0 such that

a ≤ cb.

3.2 Chebyshev’s inequality

We begin by considering an arbitrary random variable Z with finite variance. One of the most famous results
characterizing its tail behavior is the following theorem:
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Theorem 3.1 (Chebyshev’s inequality). Let Z be a random variable with finite expectation and variance.
Then

Pr[|Z − E[Z]| ≥ t] ≤ Var(Z)

t2
, ∀t > 0. (3.1)

Intuitively, this means that as we approach the tails of the distribution of Z, the density decreases at a
rate of at least 1/t2. Moreover, for any δ ∈ (0, 1], by plugging in t = sd(Z)/

√
δ to (3.1) we see that

Pr

[
|Z − E[Z]| ≤ sd(Z)√

δ

]
≥ 1− δ. (3.2)

Unfortunately, it turns out that Chebyshev’s inequality is a rather weak concentration inequality. To
illustrate this, assume Z ∼ N (0, 1). We can show (using the Gaussian tail bound derived in Problem 3(c)
in Homework 0) that

Pr
[
|Z − E[Z]| ≤ sd(Z)

√
2 log(2/δ)

]
≥ 1− δ. (3.3)

for any δ ∈ (0, 1]. In other words, the density at the tails of the normal distribution is decreasing at an
exponential rate, while Chebyshev’s inequality only gives a quadratic rate. The discrepancy between (3.2)
and (3.3) is made more apparent when we consider inverse-polynomial δ = 1

nc for some parameter n and
degree c (we will see concrete instances of this setup in future chapters). Then the tail bound for the normal
distribution (3.3) implies that

|Z − E[Z]| ≤ sd(Z) ·
√

logO (nc) = sd(Z) ·O
(√

log n
)

w.p. 1− δ, (3.4)

while Chebyshev’s inequality gives us the weaker result

|Z − E[Z]| ≤ sd(Z) ·
√
O(nc) = sd(Z) ·O(nc/2) w.p. 1− δ. (3.5)

Chebyshev’s inequality is actually optimal without further assumptions, in the sense that there exist
distributions with finite variance for which the bound is tight. However, in many cases, we will be able to
improve the 1/t2 rate of tail decay in Chebyshev’s inequality to an e−t rate. In the next two sections, we
will demonstrate how to construct tail bounds with exponential decay rates.

3.3 Hoeffding’s inequality

We next provide a brief overview of Hoeffding’s inequality, a concentration inequality for bounded random
variables with an exponential tail bound:

Theorem 3.2 (Hoeffding’s inequality). Let X1, X2, . . . , Xn be independent real-valued random variables
drawn from some distribution, such that ai ≤ Xi ≤ bi almost surely. Define X̄ = 1

n

∑n
i=1Xi, and let

µ = E[X̄]. Then for any ε > 0,

Pr
[
|X̄ − µ| ≤ ε

]
≥ 1− 2 exp

(
−2n2ε2∑n

i=1(bi − ai)2

)
. (3.6)

Note that the demoninator within the exponential term,
∑n
i=1(bi − ai)2, can be thought of as an upper

bound or proxy for the variance Var(Xi). In fact, under the independence assumption, we can show

Var
(
X̄
)

=
1

n2

n∑
i=1

Var(Xi) ≤
1

n2

n∑
i=1

(bi − ai)2. (3.7)
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Let σ2 = 1
n2

∑n
i=1(bi − ai)2. If we take ε = O(σ

√
log n) = σ

√
c log n so that ε is bounded above by some

large (i.e., c ≥ 10) multiple of the standard deviation of the Xi’s times
√

log n, we can substitute this value
of ε into (3.6) to reach the following conclusion:

Pr
[
|X̄ − µ| ≤ ε

]
≥ 1− 2 exp

(
−2ε2

σ2

)
(3.8)

= 1− 2 exp(−2c log n) (3.9)

= 1− 2n−2c (3.10)

We can see that as n grows, the right-most term tends to zero such that Pr[|X̄ − µ| ≤ ε] very quickly
approaches 1. Intuitively, this result tells us that, with high probability, the sample mean X̄ will not be
“much farther” from the population mean µ by more than some sublogarithmic (

√
c log n) factor of the

standard deviation.1 Thus, we can restate the above claim we reached as follows:

Remark 3.3. For sufficiently large n, |X̄ − µ| ≤ O(σ
√

log n) with high probability.

Remark 3.4. If, in addition, we have ai = −O(1) and bi = O(1), then σ2 = O
(

1
n

)
, and |X̄ − µ| ≤

O

(√
logn
n

)
= Õ

(
1√
n

)
.2

Remark 3.4 provides a compact form of the Hoeffding bound that we can use when the Xi are bounded
almost surely.

So far, we have only shown how to construct exponential tail bounds for bounded random variables.
Since requiring boundedness in [0, 1] (or [a, b] more generally) is limiting, it is worth asking what types
of distributions permit such an exponential tail bound. The following section will explore such a class of
random variables: sub-Gaussian random variables.

3.4 Sub-Gaussian random variables

We begin by defining the class of sub-Gaussian random variables by way of a bound on their moment
generating functions. After establishing this definition, we will see how this bound guarantees the exponential
tail decay we desire.

Definition 3.5 (Sub-Gaussian Random Variables). A random variable X with finite mean µ is sub-Gaussian
with parameter σ if

E
[
eλ(X−µ)

]
≤ eσ

2λ2/2, ∀λ ∈ R. (3.11)

We say that X is σ-sub-Gaussian and say it has variance proxy σ2.

Remark 3.6. As it turns out, (3.11) is quite a strong condition, requiring that infinitely many moments of
X exist and do not grow too quickly. To see why, assume without loss of generality that µ = 0 and take a
power series expansion of the moment generating function:

E[exp(λX)] = E

[ ∞∑
k=0

(λX)k

k!

]
=

∞∑
k=0

λk

k!
E[Xk]. (3.12)

A bound on the moment generating function then is a bound on infinitely many moments of X, i.e. a
requirement that the moments of X are all finite and grow slowly enough to allow the power series to converge.
Though a proof of this result is beyond the scope of this monograph, Proposition 2.5.2 in [Vershynin, 2018]

shows that (3.11) is equivalent to E [|X|p]1/p . √p for all p ≥ 1.

1This is with the caveat, of course, that σ is not exactly the standard deviation but a loose upper bound on standard
deviation.

2Õ is analogous to Big-O notation, but Õ hides logarithmic factors. That is; if f(n) = O(logn), then f(n) = Õ(1).
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Although (3.11) is not a particularly intuitive definition, it turns out to imply exactly the type of exponential
tail bound we want:

Theorem 3.7 (Tail bound for sub-Gaussian random variables). If a random variable X with finite mean µ
is σ-sub-Gaussian, then

Pr[|X − µ| ≥ t] ≤ 2 exp

(
− t2

2σ2

)
, ∀t ∈ R. (3.13)

Proof. Fix t > 0. For any λ > 0,

Pr[X − µ ≥ t] = Pr[exp(λ(X − µ)) ≥ exp(λt)] (3.14)

≤ exp(−λt)E[exp(λ(X − µ))] (by Markov’s inequality) (3.15)

≤ exp(−λt) exp(σ2λ2/2) (by (3.11)) (3.16)

= exp(−λt+ σ2λ2/2). (3.17)

Because the bound (3.17) holds for any choice of λ > 0 and exp(·) is monotonically increasing, we can
optimize the bound (3.17) by finding λ which minimizes the exponent −λt + σ2λ2/2. Differentiating and
setting the derivative equal to zero, we find that the optimal choice is λ = t/σ2, yielding the one-sided tail
bound

Pr[X − µ ≥ t] ≤ exp

(
− t2

2σ2

)
. (3.18)

Going through the same line of reasoning but for −X and −t, we can also show that for any t > 0,

Pr[X − µ ≤ −t] ≤ exp

(
− t2

2σ2

)
. (3.19)

We can then obtain (3.13) by applying the union bound:

Pr[|X − µ| ≥ t] = Pr[X − µ ≥ t] + Pr[X − µ ≤ −t] ≤ 2 exp

(
− t2

2σ2

)
. (3.20)

Remark 3.8 (Tail bound implies sub-Gaussianity). In addition to being a necessary condition for sub-
Gaussianity (Theorem 3.7), the tail bound (3.13) for sub-Gaussian random variables is also a sufficient
condition up to a constant factor. In particular, if a random variable X with finite mean µ satisfies (3.13)
for some σ > 0, then X is O(σ)-sub-Gaussian. Unfortunately, the proof of this reverse direction is somewhat
more involved, so we refer the interested reader to Theorem 2.6 and its proof in Section 2.4 of [Wainwright,
2019] and Proposition 2.5.2 in [Vershynin, 2018] for details. While the tail bound is the property we ulti-
mately care about most when studying sub-Gaussian random variables, the definition in (3.11) is a more
technically convenient characterization, as we will see in the proof of Theorem 3.10.

Remark 3.9. Note that in light of Remark 3.6, the tail bound (3.3) requires all central moments of X to exist
and not grow too quickly. In contrast, Chebyshev’s inequality (and more generally any polynomial variant
of Markov’s inequality Pr[|X − µ| ≥ t] = Pr[|X − µ|k ≥ tk] ≤ t−k E[|X − µ|k]) only requires that the second
central moment E[(X−µ)2] (more generally, the kth central moment E[|X−µ|k]) is finite to yield a tail bound.
If infinite moments exist, however, it turns out that infk∈N t

−k E[|X − µ|k] ≤ infλ>0 exp(−λt)E[exp(λ(X −
λ))], i.e. the optimal polynomial tail bound is tighter than the optimal exponential tail bound (see Exercise
2.3 in [Wainwright, 2019]). As we will see shortly though, using exponential functions of random variables
allows us to prove results about sums of random variables more conveniently. This “tensorization” property
is why most researchers use exponential tail bounds in practice.
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Having defined and derived exponential tail bounds for sub-Gaussian random variables, we can now
accomplish the first of the goals we set out at the beginning of the chapter: show that under certain
conditions, namely independence and sub-Gaussianity of X1, . . . , Xn, the sum Z =

∑n
i=1Xi concentrates

around E[Z] = E[
∑n
i=1Xi].

Theorem 3.10 (Sum of sub-Gaussian random variables is sub-Gaussian). If X1, . . . , Xn are independent
sub-Gaussian random variables with variance proxies σ2

1 , . . . , σ
2
n, then Z =

∑n
i=1Xi is sub-Gaussian with

variance proxy
∑n
i=1 σ

2
i . As a consequence, we have the tail bound

Pr[|Z − E[Z]| ≥ t] ≤ 2 exp

(
− t2

2
∑n
i=1 σ

2
i

)
, (3.21)

for all t ∈ R.

Proof. Using the independence of X1, . . . , Xn, we have that for any λ ∈ R:

E [exp {λ(Z − E[Z])}] = E

[
n∏
i=1

exp {λ(Xi − E[Xi])}

]
(3.22)

=

n∏
i=1

E [exp {λ(Xi − E[Xi])}] (3.23)

≤
n∏
i=1

exp

(
λ2σ2

i

2

)
(3.24)

= exp

(
λ2
∑n
i=1 σ

2
i

2

)
, (3.25)

so Z is sub-Gaussian with variance proxy
∑n
i=1 σ

2
i . The tail bound then follows immediately from (3.13).

The proof above demonstrates the value of the moment generating functions of sub-Gaussian random
variables: they factorize conveniently when dealing with sums of independent random variables.

3.4.1 Examples of sub-Gaussian random variables

We now provide several examples of classes of random variables that are sub-Gaussian, some of which will
appear repeatedly throughout the remainder of the course.

Example 3.11 (Rademacher random variables). A Rademacher random variable ε takes a value of 1 with
probability 1/2 and a value of −1 with probability 1/2. To see that ε is 1-sub-Gaussian, we follow Example
2.3 in [Wainwright, 2019] and upper bound the moment generating function of ε by way of a power series
expansion of exp(·):

E[exp(λε)] =
1

2
{exp(−λ) + exp(λ)} (3.26)

=
1

2

{ ∞∑
k=0

(−λ)k

k!
+

∞∑
k=0

λk

k!

}
(3.27)

=

∞∑
k=0

λ2k

(2k)!
(for odd k, (−λ)k + λk = 0) (3.28)

≤ 1 +

∞∑
k=1

(
λ2
)k

2kk!
(2kk! is every other term of (2k)!) (3.29)

= exp(λ2/2), (3.30)

which is exactly the moment generating function bound (3.11) required for 1-sub-Gaussianity.
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Example 3.12 (Random variables with bounded distance to mean). Suppose a random variable X satisfies
|X − E[X]| ≤M almost surely for some constant M . Then X is O(M)-sub-Gaussian.

We now provide an even more general class of sub-Gaussian random variables that subsume the random
variables in Example 3.12:

Example 3.13 (Bounded random variables). If X is a random variable such that a ≤ X ≤ b almost surely
for some constants a, b ∈ R, then

E
[
eλ(X−E[X])

]
≤ exp

[
λ2(b− a)2

8

]
,

i.e., X is sub-Gaussian with variance proxy (b − a)2/4. (We will prove this in Question 2(a) of Homework
1.) Note that combining the (b − a)/2-sub-Gaussianity of i.i.d. bounded random variables X1, . . . , Xn and
Theorem 3.10 yields a proof of Hoeffding’s inequality.

Example 3.14 (Gaussian random variables). If X is Gaussian with variance σ2, then X satisfies (3.11)
with equality. In this special case, the variance and the variance proxy are the same.

3.5 Concentrations of functions of random variables

We now introduce some important inequalities related to the second of our two goals, namely, showing that
for independent X1, . . . , Xn and certain functions f , f(X1, . . . , Xn) concentrates around E[f(X1, . . . , Xn)].

Theorem 3.15 (McDiarmid’s inequality). Suppose f : Rn → R satisfies the bounded difference condition:
there exist constants c1, . . . , cn ∈ R such that for all real numbers x1, . . . , xn and x′i,

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci. (3.31)

(Intuitively, (3.31) states that f is not overly sensitive to arbitrary changes in a single coordinate.) Then,
for any independent random variables X1, . . . , Xn,

Pr [f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ t] ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
. (3.32)

Moreover, f(X1, . . . , Xn) is O
(√∑n

i=1 c
2
i

)
-sub-Gaussian.

Remark 3.16. Note that McDiarmid’s inequality is a generalization of Hoeffding’s inequality with ai ≤ xi ≤ bi
and

f(x1, . . . , xn) =

n∑
i=1

xi. (3.33)

Proof. The idea of this proof is to take the quantity f(X1, . . . , Xn) − E[f(X1, . . . , Xn)] and break it into
manageable components by conditioning on portions of the sample. To this end, we begin by defining:

Z0 = E [f(X1, . . . , Xn)] constant

Z1 = E [f(X1, . . . , Xn)|X1] a function of X1

· · ·
Zi = E [f(X1, . . . , Xn)|X1, . . . , Xi] a function of X1, . . . , Xi

· · ·
Zn = f(X1, . . . , Xn)
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Using the law of total expectation, we show also that the expectation of Zi equals Z0 for all i.

E[Zi] = E [E [f(X1, . . . , Xn)|X1, . . . , Xi]]

= E[f(X1, . . . , Xn)]

= Z0

The fact that E[Di] = 0, where Di = Zi − Zi−1, is an immediate corollary of this result. Next, we observe
that we can rewrite the quantity of interest, Zn − Z0, as a telescoping sum in the increments Zi − Zi−1:

Zn − Z0 = (Zn − Zn−1) + (Zn−1 − Zn−2) + · · ·+ (Z1 − Z0)

=

n∑
i=1

Di

Next, we show that conditional on X1, . . . , Xi−1, Di is a bounded random variable. First, observe that:

Ai = inf
x

E [f(X1, . . . , Xn)|X1, . . . , Xi−1, Xi = x]− E [f(X1, . . . , Xn)|X1, . . . , Xi−1]

Bi = sup
x

E [f(X1, . . . , Xn)|X1, . . . , Xi=1, Xi = x]− E [f(X1, . . . , Xn)|X1, . . . , Xi−1]

It is clear from their definition that Ai ≤ Di ≤ Bi. Furthermore, by independence of the Xi’s, we have that:

Bi −Ai ≤ sup
x1:i−1

sup
x,x′

∫
(f(x1, . . . , xi−1, x, xi+1, . . . , xn)− f(x1, . . . , xi−1, x

′, xi+1, . . . , xn)) dP (xi+1, . . . , xn)

≤ ci

Using this bound, the properties of conditional expectation, and Example 3.13, we can now prove that that

Zn − Z0 is O
(√∑n

i=1 c
2
i

)
-sub-Gaussian.

E
[
eλ(Zn−Z0)

]
= E

[
eλ

∑n
i=1(Zi−Zi−1)

]
= E

[
E
[
eλ(Zn−Zn−1)

∣∣∣∣X1, . . . , Xn−1

]
eλ

∑n−1
i=1 (Zi−Zi−1)

]
≤ eλ

2c2n/8 E
[
eλ

∑n−1
i=1 (Zi−Zi−1)

]
· · ·

≤ eλ
2(

∑n
i=1 c

2
i )/8

The final inequality given in (3.32) follows by Theorem 3.7.

A more general version of McDiarmid’s inequality comes from Theorem 3.18 in [van Handel, 2016]. The
setup for this theorem requires defining the one-sided differences of a function f : Rn → R:

D−i f(x) = f(x1, . . . , xn)− inf
z
f(x1, . . . , xi−1, z, xi+1, . . . , xn) (3.34)

D+
i f(x) = sup

z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)− f(x1, . . . , xn). (3.35)

These two quantities are functions of x ∈ Rn, and hence can be interpreted as describing the sensitivity
of f at a particular point. (Contrast this with the bounded difference condition (3.31), which bounds the
sensitivity of f universally over all points.) For convenience, define

d+ =

∥∥∥∥∥
n∑
i=1

|D+
i f |

2

∥∥∥∥∥
∞

= sup
x1,...,xn

n∑
i=1

[|D+
i f(x1, . . . , xn)]2 (3.36)

d− =

∥∥∥∥∥
n∑
i=1

|D−i f |
2

∥∥∥∥∥
∞

= sup
x1,...,xn

n∑
i=1

[D−i f(x1, . . . , xn)]2. (3.37)
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Theorem 3.17 (Bounded difference inequality, Theorem 3.18 in [van Handel, 2016]). Let f : Rn → R, and
let X1, . . . , Xn be independent random variables. Then, for all t ≥ 0,

Pr[f(X1, . . . , Xn) ≥ E[f(X1, . . . , Xn)] + t] ≤ exp

(
− t2

4d−

)
(3.38)

Pr[f(X1, . . . , Xn) ≤ E[f(X1, . . . , Xn)]− t] ≤ exp

(
− t2

4d+

)
. (3.39)

3.5.1 Bounds for Gaussian random variables

Unfortunately, the bounded difference condition (3.31) is often only satisfied by bounded random variables
or a bounded function. To get similar concentration inequalities for unbounded random variables, we need
some other special conditions. The following inequalities assume that the random variables have the standard
normal distribution.

Theorem 3.18 (Gaussian Poincaré inequality, Corollary 2.27 in [van Handel, 2016]). Let f : Rn → R be
smooth. If X1, . . . , Xn are independently sampled from N (0, 1), then

Var(f(X1, . . . , Xn)) ≤ E
[
‖∇f(X1, . . . , Xn)‖22

]
. (3.40)

Before introducing the next theorem, we recall that a function f : Rn → R is L-Lipschitz with respect
to the `2-norm if there exists a non-negative constant L ∈ R such that for all x, y ∈ Rn,

|f(x)− f(y)| ≤ L‖x− y‖2. (3.41)

We emphasize that L is universal for all points in Rn.

Theorem 3.19 (Theorem 2.26 in [Wainwright, 2019]). Suppose f : Rn → R is L-Lipschitz with respect to

Euclidean distance, and let X = (X1, . . . , Xn), where X1, . . . , Xn
iid∼ N (0, 1). Then for all t ∈ R,

Pr[|f(X)− E[f(X)]| ≥ t] ≤ 2 exp

(
− t2

2L2

)
. (3.42)

In particular, f(X) is sub-Gaussian.
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Chapter 4

Generalization Bounds via Uniform
Convergence

In Chapter 2, we pointed out some limitations of asymptotic analysis. In this chapter, we will turn our
focus to non-asymptotic analysis, where we provide convergence guarantees without having the number of
observations n go off to infinity. A key tool for proving such guarantees is uniform convergence, where we
have bounds of the following form:

Pr

[
sup
h∈H
|L̂(h)− L(h)| ≤ ε

]
≥ 1− δ. (4.1)

In other words, the probability that the difference between our empirical loss and population loss is larger
than ε is at most δ. We give motivation for uniform convergence and show how it can give us non-asymptotic
guarantees on excess risk.

4.1 Basic concepts

A central goal of learning theory is to bound the excess risk L(θ̂) − L(θ∗). This is important as we don’t
want the expected risk of our ERM to be much larger than the expected risk of the best possible model. As
we will see in the remainder of this section, uniform convergence is a technique that helps us achieve such
bounds.

Uniform convergence is a property of a parameter set Θ, which gives us bounds of the form

Pr
[
|L̂(θ)− L(θ)| ≥ ε

]
≤ δ; ,∀θ ∈ Θ. (4.2)

In other words, uniform convergence tells us that for any choice of θ, our empirical risk is always close to
our population risk with high probability. Let’s look at a motivating example for why this type of bound is
useful.

4.1.1 Motivation: Uniform convergence implies generalization

Consider the standard supervised learning setup where we have some i.i.d. {(x(i), y(i))}. Furthermore,
assume that we have a bounded loss function; specifically, suppose that 0 ≤ `((x, y); θ) ≤ 1, as in the case of
the zero-one loss function. We show that uniform convergence implies generalization.

First, via telescoping sums, we can decompose the excess risk into three terms:

L(θ̂)− L(θ∗) = L(θ̂)− L̂(θ̂)︸ ︷︷ ︸
1

+ L̂(θ̂)− L̂(θ∗)︸ ︷︷ ︸
2

+ L̂(θ∗)− L(θ∗)︸ ︷︷ ︸
3

. (4.3)
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We know that L̂(θ̂)− L̂(θ∗) ≤ 0 since θ̂ is a minimizer of L̂. This allows us to write

L(θ̂)− L(θ∗) ≤ |L(θ̂)− L̂(θ̂)|+ L̂(θ̂)− L̂(θ∗) + |L̂(θ∗)− L(θ∗)| (4.4)

≤ |L(θ̂)− L̂(θ̂)|+ 0 + |L̂(θ∗)− L(θ∗)| (4.5)

≤ 2 sup
θ∈Θ
|L(θ)− L̂(θ)|. (4.6)

This result tells us that if supθ∈Θ |L(θ)− L̂(θ)| is small (say, less than ε/2), then excess risk L(θ̂)−L(θ∗) is
less than ε. But this is exactly in the form of the bound in (4.2). Hence, if we can show that a parameter
family exhibits uniform convergence, we can get a bound on excess risk as well.

For future reference, Equation (4.6) can be strengthened straightforwardly into the following with slightly
more careful treatment of the signs of each term:

L(θ̂)− L(θ∗) ≤ |L̂(θ∗)− L(θ∗)|+ L(θ̂)− L̂(θ̂) ≤ |L̂(θ∗)− L(θ∗)|+ sup
θ∈Θ

(
L(θ)− L̂(θ)

)
(4.7)

This will make some of our future derivations technically slightly more convenient, but the nuanced difference
between Equations (4.6) and (4.7) does not change the fundamental idea and the discussions in this chapter.

Let us try to apply our knowledge of concentration inequalities to this problem. Earlier we assumed that

`((x, y); θ) is bounded, so we can bound 3 by Õ
(

1√
n

)
via Hoeffding’s inequality (Remark 3.4). However,

we cannot apply the same concentration inequality to 1 : since θ̂ is data-dependent by definition, the i.i.d.

assumption no longer holds. (To see this, note that θ̂ depends on the training dataset {(x(i), y(i))}, so the

terms in L̂(θ̂), `((x(i), y(i)); θ̂), all depend on the training dataset too.) This is concerning: it is certainly

possible that L(θ̂) − L̂(θ̂) is large. You’ve probably encountered this yourself when a model exhibits low
training loss, but high validation/testing loss.

4.1.2 Deriving uniform convergence bounds

Uniform convergence is one way we can control this issue. The high-level idea is as follows:

• Suppose we have a bound of the form Pr[|L̂(θ)− L(θ)| ≥ ε′] ≤ δ′ for some single, fixed choice of θ.

• If we know all possible values of θ in advance, we can use the above bound to create a more general
bound over all values of θ.

In particular, we can use the union-bound inequality to create the general bound described in the second
bullet point, using the bound in the first bullet point:

Pr
[
∀θ ∈ Θ, |L̂(θ)− L(θ)| ≥ ε′

]
≤
∑
θ∈Θ

Pr
[
|L̂(θ)− L(θ)| ≥ ε′

]
. (4.8)

We can then use Hoeffding’s inequality to deal with the summands as θ there is no longer data-dependent.
We will talk more later about proving statements of this form.

4.1.3 Intuitive interpretation of uniform convergence

Since uniform convergence implies generalization, if we know that population risk and empirical risk are
always “close,” then excess risk is “small” as well (Figure 4.1a). In fact, it is possible to show that not only
is L(θ) “close” to L̂(θ) for sufficiently large data, but that the “shape” of L̂ is “close” to the shape of L as
well (Figure 4.1b). This holds for the convex case; furthermore, there are conditions under which this holds
in the non-convex case, for which a rigorous treatment can be found in [Mei et al., 2017]. (Figure design and
some wording in this section were inspired by [Liang, 2016, Liu and Thomas, 2018].)
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θ
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(a)

θ

L

(b)

Figure 4.1: These curves demonstrate how we apply uniform convergence to bound the population risk. The
blue curves are the unobserved population risk we aim to bound. The green curves denote the empirical risk
we observe. Though this curve is often depicted as the fluctuating curve used in Figure 4.1a, it is more often
a smooth curve whose shape mimics that of the population risk (Figure 4.1b). Uniform convergence allows
us to construct additive error bounds for the excess risk, which are depicted using the red, dashed lines.

4.2 Finite hypothesis class

In this section, assume that H is finite. The following theorem gives a bound for the excess risk L(ĥ)−L(h∗),

where ĥ and h∗ are the minimizers of the empirical loss and population loss, respectively.

Theorem 4.1. Suppose that our hypothesis class H is finite and that our loss function ` is bounded in [0, 1],
i.e. 0 ≤ `((x, y), h) ≤ 1. Then ∀δ s.t. 0 < δ < 1

2 , with probability at least 1− δ, we have

|L(h)− L̂(h)| ≤
√

ln |H|+ ln (2/δ)

2n
∀h ∈ H. (4.9)

As a corollary, we also have

L(ĥ)− L(h∗) ≤
√

2(ln |H|+ ln (2/δ))

n
. (4.10)

Proof. We will prove this in two steps:

1. Use concentration inequalities to prove the bound for a fixed h ∈ H, then

2. Use a union bound across the h’s. (Recall that if E1, . . . , Ek are a finite set of events, then the union

bound states that Pr(E1 ∪ · · · ∪ Ek) ≤
∑k
i=1 Pr(Ei).)

Fix some ε > 0. By applying Hoeffding’s inequality on the `((x(i), y(i)), h), we know that
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Pr
(
|L̂(h)− L(h)| ≥ ε

)
≤ 2 exp

(
− 2n2ε2∑n

i=1(bi − ai)2

)
(4.11)

= 2 exp

(
−2n2ε2

n

)
(4.12)

= 2 exp(−2nε2), (4.13)

since we can set ai = 0, bi = 1. The bound above holds for a single fixed h. To prove a similar inequality
that holds for all h ∈ H, we apply the union bound with Eh = {|L̂(h)− L(h)| ≥ ε}:

Pr
(
∃h s.t. |L̂(h)− L(h)| ≥ ε

)
≤
∑
h∈H

Pr
(
|L̂(h)− L(h)| ≥ ε

)
(4.14)

≤
∑
h∈H

2 exp(−2nε2) (4.15)

= 2|H| exp(−2nε2). (4.16)

If we take δ such that 2|H| exp(−2nε2) = δ, then it follows that

ε =

√
ln |H|+ ln (2/δ)

2n
, (4.17)

which proves (4.9). (4.10) follows by the inequality we stated in Section 4.1.1, and taking

ε =

√
2(ln |H|+ ln (2/δ))

n
, (4.18)

we have that

Pr
(
|L(ĥ)− L(h∗)| ≥ ε

)
≤ Pr

(
2 sup
h∈H
|L̂(h)− L(h)| ≥ ε

)
(4.19)

≤ 2|H| exp

(
−nε

2

2

)
. (4.20)

4.2.1 Comparing Theorem 4.1 with standard concentration inequalities

With standard concentration inequalities, we have the following bound that depends on empirical risk:

∀h ∈ H, w.h.p. |L̂(h)− L(h)| ≤ Õ
(

1√
n

)
. (4.21)

The bound here depends on each h. In contrast, the uniform convergence bound we obtain from (4.17) is
uniform over all h ∈ H:

w.h.p., ∀h ∈ H, |L̂(h)− L(h)| ≤ Õ
(

ln |H|√
n

)
, (4.22)

if we omit the ln (1/δ) factor (we can do this since ln (1/δ) is small in general and we take δ = 1
poly(n) ).

Hence, the extra ln |H| term that depends on the size of our finite hypothesis family H can be viewed as a
trade-off in order to make the bound uniform.

Remark 4.2. There is no standard definition for the term with high probability (w.h.p). For this class, the
term is equivalent to the condition that the probability is higher than 1− n−c for some constant c.
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4.2.2 Comparing Theorem 4.1 with asymptotic bounds

We can also compare the bound in Theorem 4.1 with our original asymptotic bound, namely,

L(ĥ)− L(h∗) ≤ c

n
+ o

(
n−1

)
. (4.23)

The o(n−1) term can vary significantly depending on the problem. For instance, both n−2 and p100n−2

are o(n−1) but the second one converges much more slowly. With the new bound, there are no longer any
constants hidden in an o(n−1) term (in fact that term is no longer there). However, we now have a slower
convergence rate of O(n−1/2).

Remark 4.3. O(n−1/2) convergence is sometimes known as the slow rate while O(n−1) convergence is known
as the fast rate. We were only able to get the slow rate from uniform convergence: we needed asymptotics
to get the fast rate. (It is possible to get the fast rate from uniform convergence under certain conditions,
e.g. when the population risk on the true h∗ is very low.)

4.3 Bounds for infinite hypothesis class via discretization

Unfortunately, we cannot generalize the results from the previous section directly to the case where the
hypothesis class H is infinite, since we cannot apply the union bound to an infinite number of hypothesis
functions h ∈ H. However, if we consider a bounded and continuous parameterized space of H, then we can
obtain a similar uniform bound by applying a technique called brute-force discretization.

For this section, assume that our infinite hypothesis class H can be parameterized by θ ∈ Rp with
‖θ‖2 ≤ B for some fixed B > 0. That is, we have

H = {hθ : θ ∈ R, ‖θ‖2 ≤ B}. (4.24)

The intuition behind brute-force discretization is as follows: Let Eθ = {|L̂(θ)− L(θ)| ≥ ε} be the “bad”
events. We want the bound the probability of any one of these bad events happening (i.e.

⋃
θ Eθ). The

union bound does not work as we end up with an infinite sum. However, the union bound is very loose:
these events can overlap with each other significantly. Instead, we can try to find “prototypical” bad events
Eθ1 , . . . , EθN that are somewhat disjoint so that

⋃
θ Eθ ≈

⋃N
i=1Eθi . We can then use the union bound on⋃N

i=1Eθi to get a non-vacuous upper bound.
We make these ideas precise in the following section.

4.3.1 Discretization of the parameter space by ε-covers

We start by defining the notion of an ε-cover (also ε-net):

Definition 4.4 (ε-cover). Let ε > 0. An ε-cover of a set S with respect to a distance metric ρ is a subset
C ⊆ S such that ∀x ∈ S, ∃x′ ∈ C such that ρ(x, x′) ≤ ε, or equivalently,

S ⊆
⋃
x∈C

Ball(x, ε, ρ), where (4.25)

Ball(x, ε, ρ) , {x′ : ρ(x, x′) ≤ ε}. (4.26)

(We note that in some definitions it is possible for points in C to lie outside of S; we do not worry about this
technicality in this class.) The following lemma tells us that our parameter space S = {θ ∈ Rp : ‖θ‖2 ≤ B}
has an ε-cover with not too many elements:

Lemma 4.5 (ε-cover of `2 ball). Let B, ε > 0, and let S = {x ∈ Rp : ‖x‖2 ≤ B}. Then there exists an

ε-cover of S with respect to the `2-norm with at most max
((

3B
√
p

ε

)p
, 1
)

elements.
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Proof. Note that if ε > B
√
p, then S is trivially contained in the ball centered at the origin with radius ε

and the ε-cover has size 1. Assume ε ≤ B√p. Set

C =

{
x ∈ S : xi = ki

ε
√
p
, ki ∈ Z, |ki| ≤

B
√
p

ε

}
, (4.27)

i.e. C is the set of grid points in Rp of width ε√
p that are contained in S. See Figure 4.2 for an illustration.

Figure 4.2: The ε-cover (shown in red) of S that we construct in the proof of Lemma 4.5. For x ∈ S, we
choose the grid point x′ such that ‖x− x′‖2 ≤ ε.

We claim that C is an ε-cover of S with respect to the `2-norm: ∀x ∈ S, there exists a grid point x′ ∈ C
such that |xi − x′i| ≤ ε√

p for each i. Therefore,

‖x− x′‖2 =

√√√√ p∑
i=1

|xi − x′i|2 ≤

√
p · ε

2

p
= ε.

We now bound the size of C. Since each ki in the definition of C has at most 2
B
√
p

ε + 1 choices, we have

|C| ≤
(

2B
√
p

ε
+ 1

)p
≤
(

3B
√
p

ε

)p
. (4.28)

Remark 4.6. We can actually prove a stronger version of Lemma 4.5: there exists an ε-cover of S with at
most

(
3B
ε

)p
elements. We will be using this version of the lemma in the proof below. (We will leave the

proof of this stronger version as a homework exercise.)

4.3.2 Uniform convergence bound for infinite H
Definition 4.7 (κ-Lipschitz functions). Let κ ≥ 0 and ‖ · ‖ be a norm on the domain D. A function
L : D → R is said to be κ-Lipschitz with respect to ‖ · ‖ if for all θ, θ′ ∈ D, we have

|L(θ)− L(θ′)| ≤ κ‖θ − θ′‖.
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Assume that our infinite hypothesis class H can be parameterized by H = {hθ : θ ∈ R, ‖θ‖2 ≤ B}. We
have the following uniform convergence theorem for our infinite hypothesis class H:

Theorem 4.8. Suppose `((x, y), θ) ∈ [0, 1], and `((x, y), θ) is κ-Lipschitz in θ with respect to the `2-norm
for all (x, y). Then, with probability at least 1−O(exp(−Ω(p))), we have

∀θ, |L̂(θ)− L(θ)| ≤ O

(√
pmax(ln (κBn), 1)

n

)
. (4.29)

Proof of Theorem 4.8. Fix parameters δ, ε > 0 (we will specify their values later). Let C be the ε-cover
of our parameter space S with respect to the `2-norm constructed in Lemma 4.5. Define event E ={
∀θ ∈ C, |L̂(θ)− L(θ)| ≤ δ

}
. By Theorem 4.1, we have Pr(E) ≥ 1− 2|C| exp(−2nδ2).

Now for any θ ∈ S, we can pick some θ0 ∈ C such that ‖θ − θ0‖2 ≤ ε. Since L and L̂ are κ-Lipschitz
functions (this follows from the Lipschitzness of `), we have

|L(θ)− L(θ0)| ≤ κ‖θ − θ0‖2 ≤ κε, and (4.30)

|L̂(θ)− L̂(θ0)| ≤ κ‖θ − θ0‖2 ≤ κε. (4.31)

Therefore, conditional on E, we have

|L̂(θ)− L(θ)| ≤ |L̂(θ)− L̂(θ0)|+ |L̂(θ0)− L(θ0)|+ |L(θ0)− L(θ)| ≤ 2κε+ δ. (4.32)

It remains to choose suitable parameters δ and ε to get the desired bound in Theorem 4.8 while making
the failure probability small. First, set ε = δ/(2κ) so that conditional on E,

|L̂(θ)− L(θ)| ≤ 2δ. (4.33)

To choose the correct δ, we must reason about the probability of E under different choices of the param-
eter. The event E happens with probability 1− 2|C| exp(−2nδ2) = 1− 2 exp(ln |C| − 2nδ2). From Remark
4.6, we know that ln |C| ≤ p ln (3B/(δ/2)). If we ignore the log term and assume ln |c| ≤ p, then this would
give us the high probability bound we want:

2|C| exp(−2nδ2) = 2 exp(ln |C| − 2nδ2) ≤ 2 exp(p− 2p) = 2 exp(−p). (4.34)

(At the same time, we see from (4.33) that this choice of δ gives |L̂(θ)−L(θ)| ≤ 2
√

p
n , which is roughly the

bound we want.)
Since we cannot actually drop the log term in the inequality ln |C| ≤ p ln (3B/(δ/2)), we need to make δ

a little bit bigger. So, if we set δ =
√

c0pmax(1,ln (κBn))
n with c0 = 36, then by Remark 4.6,

ln |C| − 2nδ2 ≤ p ln

(
6Bκ

δ

)
− 2nδ2 (4.35)

≤ p ln

(
6Bκ
√
n√

c0pmax(1, ln (κBn))

)
− 2n

c0p

n
ln(κBn) (dfn of δ) (4.36)

≤ p ln

(
Bκ
√
n

√
p

)
− 72p ln(κBn) (max(1, ln (κBn)) ≥ 1, c0 = 36) (4.37)

≤ p ln(Bκn)− 72p ln(Bκn) (
√
n/p ≤ n) (4.38)

≤ −p, (4.39)

since ln(Bκn) ≥ 1 for large enough n. Therefore, with probability greater than 1 − 2|C| exp(−2nδ2) =
1− 2 exp(ln |C| − 2nδ2) ≥ 1−O(e−p), we have

|L̂(θ)− L(θ)| ≤ 2δ = O

(√
p

n
max(1, ln(κBn))

)
. (4.40)
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Remark 4.9. We bounded the generalization error |L̂(θ) − L(θ)| by δ + 2εκ ≤
√

ln |C|
n + 2εκ. The term

2εκ represents the error from our brute-force discretization. It is not a problem because we can always

choose ε small enough without worrying about the growth of the first term
√

ln |C|
n . This in turn is because

ln |C| ≈ p ln ε−1, which is very insensitive to ε, even if we let ε = 1
poly(n) . We also observe that both

√
ln |C|
n

and
√

p
n are bounds that depend on the “size” of our hypothesis class, in terms of either its total size or

dimensionality. This possibly explains why one may need more training samples when the hypothesis class
is larger.

4.4 Rademacher complexity

4.4.1 Motivation for a new complexity measure

Recall that our goal is to bound the excess risk L(ĥ) − L(h∗), where L is the expected loss (or population

loss), ĥ is our estimated hypothesis and h∗ is the hypothesis in the hypothesis class H which minimizes the

expected loss. We previously showed that to do so, it suffices to upper bound suph∈H(L(h)− L̂(h)). (Note:

we often call L(ĥ)− L̂(ĥ) the generalization gap or generalization error.)
In the previous sections, we derived bounds for the generalization gap in two cases:

1. If the hypothesis class H is finite,

L(ĥ)− L̂(ĥ) ≤ Õ

(√
log |H|
n

)
. (4.41)

2. If the hypothesis class H is p-dimensional,

L(ĥ)− L̂(ĥ) ≤ Õ
(√

p

n

)
. (4.42)

Both of these bounds have a 1√
n

-dependency on n, which is known as the “slow rate”. The terms in the

numerator (log |H| and p resp.) can be thought of as complexity measures of H.
The bound (4.42) is not precise enough: it depends solely on p and is not always optimal. For example,

this would be a poor bound if the hypothesis class H has very high dimension but small norm. One specific
example is for the following two hypothesis classes:

{θ : ‖θ‖1 ≤ B} vs. {θ : ‖θ‖2 ≤ B},

(4.42) would give both hypothesis classes the same bound of Õ
(√

p
n

)
. Intuitively, we should take into

account the norms to prove a better bound.
With the complexity measure to be introduced, we will prove a bound of the form

L(ĥ)− L̂(ĥ) ≤ Õ

(√
Complexity(Θ)

n

)
. (4.43)

This complexity measure will depend on the distribution P over X × Y (the input and output spaces),
and hence takes into account how easy it is to learn P . If P is easy to learn, then this complexity measure
will be small even if the hypothesis space is big.

One of the practical implications of having such a complexity measure is that we can restrict the hypoth-
esis space by regularizing the complexity measure (assuming it is something we can evaluate and train with).
If we successfully find a low complexity model, then this generalization bound guarantees that we have not
overfit.
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4.4.2 Definitions

In uniform convergence, we sought a high probability bound for suph∈H(L(h)−L̂(h)). Here we have a weaker
goal: we try to obtain an upper bound for its expectation instead, i.e.

E
[

sup
h∈H

(L(h)− L̂(h))

]
≤ upper bound. (4.44)

The expectation is over the randomness in the training data {(x(i), y(i))}ni=1.1

To do so, we first define Rademacher complexity.

Definition 4.10 (Rademacher complexity). Let F be a family of functions mapping Z 7→ R, and let P be
a distribution over Z. The (average) Rademacher complexity of F is defined as

Rn(F ) , E
z1,...,zn

iid∼P

[
E

σ1,...,σn
iid∼{±1}

[
sup
f∈F

1

n

n∑
i=1

σif(zi)

]]
, (4.45)

where σ1, . . . , σn are independent Rademacher random variables, i.e. each taking on the value of 1 or −1
with probability 1/2.

Remark 4.11. For applications to empirical risk minimization, we will take Z = X ×Y. However, Definition
4.10 holds for abstract input spaces Z as well.

Remark 4.12. Note that Rn(F) is also dependent on the measure P of the space, so technically it should be
Rn,P (F), but for brevity, we refer to it as Rn(F).

An interpretation is that Rn(F) is the maximal possible correlation between outputs of some f ∈ F
(on points f(z1), . . . , f(zn)) and random Rademacher variables (σ1, . . . , σn). Essentially, functions with more
random sign outputs will better match random patterns of Rademacher variables and have higher complexity
(greater ability to mimic or express randomness).

The following theorem is the main theorem involving Rademacher complexity:

Theorem 4.13.

E
z1,...,zn

iid∼P

[
sup
f∈F

[
1

n

n∑
i=1

f(zi)− E
z∼P

[f(z)]

]]
≤ 2Rn(F). (4.46)

Remark 4.14. We can think of 1
n

∑n
i=1 f(zi) as an empirical average and Ez∼P [f(z)] as a population average.

Why is Theorem 4.13 useful to us? We can set F to be the family of loss functions, i.e.

F = {z = (x, y) ∈ Z 7→ `((x, y), h) ∈ R : h ∈ H} . (4.47)

This is the family of losses induced by the hypothesis functions in H. We also define the function class −F
as {−f : f ∈ F}. It should be obvious from this definition that Rn(F) = Rn(−F) since σi

d
= −σi for all i.

Then, letting zi = (x(i), y(i)),

E
[

sup
h∈H

(
L(h)− L̂(h)

)]
= E
{(x(i),y(i))}

[
sup
h∈H

[
L(h)− 1

n

n∑
i=1

`((x(i), y(i)), h)

]]
(4.48)

= E
{zi}

[
sup
f∈F

(
E[f(z)]− 1

n

n∑
i=1

f(zi)

)]
(4.49)

= E
{zi}

[
sup
f∈−F

(
1

n

n∑
i=1

f(zi)− E[f(z)]

)]
(4.50)

≤ 2Rn(−F) = 2Rn(F) (4.51)

1Though we might like to pull the sup outside of the E operator, and bound the expectation of the excess risk (a far simpler

quantity to deal with!), in general, the sup and E operators do not commute. In particular, E
[
suph∈H(L(h)− L̂(h))

]
≥

suph∈H E
[
L(h)− L̂(h)

]
.
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where the last step follows by Theorem 4.13.
Thus, 2Rn(F) is an upper bound for the generalization error. In this context, Rn(F) can be interpreted

as how well the loss sequence `((x(1), y(1)), h), . . . `((x(n), y(n)), h) correlates with σ1, . . . , σn.

Example 4.15. Consider the binary classification setting where y ∈ {±1}. Let `0−1 denote the zero-one
loss function. Note that

`0−1((x, y), h) = 1{h(x) 6= y} =
1− yh(x)

2
. (4.52)

Hence,

Rn(F) = E
{(x(i),y(i))},σi

[
sup
h∈H

1

n

n∑
i=1

`0−1((x(i), y(i)), h)σi

]
(by definition) (4.53)

= E
{(x(i),y(i))},σi

[
sup
h∈H

1

n

n∑
i=1

(
−h(x(i))y(i) + 1

2

)
σi

]
(by (4.52)) (4.54)

=
1

2
E

{(x(i),y(i))},σi

[
1

n

n∑
i=1

σi + sup
h∈H

1

n

n∑
i=1

−h(x(i))y(i)σi

]
(sup only over H) (4.55)

=
1

2
E

{(x(i),y(i))},σi

[
sup
h∈H

1

n

n∑
i=1

−h(x(i))y(i)σi

]
(E[σi] = 0) (4.56)

=
1

2
E

{(x(i),y(i))},σi

[
sup
h∈H

1

n

n∑
i=1

h(x(i))σi

]
(−yiσi

d
= σi) (4.57)

=
1

2
Rn(H). (by definition) (4.58)

In this setting, Rn(F) and Rn(H) are the same (except for the factor of 2). Rn(H) has a slightly more
intuitive interpretation: it represents how well h ∈ H can fit random patterns.

Warning! Rn(F) is not always the same as Rn(H) in other problems.

Remark 4.16. Rademacher complexity is invariant to translation. This property manifests in the previous

example when the +1 in the
(
−h(x(i))y(i)+1

2

)
term essentially vanishes in the computation.

Let us now prove Theorem 4.13.

Proof of Theorem 4.13. We use a technique called symmetrization, which is a very important technique in

probability theory. We first fix z1, . . . , znand draw z′1, . . . z
′
n

iid∼ P . Then we can rewrite the term in the
expectation on the LHS of (4.46):

sup
f∈F

(
1

n

n∑
i=1

f(zi)− E[f ]

)
= sup
f∈F

(
1

n

n∑
i=1

f(zi)− E
z′1,...,z

′
n

[
1

n

n∑
i=1

f(z′i)

])
(4.59)

= sup
f∈F

(
E

z′1,...,z
′
n

[
1

n

n∑
i=1

f(zi)−
1

n

n∑
i=1

f(z′i)

])
(4.60)

≤ E
z′1,...,z

′
n

[
sup
f∈F

(
1

n

n∑
i=1

f(zi)−
1

n

n∑
i=1

f(z′i)

)]
. (4.61)

The last inequality is because in general,

sup
u

(
E
v
[g(u, v)]

)
≤ sup

u

(
E
v

[
sup
u′

(g(u′, v))

])
= E

v

[
sup
u

(g(u, v))

]
(4.62)

since the sup over u becomes vacuous after we replace u with u′.

32



Now, if we take the expectation over z1, . . . , zn for both sides of (4.61),

E
z1,...,zn

[
sup
f∈F

(
1

n

n∑
i=1

f(zi)− E[f ]

)]
≤ E
zi

[
E
z′i

[
sup
f∈F

(
1

n

n∑
i=1

(f(zi)− f(z′i))

)]]
(4.63)

= E
zi,z′i

[
E
σi

[
sup
f∈F

(
1

n

n∑
i=1

σi (f(zi)− f(z′i))

)]]
(4.64)

≤ E
zi,z′i,σi

[
sup
f∈F

(
1

n

n∑
i=1

σif(zi)

)
+ sup
f∈F

(
1

n

n∑
i=1

−σif(z′i)

)]
(4.65)

= 2Rn(F), (4.66)

where (4.64) is because σi(f(zi) − f(z′i))
d
= f(zi) − f(z′i) since f(zi) − f(z′i) has a symmetric distribution.

The last equality holds since −σi
d
= σi and zi, z

′
i are drawn iid from the same distribution.

Here is an intuitive understanding of what Theorem 4.13 achieves. Consider the quantities on the LHS
and RHS of (4.46):

sup
f∈F

(
1

n

n∑
i=1

f(zi)− E[f(z)]

)
vs. sup

f∈F

(
1

n

n∑
i=1

σif(zi)

)
.

First, we removed E[f(z)], which is hard to control quantitatively since it is deterministic. Second, we
added more randomness in the form of Rademacher variables. This will allow us to shift our focus from
the randomness in the zi’s to the randomness in the σi’s. In the future, our bounds on the Rademacher
complexity will typically only depend on the randomness from the σi’s.

4.4.3 Dependence of Rademacher complexity on P

For intuition on how Rademacher complexity depends on the distribution P , consider the extreme example
where P is a point mass, i.e. z = z0 almost surely. Assume that −1 ≤ f(z0) ≤ 1 for all f ∈ F . Then

E
z1,...,zn∼P

[
sup
f∈F

1

n

n∑
i=1

σif(zi)

]
= E
σ1,...,σn

[
sup
f∈F

1

n
f(z0)

n∑
i=1

σi

]
(4.67)

≤ E
σ1,...,σn

[∣∣∣∣∣ 1n
n∑
i=1

σi

∣∣∣∣∣
]

(since f(z0) ∈ [−1, 1]) (4.68)

≤ E
σi

( 1

n

n∑
i=1

σi

)2
 1

2

(Jensen’s Inequality) (4.69)

=
1

n

 E
σi,σj

 n∑
i,j=1

σiσj

 1
2

(4.70)

=
1

n

(
E
σi

[
n∑
i=1

σ2
i

]) 1
2

(4.71)

=
1

n
·
√
n =

1√
n
. (4.72)

This bound does not depend on F (except on the fact that f ∈ F is bounded). This example illustrates
that a bound on the Rademacher complexity can sometimes depend only on the (known) distribution of the
Rademacher random variables.
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4.5 Empirical Rademacher complexity

In the previous section, we bounded the expectation of supf∈F
[

1
n

∑n
i=1 f(zi)− Ez∼P [f(z)]

]
. This expecta-

tion is taken over the training examples z1, . . . , zn. In many instances we only have one training set, and do
not have access to many training sets. Thus, the bound on the expectation does not give a guarantee for the
one training set that we have. In this section, we seek to bound the quantity itself with high probability.

Definition 4.17 (Empirical Rademacher complexity). Given a dataset S = {z1, . . . , zn}, the empirical
Rademacher complexity is defined as

RS(F)
∆
= E
σ1,...,σn

[
sup
f∈F

1

n

n∑
i=1

σif(zi)

]
. (4.73)

RS(F) is a function of both the function class F and the dataset S.

As the name suggests, the expectation of the empirical Rademacher complexity is the Rademacher com-
plexity:

Rn(F) = E
z1,...,zn

iid∼P
S={z1,...,zn}

[RS(F)] . (4.74)

Here is the theorem involving empirical Rademacher complexity:

Theorem 4.18. Suppose for all f ∈ F , 0 ≤ f(z) ≤ 1. Then, with probability at least 1− δ,

sup
f∈F

[
1

n

n∑
i=1

f(zi)− E[f(z)]

]
≤ 2RS(F) + 3

√
log (2/δ)

2n
. (4.75)

Proof. For conciseness, define

g(z1, . . . , zn) , sup
f∈F

[
1

n

n∑
i=1

f(zi)− E[f(z)]

]
. (4.76)

We prove the theorem in 4 steps.
Step 1: We bound g using McDiarmid’s Inequality. To use McDiarmid’s Inequality, we check that the

bounded difference condition holds:

g(z1, . . . , zn)− g(z1, . . . , z
′
i, . . . , zn) ≤ sup

f∈F

 1

n

n∑
j=1

f(zj)

− sup
f∈F

 1

n

n∑
j=1,j 6=i

f(zj)

+
f(z′i)

n

 (4.77)

≤ sup
f∈F

 1

n

n∑
j=1

f(zj)−

 1

n

n∑
j=1,j 6=i

f(zj)

− f(z′i)

n

 (4.78)

= sup
f∈F

[
1

n
(f(zi)− f(z′i))

]
(4.79)

≤ 1

n
. (4.80)

(4.78) holds because in general, supf A(f) − supf B(f) ≤ supf [A(f) − B(f)], and (4.80) holds since f is
bounded by [0, 1]. We can thus apply McDiarmid’s Inequality with parameters c1 = · · · = cn = 1/n:

Pr

[
g(z1, . . . , zn) ≥ E

z1,...,zn
iid∼P

[g] + ε

]
≤ exp

(
−2ε2∑n
i=1 c

2
i

)
= exp(−2nε2). (4.81)
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Step 2: We apply Theorem 4.13 to get

E
z1,...,zn

iid∼P
[g] ≤ 2Rn(F). (4.82)

Step 3: Define

g̃(z1, . . . , zn) = RS(F) , E
σi

[
sup
f∈F

1

n

n∑
i=1

σif(zi)

]
. (4.83)

Using a similar argument to that of Step 1, we show that g̃ satisfies the bounded difference condition:

g̃(z1, . . . , zn)− g̃(z1, . . . , z
′
i, . . . , zn)

≤ E
σi

sup
f∈F

 1

n

n∑
j=1

σjf(zj)

− sup
f∈F

 1

n

n∑
j=1,j 6=i

σjf(zj)

+
1

n
σif(z′i)

 (4.84)

≤ E
σi

[
sup
f∈F

(
1

n
σi(f(zi)− f(z′i))

)]
(4.85)

≤ 1

n
, (4.86)

since the term inside the sup is always upper bounded by 1. We can thus apply McDiarmid’s Inequality
with parameters c1 = · · · = cn = 1/n:

Pr [g̃ − E[g̃] ≥ ε] ≤ exp(−2nε2), and Pr [g̃ − E[g̃] ≤ −ε] ≤ exp(−2nε2). (4.87)

Step 4: We set δ such that exp(−2nε2) = δ/2. (This implies that ε =
√

log(2/δ)
2n .) Then, with probability

≥ 1− δ,

sup
f∈F

[
1

n

n∑
i=1

f(zi)− E[f ]

]
= g ≤ E[g] + ε (Step 1) (4.88)

≤ 2Rn(F) + ε (Step 2) (4.89)

≤ 2(RS(F) + ε) + ε (Step 3) (4.90)

= 2RS(F) + 3ε, (4.91)

as required.

Setting F to be a family of loss functions bounded by [0, 1] in Theorem 4.18 gives the following corollary:

Corollary 4.19. Let F be a family of loss functions F = {(x, y) 7→ `((x, y), h) : h ∈ H} with `((x, y), h) ∈
[0, 1] for all `, (x, y) and h. Then, with probability 1− δ, the generalization gap is

L̂(h)− L(h) ≤ 2RS(F) + 3

√
log(2/δ)

2n
for all h ∈ H. (4.92)

Remark 4.20. If we want to bound the generalization gap by the average Rademacher complexity instead,

we can replace the RHS of (4.92) with 2Rn(F) +
√

log(2/δ)
2n .

Interpretation of Corollary 4.19. It is typically the case that O

(√
log(2/δ)

n

)
� RS(F) and

O

(√
log(2/δ)

n

)
� Rn(F). This is the case because RS(F) and Rn(F) often take the form c√

n
where c
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is a big constant depending on the complexity of F , whereas we only have a logarithmic term in the nu-

merator of O

(√
log(2/δ)

n

)
. As a result, we can view the 3

√
log(2/δ)

n term in the RHS of Corollary 4.19 as

negligible. Another way of seeing this is noting that a Õ
(

1√
n

)
term is necessary even for the concentration

bound of a single function h ∈ H. Previously, we bounded L(h) − L̂(h) using a union bound over h ∈ H,

which necessarily needs to be larger than Õ
(

1√
n

)
. As a result, the O

(√
log(2/δ)

n

)
term is not significant.

4.5.1 Rademacher complexity is translation invariant

A useful fact is that both empirical Rademacher complexity and average Rademacher complexity are trans-
lation invariant. (This is not obvious when thinking of how translation affects the picture in Figure 4.3.)

Proposition 4.5.1. Let F be a family of functions mapping Z 7→ R and define F ′ = {f ′(z) = f(z) + c0 |
f ∈ F} for some c0 ∈ R. Then RS(F) = RS(F ′) and Rn(F) = Rn(F ′).

Proof. We will prove here that empirical Rademacher complexity is translation invariant.

RS(F ′) = E
σ1,...,σn

[
sup
f ′∈F ′

1

n

n∑
i=1

σif(zi)

]
(4.93)

= E
σ1,...,σn

[
sup
f∈F

1

n

n∑
i=1

σi(f(zi) + c0)

]
(4.94)

= E
σ1,...,σn

[
1

n

n∑
i=1

σic0 + sup
f∈F

1

n

n∑
i=1

σif(zi)

]
(4.95)

= E
σ1,...,σn

[
sup
f∈F

1

n

n∑
i=1

σif(zi)

]
= RS(F), (4.96)

where (4.96) follows because Eσ1,...,σn
1
n

∑n
i=1 σic0 = 0, since the σi’s are Rademacher random variables.

4.6 Covering number upper bounds Rademacher complexity

In Chapter 5, we will prove Rademacher complexity bounds that hinge on elegant, ad-hoc algebraic manip-
ulations that may not extend to more general settings. Here, we consider a more fundamental approach for
proving empirical Rademacher complexity bounds based on coverings of the output space. The trade-off is
generally more tedium.

The first important observation is that for purposes of computing the empirical Rademacher complexity
on samples z1, . . . , zn,

RS(F) = E
σ

[
sup
f∈F

1

n

n∑
i=1

σif(zi)

]
, (4.97)

we only care about the output of function f ∈ F , and not the function itself (i.e. it is sufficient for
our purposes to know f(z1), . . . , f(zn), but not know f). In other words, we can characterize f ∈ F by
f(z1), . . . , f(zn). In the sequel, we will take advantage of this simplification from the (potentially large)
space of all functions F to the output space,

Q ,
{(
f(z1), . . . , f(zn)

)>
: f ∈ F

}
⊆ Rn, (4.98)
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which may be drastically smaller than F . Correspondingly, the empirical Rademacher complexity can be
rewritten as a maximization over the output space Q instead of the function space F :

RS(F) = E
σ

[
sup
v∈Q

1

n
〈σ, v〉

]
. (4.99)

In other words, the complexity of F can be also interpreted as how much the vectors in Q can be correlated
with a random vector σ. See Figure 4.3 for an illustration of this idea. One can also view Eσ

[
supv∈Q

1
n 〈σ, v〉

]
as a complexity measure for the set Q. If we replace σ by a Gaussian vector with spherical covariance, then
the corresponding quantity (without the 1

n scaling), Eg∼N(0,I)

[
supv∈Q 〈g, v〉

]
, is often referred to as the

Gaussian complexity of the set Q. (It turns out that Gaussian complexity and Rademacher complexity are
closely related.)

Another corollary of this is that the empirical Rademacher complexity only depends on the functionality
of F but not on the exact parameterization of F . For example, suppose we have two parameterizations
F =

{
f(x) =

∑
θixi | θ ∈ Rd

}
and F ′ =

{
f(x) =

∑
θ3
i · wixi | θ ∈ Rd, w ∈ Rd

}
. Since QF and QF ′ are the

same, we see that RS(F) = RS(F ′) since our earlier expression for RS(F) only depends on F through QF .

Figure 4.3: We can view empirical Rademacher complexity as the expectation of the maximum inner product
between σ and v ∈ Q.

Rademacher complexity of finite hypothesis classes. In practice, we cannot directly evaluate the
Rademacher complexity, so we instead bound its value using quantities that are computable. Given finite
|Q|, we often rely on the following bound, which is also known as Massart’s finite lemma:

Proposition 4.6.1. Let F be a collection of functions mapping Z 7→ R and let Q be defined as in (4.98).
Assume that 1√

n
‖v‖2 ≤M <∞ for all v ∈ Q. Then,

RS(F) ≤
√

2M2 log |Q|
n

(4.100)

We prove a (slightly) simplified version of this result in Problem 3(c) of Homework 2, so we omit the
proof of Massart’s lemma here. Using Massart’s lemma, we can also bound the Rademacher complexity in
terms of F . Restating the assumption accordingly,
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Corollary 4.21. Let F be a collection of functions mapping Z 7→ R. If
√

1
n

∑n
i=1 f(zi)2 ≤M for all f ∈ F ,

then

RS(F) ≤
√

2M2 log |F|
n

. (4.101)

Note that Corollary 4.21 yields a looser bound than Massart’s lemma since |Q| ≤ |F|.
In practice, we rarely apply Massart’s lemma directly since |Q| is typically infinite. In the sequel, we

discuss alternative approaches to bounding the Rademacher complexity that are appropriate for this setting.

Bounding Rademacher complexity using ε-covers. When |Q| is infinite, we can apply the same
discretization trick that we used to prove the generalization bound for an infinite-hypothesis space. This
time, instead of trying to cover the parameter space, we will cover the output space. To this end, we first
recall a few definitions concerning ε-covers.

Definition 4.22. C is an ε-cover of Q with respect to metric ρ if for all v′ ∈ Q, there exists v ∈ C such that
ρ(v, v′) ≤ ε.

Definition 4.23. The covering number is defined as the minimum size of an ε-cover, or explicitly:

N(ε,Q, ρ)
4
= (min size of ε-cover of Q w.r.t. metric ρ). (4.102)

Figure 4.4: We can visualize the ε-cover C by depicting a set of ε-balls that cover the output space Q. The
yellow circles denote the ε-neighborhoods of the covering points ui ∈ C.

In subsequent derivations, we will use the metric ρ(v, v′) = 1√
n
‖v − v′‖2.

Remark 4.24. We normalize the `2 norm in ρ by 1√
n

to simplify comparisons to the functional analysis view

of the Rademacher complexity. In the literature, the ε-cover of Q defined above is also referred to as an
ε-cover of the function class F under the L2(Pn) metric.2 In particular,

L2(Pn)(f, f ′) =

√√√√ 1

n

n∑
i=1

(f(zi)− f ′(zi))2. (4.103)

2Pn denotes the empirical distribution, i.e. the uniform distribution over the observations z1, . . . , zn. More generally the

Lp(Q) metric is defined by EQ [(f(z)− f ′(z))p]1/p.
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Recall we have established the following correspondences between the set of functions F and the output
space Q:

f ∈ F ⇐⇒

f(z1)
...

f(zn)

 ∈ Q (4.104)

We can write a trivial correspondence between both the output and function class points of view as
follows:

N(ε,F , L2(Pn)) = N

(
ε,Q, 1√

n
|| · ||2

)
(4.105)

The results below will be stated in the function-space notation, but in the proofs we will shift to the Q-
formulation for the sake of clarity. In general, we prefer to reason about covering numbers on Q as it is more
natural to analyze vector spaces compared to function spaces.

Equipped with the definition of minimal ε-covers, we can prove the following Rademacher complexity
bound:

Theorem 4.25. Let F be a family of functions Z 7→ [−1, 1]. Then

RS(F) ≤ inf
ε>0

(
ε+

√
2 logN(ε,F , L2(Pn))

n

)
. (4.106)

The ε term can be thought of as the discretization error, while the second term is the Rademacher
complexity of the finite ε-cover. The precise form of this complexity bound follows from Proposition 4.6.1.

Proof. Fix any ε > 0. Let C be the minimal ε-cover of Q with respect to the metric ρ(v, v′) = 1√
n
‖v − v′‖2.

Note that |C| = N(ε,Q, 1√
n
‖ · ‖2) = N(ε,F , L2(Pn)).

We aim to bound RS(F) = Eσ[supv∈Q
1
n 〈v, σ〉] by approximating v with v′ ∈ C. In particular, for every

point v ∈ Q, choose v′ ∈ C such that ρ(v, v′) ≤ ε and z is small (specifically, 1√
n
‖z‖2 ≤ ε). This gives

1

n
〈v, σ〉 =

1

n
〈v′, σ〉+

1

n
〈v − v′, σ〉 (4.107)

≤ 1

n
〈v′, σ〉+

1

n
‖z‖2‖σ‖2 (z

∆
= v − v′, Cauchy-Schwarz) (4.108)

≤ 1

n
〈v′, σ〉+ ε. (since ‖z‖2 ≤

√
nε and ‖σ‖2 ≤

√
n) (4.109)

Taking the expectation of the supremum on both sides of this inequality gives

RS(F) = E
σ

[
sup
v∈Q

1

n
〈v, σ〉

]
(4.110)

≤ E
σ

[
sup
v′∈C

(
1

n
〈v′, σ〉+ ε

)]
(4.111)

= ε+ E
σ

[
sup
v′∈C

(
1

n
〈v′, σ〉

)]
(4.112)

≤ ε+

√
2 log |C|

n
(Proposition 4.6.1) (4.113)

= ε+

√
2 logN(ε,Q, ρ)

n
(4.114)

= ε+

√
2 logN(ε,F , L2(Pn))

n
(Remark 4.24) (4.115)
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Since the argument above holds for any ε > 0, we can take the infimum over all ε to arrive at Equation
(4.106).

4.6.1 Chaining and Dudley’s theorem

While Theorem 4.25 is useful, the bound in (4.108) is rarely tight as z might not be perfectly correlated
with σ. It is possible to obtain a stronger theorem by constructing a chained ε-covering scheme. Specifically,
when we decompose v = v′ + z, we can construct a finer-grained covering of the ball B(v′, ε), and then we
can decompose z into smaller components and so on (see Figure 4.5 for an illustration).

Using this method of chaining, we can obtain the following (stronger) result:

Theorem 4.26 (Dudley’s Theorem). If F is a function class from Z 7→ R, then

RS(F) ≤ 12

∫ ∞
0

√
logN(ε,F , L2(Pn))

n
dε. (4.116)

Note that unlike in Theorem 4.25, we do not require f ∈ F to be bounded.
It is not obvious how (4.116) improves upon the one-step discretization bound given by (4.106). At a high

level, we can interpret this bound as removing the discretization error term by averaging over different scales
of ε. But before we can explicitly prove this claim, we motivate our approach. In the proof of Theorem 4.25,
we approximated v with v′ + z where v′ is the closest point to v in the minimal ε-cover of Q, and z is the
vector between v′ and v. In particular,

1

n
〈v, σ〉 =

1

n
〈v′, σ〉+

1

n
〈z, σ〉 (4.117)

Then, to obtain a bound, we take a sup of both sides, but apply the sup separately to each term on the right
hand side. Namely, we show that:

E
[
sup
v

1

n
〈v, σ〉

]
≤ E

[
sup
v′∈C

1

n
〈v′, σ〉

]
+ E

[
sup
z∈Bv′

1

n
〈z, σ〉

]
(4.118)

This bound follows by observing that E[sup(A+B)] ≤ E[supA]+E[supB] since the sup on the RHS is taken
separately over both terms. The difficult term to tightly bound is the last one, 1

n 〈z, σ〉. In the previous
derivation, we naively upper bounded 〈z, σ〉 using Cauchy-Schwarz,

1

n
〈z, σ〉 ≤ ‖z‖2 · ‖σ‖2

n
, (4.119)

but this bound is only tight if there exists z ∈ Bv′ that is perfectly correlated with σ. We claim that such
perfect correlation is unlikely. Recall that the output space is defined by possible outputs of f ∈ F given n
inputs. Unless our function class is extremely expressive, the set of radius ε around v′ contained in Q will

only be a small subset of the ε-ball centered at v′; thus, supz
1
n 〈z, σ〉 �

‖z‖2·‖σ‖2
n .

To precisely set up our approach, we observe that E[supz∈Bv′
1
n 〈z, σ〉] is itself a Rademacher complexity:

RS(Bv′∩Q). To more tightly bound E
[
supz∈Bv′

1
n 〈z, σ〉

]
, we then repeat the ε-covering argument again with

a smaller choice of ε. Intuitively, this procedure amounts to decomposing 〈z, σ〉 from (4.117) into another
pair of terms corresponding to the new ε-cover and the discretization error. “Chaining” then repeats this
decomposition countably many times. This procedure is illustrated visually by Figure 4.5, and we formalize
this argument in the sequel.

Proof. Let ε0 = supf∈F maxi |f(zi)|, so that for all v ∈ Q,

ε0 ≥

√√√√ 1

n

n∑
i=1

f(zi)2 =

√
1

n
‖v‖22. (4.120)
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(a) (b)

(c)

Figure 4.5: We depict how the chaining procedure approximates v using a sequence of progressively finer
discretizations. Figure 4.5a illustrates how we first approximate v using the nearest covering point u1, while
Figures 4.5b and 4.5c describe how we refine this approximation using two finer covers, whose nearest points
are denoted by u2 and u3, respectively.

Define εj = 2−jε0 and let Cj be an εj-cover of Q. Then, C0 is the coarsest cover of Q, and as j increases,
we obtain progressively more fine-grained covers Cj . We can intuitively think of these covers as nested, but
this is not necessary for the proof to hold. We next use this sequence of covers to define a telescoping series
that equals v; the terms in this series can then be analyzed using the tools that we have developed in the
prequel.

For v ∈ Q, let ui denote the nearest neighbor of v in Ci. Note that by definition ρ(u, vj) ≤ εj . Taking
u0 = 0, it follows from our definition of Ci that as j →∞, εj → 0 and uj → v. Leveraging these observations,
we can express v using the following series:

v = u1 + (u2 − u1) + (u3 − u2) + · · · (4.121)

= (u1 − u0) + (u2 − u1) + (u3 − u2) + · · · (4.122)

=

∞∑
i=1

(ui − ui−1). (4.123)
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Substituting (4.123) in the Rademacher complexity we aim to bound, we obtain

E
[

sup
v∈Q

1

n
〈v, σ〉

]
= E

[
sup
v∈Q

1

n

∞∑
i=1

〈ui − ui−1, σ〉

]
(4.124)

≤ E

[ ∞∑
i=1

sup
ui∈Ci,ui−1∈Ci−1

1

n
〈ui − ui−1, σ〉

]
(4.125)

=

∞∑
i=1

E

[
sup

ui∈Ci,ui−1∈Ci−1

1

n
〈ui − ui−1, σ〉

]
. (4.126)

Observe that

E

[
sup

ui∈Ci,ui−1∈Ci−1

1

n
〈ui − ui−1, σ〉

]
(4.127)

is a Rademacher complexity defined over the finite space Ci×Ci−1, so we can use Proposition 4.6.1 (Massart’s
lemma) to obtain a tractable upper bound. To do so, we must first compute an upper bound on 1√

n
‖ui −

ui−1‖2:

1√
n
‖ui − ui−1‖2 =

1√
n
‖(ui − v)− (ui−1 − v)‖2 (4.128)

≤ 1√
n

(‖ui − v‖2 − ‖ui−1 − v‖2) (4.129)

≤ εi + εi−1 (4.130)

= 3εi (εi−1
∆
= 2εi) (4.131)

Now we apply Proposition 4.6.1 with M = 3εi and |Q| = |Ci × Ci−1| ≤ |Ci| · |Ci−1|.

E

[
sup

ui∈Ci,ui−1∈Ci−1

1

n
〈ui − ui−1, σ〉

]
≤
√

2(3εi)2 log(|Ci| · |Ci−1|)
n

(4.132)

=
3εi√
n

√
2(log |Ci|+ log |Ci−1|) (4.133)

≤ 6εi√
n

√
log |Ci| (|Ci| ≥ |Ci−1|) (4.134)

Applying (4.134) to each term in (4.126) and substituting the covering number N(εi,F , L2(Pn)) for |Ci|,
we obtain the following upper bound on the Rademacher complexity:

E
[

sup
v∈Q

1

n
〈v, σ〉

]
≤
∞∑
i=1

6εi√
n

√
logN(εi,F , L2(Pn)). (4.135)

Finally, we must relate (4.135) to the target upper bound of 12
∫

1√
n

√
logN(ε,F , L2(Pn))dε. Examining

Figure 4.6, we can make two crucial observations. First, for sufficiently large ε, logN(ε,F , L2(Pn)) = 0 since
one point is sufficient to construct a cover. Second, we observe that

(εi − εi+1)
√

log |Ci| ≤
∫ εi

εi+1

√
logN(ε,F , L2(Pn))dε (4.136)

since the LHS of (4.136) is the area of the dotted rectangle illustrated in Figure 4.6 while the RHS is the
area under the curve for that interval. Formally, this result is equivalent to observing that the right Riemann
sum underestimates the integral for monotone decreasing functions f .
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Figure 4.6: We observe that logN(ε,F , L2(Pn)) is monotone decreasing in ε. The area of the dotted rectangle
formed by the vertical lines at εi+1 and εi equals (up to a constant factor) the i−th term of the infinite sum
derived in our proof of Dudley’s theorem (4.135). The figure shows that the area of this rectangle is no larger
than the integral of logN(ε,F , L2(Pn)) over this same interval.

Recognizing that εi− εi+1 = εi
2 , we note that the LHS of (4.136) is equal (up to a constant factor) to the

i-th term of (4.135). Thus,

∞∑
i=1

6εi√
n

√
logN(εi,F , L2(Pn)) =

12√
n

∞∑
i=1

(εi − εi+1)
√

logN(εi,F , L2(Pn)) (4.137)

≤ 12√
n

∫ εi

εi+1

√
logN(εi,F , L2(Pn))dε (4.138)

=
12√
n

∫ ε0

0

√
logN(ε,F , L2(Pn))dε. (4.139)

To complete the proof, observe that logN(ε,F , L2(Pn)) = 0 for all ε > ε0. This allows us to extend the
upper limit of the integral given by (4.139) to ∞ and yields the desired result:

E
[

sup
v∈Q

1

n
〈v, σ〉

]
≤ 12√

n

∫ ∞
0

√
logN(ε,F , L2(Pn))dε. (4.140)

Remark 4.27. If F consists of functions bounded in [−1, 1], then we have that for all ε > 1, N(ε,F , L2(Pn)) =
1. To see this, choose {f ≡ 0}, which is a complete cover for ε > 1. Hence, the limits of integration in
(4.116) can be truncated to [0, 1]:

RS(F) ≤ 12

∫ 1

0

√
logN(ε,F , L2(Pn))

n
dε, (4.141)

since logN(ε,F , L2(Pn)) = 0 for ε > 1.
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4.6.2 Translating Covering Number Bounds to Rademacher Complexity

Of course, the bound in (4.116) is only useful if the integral on the RHS is finite. Here are some setups where
this is the case (we continue to assume that the functions in F are bounded in [−1, 1]):

1. If after ignoring multiplicative and additive constants,

N(ε,F , L2(Pn)) ≈ (1/ε)R, (4.142)

then we have logN(ε,F , L2(Pn)) ≈ R log(1/ε). We can plug this into the RHS of (4.116) to get∫ 1

0

√
logN(ε,F , L2(Pn))

n
dε =

∫ 1

0

√
R log(1/ε)

n
dε ≈

√
R

n
. (4.143)

2. If after ignoring multiplicative and additive constants, for some a,

N(ε,F , L2(Pn)) ≈ aR/ε, (4.144)

then we have logN(ε,F , L2(Pn)) ≈ R
ε log a. The bound in (4.116) becomes

∫ 1

0

√
logN(ε,F , L2(Pn))

n
dε ≈

∫ 1

0

√
R

nε
log a dε (4.145)

=

√
R

n
log a

∫ 1

0

√
1

ε
dε (4.146)

= Õ

(√
R

n

)
. (4.147)

3. If the covering number has the form N(ε,F , L2(Pn)) ≈ aR/ε
2

, then logN(ε,F , L2(Pn)) ≈ R
ε2 log a. In

this case we have:

∫ 1

0

√
logN(ε,F , L2(Pn))

n
dε ≈

√
R

n
log a

∫ 1

0

1

ε
dε︸ ︷︷ ︸

=∞

=∞, (4.148)

i.e. the bound in (4.116) is vacuous. This is because of the behavior of ε 7→ 1/ε2 near 0: the function
goes to infinity too quickly for us to upper bound its integral. Fortunately, there is an “improved”
version of Dudley’s theorem that is applicable here:

Theorem 4.28 (Localized Dudley’s Theorem). If F is a function class from Z 7→ R, then for any
fixed cutoff α ≥ 0 we have the bound

RS(F) ≤ 4α+ 12

∫ ∞
α

√
logN(ε,F , L2(Pn))

n
dε. (4.149)

The proof of this theorem is similar to the proof of the original Dudley’s theorem, except that the
iterative covering procedure is stopped at the threshold ε = α at the cost of the extra 4α term above.
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Theorem 4.28 allows us to avoid the problematic region around ε = 0 in the integral in (4.116). If we
let α = 1/poly(n), where poly(n) denotes some polynomial function of n, the bound in (4.149) becomes

RS(F) ≤ 1

poly(n)
+

√
R log a√
n

∫ 1

α

1

ε
dε (4.150)

=
1

poly(n)
+

√
R log a√
n

log(1/α) (4.151)

= Õ

(√
R

n

)
. (4.152)

The last line follows by observing that log(1/α) = log poly(n).

In summary, we have that RS(F) ≤ Õ
(√

R
n

)
for covering numbers of the form R log(1/ε),Rε log a, or

R
ε2 log a for some a. Note that if the dependence on ε is 1/εc for c > 2, then even the improved Dudley’s

theorem does not help us. This is because the log(1/α) term above becomes α1−c/2; then, for α = 1/poly(n),

the second term in Dudley’s integral is no longer Õ
(√

R
n

)
.

4.6.3 Lipschitz composition

Covering numbers also interact nicely with composition by Lipschitz functions. The following result is the
analog of Talagrand’s lemma for Rademacher complexity (Lemma 5.3), but its proof is much more elementary
as given below. We will use this Lemma in Section 5.5 when bounding the covering number of deep nets.

Lemma 4.29. Suppose φ is κ-Lipschitz, and ρ = L2(Pn). Then,

logN(ε, φ ◦ F , ρ) ≤ logN(ε/κ,F , ρ) (4.153)

Proof. Let C denote an ε/κ-cover for F . Then φ ◦ C is an ε-cover of φ ◦ F .

ρ(φ ◦ f ′, φ ◦ f) =

√
1

n

∑
(φ(f ′(zi))− φ(f(zi)))2 (4.154)

≤
√

1

n
· κ2

∑
(f ′(zi)− f(zi))2 (4.155)

≤ κ · ε
κ

= ε (4.156)

4.7 VC dimension and its limitations

In this section, we briefly discuss a classical notion of complexity measure of function class, VC dimension. We
will show that VC dimension is an upper bound on the Rademacher complexity. We will focus on classification
and will be working within the framework of supervised learning stated in Chapter 1. The labels belong to
the output space Y = {−1, 1}, each classifier is a function h : X → R for all h ∈ H, and the prediction is the
sign of the output, i.e. ŷ = sgn(h(x)). We will look at zero-one loss, i.e. `0-1((x, y), h) = 1(sgn(h(x)) 6= y).
Note that we can re-express the loss function as

`0-1((x, y), h) =
1− sgn(h(x))y

2
. (4.157)

The first approach is to reason directly about the Rademacher complexity of `0-1 loss, i.e. considering the
family of functions F = {z = (x, y) 7→ `0-1((x, y), h) : h ∈ H}. Define Q to be the set of all possible outputs
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on our dataset: Q =
{(

sgn
(
h
(
x(1)

))
, . . . , sgn

(
h
(
x(n)

)))
| h ∈ H

}
. Then, using our earlier remark about

viewing the empirical Rademacher complexity as an inner product between v ∈ Q and σ, we have

RS(F) = E
σ1,...,σn

[
sup
f∈F

1

n

n∑
i=1

σi
1− sgn(h(x(i)))yi

2

]
(4.158)

= E
σ1,...,σn

[
sup
f∈F

1

n

n∑
i=1

σi
sgn(h(x(i)))

2

]
(4.159)

=
1

2
E

σ1,...,σn

[
sup
v∈Q

1

n
〈σ, v〉

]
. (4.160)

Notice that the supremum is now over Q instead of F . If n is sufficiently large, then it is typically the
case that |Q| > |F|. To see why this is the case, note that each function f corresponds to a single element
in Q. However, as n increases, |Q| increases as well. For any particular v ∈ Q, notice that 〈v, σ〉 is a sum of
bounded random variables, so we can use Hoeffding’s inequality to obtain

Pr

[
1

n
〈σ, v〉 ≥ t

]
≤ exp(−nt2/2). (4.161)

Taking the union bound over v ∈ Q, we see that

Pr

[
∃v ∈ Q such that

1

n
〈σ, v〉 ≥ t

]
≤ |Q| exp(−nt2/2). (4.162)

Thus, with probability at least 1− δ, it is true that supv∈Q
1
n 〈v, σ〉 ≤

√
2(log |Q|+log(2/δ))

n . Similarly, we can

show that E
[
supv∈Q

1
n 〈v, σ〉

]
≤ O

(√
log |Q|+log(2/δ)

n

)
holds.

The key point to notice here is that the upper bound on RS(F) depends on log |Q|. VC dimension is one
way that we deal with bounding the size of Q. We will not delve into the details of this approach (for those
interested, see Section 3.11 of [Liang, 2016]). VC dimension, however, has a number of limitations. For one,
we will always end up with a bound that depends somehow on the dimension. For linear models, we obtain
a bound log |Q| . d log n, corresponding to a bound on Rademacher complexity that looks like

RS(F) ≤ Õ

(√
d

n

)
, (4.163)

so we still have a
√
d term. This will not be a good bound for high-dimensional models. For general models,

we will arrive a bound of the form

RS(F) ≤ Õ

(√
# of parameters

n

)
. (4.164)

This upper bound only depends on the number of parameters in our model, and does not take into the
account the scale and norm of the parameters. Additionally, this doesn’t work with kernel methods since the
explicit parameterization is possibly infinite-dimensional, and therefore this upper bound becomes useless.

These limitations motivate the use of margin theory, which does take into account the norm of parameters
and provides a theoretical basis for regularization techniques such as L1 and L2 regularization.
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Chapter 5

Rademacher Complexity Bounds for
Concrete Models and Losses

In this chapter, we will instantiate Rademacher complexity for two important hypothesis classes: linear
models and two-layer neural networks. In the process, we will develop margin theory and use it to bound
the generalization gap for binary classifiers.

5.1 Margin theory for classification problems

5.1.1 Intuition

Assume that we are in the same setting as in the previous section. A fundamental problem we face in this
setting is that we do not have a continuous loss: everything is discrete in the output space. We need to
find a way to reason about the scale of the output. An example of this is logistic regression: the logistic
regression model outputs a probability, and when we compare it to the outcome (0 or 1), its closeness to the
true output gives us a measure of how confident we are in the prediction.

Figure 5.1 gives similar intuition for linear classifiers. Intuitively, the black line is a “better” decision
boundary than the red line because the minimum distance from any point to the black boundary is greater
than the minimum distance from any point to the red boundary. In the next section, we will formalize this
intuition by proving that the larger this margin is, the smaller the bound on the generalization gap is.

5.1.2 Formalizing margin theory

First, assume that the dataset D = ((x(1), y(1)), . . . , (x(n), y(n))) is completely separable. In other words,
there exists some hθ ∈ H such that y(i) = sgn(hθ(x

(i))) holds for all (x(i), y(i)) ∈ D. This is not a necessary
condition for our final bound but will make the derivation cleaner.

Definition 5.1 ((Unnormalized) Margin). Fix the hypothesis hθ. The (unnormalized) margin for example
(x, y) is defined as margin(x) = yhθ(x). Margin is only defined on examples where sgn(hθ(x)) = y. (Note
that margin(x) ≥ 0 because of our assumption of complete separability.)

Definition 5.2 (Minimum margin). Given a dataset D = ((x(1), y(1)), . . . , (x(n), y(n))), the minimum margin
over the dataset is defined as γmin , mini∈{1,...,|D|} y

(i)hθ(x
(i)).

Our final bound will have the form (generalization gap) ≤ f(margin,parameter norm). This is very
generic since there are many different bounds we could derive based on what margin we use. For this current
setting we are using γmin, which is the minimum margin, but in other settings could use γaverage, which is
the average margin of each point in the dataset.
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Figure 5.1: The red and black lines are two decision boundaries. The X’s are positive examples and the
O’s are negative examples. The black line has a larger margin than the red line, and is intuitively a better
classifier.

We will begin by introducing the idea of a surrogate loss, a loss function which approximates zero-one
loss but takes the scale of the margin into account. The margin loss (also known as ramp loss) is defined as

`γ(t) =


0, t ≥ γ
1, t ≤ 0

1− t/γ, 0 ≤ t ≤ γ
(5.1)

Figure 5.2: Plotted margin loss.

It is plotted in Figure 5.2. For convenience, define `γ((x, y), h) , `γ(yh(x)). We can view `γ as a
continuous version of `0-1 that is more sensitive to the scale of the margin on [0, γ]. Notice that `0-1 is always
less than or equal to the `γ when γ ≥ 0, i.e.

`0-1((x, y), h) = 1[yh(x) < 0] ≤ `γ(yh(x)) = `γ((x, y), h) (5.2)

holds for all (x, y) ∼ P . Taking the expectation over (x, y) on both sides of this inequality, we see that

L(h) = E
(x,y)∼P

[`0-1((x, y), h)] ≤ E
(x,y)∼P

[`γ((x, y), h)] . (5.3)
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Therefore, the population loss is bounded by the expectation of the margin loss, and so it is sufficient to
bound the expectation of the margin loss in order to bound the population loss.

Define the population and empirical versions of the margin loss:

Lγ(h) = E
(x,y)∼P

[`γ((x, y), h)] , L̂γ(h) =

n∑
i=1

[
`γ((x(i), y(i)), h)

]
. (5.4)

By Corollary 4.19, we see that with probability at least 1− δ,

Lγ(h)− L̂γ(h) ≤ 2RS(F) + 3

√
log(2/δ)

2n
, (5.5)

where F = {(x, y) 7→ `γ((x, y), h) | h ∈ H}. Note that if we set γ ≤ γmin, then L̂γ(h) = 0. This follows
because by definition of γmin, y(i)h(x(i)) ≥ γmin for any (x(i), y(i)) ∈ D. As a result, `γ((x(i), y(i)), h) =
`γ(y(i)h(x(i))) = 0 holds. Therefore, it suffices to bound RS(F).

We will now use Talagrand’s lemma to bound RS(F) in terms of RS(H) to remove any dependence on
the loss function from the upper bound.

Lemma 5.3 (Talagrand’s lemma). Let φ : R→ R be a κ-Lipschitz function. Then

RS(φ ◦ H) ≤ κRS(H), (5.6)

where φ ◦ H = {z 7→ φ(h(z)) | h ∈ H}.

We can use Talagrand’s lemma directly with φ(t) = `γ(t), which is 1
γ -Lipschitz. We can express F as

F = `γ ◦ H′ where H′ = {(x, y)→ yh(x) | h ∈ H}. Applying Talagrand’s lemma, we see that

RS(F) ≤ 1

γ
RS(H′) (5.7)

=
1

γ
E

σ1,...,σn

[
sup
h∈H

1

n

n∑
i=1

σiy
(i)h(x(i))

]
(5.8)

=
1

γ
E

σ1,...,σn

[
sup
h∈H

1

n

n∑
i=1

σih(x(i))

]
(5.9)

=
1

γ
RS(H). (5.10)

Putting this all together, we have shown that for γ = γmin,

L0-1(h) ≤ Lγ(h) ≤ 0 +O

(
RS(H)

γ

)
+ Õ

(√
log(2/δ)

2n

)
(5.11)

= O

(
RS(H)

mini y(i)h(x(i))

)
+ Õ

(√
log(2/δ)

2n

)
. (5.12)

In other words, for training data of the form S = {(x(i), y(i))}ni=1 ⊂ Rd × {−1, 1}, a hypothesis class H
and 0-1 loss, we can derive a bound of the form

generalization loss ≤ 2RS(H)

γmin
+ low-order term, (5.13)

where γmin is the minimum margin achievable on S over those hypotheses in H that separate the data, and
RS(H) is the empirical Rademacher complexity of H. Such bounds state that simpler models will generalize
better beyond the training data, particularly for data that is strongly separable.
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Remark 5.4. Note there is a subtlety here. If we think of the dataset as random, it follows that γmin is a
random variable. Consequently, the γ we choose to define the hypothesis class is random, which is not a
valid choice when thinking about Rademacher complexity! Technically we cannot apply Talagrand’s lemma
with a random κ (which we took to be 1/γ). Also, when we use concentration inequalities, we implicitly
assume that the `γ((x(i), y(i)), h) are independent of each other. That is not the case if γ is dependent on
the data.

We sketch out how one might address this issue below. The main idea is to do another union bound
over γ. Choose a family Γ =

{
2k : k ∈ [−B,B]

}
for some B. Then, for every fixed γ ∈ Γ, with probability

greater than 1− δ,

L0-1(h) ≤ L̂γ(h) +O

(
RS(H)

γ

)
+ Õ

√ log 1
δ

n

 . (5.14)

Taking a union bound over all γ ∈ Γ, it further holds that for all γ ∈ (0, B),

L0-1(h) ≤ L̂γ(h) +O

(
RS(H)

γ

)
+ Õ

√ log 1
δ

n

+ Õ

(√
logB

n

)
. (5.15)

Last, choose the largest γ ∈ Γ such that γ ≤ γmin. Then, for this value of γ, our desired bound directly

follows from the bound in (5.15). Namely, we have that L̂γ(h) = 0 and O
(
RS(H)
γ

)
= O

(
RS(H)
γmin

)
. The

additional term, Õ

(√
logB
n

)
, is the price exacted by the uniform convergence argument required to correct

the heuristic bound given in (5.13).

5.2 Linear models

5.2.1 Linear models with weights bounded in `2 norm

We begin with the Rademacher complexity of linear models using weights with bounded `2 norm.

Theorem 5.5. Let H = {x 7→ 〈w, x〉 | w ∈ Rd, ‖w‖2 ≤ B} for some constant B > 0. Moreover, assume

Ex∼P
[
‖x‖22

]
≤ C2, where P is some distribution and C > 0 is a constant. Then

RS(H) ≤ B

n

√√√√ n∑
i=1

∥∥x(i)
∥∥2

2
, (5.16)

and

Rn(H) ≤ BC√
n
. (5.17)

Generally speaking, there are two methods with which we can bound the Rademacher complexity of a
model. The first method, which we used in Chapter 4, consists of discretizing the space of possible outputs
from our hypothesis class, then using a union bound or covering number argument to bound the Rademacher
complexity of the model. While this method is powerful and generally applicable, it yields bounds that
depend on the logarithm of the cardinality of this discretized output space, which in turn depends on the
number of data points n. In the proof below, we will instead use a more elegant, albeit limited technique
which does not rely on discretization of the output space.
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Proof. We start with the proof of (5.16). By definition,

RS(H) = E
σ

[
sup
‖w‖2≤B

1

n

n∑
i=1

σi

〈
w, x(i)

〉]
(5.18)

=
1

n
E
σ

[
sup
‖w‖2≤B

〈
w,

n∑
i=1

σix
(i)

〉]
(5.19)

=
B

n
E
σ

[∥∥∥∥∥
n∑
i=1

σix
(i)

∥∥∥∥∥
2

]
(sup‖w‖2≤B〈w, v〉 = B ‖v‖2) (5.20)

≤ B

n

√√√√√E
σ

∥∥∥∥∥
n∑
i=1

σix(i)

∥∥∥∥∥
2

2

 (Jensen’s ineq. for α 7→ α2) (5.21)

=
B

n

√√√√√E
σ

 n∑
i=1

σ2
i

∥∥x(i)
∥∥2

2
+

〈
σix(i),

n∑
j 6=i

σjx(j)

〉 (5.22)

=
B

n

√√√√ n∑
i=1

∥∥x(i)
∥∥2

2
. (σi indep. and E[σi] = 0) (5.23)

This completes the proof of (5.16) for the empirical Rademacher complexity. The bound on the average
Rademacher complexity in (5.17) follows from taking the expectation of both sides to get

Rn(H) = E [RS(H)] =
B

n
E

√√√√ n∑
i=1

∥∥x(i)
∥∥2

2

 ≤ B

n

√√√√ n∑
i=1

E
[∥∥x(i)

∥∥2

2

]
≤ BC√

n
, (5.24)

where the first inequality is another application of Jensen’s inequality, and the second follows from the

assumption Ex∼P
[
‖x‖22

]
≤ C2.

We observe that both the empirical and average Rademacher complexities scale with the upper `2-norm
bound ‖w‖2 ≤ B on the parameters w, which motivates regularizing the model. However, smaller weights
in the model may reduce the margin γmin, which in turn hurts generalization according to (5.13).

Remark 5.6. Note that if we scale the data by some multiplicative factor, the bound on empirical Rademacher
complexity RS(H) will scale accordingly. However, at the same time, we expect the margin to scale by the
same multiplicative factor, so the bound on the generalization gap in (5.13) does not change. This lines up
with our intuition that the bound should not depend on the scaling of the data.

5.2.2 Linear models with weights bounded in `1 norm

Now, we consider linear models again, except we restrict the `1-norm of the parameters and assume an
`∞-norm bound on the data.

Theorem 5.7. Let H =
{
x 7→ 〈w, x〉 | w ∈ Rd, ‖w‖1 ≤ B

}
for some constant B > 0. Moreover, assume∥∥x(i)

∥∥
∞ ≤ C for some constant C > 0 and all points in S = {x(i)}ni=1 ⊂ Rd. Then

RS(H) ≤ BC
√

2 log(2d)

n
. (5.25)

To prove the theorem, we will need Massart’s lemma, which provides a bound for the Rademacher
complexity of a finite hypothesis class.
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Lemma 5.8 (Massart’s lemma). Suppose Q ⊂ Rn is finite and contained in the `2-norm ball of radius M
√
n

for some constant M > 0, i.e.,
Q ⊂ {v ∈ Rn | ‖v‖2 ≤M

√
n}. (5.26)

Then, for Rademacher variables σ = (σ1, σ2, . . . , σn) ∈ Rn,

E
σ

[
sup
v∈Q

1

n
〈σ, v〉

]
≤M

√
2 log |Q|

n
. (5.27)

As a corollary, if F is a set of real-valued functions satisfying

sup
f∈F

1

n

n∑
i=1

f(z(i))2 ≤M2, (5.28)

over some data S = {z(i)}ni=1, then

RS(F) ≤M
√

2 log |F|
n

, and Rn(F) ≤M
√

2 log |F|
n

. (5.29)

We will not prove Massart’s lemma in detail. The intuition is to use concentration inequalities to bound
1
n 〈σ, v〉 for fixed v, then to use a union bound over the elements v ∈ Q.

We will now prove Theorem 5.7:

Proof of Theorem 5.7. By definition,

RS(H) = E
σ

[
sup
‖w‖1≤B

1

n

n∑
i=1

σi

〈
w, x(i)

〉]
(5.30)

=
1

n
E
σ

[
sup
‖w‖1≤B

〈
w,

n∑
i=1

σix
(i)

〉]
(5.31)

=
B

n
E
σ

[∥∥∥∥∥
n∑
i=1

σix
(i)

∥∥∥∥∥
∞

]
, (5.32)

where the last equality is because sup‖w‖1≤B 〈w, v〉 = B ‖v‖∞, i.e., the `∞-norm is the dual of the `1-
norm, which is a consequence of Hölder’s inequality. However, the `∞-norm is difficult to simplify further.
Instead, we use the fact that sup‖w‖1≤1 〈w, v〉 for any v ∈ Rd is always attained at one of the vertices

W =
⋃d
i=1{−ei, ei}, where ei ∈ Rd is the i-th coordinate unit vector. Defining the restricted hypothesis

class H̄ = {x 7→ 〈w, x〉 | w ∈ W} ⊂ H, this yields

RS(H) =
1

n
E
σ

[
sup
‖w‖1≤B

〈
w,

n∑
i=1

σix
(i)

〉]
(5.33)

=
B

n
E
σ

[
max
w∈W

〈
w,

n∑
i=1

σix
(i)

〉]
(5.34)

= BRS(H̄). (5.35)

In particular, the model class H̄ is bounded and finite with cardinality |H̄| = 2d. This suggests using
Massart’s lemma to complete the proof. To do so, we need to confirm that H̄ is bounded with respect to the
`2-metric. Indeed, since the inner product of x(i) with a coordinate vector ej just selects the j-th coordinate
of x(i), for any w ∈ W we have

1

n

n∑
i=1

〈
w, x(i)

〉2

≤ 1

n

n∑
i=1

∥∥∥x(i)
∥∥∥2

∞
≤ 1

n

n∑
i=1

C2 = C2, (5.36)
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where the last inequality uses the assumption ‖xi‖∞ ≤ C. So H̄ is bounded in the `2-metric and finite, thus
by Massart’s Lemma we have

RS(H) = BRS(H̄) ≤ BC
√

2 log |H̄|
n

= BC

√
2 log(2d)

n
, (5.37)

which completes the proof.

5.2.3 Comparing the bounds for different H
First, we note that for this hypothesis class of linear models, it is possible to obtain an upper bound
proportional to

√
d/n using the VC dimension, which grows quickly with the data dimension d. Our bound

is better since it does not have as strong of a dependence on d, and accounts for the norms of our model
parameters and the data.

In the two subsections above, we considered two different hypothesis classes of linear models, each re-
stricting different norms. In both cases, the bound on the average Rademacher complexity depended on the
product of the norm bound on the parameters w and the norm bound on each data point x. To determine
which choice of hypothesis class is better, consider the bounds

‖w‖2 ‖x‖2 vs. ‖w‖1 ‖x‖∞
and see how they compare in different settings. We consider 3 settings here:

• Suppose w and x are random variables with wi and xi close to the set of values {−1, 1}. Then we have
√
d ·
√
d vs. d · 1.

In this case, there is no difference in using either linear hypothesis class.

• If we additionally suppose w is sparse with at most k non-zero entries, then we have
√
k ·
√
d vs. k · 1.

So for d � k, we have
√
kd � k and thus `1-norm regularization leads to a better complexity bound

when w is suspected to be sparse. Indeed,
√
d ‖x‖∞ ≈ ‖x‖2 when the entries of x are somewhat

uniformly distributed, and so in the sparse case we have

‖w‖2 ‖x‖2 ≥
√
d ‖w‖2 ‖x‖∞ ≥ ‖w‖1 ‖x‖∞ . (5.38)

• On the other hand, if w is dense in the sense that ‖w‖2 ≈
√
d ‖w‖1 (i.e., if all entries in w are close to

each other in magnitude), then

‖w‖2 ‖x‖2 ≤
1√
d
‖w‖1 ·

√
d ‖x‖∞ ≤ ‖w‖1 ‖x‖∞ . (5.39)

In this case, it makes sense to regularize the `2-norm instead.

In practice, other multiplicative factors enter the generalization bound, so regularizing both the `1- and
`2-norms of the model parameters w is preferable.

Continuing with this rough style of analysis, for the hypothesis class with restricted `2-norm, we can
write the bound on the generalization gap in (5.13) as

generalization loss .
‖w‖2 ‖x‖2√

nγmin
+ low-order term. (5.40)

The presence of ‖w‖2 /γmin motivates both the minimum norm and the maximum margin formulations of
the Support Vector Machine (SVM) problem as good methods to improve generalization performance of
binary classifiers.
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5.3 Two-layer neural networks

We now compute a bound for the Rademacher complexity of two-layer neural networks. Throughout this
section, we use the following notation:

• θ = (w,U) are the parameters of the model with w ∈ Rm and U ∈ Rm×d, where m denotes the number
of hidden units. We use ui ∈ Rd to denote the i-th row of U (written as a column vector).

• φ(z) = max(z, 0) is the ReLU activation function applied element-wise.

• fθ(x) = 〈w, φ(Ux)〉 = w>φ(Ux) is the model.

• {(x(i), y(i))}ni=1 is the training set, with x(i) ∈ Rd and y(i) ∈ R.

We start with a somewhat weak bound which introduces the technical tools we need to derive tighter bounds
subsequently.

Theorem 5.9. For some constants Bw > 0 and Bu > 0, let

H = {fθ | ‖w‖2 ≤ Bw, ‖ui‖2 ≤ Bu, ∀i ∈ {1, 2, . . . ,m}} , (5.41)

and suppose E
[
‖x‖22

]
≤ C2. Then

Rn(H) ≤ 2BwBuC

√
m

n
. (5.42)

This bound is not ideal as it depends on the number of neurons m. Empirically, it has been found that
the generalization error does not increase monotonically with m. As more neurons are added to the model,
thereby giving it more expressive power, studies have shown that generalization is improved [Belkin et al.,
2019]. This contradicts the bound above, which states that more neurons leads to worse generalization. We
also note that the theorem can be generalized straightforwardly to the setting where the w and U are jointly
constrained in the sense that we set H = {fθ | ‖w‖2 · (maxi ‖ui‖2) ≤ B} and obtain the generalization bound
Rn(H) ≤ 2BC

√
m
n . However, the

√
m dependency still exists under this formulation of H. Nevertheless, we

now derive this bound.
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Proof. By definition,

RS(H) = E
σ

[
sup
θ

1

n

n∑
i=1

σi

〈
w, φ(Ux(i))

〉]
(5.43)

=
1

n
E
σ

[
sup

U :‖uj‖2≤Bu
sup

‖w‖2≤Bw

〈
w,

n∑
i=1

σiφ(Ux(i))

〉]
(5.44)

=
Bw
n

E
σ

[
sup

U :‖uj‖2≤Bu

∥∥∥∥∥
n∑
i=1

σiφ(Ux(i))

∥∥∥∥∥
2

]
(sup‖w‖2≤B 〈w, v〉 = B ‖v‖2) (5.45)

≤ Bw
√
m

n
E
σ

[
sup

U :‖uj‖2≤Bu

∥∥∥∥∥
n∑
i=1

σiφ(Ux(i))

∥∥∥∥∥
∞

]
(‖v‖2 ≤

√
m ‖v‖∞) (5.46)

=
Bw
√
m

n
E
σ

[
sup

U :‖uj‖2≤Bu
max

1≤j≤m

∣∣∣∣∣
n∑
i=1

σiφ(u>j x
(i))

∣∣∣∣∣
]

(5.47)

=
Bw
√
m

n
E
σ

[
sup

‖u‖2≤Bu

∣∣∣∣∣
n∑
i=1

σiφ(u>x(i))

∣∣∣∣∣
]

(5.48)

≤ 2Bw
√
m

n
E
σ

[
sup

‖u‖2≤Bu

n∑
i=1

σiφ(u>x(i))

]
(by Lemma 5.12) (5.49)

≤ 2Bw
√
m

n
E
σ

[
sup

‖u‖2≤Bu

n∑
i=1

σiu
>x(i)

]
, (5.50)

where the last inequality follows by applying the contraction lemma (Talagrand’s lemma) and observing that
the ReLU function is 1-Lipschitz. (Observe that the expectation in (5.49) is the Rademacher complexity for
{x 7→ φ(u>x) | ‖u‖2 ≤ Bu}: this is the family that we are applying the contraction lemma to.)

We now observe that the expectation in (5.50) is the Rademacher complexity of the family of linear
models {x 7→ 〈u, x〉 | ‖u‖2 ≤ Bu}. Thus, applying Theorem 5.7 yields

RS(H) ≤ 2Bw
√
m

n
Bu

√√√√ n∑
i=1

∥∥x(i)
∥∥2

2
. (5.51)

Taking the expectation of both sides and using similar steps to those in the proof of Theorem 5.7 gives
us

Rn(H) = E [RS(H)] (5.52)

≤ 2BwBu
√
m

n
E

√√√√ n∑
i=1

∥∥x(i)
∥∥2

2

 (5.53)

≤ 2BwBu
√
m

n
C
√
n (5.54)

= 2BwBuC

√
m

n
, (5.55)

which completes the proof.

This upper bound is undesirable since it grows with the number of neurons m, contradicting empirical
observations of the generalization error decreasing with m.
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5.3.1 Refined bounds

Next, we look at a finer bound that results from defining a new complexity measure. A recurring theme in
subsequent proofs will be the functional invariance of two-layer neural networks under a class of rescaling
transformations. The key ingredient will be the positive homogeneity of the ReLU function, i.e.

αφ(x) = φ(αx) ∀α > 0. (5.56)

This implies that for any λi > 0 (i = 1, . . . ,m), the transformation θ = {(wi, ui)}1≤i≤m 7→ θ′ =
{(λiwi, ui/λi)}1≤i≤m has no net effect on the neural network’s functionality (i.e. fθ = fθ′) since

wi · φ
(
u>i x

(i)
)

= (λiwi) · φ

((
ui
λi

)>
x(i)

)
. (5.57)

In light of this, we devise a new complexity measure C(θ) that is also invariant under such transformations
and use it to prove a better bound for the Rademacher complexity. This positive homogeneity property is
absent in the complexity measure used in the hypothesis class (5.41) of Theorem 5.9.

Theorem 5.10. LetC(θ) =
∑m
j=1 |wj | ‖uj‖2 , and for some constant B > 0 consider the hypothesis class

H = {fθ | C(θ) ≤ B} . (5.58)

If
∥∥x(i)

∥∥
2
≤ C for all i ∈ {1, . . . , n}, then

RS(H) ≤ 2BC√
n
. (5.59)

Remark 5.11. Compared to Theorem 5.9, this bound does not explicitly depend on the number of neurons m.
Thus, it is possible to use more neurons and still maintain a tight bound if the value of the new complexity
measure C(θ) is reasonable. In contrast, the bound of Theorem 5.9 explicitly grows with the total number
of neurons. In fact, Theorem 5.10 is strictly stronger than Theorem 5.9 as elaborated below. Note that∑

|wj |‖uj‖2 ≤
(∑

|wj |2
)1/2 (∑

‖uj‖22
)1/2

(by Cauchy-Schwarz inequality)

≤ ‖w‖2 ·
√
m ·max

j
‖uj‖2 (5.60)

Therefore, if we consider H1 = {fθ |
∑
|wj |‖uj‖2 ≤ B′} and H2 = {fθ | ‖w‖2 ·

√
m · maxj ‖uj‖2 ≤ B′},

then either Theorem 5.10 on H1 or Theorem 5.9 on H2 gives the same generalization bound O(B′/
√
n), but

H1 ⊃ H2.
Moreover, Theorem 5.10 is stronger as we have more neurons—this is because the hypothesis class H as

defined in (5.58) is bigger as m increases. Because of this, it’s possible to obtain a generalization guarantee
that decreases as m increases, as shown in Section 5.4.2.

Proof of Theorem 5.10. Due to the positive homogeneity of the ReLU function φ, it will be useful to define

the `2-normalized weight vector ūj
∆
= uj/‖uj‖2 so that φ

(
u>j x

)
= ‖uj‖2 ·φ(ū>j x). The empirical Rademacher

complexity satisfies

RS(H) =
1

n
E
σ

[
sup
θ

n∑
i=1

σifθ

(
x(i)
)]

(5.61)

=
1

n
E
σ

sup
θ

n∑
i=1

σi

 m∑
j=1

wjφ
(
uTj x

(i)
) (by dfn of fθ) (5.62)

=
1

n
E
σ

sup
θ

n∑
i=1

σi

 m∑
j=1

wj‖uj‖2φ
(
ūTj x

(i)
) (by positive homogeneity of φ) (5.63)
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=
1

n
E
σ

sup
θ

m∑
j=1

wj‖uj‖2

[
n∑
i=1

σiφ
(
ūTj x

(i)
)] (5.64)

≤ 1

n
E
σ

sup
θ

m∑
j=1

|wj |‖uj‖2 max
k∈[n]

∣∣∣∣∣
n∑
i=1

σiφ
(
ūTk x

(i)
)∣∣∣∣∣
 because

∑
j

αjβj ≤
∑
j

|αj |max
k
|βk|


(5.65)

≤ B

n
E
σ

[
sup

θ=(w,U)

max
k∈[n]

∣∣∣∣∣
n∑
i=1

σiφ
(
ūTk x

(i)
)∣∣∣∣∣
]

(because C(θ) ≤ B) (5.66)

=
B

n
E
σ

[
sup

ū:‖ū‖2=1

∣∣∣∣∣
n∑
i=1

σiφ
(
ūTx(i)

)∣∣∣∣∣
]

(5.67)

≤ B

n
E
σ

[
sup

ū:‖ū‖2≤1

∣∣∣∣∣
n∑
i=1

σiφ
(
ūTx(i)

)∣∣∣∣∣
]

(5.68)

≤ 2B

n
E
σ

[
sup

ū:‖ū‖2≤1

n∑
i=1

σiφ
(
ūTx(i)

)]
(see Lemma 5.12) (5.69)

= 2BRS(H′), (5.70)

where H′ =
{
x 7→ φ(ū>x) : ū ∈ Rd, ‖ū‖2 ≤ 1

}
. By Talagrand’s lemma, since φ is 1-Lipschitz, RS(H′) ≤

RS(H′′) where H′′ =
{
x 7→ ū>x : ū ∈ Rd, ‖ū‖2 ≤ 1

}
is a linear hypothesis space. Using RS(H′′) ≤ C√

n
by

Theorem 5.5 then concludes the proof.

We complete the proof by deriving the Lemma 5.12 used in the second-to-last inequality. Notably, the
lemma’s assumption holds in the current context, since

sup
θ
〈σ, fθ(x)〉 = sup

ū:‖ū‖2≤1

n∑
i=1

σiφ
(
ū>x(i)

)
≥ 0. (5.71)

since one can take ū = 0 for any σ = (σ1, . . . , σn).

Lemma 5.12. Let σ = (σ1, ..., σn) and fθ(x) =
(
fθ
(
x(1)

)
, ..., fθ

(
x(n)

))
. Suppose that for any σ ∈ {±1}n,

supθ〈σ, fθ(x)〉 ≥ 0. Then,

Eσ
[
sup
θ
|〈σ, fθ(x)〉|

]
≤ 2Eσ

[
sup
θ
〈σ, fθ(x)〉

]
. (5.72)

Proof. Letting φ be the ReLU function, the lemma’s assumption implies that supθ φ (〈σ, fθ(x)〉) =
supθ〈σ, fθ(x)〉 for any σ ∈ {±1}n. Observing that |z| = φ(z) + φ(−z),

sup
θ
|〈σ, fθ(x)〉| = sup

θ
[φ (〈σ, fθ(x)〉) + φ (〈−σ, fθ(x)〉)] (5.73)

≤ sup
θ
φ (〈σ, fθ(x)〉) + sup

θ
φ (〈−σ, fθ(x)〉) (5.74)

= sup
θ
〈σ, fθ(x)〉+ sup

θ
〈−σ, fθ(x)〉 . (5.75)

Taking the expectation over σ (and noting that σ
d
= −σ), we get the desired conclusion.

5.4 More implications and discussions on two-layer neural nets

In this section, we discuss practical implications of the refined neural network bound.
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5.4.1 Connection to `2 regularization

Recall that margin theory yields

for all θ, L0-1(θ) ≤ 2RS(H)

γmin
+ Õ

(√
log (2/δ)

n

)
, (5.76)

with probability at least 1 − δ. Thus, Theorem 5.10 motivates us to minimize RS(H)
γmin

by regularizing C(θ).
Concretely, this can be formulated as the optimization problem

minimize C(θ) =

m∑
j=1

|wj | · ‖uj‖2 (I)

subject to γmin(θ) ≥ 1,

or equivalently,

maximize γmin(θ) (II)

subject to C(θ) ≤ 1.

At first glance, the above seems orthogonal to techniques used in practice. However, it turns out that
the optimal neural network from (I) is functionally equivalent to that of the new problem:

minimize C`2(θ) =
1

2

m∑
j=1

|wj |2 +
1

2

m∑
j=1

‖uj‖22 (I*)

subject to γmin(θ) ≥ 1.

This is a simple consequence of the positive homogeneity of φ. For any scaling factor λ = (λ1, . . . , λm) ∈ Rm+ ,

the rescaled neural network θλ
∆
= {(λiwi, ui/λi)} has the same functionality as the original neural network

θ = {wi, ui} (i.e. it achieves the same γmin). Thus,

min
θ
C`2(θ) = min

θ
min
λ

1

2

m∑
j=1

λ2
j |wj |2 +

1

2

m∑
j=1

λ−2
j ‖uj‖

2
2

 (5.77)

= min
θ

m∑
j=1

|wj | · ‖uj‖2 (5.78)

= min
θ
C(θ) (5.79)

where we have used the equality case of the AM-GM inequality, attainable by λ∗j =
√
‖uj‖2
|wj | , in the second

step. This equality case also shows that θ∗ = {(wi, ui)} is the optimal solution of (I) if and only if θ̂∗ = θλ∗

is the optimal solution of (I*)—proving that θ̂∗ and θ∗ are functionally equivalent since they only differ by
a positive scale factor.

This connects our C(θ) regularization to `2-norm penalties that are more prevalent in practice. In
retrospect, we see this equivalence is essentially due to the positive homogeneity of the neural network
which “homogenizes” any inhomogeneous objective such as C`2 . Hence, we can just deal with C(θ) which is
transparently homogeneous.

5.4.2 Generalization bounds that are decreasing in m

Next, we show that the generalization bound given by Theorem 5.10 does not deteriorate with the network
width (number of neurons) m, which is consistent with experimental results. To this end, the perspective
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of (II) enables us to isolate all dependencies of m in γmin. Letting θ̂m denote the minimizer of program (II)

with width m and defining optimal value γ∗m = γmin

(
θ̂m

)
, we can rewrite the margin bound (5.76) as

L(θ̂m) ≤ 4C√
n
· 1

γ∗m
+ (lower-order terms), (5.80)

where all dependencies on m are now contained in γ∗m. Hence, to show that this bound does not worsen as
m grows, we just have to show that γ∗m is non-decreasing in m. This is intuitively the case since a neural
network of width m + 1 contains one of width m under the same complexity constraints. The following
theorem formalizes this hunch:

Theorem 5.13. Let γ∗m be the minimum margin obtained by solving (II) with a two-layer neural network
of width m. Then γ∗m ≤ γ∗m+j for all positive integers j.

Proof. Suppose θ = {(wi, ui)}1≤i≤m is a two-layer neural network of width m satisfying C(θ) ≤ 1. Then we

may construct a neural network θ̃ = {(w̃i, ũi)}1≤i≤m+1 of width m+ 1 by simply taking

(w̃i, ũi) =

{
(wi, ui) i ≤ m,
(0, 0) otherwise.

(5.81)

θ̃ is functionally equivalent to θ and C(θ̃) = C(θ) ≤ 1. This means maximizing γmin over {C(θ̃) :

θ̃ of width m+1} should give no lower of a value than the maximum of γmin over {C(θ) : θ of width m}.

5.4.3 Equivalence to an `1-SVM in m→∞ limit

Since γ∗m is non-decreasing in m, the quantity

γ∗∞ = lim
m→∞

γ∗m (5.82)

is well-defined. The next interesting fact is that in this m→∞ limit, γ∗∞ of the two-layer neural network is
equivalent to the minimum margin of an `1-SVM. As a brief digression, we recap the formulation of `p-SVMs
and discuss the importance of `1-SVMs in particular.

Since a collection of data points with binary class labels may not be a priori separable, a kernel model
first transforms an input x to ϕ(x) where ϕ : Rd → G is known as the feature map. The model then seeks a
separating hyperplane in this new (extremely high-dimensional) feature space G, parameterized by a vector
µ pointing from the origin to the hyperplane. The prediction of the model on an input x is then a decision
score that quantifies ϕ(x)’s displacement with respect to the hyperplane:

gµ,ϕ(x)
∆
= 〈µ, ϕ(x)〉 . (5.83)

Motivated by margin theory, it is desirable to seek the maximum-margin hyperplane under a constraint on
µ to guarantee the generalizability of the model. In particular, a kernel model with an `p-constraint seeks
to solve the following program:

maximize γmin := min
i∈[n]

y(i)〈µ, ϕ(x(i))〉 (5.84)

subject to ‖µ‖p ≤ 1.

Observe that both the prediction and optimization of the feature model only rely on inner products in G.
The ingenuity of the SVM is to choose maps ϕ such that K(x, x′) = 〈ϕ(x), ϕ(x′)〉 can be directly computed
in terms of x and x′ in the original space Rd, thereby circumventing the need to perform expensive inner
products in the large space G. Remarkably, this “kernel trick” enables us to even operate in an implicit,
infinite-dimensional G.
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The case of p = 1 is particularly useful in practice as `1-regularization generally produces sparse feature
weights (the constrained parameter space is a polyhedron and the optimum tends to lie at one of its vertices).
Hence, `1-regularization is an important feature selection method when one expects only a few dimensions
of G to be significant. Unfortunately, the `1-SVM is not kernelizable due to the kernel trick relying on
`2-geometry, and is hence infeasible to implement. However, our next theorem shows that a two-layer neural
network can approximate a particular `1-SVM in the m→∞ limit (and in fact, for finite m). For the sake
of simplicity, we sacrifice rigor in defining the space G and convey the main ideas.

Theorem 5.14. Define the feature map φrelu : Rd → G such that x is mapped to φ(u>x) for all vectors u
on the d− 1-dimensional sphere Sd−1. Informally,

φrelu(x)
∆
=


...

φ(u>x)
...


u∈Sd−1

is an “infinite-dimensional vector” that contains an entry φ(u>x) for each vector u ∈ Sd−1, and we let
φrelu(x)[u] denote the “u”-th entry of this vector. Noting that G is the space of functions which can be
indexed by u ∈ Sd−1, the inner product structure on G is defined by 〈f, g〉 =

∫
Sd−1 f [u]g[u]du.

Under this set-up, we have
γ∗∞ = γ∗`1 , (5.85)

where γ∗`1 is the minimum margin of the optimized `1-SVM with ϕ = φrelu.

Proof. We will only prove the γ∗∞ ≤ γ∗`1 direction. (The γ∗∞ ≥ γ∗`1 direction requires substantial functional
analysis.)

Suppose γ∗∞ is obtained by network weights (w1, w2, · · · ), (u1, u2, · · · ) where wi ∈ R, ui ∈ Rd (there is a
slight subtlety here to be rectified later). Define renormalized versions of {wi} and {ui}:

w̃i
∆
= wi · ‖ui‖2, ui

∆
=

ui
‖ui‖2

. (5.86)

Note that {(w̃i, ui)} has the same functionality (and also the same complexity measure C(θ), margin, etc.)
as that of {(wi, ui)}, but now ui has unit `2-norm (i.e. ūi ∈ Sd−1). Thus, φ(u>i x) can be treated as a
feature in G and we can construct an equivalent `1-SVM (denoted by µ) such that w̃i is the coefficient of µ
associated with that feature. Since w̃i must only be “turned on” at ui, we have

µ[u] =
∑

i∈Sd−1

w̃iδ(u− ui), (5.87)

where δ(u) is the Dirac-delta function. Given this µ, we can check that the SVM’s prediction is

gµ,φrelu
(x) =

∫
Sd−1

µ[u]φrelu(x)[u]du (5.88)

=

∫
Sd−1

∑
i∈Sd−1

w̃iδ(u− ui)φ
(
u>x

)
du (5.89)

=
∑

i∈Sd−1

w̃iφ
(
u>i x

)
, (5.90)

which is identical to the output f{(w̃i,ui)}(x) of the neural network. Furthermore,

‖µ‖1 =

∞∑
i=1

|w̃i| =
∞∑
i=1

|wi| · ‖ui‖2 ≤ 1, (5.91)
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where the last equality holds because {(w̃i, ui)} satisfies the constraints of (II). This shows that our con-
structed µ satisfies the `1-SVM constraint. Thus, γ∗∞ ≤ γ∗`1 since the functional behavior of the optimal
neural network is contained in the search range of the SVM.

Remark 5.15. How well does a finite-dimensional neural network approximate the infinite-dimensional `1
network? Proposition B.11 of [Wei et al., 2020] shows that you only need n + 1 neurons. Another way to
say this is that {γm} stabilizes once m = n+ 1:

γ∗1 ≤ γ∗2 ≤ · · · ≤ γ∗n+1 = γ∗∞. (5.92)

The main idea of the proof is that if we have a neural net θ with (n+ 2) neurons, then we can always pick
a simplification θ′ with (n+ 1) neurons such that θ, θ′ agree on all n datapoints.

As an aside, this result also resolves the issue in our partial proof. A priori, γ∗∞ may not necessarily be
attained by a set of weights {(w̃i, ui)}, but the above shows that it is achievable with just n + 1 non-zero
indices.

5.5 Deep neural nets (via covering number)

In Section 4.6.2, we discuss how strong our bounds on covering number need to be in order to get a useful
result. Here we describe some situations in which we know how to obtain these covering number bounds for
concrete models such as linear models and neural networks.

5.5.1 Preparation: covering number for linear models

First, consider the following covering number bound for linear models:

Theorem 5.16 ([Zhang, 2002]). Suppose x(1), · · · , x(n) ∈ Rd are n data points, and p, q satisfies 1/p+1/q =
1 and 2 ≤ p ≤ ∞. Assume that ||x(i)||p ≤ C for all i. Let:

Fq = {x 7→ w>x : ||w||q ≤ B} (5.93)

and let ρ = L2(Pn). Then, logN(ε,Fq, ρ) ≤
[
B2C2

ε2

]
log2(2d+ 1). When p = 2, q = 2, we further obtain that:

logN(ε,F2, ρ) ≤
[
B2C2

ε2

]
log2(2 min(n, d) + 1) (5.94)

Remark 5.17. Applying (4.152) to the covering number bound derived above with R = B2C2, we conclude
that the Rademacher complexity of this class of linear models satisfies

RS(Fq) ≤ Õ
(
BC√
n

)
. (5.95)

We also prove this result without relying on Dudley’s theorem in Theorem 5.5.

Next, we consider multivariate linear functions as they are building blocks for multi-layer neural networks.
Let M = (M1, · · · ,Mn) ∈ Rm×n and ‖M‖2,1 =

∑n
i=1 ‖Mi‖2. Then, ‖M>‖2,1 denotes the sum of the `2

norms of the rows of M .

Theorem 5.18. Let F = {x→Wx : W ∈ Rm×d, ||W>||2,1 ≤ B} and let C =
√

1
n

∑n
i=1 ||x(i)||22. Then,

logN(ε,F , L2(Pn)) ≤
[
c2B2

ε2

]
ln(2dm). (5.96)
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Remark 5.19. In some sense, Theorem 5.18 arises from treating each dimension of the multivariate problem
independently. We can view the linear layer as applying m different linear functions. Explicitly, if W =w

>
1
...
w>m

 and Wx =

w
>
1 x
...

w>mx

, then as we expect, ‖W>‖2,1 =
∑
‖wi‖2.

5.5.2 Deep neural networks

In this lecture, we discuss a bound on the Rademacher complexity of a dense neural network. We set up
notation as follows: Wi denotes the linear weight matrix at the i-th layer of the neural network, we have
a total of r layers, and σ is the activation function which is 1-Lipschitz (for example, ReLU, softmax, or
sigmoid). If the input is a vector x, the neural network’s output can be represented as follows:

fθ(x) = Wrσ(Wr−1σ(· · ·σ(W1x) . . .)), (5.97)

Using this notation, we establish an upper bound on the Rademacher complexity of a dense neural network.

Theorem 5.20 ([Bartlett et al., 2017]). Suppose that ∀i, ‖x(i)‖2 ≤ c and let

F = {fθ : ‖Wi‖op ≤ κi, ‖W>i ‖2,1 ≤ bi}. (5.98)

Then,

RS(F) ≤ c√
n
·

(
r∏
i=1

κi

)
︸ ︷︷ ︸

(I)

·

(
r∑
i=1

b
2/3
i

κ
2/3
i

)3/2

︸ ︷︷ ︸
(II)

. (5.99)

We use ‖W‖op to denote the operator norm (or spectral norm) of W , and recall that ‖W>i ‖2,1 denotes
the sum of the `2 norms of the rows of Wi. Examining (5.99), we see that (II) is relatively small as it is a
sum of matrix norms, and so the bound is dominated by (I), which is a product of matrix norms.

Remark 5.21. We note that f(x) = Wx is Lipschitz with a Lipschitz constant of ‖W‖op. This is because

‖f(x)− f(y)‖2 = ‖Wx−Wy‖2 (5.100)

≤ ‖W‖op‖x− y‖2 (‖W‖op = max
x:‖x‖2=1

‖Wx‖2) (5.101)

.

Remark 5.22. As a corollary of the above theorem, we also get a bound on the generalization error for the
margin loss of the following form:

generalization error ≤ Õ

 1

γmin
· 1√

n
·

(
r∏
i=1

‖Wi‖op

)
·

(
r∑
i=1

‖W>i ‖
2/3
2,1

‖Wi‖2/3op

)3/2
 , (5.102)

where γmin denotes the margin.

First, we motivate the proof by presenting the main idea, and then work through each part of the proof.
The main ideas of the proof can be summarized as follows:

• At a high level, we want to show that the covering number N(ε,F , ρ) for a dense neural network is ≤ R
ε2 .

Proving this would enable us to apply Theorem 4.28 to get a bound on the Rademacher Complexity.

• To bound the covering number for a dense neural network, we use ε-covers to cover each layer of fθ
separately, and then combine them to prove that there exists an ε-cover of the original function fθ.
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• To combine the ε-covers of each layer, we use the Lipschitzness of each layer.

• We control and approximate the error propagation that is introduced through discretizing each layer
using εi-coverings in order to get a reasonable final ε.

As a prelude to the proof of Theorem 5.20, let us abstractify each layer of F as Fi where Fi corresponds
to matrix multiplication by Wi composed with a nonlinear activation function σ. We then denote F as the
composition of each of these (single layer) function spaces as follows:

F = Fr ◦ Fr−1 ◦ · · · ◦ F1 = {fr ◦ fr−1 ◦ · · · f1 : fi ∈ Fi} (5.103)

We will assume throughout that fi is κi-Lipschitz, i.e.

‖fi(x)− fi(y)‖2 ≤ κi‖x− y‖2 (5.104)

Let us also assume, for simplicity, that fi(0) = 0 and ‖x(j)‖2 ≤ c for all j = 1, . . . , n. Then, by applying the
definition of Lipschitz continuity, we obtain that:

‖fi(fi−1(· · · (f1(x(j)))))‖2 ≤ κi · κi−1 · · ·κ1 · c︸ ︷︷ ︸
∆
=ci

(5.105)

We now derive an ε-covering of F in two steps:

1. Given inputs to the ith layer, we construct an εi-covering of the output space of the function fi.

2. Using the εi-covering as inputs to the (i + 1)-th layer, we show that we can use several single layer
coverings to construct an ε-covering for a multilayer network.

Formally, the following lemma answers the second step in the above outline. Namely, given a covering
number for a single layer, we show how to compute a covering number bound for multiple layers.

Lemma 5.23. Under the setup given above, if every input to fi satisfies ‖z(j)‖2 ≤ ci−1, we assume that

logN(εi,Fi, L2(Pn)) ≤ g(εi, ci−1).1 (5.106)

Then, there exists an ε-cover C of Fr ◦ · · · ◦ F1 for ε = εr + κrεr−1 + · · ·+ κrκr−1 . . . κ2ε1 such that

log |C| ≤
r∑
i=1

g (εi, ci−1) (5.107)

Proof. Let ε1, . . . , εr be the radius for each layer. Let C1 be an ε1-cover of F1. Then, for all f ′1 ∈ C1, we
define C2,f ′1 as an ε2-covering of the set

F2 ◦ f ′1 = {f2 (f ′1 (X)) : f2 ∈ F2} . (5.108)

Taking a union of this covering over all f ′1 ∈ C1 clearly yields an ε-covering for F2 ◦ F2. In paricular, if

C2 =
⋃
f ′1∈C1

C2,f ′1 , (5.109)

then C2 is an ε-cover of F2 ◦ F1 with ε = ε1 · κ2 + ε2. We depict this covering procedure in Figure 5.3, and
we prove this claim rigorously in the sequel.

1If Fi defines a collection of linear models, then logN(εi,Fi, L2(Pn)) ≤
⌈
c2i−1

ε2i

⌉
.
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Figure 5.3: We visualize the covering strategy adopted in the proof of Lemma 5.23. The two grey sets depict
the output spaces of the first and second layers, namely, Q1 and Q2, respectively. The blue dots in Q1 are
the outputs of three functions in the ε1-cover C1, while the blue subsets of Q2 depict F2 ◦ f ′1 and F2 ◦ f ′′1 .
The red circles show how we construct a covering, C2, of Q2. In particular, the two collections of red circles
depict the C2,f ′1 and C2,f ′′1 covers. Taking the union of such covers over all functions in C1 yields C2.

Next, we bound the sizes of these covers. Directly applying the assumption given by (5.106), we conclude
that

log
∣∣C2,f ′1 ∣∣ ≤ g (ε2, c1) . (5.110)

Then, because C2 =
⋃
f ′1∈C1

C2,f ′1 , it immediately follows that

|C2| ≤ |C1| exp (g (ε2, c1)) (5.111)

log |C2| ≤ log |C1|+ g (ε2, c1) (5.112)

≤ g (ε1, c0) + g (ε2, c1) . (5.113)

Similarly, given Ck, for any f ′k ◦ f ′k−1 ◦ · · · ◦ f ′1 ∈ Ck, we construct a Ck+1,f ′k,...,f
′
1

that is an εk+1-covering of
Fk+1 ◦ f ′k ◦ · · · ◦ f ′1. We similarly define

Ck+1 =
⋃
fi∈Ci
i≤k

Ck+1,f ′k,...,f
′
1
. (5.114)

Then, inducting on the argument given in (5.111)-(5.113), we conclude that

log |Ck+1| ≤ g (εk+1, ck) + · · ·+ g (ε1, c0) (5.115)

Next, we show that for the above construction, the radius of the cover for F is

ε =

r∑
i=1

εi r∏
j=i+1

κj

 . (5.116)
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For any choice of fr ◦ · · · ◦ f1 ∈ Fr ◦ Fr−1 ◦ · · · ◦ F1, then, by definition of C1, there exists f ′1 ∈ C1 such that

ρ(f1, f
′
1) ≤ ε1. (5.117)

Similarly, we know there exists f ′2 ◦ f ′1 ∈ C2,f ′1 such that

ρ (f ′2 ◦ f ′1, f2 ◦ f ′1) ≤ ε2. (5.118)

We can leverage these two facts and the triangle inequality to now prove that f ′2 ◦ f ′1 is close to f2 ◦ f1.
Namely,

ρ (f ′2 ◦ f ′1, f2 ◦ f1) ≤ ρ (f ′2 ◦ f ′1, f2 ◦ f ′1) + ρ (f2 ◦ f ′1, f2 ◦ f1) (triangle ineq.) (5.119)

≤ ε2 + ρ (f2 ◦ f ′1, f2 ◦ f1) (def. of C2,f ′1) (5.120)

≤ ε2 + κ2ρ (f ′1, f1) (5.104) (5.121)

≤ ε2 + κ2ε1 (def. of C1) (5.122)

Inducting to prove this argument for arbitrary k, we similarly apply the definition of Ck,f ′k−1,...,f
′
1

to conclude

that there exists f ′k ◦ f ′k−1 ◦ · · · ◦ f ′1 ∈ Ck such that

ρ(f ′k ◦ f ′k−1 ◦ · · · f ′1, fk ◦ f ′k−1 ◦ · · · f ′1) ≤ εk (5.123)

Then, expanding using the triangle inequality and peeling off terms by applying the definition of our εi-
coverings, we again show that

ρ
(
f ′k ◦ f ′k−1 ◦ · · · ◦ f ′1, fk ◦ · · · ◦ f1

)
≤ ρ

(
f ′k ◦ f ′k−1 ◦ · · · ◦ f ′1, fk ◦ f ′k−1 ◦ · · · ◦ f ′1

)
(5.124)

+ ρ
(
fk ◦ f ′k−1 ◦ f ′k−2 ◦ · · · ◦ f ′1, fk ◦ fk−1 ◦ f ′k−2 ◦ · · · ◦ f ′1

)
+ · · ·+ ρ (fk ◦ fk−1 ◦ · · · ◦ f2 ◦ f ′1, fk ◦ fk−1 ◦ · · · ◦ f1)

≤ ρ
(
f ′k ◦ f ′k−1 ◦ · · · ◦ f ′1, fk ◦ f ′k−1 ◦ · · · ◦ f ′1

)
(5.125)

+ κk · ρ(f ′k−1 ◦ · · · ◦ f ′1, fk−1 ◦ f ′k−2 ◦ · · · ◦ f ′1) (5.126)

+ · · ·+

 k∏
j=2

κj

 ρ(f ′1, f1)

≤
k∑
i=1

εi k∏
j=i+1

κj

 . (5.127)

Note that the first inequality follows by the triangle inequality, the second by the κi-Lipschitz continuity of
fi, and the third by applying the definition of each of our εi-covers.

Proof of Theorem 5.20. We now apply Lemma 5.23 to dense neural networks. Dense neural networks consist
of a composition of layers, where each layer is a linear model composed with a 1-Lipschitz activation. Using
Theorem 5.18 along with the property that 1-Lipschitz functions will only contribute a factor of at most 1
(Lemma 4.29), the covering number of each layer can be bounded by:

g (εi, ci−1) = Õ

(
c2i−1b

2
i

ε2i

)
, (5.128)

where c2i−1 is the norm of the inputs, b2i is ‖W>i ‖2,1, and ε2i is the radius. From Lemma 5.23, we know that

logN(ε,F , ρ) = Õ

(
r∑
i=1

c2i−1b
2
i

ε2i

)
(5.129)
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for

ε =

r∑
i=1

εi r∏
j=i+1

κj

 (5.130)

We now have a bound on N(ε,F , ρ) that relies on εi’s, but N(ε,F , ρ) should only be a function of ε.

Since we already know that ε =
∑r
i=1

(
εi
∏r
j=i+1 κj

)
, we keep ε constant and optimize the upper bound of

N(ε,F , ρ) over different choices of εi. To find the optimal εi, we will first find a lower bound on N(ε,F , ρ).
We then choose εi so that this lower bound is achieved. Ultimately, our optimized εi yields a bound on the
covering number of the following form: log (N (ε,F , ρ)) ≤ R

ε2 , where R is some constant independent of ε.
We derive this lower bound using Holder’s inequality, which states that

〈a, b〉 ≤ ‖a‖p‖b‖q (5.131)

when 1
p + 1

q = 1. Writing out the vectors a, b, we get that∑
i

aibi ≤
(∑

api

) 1
p
(∑

bqi

) 1
q

(5.132)

Let α2
i = c2i−1b

2
i , βi =

∏r
j=i+1 κj . By Holder’s inequality, using p = 3, q = 3

2 , we get(
r∑
i=1

α2
i

ε2i

)(
r∑
i=1

βiεi

)2

≥

(
r∑
i=1

(αiβi)
2
3

) 3
2

(5.133)

r∑
i=1

α2
i

ε2i
≥ R

ε2
, (5.134)

where R =

((∑r
i=1

(
ci−1bi

∏r
j=i+1 κj

) 2
3

)) 3
2

. We note that equality holds when

εi =

(
c2i−1b

2
i∏r

j=i+1 κj

) 1
3

· ε(∑r
i=1

b
2
3
i

κ
2
3
i

)∏r
i=1 κ

2
3
i︸ ︷︷ ︸

ε′

(5.135)

Using this choice of εi and letting ε′ equal the second factor in (5.135) for notational convenience, we know
that the log covering number is (up to a constant factor):

r∑
i=1

c2i−1b
2
i

ε2i
=

r∑
i=1

c2i−1b
2
i (κi+1 · · ·κr)

2
3

c
4
3
i−1b

4
3
i (ε′)2

(5.136)

=

r∑
i=1

(ci−1biκi+1 · · ·κr)
2
3

1

(ε′)2
(5.137)

= c
2
3

r∑
i=1

(
bi
κi

) 2
3

r∏
i=1

κ
2
3
i

(
c

2
3

(∑r
i=1( biκi )

2
3

∏r
i=1 κ

2
3
i

))2

ε2
(5.138)

=

(
c

2
3

r∑
i=1

(
bi
κi

) 2
3

r∏
i=1

κ
2
3
i

)3
1

ε2
(5.139)

= c2
r∏
i=1

κ2
i

(
r∑
i=1

(
bi
κi

) 2
3

)3
1

ε2
. (5.140)
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Since this log covering number is of the form R/ε2, we can apply (4.152) and conclude that

RS(F) .

√
R

n
(5.141)

Last, plugging in

R = c2
r∏
i=1

κ2
i

(
r∑
i=1

(
bi
κi

) 2
3

)3

(5.142)

we obtain the desired result

RS(F) .
c√
n

r∏
i=1

κi

(
r∑
i=1

(
bi
κi

) 2
3

) 3
2

. (5.143)
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Chapter 6

Data-dependent Generalization
Bounds for Deep Nets

In Theorem 5.20, we proved the following bound on the Rademacher complexity of deep neural networks:

RS(F) ≤
r∏
i=1

‖Wi‖op · poly(‖W1‖, . . . , ‖Wr‖). (6.1)

This bound, however, suffers from multiple deficiencies. In particular, it grows exponentially in the depth,
r, of the network and ‖Wi‖op measures the worst-case Lipschitz-ness of the network layers over the input
space.

In this section, we obtain a tighter generalization bound that depends upon the realized Lipschitz-ness
of the model on the training data. To further motivate this approach, we also note that stochastic gradient
descent, i.e. the typical optimization method typically used to fit deep neural networks, prefers models that
are more Lipschitz (see Chapter (TBD) for further discussion) . This preference must be realized by the
model on empirical data, however, as no learning algorithm has access to the model’s properties over the
entire data space.

Ultimately, we aim to prove a tighter bound on the population loss that grows polynomially in the
Lipschitz-ness of f on the empirical data. Namely, given that f is parameterized by some θ, we hope to
derive a bound on the population loss at θ that is a polynomial function of the Lipschitz-ness of f on
x(1), . . . , x(n) as well as the norm of θ.

Uniform convergence with a data-dependent hypothesis class. So far in this course, given some
complexity measure we denote as comp(·), our uniform convergence results always appear in one of the two
following forms (which are essentially equivalent). Namely, with high probability,

∀f ∈ F , L(f) ≤ comp(F)√
n

(I) (6.2)

∀f, L(f) ≤ comp(f)√
n

(II) (6.3)

Remark 6.1. Most of the results we have obtained so far are of type I, e.g. with comp(F)/
√
n = Rn(F).

We obtain results of type II by considering a restricted set of functions FC = {f : comp(f) ≤ C}. We then
apply a type I bound to FC and take a union bound over all C. Therefore, these two type of bounds are
essentially equivalent (up to a small additive factor difference due to the additional union bound over the
choices of C.)

Note, however, that neither of these approaches produce bounds that depend upon the data. By contrast,
in the sequel, we will derive a new data-dependent generalization bound. These bounds state that with high
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probability over the choice of the empirical data and, for all functions f ∈ F ,

L(f) ≤ comp
(
f, {(x(i), y(i))}ni=1

)
(6.4)

Even though the complexity measure depends on the training data, and is thus a random variable by itself,
it can be used as a regularizer which can be added to the original training loss.

Remark 6.2. Although there is no universal consensus on the type of generalization bound we should derive,
we can argue that there is no way to leverage more information in a generalization bound beyond the empirical
data. For example, one might try to use the input distribution P to define the complexity measure, but if
we allowed ourselves access to P , we could just define comp(f, P ) = EP [f(X)]. In some sense, defining a
generalization bound using the true distribution amounts to cheating, and the dependence on the empirical
data seems to be proper because the bound can still be used as a regularizer.

In this new paradigm, we can no longer take the previous approach of obtaining type I bounds and then
derive a type II bound via a reduction. To see why, suppose that we have the hypothesis class

FC = {f : comp(f, {(x(i), y(i))}ni=1) ≤ C)} (6.5)

If our complexity measure depends on the empirical data, then so does our hypothesis class FC , which
makes FC itself a random variable. However, our theorems regarding Rademacher complexity require that
the hypothesis class be fixed before we ever see the empirical data.

We may hope to get around this by changing the way we think about uniform convergence. Consider the
simplified case where our new complexity measure is separable, i.e.

comp(f, {(x(i), y(i))}ni=1) =

n∑
i=1

h(f, x(i)), (6.6)

for some function g. Then we can consider an augmented loss:

˜̀(f) = `(f)1[h(f, x(i) ≤ C)] (6.7)

Suppose we have a region of low complexity in our existing loss function as depicted in Figure 6.1. Because
this region is random, so we cannot selectively apply uniform convergence. However, we can use our new
surrogate loss function ˜̀ in that region. By modifying the loss function in this way, we can still fix the
hypothesis class ahead of time, allowing us to apply existing tools to ˜̀(f). The surrogate loss was used
in [Wei and Ma, 2019a] to obtain a data-dependent generalization bound, though there are possibly various
other ways to define surrogate losses and apply existing uniform convergence guarantees. In the sequel, we
introduce a particular surrogate “margin” that allows us to cleanly apply our previous results to a (implicitly)
data-dependent hypothesis class [Wei and Ma, 2019a].

6.1 All-layer margin

We next introduce a new surrogate loss called the all-layer margin that can also be thought of as a surrogate
margin. This loss will essentially zero out high-complexity regions so that we may focus on low-complexity
regions for which we can expect small generalization gap. Note that the all-layer margin we analyze will
not explicitly zero-out high-complexity regions using an indicator function, but instead implicitly takes into
account some data-dependent characteristics of the model. Once we adopt this new loss function, we will be
able to apply some of our earlier methods.

Let f : Rd → R be a classification model. Recall that the standard margin is defined as yf(x), with y in
{−1, 1}. We will say that gf (x, y) is a generalized margin if it satisfies

gf (x, y) =

{
0, if f(x)y ≤ 0 (an incorrect classification)

> 0, if f(x)y > 0 (a correct classification)
. (6.8)
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θ

loss

test

train

low-complexity params

Figure 6.1: These curves depict a “low-complexity” region in parameter space. The blue curve is the
unobserved test loss we aim to bound, while the green curve denotes the empirical training loss we observe.
Observe that in the region of θ that we identify as being “low-complexity,” the gap between the train and
test losses is smaller than in the high-complexity regions.

To simplify the exposition of the machinery below, we also introduce the ∞-covering number N∞(ε,F) as
the minimum cover size with respect to the metric ρ defined as the infinity-norm distance on an input domain
X :

ρ(f, f) , sup
x∈X
|f(x)− f ′(x)| , ‖f − f ′‖∞.1 (6.9)

Remark 6.3. Notice that N∞(ε,F) ≥ N(ε,F , L2(Pn)). This is because the ρ = L∞(X ) is a more demanding
measure of error: f and f ′ must be close on every input, not just the empirical data. That is,√√√√ 1

n

n∑
i=1

(f(xi)− f ′(xi))2 ≤ sup
x∈X
|f(x)− f ′(x)|. (6.10)

Lemma 6.4. Suppose gf is a generalized margin. Let G = {gf : f ∈ F}. Suppose that for some R,

logN∞(ε,G) ≤ bR
2

ε2 c for all ε > 0.2 Then, with high probability over the randomness in the training data,
for every f in F that correctly predicts all the training examples,

L01 ≤ Õ
(

1√
n
· R

mini∈[n] gf (x(i), y(i))

)
+ Õ

(
1√
n

)
. (6.11)

Proof. The high-level idea of our proof is to replace F with G before repeating the standard margin theory
argument from Section 5.1.2.

Let `γ be the ramp loss given in (5.1), which is 1 for negative values, 0 for values greater than γ,
and a linear interpolation between 1 and 0 for values between 0 and γ. We define the surrogate loss as
L̂γ(θ) = 1

n

∑n
i=1 `γ(gfθ (x

(i), y(i))), and the surrogate population loss as Lγ(θ) = E[`γ(gfθ (x, y))]. Applying
Corollary 4.19, where we used the Rademacher complexity to control the generalization error, we conclude
that

Lγ(θ)− L̂γ(θ) ≤ RS(`γ ◦ G) + Õ

(
1√
n

)
. (6.12)

1If f maps X to multi-dimensional outputs, we will define ρ(f, f) , supx∈X ‖f(x)− f ′(x)‖ , ‖f − f ′‖∞ where the norm in
‖f(x)− f ′(x)‖ is a norm in the output space of f (which will be the Euclidean norm in this rest of this section).

2Recall that this is the worst dependency on ε that we can tolerate when converting covering number bounds to Rademacher
complexity.
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Next we observe that

logN(ε, `γ ◦ G, L2(Pn)) ≤ logN(εγ,G, L2(Pn)) (Lemma 4.29) (6.13)

≤ logN∞(εγ,G) (6.10) (6.14)

≤
⌊
R2

ε2γ2

⌋
(by assumption). (6.15)

Then, using our results relating the log of the covering number to a bound on the Rademacher complexity (re-

call (4.152) and Theorem 4.28), we conclude that RS(`γ◦G) ≤ Õ
(

R
γ
√
n

)
. Take γ = γmin = mini gγ(x(i), y(i)).3

Using Corollary 4.19, we conclude that L̂γmin
(θ) ≤ 0 + Õ

(
R√

n·γmin

)
+ Õ

(
1√
n

)
, as desired.

For which gf can we bound the covering number? If we take gf (x, y) = yf(x), then the covering number
depends on the product

∏
i ‖Wi‖op, but we originally set out to do better than this. If we have a linear model

w>x, the normalized margin, y·w>x
‖w‖ , governs the generalization performance. But how do we normalize for

more general models?
For a deep neural net, a potential normalizer is the product of the Lipschitz constants of the layers.

However, we do not want to normalize by a constant that depends only on the function class, so we take
a different approach. We interpret the normalized margin as the solution to the following optimization
problem:

min
δ

‖δ‖2

s.t. w>(x+ δ)y ≤ 0
(6.16)

In plain English, this problem searches for the minimum perturbation that gets our data point across the
boundary.

This perturbation view of the standard margin can be extended naturally to multiple layers. For the math
to work, it turns out that we need to perturb all the layers. We define the all-layer margin as below. We will
consider perturbed models δ = (δ1, . . . , δr), where each δi is a perturbation vector associated with the i-th
layer (and it has the same dimensionality as the i-th layer activation). We incorporate these perturbations
into our model in the following way (so that we can handle the scaling in a clean way):

h1(x, δ) = W1x+ δ1 · ‖x‖2 (6.17)

h2(x, δ) = σ(W2h1(x, δ)) + δ2 · ‖h1(x, δ)‖2 (6.18)

...

f(x, δ) = hr(x, δ) = σ(Wrhr−1(x, δ)) + δr · ‖hr−1(x, δ)‖2. (6.19)

We can then ask: what was the smallest perturbation that changed our decision? That is, let

mf (x, y)
∆
= min

δ

√√√√ r∑
i=1

||δi||22 s.t. f(x, δ)y ≤ 0, (6.20)

i.e. the smallest perturbation that yields incorrect predictions.
Informally, mf (x, y) is a measure of how hard it is to perturb the model f . f can be hard to perturb for

two reasons: f is Lipschitz (in its intermediate layers) and/or yf(x) is large. In other words, the all-layer
margin is a normalized version of the standard margin, normalized by the Lipschitzness of the model at the
particular data point (x, y).

We now introduce our main result regarding the all-layer margin.

3A caveat: because γ is a random variable, proving this result rigorously requires taking a union bound over a discretized γ.
We sketched out this argument more thoroughly in Remark 5.4.
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Theorem 6.5. With high probability, for all f with training error 0,

L01(f) ≤ Õ
(

1√
n
·

∑r
i=1 ‖Wi‖1,1

mini∈[n]mf (x(i), y(i))

)
+ Õ

(
r√
n

)
, (6.21)

where ‖W‖1,1 is the sum of the absolute values of the entries of W.

In summary, robustness to perturbations in intermediate layers implies good generalization. We will
interpret the bound, compare the bounds with previous works, and discuss further extensions in the remarks
following the proofs of the theorem. (E.g, in Remark 6.8, we will argue that this bound is strictly better

than the one we obtained in Theorem 5.20; in the worst case, we still have that 1
mf (x,y) ≤

∏
‖Wi‖op

f(x) .)

To prove this theorem, it suffices to bound N∞(ε,G) by O(
∑
‖Wi‖1,1
ε2 ) and apply Lemma 6.4. Towards

this goal, let Fi = {z 7→ σ(Wiz) : ‖Wi‖1,1 ≤ βi}. Then, F = Fr ◦ Fr−1 ◦ · · · ◦ F1.

Lemma 6.6 (Decomposition Lemma). Let m ◦ F denote {mf : f ∈ F}. Then,

logN∞

√√√√ r∑
i=1

ε2i ,m ◦ F

 ≤ r∑
i=1

logN∞(εi,Fi), (6.22)

where N∞(εi,Fi) is defined with respect to the input domain X = {x : ‖x‖2 ≤ 1}.

That is, we only have to find the covering number for each layer, and then we have the covering number
for the (all-layer margin of the) composed function class. Notice that we bounded the covering number of
m ◦ F in the above lemma, not F .

Then, the desired result follows directly from the preceding decomposition lemma.

Corollary 6.7. Assume that logN∞(εi,Fi) ≤
⌊
c2i
ε2i

⌋
for every Fi, i.e. the function class corresponding to

the i-th layer of f in Theorem 6.5. Then, by taking εi = ε · ci√∑
i c

2
i

, we have that

logN∞(ε,m ◦ F) ≤
∑
i c

2
i

ε2
. (6.23)

This result gives the complexity of the composed model in terms of the complexity of the layers, with

each ci given by ‖Wi‖1,1. For linear models, we can show N∞(εi,Fi) ≤ Õ
(
β2
i

ε2

)
(where βi is a bound on

‖Wi‖1,1), and this implies Theorem 6.54 Finally, we are only left with the proof of Lemma 6.6.

Proof of Lemma 6.6. Now we will prove a limited form of the decomposition lemma for affine models: Fi =
{z 7→ σ(Wiz) : ‖Wi‖1,1 ≤ βi}. There are two crucial steps to this problem. First, we will prove that mf (x, y)
is 1-Lipschitz in f . That is, for all F = Fr ◦ Fr−1 ◦ · · · ◦ F1 and F ′ = F ′r ◦ F ′r−1 ◦ · · · ◦ F ′1,

|mf (x, y)−mf ′(x, y)| ≤

√√√√ r∑
i=1

max
‖x‖2≤1

‖fi(x)− f ′i(x)‖22. (6.24)

Notice that now we are working with a clean sum of differences, with no multipliers!
Second, we construct a cover: Let U1, . . . , Ur be ε1, . . . , εr-covers of F1, . . . ,Fr, respectively, such that

|Ui| = N∞(εi,Fi). By definition, for all fi in Fi, there exists a ui ∈ Ui such that max‖x‖≤1 ‖fi(x)−ui(x)‖2 ≤
εi. Take U = Ur ◦ Ur−1 ◦ · · · ◦ U1 = {ur ◦ ur−1 ◦ · · · ◦ u1} as the cover for m ◦ F . Suppose we were given

4Technically, we also need to union bound over the choices of βi, which can also be achieved following Remark 5.4.
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f = fr ◦ · · · ◦ f1 ∈ F . Let ur, . . . , u1 be the nearest neighbors of fr, . . . , f1. Then

|mf (x, y)−mu(x, y)| ≤

√√√√ r∑
i=1

max
||x||≤1

||fi(x)− ui(x)||22 (6.25)

≤

√√√√ r∑
i=1

ε2i (by construction). (6.26)

Having established the validity of our cover, we now return to our claim of 1-Lipschitz-ness stated in
(6.24). By symmetry, it is sufficient to prove an upper bound for mf ′(x, y)−mf (x, y).

Let δ∗1 , . . . , δ
∗
r be the optimal choices of δ in defining mf (x, y). Our goal is to turn these into a feasi-

ble solution of mf ′(x, y), which we denote by δ̂1, . . . , δ̂r. If this solution is feasible, we obtain the bound

mf ′(x, y) ≤
√∑

‖δ̂i‖22.

Intuitively, we want to define a perturbation for f ′ that does the same thing as δ∗1 , . . . , δ
∗
r for f . In plain

English, (f ′, δ̂1, . . . , δ̂r) should do the same thing as (f1, δ
∗
1 , . . . , δ

∗
r ). Recall that f has parameters W1, . . . ,Wr

and f ′ has parameters W ′1, . . . ,W
′
r. Then, under the optimal perturbation,

h1 = W1x+ δ∗1‖x‖2 (6.27)

h2 = σ(W2h1) + δ∗2‖h1‖2 (6.28)

...

hr = σ(Wrhr−1) + δ∗r‖hr−1‖2 (6.29)

We want to imitate this by perturbing f ′ in some way. In particular, let

h1 = W ′1x+ δ∗1‖x‖2 + (W1 −W ′1)x︸ ︷︷ ︸
∆
= δ̂1‖x‖2

, (6.30)

where the last term serves to compensate for the difference between W1 and W ′1. Thus, δ̂1
∆
= δ∗1 +

(W1−W ′1)x
‖x‖2 .

We repeat this argument for every layer. Using the second layer as an example,

h2 = σ(W ′2h1) + δ∗2‖h1‖+ σ(W2h1)− σ(W ′2h1)︸ ︷︷ ︸
∆
= δ̂2‖h‖2

. (6.31)

So, δ̂2 = δ∗2 +
σ(W2h1)−σ(W ′2h1)

‖h1‖2 . In general,

δ̂i
∆
= δ∗i +

σ(Wihi−1)− σ(W ′ihi−1)

‖hi−1‖2
(6.32)

Then δ̂1, . . . , δ̂r on f ′ are making the same predictions as δ1, . . . , δr on f ′. Last, observe that

mf ′(x, y) ≤
√∑

||δ̂i||22 (6.33)

≤
√∑

‖δ∗i ‖22 +

√√√√ r∑
i=1

(
σ(Wihi−1)− σ(W ′ihi−1)

‖hi−1‖2

)2

(Minkowski’s Ineq.)5 (6.34)

≤ mf (x, y) +

√√√√ r∑
i=1

max
‖x‖2≤1

(σ(Wix)− σ(W ′ix))2 (6.35)

= mf (x, y) +

√√√√ r∑
i=1

max
‖x‖2≤1

(fi(x)− f ′i(x))2 (6.36)
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Note that in (6.35), constraining ‖x‖2 ≤ 1 is equivalent to dividing by the `2-norm of x.

Remark 6.8. We can compare the above with Theorem 5.20 proven in [Bartlett et al., 2017].

f(x, δ)− f(x) ≤ ‖δr‖2 · ‖Wr−1‖op · · · ‖W1‖op

+ ‖Wr‖op · ‖δr−1‖2 · ‖Wr−2‖op · · · ‖W1‖op

+ · · ·
+ ‖Wr‖op · · · ‖W2‖op · ‖δ1‖2.

(6.37)

Ignoring minor details (e.g. dependency on r), we suppose that y = 1. Then, if f(x) > 0 and f(x+ δ) ≤ 0,

it must be the case that ‖δ‖2 . |f(x)|∏r
i=1 ‖Wi‖op

. This further implies that

mf (x, y)

yf(x)
&

1∏r
i=1 ‖Wi‖op

. (6.38)

Rearranging, we conclude that we have obtained a tighter bound since the inverse margin 1
mf (x,y) . 1

yf(x) ·∏r
i=1 ‖Wi‖op.

Remark 6.9. Later, we will show that SGD prefers Lipschitz solutions and Lipschitzness on data points.
Implicitly, SGD seems to be maximizing the all-layer margin. Since the algorithm is (in a sense) minimizing
Lipschitzness on a data point, this likely accounts for the empirically observed gap between the two bounds.

Remark 6.10. The approach we have described here is also similar to other methods in the deep learning
literature. Other authors have introduced a method known as SAM (a form of sharpness-aware regulariza-
tion); this method applies a perturbation to the parameter θ itself rather than on the intermediate hidden
parameters hi. However, these two methods are related! If we consider the (single-example) loss ∂`

∂Wi
, it

equals ∂`
∂hi+1

· h>i . Note that the norm of the term on the left is bounded by the product of the norms of the

two terms of the right; this observation relates the model’s Lipschitzness with respect to the parameters to
its Lipschitzness with respect to the hidden layer outputs.

Remark 6.11. Finally, we can prove a more general version of this result in which we do not need to study
the minimum margin of the entire dataset, and instead consider the average margin. Using this approach,

we can show that the test error is bounded above by 1
n

√
1
n

∑n
i=1

1
mf (x(i),y(i))2 times the sum of complexities

of each layer, plus a low-order term.

5Minkowski’s inequality, which states that
√∑

‖ai + bi‖22 ≤
√∑

‖ai‖22 +
√∑

‖bi‖22. In this setting, this inequality can

also be proved using Cauchy-Schwarz.
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Chapter 7

Theoretical Mysteries in Deep
Learning

We now turn to a high-level overview of deep learning theory. To begin, we outline a framework for classical
machine learning theory, then discuss how the situation is different from deep learning theory.

7.1 Framework for classical machine learning theory

At the risk of oversimplification, we can divide classical machine learning theory into three parts:

1. Approximation theory attempts to answer whether there is any choice of parameters θ that achieves
low population error. In other words, is the choice of hypothesis class good enough to approximate
the ground truth function? Using notation from earlier in this course, the goal is to upper bound
L(θ∗) = minθ∈Θ L(θ).

2. Statistical generalization focuses on bounding the excess risk L(θ̂)−L(θ∗). In Chapter 4 we obtained
the following bound:

L(θ̂)− L(θ∗) ≤ L(θ̂)− L̂(θ̂)︸ ︷︷ ︸
generalization error

+|L(θ∗)− L̂(θ∗)|. (7.1)

The first term here is the generalization error, which usually has an upper bound of the form R(θ)/
√
n,

where R(θ) is some complexity measure.1 This is a demonstration of Occam’s Razor : the principle
that simple (parsimonious, or low-complexity) explanations tend to generalize better.

This statistical approach allows us to define a regularized loss L̂reg(θ) = L̂(θ)+λR(θ). Minimizing this

loss gives us a solution θ̂λ which simultaneously has low training error and low complexity, which lets
us bound both the training error and the generalization error. To summarize, in the classical setting,
we can prove statements of the form

Any global minimizer θ̂λ of L̂reg has small excess risk L(θ̂λ)− L(θ∗) . (7.2)

3. Optimization considers how to obtain the minimizer θ̂ or θ̂λ computationally. This usually involves
convex optimization: if L̂ or L̂reg is convex, then we have a polynomial-time algorithm to find the
global minimum.

1In earlier chapters, we defined the complexity of a hypothesis class, not of a specific parameter value. To reconcile these
two approaches, think of R as a measure of complexity (such as a norm) that we can then use to define a hypothesis class Θ,
i.e. Θ = {θ′ : R(θ′) ≤ R(θ)}.
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While there are many tradeoffs to consider between these three components (for example, we may be
able to find a loss function for which optimization is easy, but generalization becomes worse), they are
conceptually independent, and it is typically possible to study each area individually, then combine all three
to get a result.

7.2 Deep learning theory and its differences

The situation is more complex for deep learning theory. Two prominent differences are (a) the models are
non-linear and the objective functions are non-convex, and (b) in deep learning, researchers have observed
in many cases that more parameters typically help improve the performance, and many state-of-the-art
models have much more parameters than the number of training data. (b) is often referred as to “over-
parameterization”.

Figure 7.1: The black and red lines denote the training and test error, respectively, of a three layer neural
network fit to and evaluated on MNIST [Neyshabur et al., 2015]. While classical generalization theory
predicts that beyond some threshold, the test error will increase with complexity (shown by the purple line),
the true test error continues to decline with overparameterization. Though not depicted here, Neyshabur et
al. observe similar test set error curves for a neural network fit to CIFAR-10.

Let us consider the difference in each of the three components described for classical machine learning
theory.

1. Approximation theory: Large neural net models are considered to be very expressive. That is, both
the population loss L(θ) and the finite sample loss L̂(θ) can be made small. In fact, neural networks are
universal approximators; see for example [Hornik, 1991]. This can be a somewhat misleading statement
as the definition of universal approximator allows for the size of the network to be impracticably large,
but morally it seems to hold true in practice anyway.

This expressivity is possible because neural networks are usually highly over-parametrized : they have
many more parameters than samples. It is possible to prove that in this regime, the network can
“memorize” the entire dataset and achieve approximately zero training error [Arpit et al., 2017].

2. Statistical generalization: Relatively weak regularization is used in practice. In many cases only
weak `2 regularization is used, i.e.

L̂reg(θ) = L̂(θ) + λ‖θ‖22. (7.3)

The first interesting fact is that this regularized loss does not have a unique (approximate) global
minimizer. This is due to overparametrization: there are so many degrees of freedom that there are
many approximate global minimizers with approximately the same `2 norm.
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(a) (b)

Figure 7.2: We use dotted and solid lines to depict training and test error, respectively. Figure 7.2a demon-
strates how global minimizers for the training loss can have differing performance on test data. In Figure 7.2b,
blue and red colors differentiate between the model fit with a decaying learning rate and a small constant
learning rate. Though both neural networks shown in this plot achieve 0 training error, the global minimizer
obtained by a more sophisticated learning rate schedule appears to generalize better to unseen data.

However, it turns out that these global minimizers are not equally good: many models which achieve
zero training error may have very bad test error (Figure 7.2a). Take, for example, using stochastic
gradient descent (SGD) to learn a model to classify the dataset CIFAR-10. In Figure 7.2b, we show
two instantiations of this: one starting with a large learning rate and slowly decreasing it, and one
with a small learning rate throughout. Even though both instantiations result in approximately zero
training error, the former leads to much better test performance.

Therefore, the job of optimizers in deep learning is not just to find an arbitrary global minimum: we
need to find the right global minimum. This contrasts sharply with (7.2) from the classical setting,
where achieving a global minimum leads to good guarantees on generalization error. This means that
(7.2) is simply not powerful enough to deal with deep learning, because it cannot distinguish between
global minima with good test error and bad test error.

3. Optimization: The discussion above means that optimization plays a significant role in generalization
for deep learning. Different training algorithms/optimizers have different “implicit biases” or “implicit
regularization effect”, causing them to converge to different global minimizers. Understanding the
implicit regularization effect of optimizers is thus a central goal of deep learning theory. The lack
of understanding implicit regularization hinders the development of fast optimizers—it is impossible
to design a good optimization algorithm without also considering its impact on generalization. In
fact, many algorithms for non-convex optimization have been proposed that work well for minimizing
training loss, but because their implicit bias is different, they lead to worse test performance and are
therefore not too useful.

Often these implicit biases or implicit regularization effect can be characterized in the form of showing
the optimizers prefer θ̂ of certain low complexity among all the global minimizers. The deep learning
analog of (7.2) often consists of two statements: (a) the optimizer implicitly prefers low complexity so-

lution according to complexity measure R(·) by converging to a global minimizer θ̂ with low complexity

R(θ̂), and (b) low complexity solutions generalize. This means that we end up doing more work on
the optimization front—the optimizer needs to ensure both a small training loss and a low complexity
solution. On the other hand, proving generalization bounds (statement (b)) works similarly to the
classical setting once we understand how our optimizer finds a low-complexity solution.

We summarize some of the results that we will present in the future chapters.
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1. Optimization. First, we will prove that under certain data distribution assumption, optimizers such as
stochastic gradient decent can converge to an approximate global minimum, even though the objective
function is non-convex. Results of this form can be shown on matrix factorization problems and
linearized neural networks, even without over-parameterization, but so far are limited to these simple
models. Second, we will discuss a recent approach, called neural tangent kernels (NTK), which proves
that for almost any neural networks, with overparameterization, gradient descent can converge to a
global minimum, under specific hyperparameter settings (e.g, specific learning rate and initialization).
However, it turns out that these specific hyperparaemeter settings does not provide sufficient implicit
regularization effect for the learned models to generalize. (In other words, the optimizer only returns
a global minimizer, but not a global minimizer that generalizes well.)

2. Implicit regularization effect. This involves showing that the solution θ̂ obtained by a particular
optimizer has low complexity R(θ̂) ≤ C according to some complexity measure R(·) (which depends
on the choice of optimizers). It’s believed and empirically observed that any changes or tricks in the
optimizers (e.g., learning rate schedule, batch size, initialization, batchnorm) could introduce additional
implicit regularization effects. We will only demonstrate these on some special cases of models (e.g.
logistic regression, matrix factorization) and optimizers (e.g. gradient descent, label noise in SGD,
dropout, learning rate). Recently, there are also more general results with label noise SGD [Blanc
et al., 2019, Damian et al., 2021].

3. Generalization bounds. This part involves showing that for all θ such that R(θ) ≤ C with L̂(θ) ≈ 0,
we have L(θ) is small. That is, we show that low-complexity solutions to the empirical risk problem
generalize well. We will be working with more fine-grained complexity measures (e.g., those complexity
measures that are similar to the complexity measure in part 2 above that are preferred by the optimizer).
Here, many tools we developed in classical machine learning can still apply.
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Chapter 8

Nonconvex Optimization

In the previous chapter, we outlined conceptual topics in deep learning theory and how the situation was
different from classical machine learning theory. In particular, we described approximation theory, statistical
generalization and optimization. In this chapter, we will focus on optimization theory in deep learning. We
will introduce some basics about optimization (Section 8.2), discuss how we can make the notion “all local
minima are global minima” rigorous, and walk through two examples where this is the case (Section 8.3).
Finally, we introduce the neural tangent kernel approach which allows us to characterize of the loss of general
neural networks near a specific initialization (or under specific parameterization).

8.1 Optimization landscape

The big question that we have in mind is the following: many existing optimizers are designed for optimizing
convex functions. Why do they still work well empirically for non-convex functions? We note
that it is not true that these optimizers always work well with non-convex functions: there are still some
very hard cases that give trouble (e.g. very deep feed-forward networks are still hard to fit because of issues
like vanishing and exploding gradients). One possible reason is that the non-convex functions that we are
minimizing in deep learning usually have some nice properties: see Figure 8.1 for an illustration.

Figure 8.1: Classification of different functions for optimization. The functions we optimize in deep learning
seem to fall mostly within the middle cloud.

Before diving into details, we first highlight some observations that will be important to keep in mind
when discussing optimization in deep learning. Suppose g(θ) is the loss function. Recall that the gradient
descent (GD) algorithm would do the following:

1. θ0
∆
= initialization
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Figure 8.2: Illustration of how gradient descent does not always find the global minimum. In the picture,
gradient descent initialized at the blue point only makes it to the local minimum at the red point: it does
not find the global minimum at the black point.

2. θt+1 = θt − η∇g(θt), where η is the step size.

Here are some observations to :

Observation 1 : Gradient descent can find a global minimum for convex functions1 but cannot always
find the global minimum for any general continuous functions (see Figure 8.2 for an illustration).

Observation 2 : Finding the global minimum of general non-convex functions is NP-hard.

Observation 3 : The objective function in deep learning is non-convex., but empirically gradient de-
scent/stochastic gradient descent typically finds an approximate global minimum of loss function in
deep learning.

These observations motivate the following two-step plan:

1. Identify a large set of functions that stochastic gradient descent/gradient descent can solve.

2. Prove that some of the loss functions in machine learning problems belong to this set. (Most of the
effort will be spent here.)

Basic idea: Gradient descent can find local minimum + all local minima of f are also global ⇒ Gradient
descent can find global minima.

8.2 Efficient convergence to (approximate) local minima

Let f be a twice-differentiable function. We start with the following definition:

Definition 8.1 (Local minimum of a function). We say that x is a local minimum of a function f if there
exists an open neighborhood N around x such that in N , the function values are at least f(x).

Note that if x is a local minimum of f , then ∇f(x) = 0 and ∇2f(x) � 0. However, as the next example
shows, the reverse is not true. When ∇f(x) = 0 and ∇2f(x) vanishes in some direction (i.e. merely positive
semi-definite instead of being strictly positive definite), higher-order derivatives start to matter.

Example 8.2. Consider the function f(x1, x2) = x2
1 + x3

2. (x1, x2) = (0, 0) satisfies ∇f(x) = 0 and

∇2f(x)|(x1,x2)=(0,0) =

[
2 0
0 0

]
� 0. However, if we move in the negative direction of x2, we can decrease the

function value. Hence, this example shows why ∇f(x) = 0 and ∇2f(x) � 0 does not imply that x is a local
minimum.

1A more precise version of this claim is that gradient descent can find a point that has function value arbitrary close to the
global minimal value.
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It is generally not easy to verify if a point is a local minimum. In fact, we have the following theorem
regarding the computational tractability:

Theorem 8.3. It is NP-hard to check whether a point is a local minimum or not [Murty and Kabadi,
1987]. In addition, Hillar and Lim [Hillar and Lim, 2013] show that a degree four polynomial is NP-hard to
optimize.

8.2.1 Strict-saddle condition

Theorem 8.3 forces us to consider more specific types of functions to be able to obtain computational
tractability. To this end, we define the following strict-saddle condition:

Definition 8.4 (Strict-saddle condition [Lee et al., 2016]). For positive α, β, γ, we say that f : Rd 7→ R is
(α, β, γ)-strict-saddle if every x ∈ Rd satisfies one of the following:

1. ‖∇f(x)‖2 ≥ α.

2. λmin(∇2f(x)) ≤ −β.

3. x is γ-close to a local minimum x∗ in Euclidean distance, i.e. ‖x− x∗‖2 ≤ γ.

Intuitively speaking, this definition is saying if a point has zero gradient and positive semi-definite Hessian,
it must be close to a local minimum, i.e. there is no pathological case like Example 8.2.

We have the following theorem for functions that satisfy strict-saddle condition:

Theorem 8.5 (Informally stated). If f is (α, β, γ)-strict-saddle for some positive α, β, γ, then many op-
timizers (e.g. gradient descent, stochastic gradient descent, cubic regularization) can converge to a local

minimum with ε-error in Euclidean distance in time poly
(
d, 1

α ,
1
β ,

1
γ ,

1
ε

)
.

Therefore, if all local minima are global minima and the function satisfies the strict-saddle condition,
then optimizers can converge to a global minimum with ε-error in polynomial time. (See Figure 8.3 for an
example of a function whose local minima are all global minima.) The next theorem expresses this concretely
by being explicit about the strict-saddle condition:

Theorem 8.6. Suppose f is a function that satisfies the following condition: ∃ ε0, τ0, c > 0 such that if
x ∈ Rd satisfies ‖∇f(x)‖2 ≤ ε < ε0 and ∇2f(x) � −τ0I, then x is εc-close to a global minimum of f .
Then many optimizers can converge to a global minimum of f up to δ-error in Euclidean distance in time

poly
(

1
δ ,

1
τ0
, d
)

.

8.3 All local minima are global minima: two examples

So far, we have focused on general results. Next, we give two concrete examples that have the property that
all local minima are global minima: (i) principal components analysis (PCA)/matrix factorization/linearized
neural nets, and (ii) matrix completion.

8.3.1 Principal components analysis (PCA)

Let matrix M ∈ Rd×d be symmetric and positive semi-definite. Consider the problem of finding the best
rank-1 approximation of the matrix M . The objective function here is non-convex:

min
x∈Rd

g(x) ,
1

2
‖M − xx>‖2F . (8.1)

Theorem 8.7. All local minima of g are global minima (even though g is non-convex).
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Figure 8.3: A two-dimensional function with the property that all local minima are global minima. It also
satisfies the strict-saddle condition because all the saddle points have a strictly negative curvature in some
direction.

Figure 8.4: Objective function for principal components analysis (PCA) when d = 1.

Remark 8.8. For d = 1, g(x) = 1
2 (m− x2)2 for some constant m. Figure 8.4 below shows such an example.

We can see that all local minima are indeed global minima.

Proof. Step 1: Show that all stationary points must be eigenvectors. From HW0, we know that ∇g(x) =
−(M − xx>)x, hence

∇g(x) = 0 =⇒ Mx = ‖x‖22 · x, (8.2)

which implies that x is an eigenvector of M with eigenvalue ‖x‖22. From the Eckart–Young–Mirsky theorem
we know the global minimum (i.e. the best rank-1 approximation) is the eigenvector with the largest
eigenvalue.
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Step 2: Show that all local minima must be eigenvectors of the largest eigenvalue. We use the second
order condition for this. For x to be a local minimum we need ∇2g(x) � 0, which means for any v ∈ Rd,

〈v,∇2g(x)v〉 ≥ 0. (8.3)

To compute 〈v,∇2g(x)v〉, we use the following trick: expand g(x + v) into g(x) + linear term in v +
quadratic term in v, then the quadratic term will be 1

2 〈v,∇
2g(x)v〉 (see HW0 Problem 2d for an exam-

ple). Using this trick, we get

g(x+ v) =
1

2
‖M − (x+ v)(x+ v)>‖2F (8.4)

=
1

2
‖M − xx>‖2F − 〈M − xx>, xv> + vx>〉+

1

2
〈xv> + vx>, xv> + vx>〉

− 〈M − xx>, vv>〉+ higher order terms in v. (8.5)

Hence, we have

1

2
〈v,∇2g(x)v〉 =

1

2
〈xv> + vx>, xv> + vx>〉 − 〈M − xx>, vv>〉 (8.6)

= 〈x, v〉2 + ‖x‖22‖v‖22 − vMv + 〈x, v〉2 (8.7)

= 2〈x, v〉2 + ‖x‖22‖v‖22 − v>Mv. (8.8)

Picking v = v1, the unit eigenvector with the largest eigenvalue (denoted λ1), for x to be a local minimum
it must satisfy

〈v1,∇2g(x)v1〉 = 2〈x, v1〉2 − v>1 Mv1 + ‖x‖22 ≥ 0. (8.9)

Note that by (8.2), all our candidates for local minima are eigenvectors of M so naturally we have two
cases:

• Case 1: x has eigenvalue λ1. Then x is the global minimum (by the Eckart–Young–Mirsky theorem).

• Case 2: x has eigenvalue λ < λ1. Then we know x and v1 are orthogonal (eigenvectors with different
eigenvalues are always orthogonal), hence

2〈x, v1〉2 − v>1 Mv1 + ‖x‖22 = 0− λ1 + λ ≥ 0, (8.10)

which implies λ ≥ λ1, a contradiction.

In summary, if x is a stationary point and x is not a global minimum, then moving in the direction of v1

would lead to second-order improvement and x cannot be a local minimum.

8.3.2 Matrix Completion [Ge et al., 2016]

We consider rank-1 matrix completion for simplicity. Let M = zz> be a rank-1 symmetric and positive
semi-definite matrix for some z ∈ Rd. Given random entries of M , our goal is to recover the rest of entries.
Formally, we have the following definitions:

Definition 8.9. Suppose M ∈ Rd×d and Ω ⊆ [d] × [d], we define PΩ(M) to be the matrix obtained by
zeroing out every entry outside Ω.

Definition 8.10 (Matrix Completion). Suppose M ∈ Rd×d and every entry of M is included in Ω with
probability p. The matrix completion task is to recover M (with respect to some loss functions) given the
observation PΩ(M).

A nice real world example of matrix completion is when we have a matrix describing the user ratings for
each item. We only observe a small portion of the entries as each customer only buys a small subset of the
items. A good matrix completion algorithm is indispensable for a recommendation engine.
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Remark 8.11. We need d parameters to describe a rank-1 matrix M and the number of observations is
roughly pd2. Thus, for identifiability we need to work in the regime where pd2 > d, i.e. p� 1

d .

We define our non-convex loss functions to be

min
x∈Rd

f(x) ,
1

2

∑
(i,j)∈Ω

(Mij − xixj)2 (8.11)

=
1

2
‖PΩ(M − xx>)‖2F . (8.12)

To really solve our problem we need some regularity condition on the ground truth vector z (recall
M = zz>). Incoherence is one such condition:

Definition 8.12 (Incoherence). Without loss of generality, assume the ground truth vector z ∈ Rd satisfies
‖z‖2 = 1. z satisfies the incoherence condition if ‖z‖∞ ≤ µ√

d
, where µ is considered to be a constant or log

in dimension d.

Remark 8.13. A nice counterexample to think about why such condition is necessary is when z = e1 and
M = e1e

>
1 . All entries of M are 0 except for a 1 in the top-left corner. There is no way to recover M without

observing the top-left corner.

The goal is to prove that local minima of this objective function are close to a global minimum:

Theorem 8.14. Assume p =
poly(µ, log d)

dε2
for some sufficient small constant ε and assume z is incoherent.

Then with high probability, all local minima of f are O(
√
ε)-close to +z or −z (the global minima of f).

Before presenting the proof, we make some observations that will guide the proof strategy.

Remark 8.15. f(x) can be viewed as a sampled version of the PCA loss function g(x) = 1
2‖M − xx

>‖2F =
1
2

∑
(i,j)∈[d]×[d](Mij − xixj)2, in which we only observe a subset of the matrix entries. Thus, we would like

to claim that f(x) ≈ g(x). However, matching the values of f and g is not sufficient to prove the theorem:
even a small margin of error between f and g could lead to creation of many spurious local minima (see
Figure 8.5 for an illustration). In order to ensure that the local minima of f look like the local minima of g,
we will need further conditions like ∇f(x) ≈ ∇g(x) and ∇2f(x) ≈ ∇2g(x).

Remark 8.16. Key idea: concentration for scalars is easy. We can approximate a sum of scalars via a sample:∑
(i,j)∈Ω

Tij ≈ p
∑

(i,j)∈[d]×[d]

Tij , (8.13)

where we use ≈ to mean that ∣∣∣ ∑
(i,j)∈Ω

Tij − p
∑

(i,j)∈[d]×[d]

Tij

∣∣∣ < ε (8.14)

with high probability. This suggests the strategy of casting the estimation of our desired quantities in the
form of estimating a scalar sum via a sample. In particular, we note that for any matrices A and B,

〈A,PΩ(B)〉 =
∑

(i,j)∈Ω

AijBij ≈ p〈A,B〉. (8.15)

To make use of this observation to understand the quantities of interest (∇f(x) and ∇2f(x)), we compute
the bilinear and quadratic forms for ∇f(x) and ∇2f(x) respectively:

〈v,∇f(x)〉 = 〈v, PΩ(M − xx>)x〉 = 〈vx>, PΩ(M − xx>)〉, (8.16)

where we have used the fact that 〈A,BC〉 = 〈AC>, B〉. Also note that vx> is a rank-1 matrix and M −xx>
is a rank-2 matrix.

〈v,∇2f(x)v〉 = ‖PΩ(vx> + xv>)‖2F − 2〈PΩ(M − xx>), vv>〉 (8.17)

= 〈PΩ(vx> + xv>), vx> + xv>〉 − 2〈PΩ(M − xx>), vv>〉, (8.18)

84



Figure 8.5: Even if f(x) and g(x) are no more than ε apart at any given x, without any additional knowledge,
the local minima of f may possibly look dramatically different from the local minima of g. However, the
proofs in this section show that the landscape of f (the matrix completion objective) and g (the PCA
objective) are have similar properties by proving more advanced concentration inequalities.

where we have used the fact that ‖PΩ(A)‖2F = 〈PΩ(A), PΩ(A)〉 = 〈P (Ω(A), A〉.
The key lemma that applies the scalar concentration to these matrix quantities is as follows:

Lemma 8.17. Let ε > 0, p =
poly(µ, log d)

dε2
. Given that A = uu>, B = vv> for some u, v satisfying

‖u‖2 ≤ 1, ‖v‖2 ≤ 1, ‖u‖∞ ≤ µ/
√
d, ‖v‖∞ ≤ µ/

√
d, we have |〈PΩ(A), B〉/p− 〈A,B〉| ≤ ε w.h.p.

If we can show that g has no bad local minima via a proof that only uses g via terms of the form 〈v,∇g(x)〉
and 〈v,∇2g(x)v〉, then by Lemma 8.17 this proof will automatically generalize to f by concentration.

Next, we prove some facts about g and show the analogous proofs for f that we will use in the proof of
Theorem 8.14.

Lemma 8.18 (Connecting inner product and norm for g). If x satisfies ∇g(x) = 0, then 〈x, z〉2 = ‖x‖42.

Proof.

∇g(x) = 0 =⇒ 〈x,∇g(x)〉 = 0 (8.19)

=⇒ 〈x, (zz> − xx>)x〉 = 0 (because ∇g(x) = (M − xx>)x) (8.20)

=⇒ 〈x, z〉2 = ‖x‖42. (8.21)

Lemma 8.19 (Connecting inner product and norm for f). Suppose ‖x‖∞ ≤ 2µ/
√
d. If x satisfies ∇f(x) = 0,

then 〈x, z〉2 ≥ ‖x‖42 − ε with high probability.

Proof.

∇f(x) = 0 =⇒ 〈x,∇f(x)〉 = 0 (8.22)

=⇒ 〈x,∇g(x)〉 ≈ 〈x,∇f(x)〉/p± ε (by Lemma 8.17) (8.23)

=⇒ |〈x, (zz> − xx>)x〉| ≤ ε w.h.p. (8.24)

=⇒ 〈x, z〉2 ≥ ‖x‖42 − ε w.h.p. (8.25)
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Lemma 8.20 (Bound norm for g). If ∇2g(x) � 0, then ‖x‖22 ≥ 1/3.

Proof.

∇2g(x) � 0 =⇒ 〈z,∇2g(x)z〉 ≥ 0 (8.26)

=⇒ ‖zx> + xz>‖2F − 2z>(zz> − xx>)z ≥ 0 (8.27)

=⇒ 2‖x‖22 + 2 〈x, z〉2 − 2 + 2 〈x, z〉2 ≥ 0 (cyclic trace prop.) (8.28)

=⇒ 3‖x‖22 = ‖x‖22 + 2‖x‖22 ≥ ‖x‖22 + 2〈x, z〉2 ≥ 1 (by Cauchy-Schwarz) (8.29)

=⇒ ‖x‖22 ≥ 1/3. (8.30)

Lemma 8.21 (Bound norm for f). Suppose ‖x‖∞ ≤ µ/
√
d. If ∇2f(x) � 0, then ‖x‖22 ≥ 1/3− ε/3 with high

probability.

Proof.

∇2f(x) � 0 =⇒ 〈z,∇2f(x)z〉 ≥ 0 (8.31)

=⇒ 〈z,∇2g(x)z〉 ≥ −ε w.h.p. (by Lemma 8.17) (8.32)

=⇒ 3‖x‖22 ≥ 1− ε w.h.p. (8.33)

=⇒ ‖x‖22 ≥ 1/3− ε/3 w.h.p. (8.34)

Lemma 8.22 (g has no bad local minimum). All local minima of g are global minima.

Proof.

∇g(x) = 0 =⇒ 〈z,∇g(x)〉 = 0 (8.35)

=⇒ 〈z, (zz> − xx>)x〉 = 0 (8.36)

=⇒ 〈x, z〉(1− ‖x‖22) = 0. (8.37)

Since |〈x, z〉| ≥ 1/3 6= 0 (by Lemma 8.20), we must have ‖x‖22 = 1. But then Lemma 8.18 implies 〈x, z〉2 =
‖x‖42 = 1, so x = ±z by Cauchy-Schwarz.

We now prove Theorem 8.14, restated for convenience:

Theorem 8.23 (f has no bad local minimum). Assume p =
poly(µ, log d)

dε2
. Then with high probability, all

local minima of f are O(
√
ε)-close to +z or −z.

Proof. Observe that ‖x − z‖22 = ‖x‖22 + ‖z‖22 − 2〈x, z〉 ≤ ‖x‖22 + 1 − 2〈x, z〉. Our goal is to show that
this quantity is small with high probability, hence we need to bound ‖x‖22 and 〈x, z〉 w.h.p. Note that the
following bounds in this proof are understood to hold w.h.p.

Let x be such that ∇f(x) = 0. For ε ≤ 1/16,

〈x, z〉2 ≥ ‖x‖42 − ε (by Lemma 8.19) (8.38)

≥ (1/3− ε/3)2 − ε (by Lemma 8.21) (8.39)

≥ 1/32. (8.40)
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With this, we can get a bound on ‖x‖22:

∇f(x) = 0 =⇒ 〈x,∇f(x)〉 = 0 (8.41)

=⇒ |〈z,∇g(x)〉| ≤ ε (by Lemma 8.17) (8.42)

=⇒ |〈x, z〉| · |1− ‖x‖22| ≤ ε (by dfn of g) (8.43)

=⇒ |1− ‖x‖22| ≤ 32ε = O(ε) (by (8.40)) (8.44)

=⇒ ‖x‖22 = 1±O(ε). (8.45)

Next, we bound 〈x, z〉:

〈x, z〉2 ≥ ‖x‖42 − ε (by Lemma 8.19) (8.46)

≥ (1−O(ε))2 − ε (by (8.45)) (8.47)

= 1−O(ε). (8.48)

Finally, we put these quantities together to bound ‖x− z‖22. We have two cases:
Case 1: 〈x, z〉 ≥ 1−O(ε). Then

‖x− z‖22 = ‖x‖22 + ‖z‖22 − 2〈x, z〉 (8.49)

≤ ‖x‖22 + 1− 2〈x, z〉 (8.50)

≤ 1 +O(ε) + 1− 2(1−O(ε)) (8.51)

≤ O(ε). (8.52)

Hence we conclude x is O(
√
ε)-close to z.

Case 2: 〈x, z〉 ≤ −(1−O(ε)). Then by an analogous argument, x is O(
√
ε)-close to −z.

We have shown above that matrix completion of a rank-1 matrix has no spurious local minima. This
proof strategy can be extended to handle higher-rank matrices and noisy matrices [Ge et al., 2016]. The
proof also demonstrates a generally useful proof strategy: often, reducing a hard problem to an easy problem
results in solutions that do not give much insight into the original problem, because the proof techniques do
not generalize. It can often be fruitful to seek a proof in the simplified problem that makes use of a restricted
set of tools that could generalize to the harder problem. Here we limited ourselves to only using 〈v,∇g(x)〉
and 〈v,∇2g(x)v〉 in the easy case; these quantities could then be easily converted to analogous quantities in
f via the concentration lemma (Lemma 8.17).

8.3.3 Other problems where all local minima are global minima

We have now demonstrated that two classes of machine learning problems, rank-1 PCA and rank-1 matrix
completion, have no spurious local minima and are thus amenable to being solvable by gradient descent
methods. We now outline some major classes of problems for which it is known that there are no spurious
local minima.

• Principal component analysis (covered in previous lecture).

• Matrix completion (and other matrix factorization problems). On a related note, it has also been
shown that linearized neural networks of the form y = W1W2x, where W1 and W2 are optimized
separately, have no spurious local minima [Baldi and Hornik, 1989]. It should be noted that linearized
neural networks are not very useful in practice since the advantage of optimizing W1 and W2 separately
versus optimizing a single W = W1W2 is not clear.

• Tensor decomposition. The problem is as follows:

maximize

d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

Tijklxixjxkxl such that ‖x‖2 = 1. (8.53)

87



Additionally, constraints are imposed on the tensor T to make the problem tractable. For example,
one condition is that T must be a low-rank tensor with orthonormal components [Ge et al., 2015].

8.4 The Neural Tangent Kernel (NTK) Approach

In the previous sections, we studied non-convex optimization problems in which all local minima are global.
Selecting the parameters of a deep neural network is another commonly encountered non-convex optimization
problem, but it is unrealistic to expect that all local minima will also be global minima in this setting. Here
we consider a particular objective for which we can identify particular regions of the input space in which
all local minima are also global minima. We can show that this objective corresponds to certain types of
deep neural networks, but this analysis remains limited. For further reading about this approach to studying
neural network optimization, see [Liang et al., 2018] and [Du and Hu, 2019].

To be more formal, we take an appropriate parameter initialization θ0 such that in a neighborhood around
it, which we denote by B(θ0), the loss function is convex and its global minimum is attained. Figure 8.6
depicts a function and region for which this condition holds.

Figure 8.6: Training loss around an initialized θ0. The dotted lines indicate B(θ0), a region where the loss
is convex, and where a global minimum exists.

Given a nonlinear fθ(x), we examine the Taylor expansion at θ0:

fθ(x) = fθ0(x) + 〈∇θfθ0(x), θ − θ0〉︸ ︷︷ ︸
∆
=gθ(x)

+ higher order terms (8.54)

Note that gθ(x) is an affine function in θ, as fθ0(x) is a constant for fixed x, θ0. Similarly, defining
∆θ = θ − θ0, we can say that gθ(x) is linear in ∆θ. For convenience, we will sometimes choose θ0 such that
fθ0(x) = 0 for all x. It is easy to see why such an initialization exists. Consider splitting a two-layer neural
network fθ(x) with width 2m into two halves, each with m neurons; the outputs of these two networks are
then given by

∑m
i=1 aiσ(w>i x) and

∑m
i=1−aiσ(w>i x), respectively. Here, wi can be randomly chosen so long

as Wi is the same in both halves, and ai can be randomly chosen as long as the other half is initialized with
−ai. Summing these two networks together yields fθ0(x) ≡ 0 for all x.

When fθ0(x) ≡ 0, we have that

gθ(x) = 〈∇θfθ0(x),∆θ〉 , (8.55)

we observe that ∆θ depends upon the parameter we evaluate the network at, while ∇θfθ0(x) can be thought
of as a feature map since it is a fixed function of x (given the architecture and θ0) that does not depend on
θ whatsoever. We thus let φ(x) , ∇θfθ0(x), which motivates the following definition:
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Definition 8.24 (Neural Tangent Kernel). For simplicity, we assume fθ0(x) = 0 so that y = y′. The neural
tangent kernel K is given by

K(x, x′) = 〈φ(x), φ(x′)〉 (8.56)

= 〈∇θfθ0(x),∇θfθ0(x′)〉 . (8.57)

Here, the feature ∇θfθ0(x) is precisely the gradient of the neural network. This is where the “tangent”
in Neural Tangent Kernel comes from.

Instead of fθ(x), suppose we use the approximation gθ(x), which we recall is linear in θ. The kernel
method gives a linear model on top of features. When θ ≈ θ0, given a convex loss function `, we have

`(fθ(x), y)︸ ︷︷ ︸
not

necessarily
convex

≈ `(gθ(x), y)︸ ︷︷ ︸
convex

. (8.58)

Convexity of the RHS follows from the fact that a convex function, `, composed with a linear function, gθ,
is still convex.

A natural question to ask is: how valid is this approximation? We devote the rest of this chapter to
answering this question. First, we define the empirical loss:

L̂(fθ) =
1

n

n∑
i=1

`
(
fθ
(
x(i)
)
, y(i)

)
(8.59)

L̂(gθ) =
1

n

n∑
i=1

`
(
gθ
(
x(i)
)
, y(i)

)
. (8.60)

The key idea is that the Taylor approximation works for certain cases. We defer a more complete enumeration
of these cases to a later section of this monograph. Here we outline the high-level approach we take to validate
and use this Taylor expansion. Namely, we will show that there exists a neighborhood around θ0 called B(θ0),
such that we have the following:

1. Accurate approximation: fθ(x) ≈ gθ(x), and L̂(fθ) ≈ L̂(gθ) for all θ ∈ B(θ0).

2. It suffices to optimize in B(θ0): There exists an approximate global minimum θ̂ ∈ B(θ0), so L̂(gθ̂) ≈ 0.
This is the lowest possible loss (because the loss is nonnegative), which implies we are close to the
global minimum. Because of 1, this implies that L̂(fθ̂) ≈ 0 as well. See Figure 8.7 for an illustration.

3. Optimizing L̂(fθ) is similar to optimizing L̂(gθ) and does not leave B(θ0), i.e. everything is confined
to this region. Intuitively, this last point to some extent is “implied” by (1) and (2), but this claim
still requires a formal proof.

Note (1), (2), and (3) can all be true in various settings. In particular, to attain all three, we will require:

(a) Overparametrization and/or a particular scaling of the initialized θ0.

(b) Small (or even zero) stochasticity, so θ never leaves B(θ0). This condition is guaranteed by a small
learning rate or full-batch gradient descent.

Despite the limitations of the requirements of (a) and (b), the existence of such a region is still surprising.
Given the loss landscape which could potentially be highly non-convex, it is striking to find a neighborhood
where the loss function is convex (e.g. quadratic) with a global minimum. This suggests there is some
flexibility in the loss landscape.

To begin our formal discussion, we start by providing tools for proving (1) and (2). Let

φ(i) = φ(x(i)) = ∇θfθ0(x(i)) ∈ Rp (8.61)
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Figure 8.7: Here, L̂(gθ) and L̂(fθ) are both plotted. At θ̂, we have reached the approximate global minimum
where L̂(gθ̂) ≈ 0, in turn implying also that L̂(fθ̂) ≈ 0.

and

Φ =


φ(1)>

...

φ(n)>

 ∈ Rn×p (8.62)

where p is the number of parameters. Taking the quadratic loss, we have

L̂(gθ) =
1

n

n∑
i=1

(
y(i) − φ

(
x(i)
)>

∆θ

)2

=
1

n
‖~y − Φ ·∆θ‖22 (8.63)

where ~y =
[
y(1), · · · , y(n)

]> ∈ Rn. Note that this looks a lot like linear regression, where Φ and ∆θ are

the analogues of the design matrix and parameter, respectively. We further assume that y(i) = O(1) and
‖y‖2 = O(

√
n). Now, we can prove a lemma that addresses the second of the three conditions we described

above, i.e. that it is sufficient to optimize in some small ball around θ0.

Lemma 8.25 (for (2)). Suppose we are in the setting where p ≥ n, rank(Φ) = n, and σmin(Φ) = σ > 0.

Then, letting ∆θ̂ denote the minimum norm solution, i.e. the nearest global minimum, of ~y = Φ∆θ, we have

‖∆θ̂‖2 ≤ O(
√
n/σ) (8.64)

Remark 8.26. The meaning of the bound on ∆θ̂ becomes clear if we consider the ball given by

Bθ0 = {θ = θ0 + ∆θ : ‖∆θ‖2 ≤ O(
√
n/σ)}. (8.65)

In particular, notice that Bθ0 contains a global minimum, so this lemma characterizes how large the ball
must be to contain a global minimum.

Remark 8.27. We also note that the condition rank(Φ) = n and σ > 0 can be thought of as a “finite-sample
expressivity” condition, saying that the features Φ are expressive enough so that there exists a linear model
on top of these features that perfectly fit the data. The condition rank(Φ) = n requires p ≥ n—so we need
some amount of over-parameterization to apply these analysis.

Proof. Letting Φ+ denote the Moore-Penrose pseudoinverse of Φ, note that ∆θ̂ = Φ+y, and ‖Φ+‖op =
1

σmin(Φ) = 1
σ . A simple argument shows

‖∆θ̂‖2 ≤ ‖Φ+‖op · ‖~y‖2 (8.66)

≤ O
(

1

σ
·
√
n

)
, (8.67)

where the last inequality follows from the assumption that ‖~y‖2 ≤ O(
√
n).
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Next, we prove a lemma that addresses the first of the three steps we described above.

Lemma 8.28 (for (1)). Suppose ∇θfθ(x) is β-Lipschitz in θ, i.e. for every x, and θ, θ′, we have

‖∇θfθ(x)−∇θfθ′(x)‖2 ≤ β · ‖θ − θ′‖2. (8.68)

Then,

|fθ(x)− gθ(x)| ≤ O
(
β‖∆θ‖22

)
. (8.69)

If we further restrict our choice of θ using Bθ0 as defined in Remark 8.26, we obtain that

|fθ(x)− gθ(x)| ≤ O
(
βn

σ2

)
, ∀θ ∈ Bθ0 . (8.70)

Proof. The proof comes from the following fact: if h(θ) is such that ∇h(θ) is β-Lipschitz (which if differen-
tiable is equivalent to ‖∇2h(θ)‖op ≤ β), then∣∣∣∣ h(θ)︸︷︷︸

fθ(x)

−h(θ0)−
〈
∇h(θ0), θ − θ0

〉︸ ︷︷ ︸
−gθ(x)

∣∣∣∣ ≤ O (β‖θ − θ0‖22
)
. (8.71)

As shown above, the proof is as simple as plugging in fθ(x) = h(θ) and gθ(x) = h(θ0) +
〈
∇h(θ0),∆θ

〉
.

Remark 8.29. The lemma above bounds the approximation error. Intuitively, as you move farther away from
θ0, the Taylor approximation gets worse; the approximation error is bounded above by a second order ∆θ
term.

Remark 8.30. Note that if fθ involves a relu function, then ∇fθ is not continuous everywhere. This requires
a technical fix outside the scope of our discussion.2

8.4.1 Two examples of the NTK regime

By (8.70), we have now established a bound on our approximation error, but we have yet to analyze how
good it is, as βn/σ2 is neither obviously either big nor small. An important fact to notice is that β/σ2 is
not scaling invariant, so we can play with the scaling in order to drive this term to 0. In particular, there
are two notable cases (with specific parameterization, initialization, etc) where β/σ2 → 0. In the literature,
such situation is often referred to as the NTK regime or the lazy training regime [Chizat and Bach, 2018].

1. Reparameterize with a scalar [Chizat and Bach, 2018]. Let fθ(x) = α · f̄θ(x) where f̄θ(x) is an
arbitrary neural net with fixed width and depth. We only vary α, i.e. the scaling, and we see how the
crucial quantity β/σ2 changes accordingly. Fix an initial θ0, and let

σ̄ = σmin



∇θf̄θ0

(
x(1)

)>
...

∇θf̄θ0

(
x(n)

)>

 . (8.72)

Furthermore, let β̄ be the Lipschitz parameter of ∇θf̄θ(x) in θ. A simple chain-rule gradient argu-
ment shows that scaling f̄θ by α also scales σ and β accordingly, i.e. σ = ασ̄, and β = αβ̄. Some
straightforward algebra yields

β

σ2
=

β̄

σ̄2
· 1

α
→ 0 as α→∞. (8.73)

Once α becomes big enough, then by Lemma 8.28, the approximation |fθ(x) − gθ(x)| ≤ O
(
βn/σ2

)
becomes very good.

2A relu function is continuous almost everywhere, so we can make some minor fixes and still use some modified notion of
Lipschitzness to derive an upper bound.
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Remark 8.31. A priori, such a phenomenon may appear to be too good to be true. To understand
it better, we first note that this re-parameterizaton does not change the scale of the loss, but rather
change the shape of the loss function. Intuitively, as α becomes larger, the function fθ becomes sharper
and more non-smooth (leading to higher approximation error). However, on the other hand, we note
that we only need to travel a little bit away from θ0 to find a global minimum given that there is a
global minimum within radius O(

√
n/σ). It turns out that the radius needed shrinks faster than the

smoothness grows.

To visualize this effect, we can consider the following example with only 1 data point with 1-dimensional
input (x, y) = (1, 1) and the quadratic model f̄θ(x) = x(θ + βθ2) = θ + βθ2. Using the squared loss,
we have

L̂(f̄θ) = (1− (θ + βθ2))2 (8.74)

Let θ0 = 0. Taylor expanding at θ0 gives the linear approximation ḡθ(x) = θx = θ, and the resulting
loss function that is quadratic

L̂(ḡθ) = (1− θ)2 (8.75)

In this case, ∇fθ0(x) = 2βθx = 2βθ is 2β-Lipschitz, and σ = 1.

Now we vary α and get

L̂(αf̄θ) = (1− α(θ + βθ2))2 (8.76)

and

L̂(αḡθ) = (1− αθ)2 (8.77)

Note that the minimizer of L̂(αḡθ) is 1/α, which is closer to θ0 as α → ∞. We zoom into the region
[0, 1/α] and find out the difference between αf̄θ and αḡθ is αβθ2 ≤ β/α, which is much smaller than
the value of αḡθ ≈ O(1).

We visualize the these functions in Figure 8.8. We observe that L̂(αḡθ) becomes a better approximation

of L̂(αf̄θ) in the region [0, 1/α] as α→∞ (though L̂(αḡθ) is a worse approximation of L̂(αf̄θ) globally.)

2. Overparametrization (with specific initialization). Early papers on the NTK take this approach
(e.g., [Li and Liang, 2018, Du and Hu, 2019]). Consider a two-layer network with m neurons.

ŷ =
1√
m

m∑
i=1

aiσ(w>i x) (8.78)

The scaling 1/
√
m is to ensure that a random initialization with constant scale will have output on the

right order, as we see momentarily. We make the following assumptions regarding the network and its
inputs.

W =

w
>
1
...
w>m

 ∈ Rm×d (8.79)

σ is 1-Lipschitz and twice-differentiable (8.80)

ai ∼ {±1} (not optimized) (8.81)

w0
i ∼ N (0, Id) (8.82)

‖x‖2 = Θ(1) (8.83)

θ = vec(W ) ∈ Rdm (vectorized W ) (8.84)

92



Figure 8.8: The approximation L̂(αḡθ) becomes a better approximation of L̂(αf̄θ) in the region [0, 1/α] as

α→∞ (though L̂(αḡθ) is a worse approximation of L̂(αf̄θ) globally).

We will assume m→∞ polynomially in n and d. In particular, for fixed n, d, we have m = poly(n, d).

Why do we use the 1/
√
m scaling? Note that σ

(
w0
i
>
x
)
≈ 1 because ‖x‖2 = Θ(1) and w0

i is drawn

from a spherical Gaussian. Thus, as some ai are positive and others are negative,
∣∣∣∑m

i=1 aiσ
(
w0
i
>
x
)∣∣∣ =

Θ (
√
m), and finally fθ0(x) = Θ(1).

Now we analyze σ and β. We let

σ = σmin(Φ) =
√
σmin (ΦΦ>) (8.85)

where (
ΦΦ>

)
ij

=
〈
∇θfθ0

(
x(i)
)
,∇θfθ0

(
x(j)

)〉
(8.86)

Note that the gradient with respect to wi is given by

∂fθ(x)

∂wi
=

1√
m
σ′(w>i x) · x (8.87)

Now observe that

‖∇fθ(x)‖22 =
1

m

m∑
i=1

‖σ′
(
wi
>x
)
· x‖22 (8.88)

=
1

m
‖x‖22 ·

m∑
i=1

(
σ′
(
wi
>x
))2

(8.89)

→ E
w∼N (0,Id)

[
σ′
(
w>x

)2] · ‖x‖22 as m→∞ (8.90)

= O(1) (not depending on m) (8.91)

where the penultimate line follows from the law of large numbers, as 1
m

∑m
i=1

(
σ′(w>i x)

)2
can be

interpreted as a mean.

93



Note that the scale of ‖∇θfθ0(x)‖2 does not depend on m, so the inner product in (8.86) also does not
depend on m either. As above, we can show

〈∇θfθ0(x),∇θfθ0(x′)〉 =
1

m
〈x, x′〉

m∑
i=1

σ′(w>x)σ′(w>x′) (8.92)

→ E
w∼N (0,Id)

[
σ′(w>x)σ′(w>x′)

]
〈x, x′〉 (8.93)

(8.93) implies that as m→∞, ΦΦ> converges to a constant matrix denoted by

K∞ = lim
m→∞

ΦΦ> (8.94)

This is precisely the NTK with m =∞. Though we omit the proof of this claim, it can be shown that
K∞ is full rank. Then, let

σmin , σmin(K∞) > 0. (8.95)

We can show that

σ = σmin

(
ΦΦ>

)
>

1

2
σmin (8.96)

Intuitively, ΦΦ> → K∞, so the spectrum of the matrix should also converge. Thus, in some sense, we
have shown that σ is constant in the limit.

Now what about β? If we can show β → 0 as m → ∞, we are done. We begin by analyzing this key
expression:

∇θfθ(x)−∇θfθ′(x) =

[
1√
m

(
σ′
(
w>i x

)
− σ′

(
w′i
>
x
))
· x
]m
i=1

(8.97)

Note that (8.97) above consists of matrices, as θ is a vectorized matrix. Then,

‖∇θfθ(x)−∇θfθ′(x)‖22 =
1

m

m∑
i=1

‖x‖22
(
σ′
(
w>i x

)
− σ′

(
wi
′>x
))2

(8.98)

≤ O

(
1

m

m∑
i=1

‖x‖22
(
w>i x− w′i

>
x
)2)

(8.99)

= O

(
1

m

m∑
i=1

‖wi − w′i‖22

)
(8.100)

= O

(
1

m
‖θ − θ′‖22

)
(8.101)

The first line follows from the fact that 1√
m

(
σ′
(
w>i x

)
− σ′

(
w′i
>
x
))

is a scalar. The second line uses the

assumption that σ′ is O(1)-Lipschitz. The third line uses Cauchy-Schwarz and the fact that ‖x‖22 ≈ 1.
Taking the square root, we have that

‖∇θfθ(x)−∇θfθ′(x)‖2 .
1√
m
‖θ − θ′‖2 (8.102)

Thus, the Lipschitz parameter is β = O(1/
√
m). Thus, our key quantity β/σ2 goes to 0 as m grows.

Namely,

β

σ2
≈ 1√

m
· 1

σ2
min

→ 0 as m→∞. (8.103)

Recall here that σmin does not depend on m. Concretely, this result tells us that our function becomes
more smooth (the gradient has a smaller Lipschitz constant) as we add more neurons.
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8.4.2 Optimizing L̂(gθ) vs. L̂(fθ)

We now discuss how to establish the last of the three conditions under which we claimed a Taylor approxi-
mation is reasonable. We need to show that optimizing L̂(fθ) is similar to optimizing L̂(gθ). To do so, we
require two steps:

(A) Analyze optimization of L̂(gθ).

(B) Analyze optimization of L̂(fθ) by re-using or modifying the proofs in (A).

There are two approaches in the literature for (A), which implies that there exist two approaches for (B) as
well.

(i) We leverage the strong convexity of L̂(gθ), and then show an exponential convergence rate.3

(ii) Instead of strong convexity, we rely on the smoothness of fθ (i.e. bounded second derivative).

We will only discuss the first of these two methods in the sequel.

Remark 8.32. In both either approach (i) or (ii), we will implicitly or explicitly use the following simple fact.
Suppose at any θt, we take the Taylor expansion of fθ at θt:

gtθ(x) = fθt(x) +
〈
∇fθt(x), θ − θt

〉
(8.105)

Consider the gradient we are interested in taking: ∇L̂(fθt). Notice that:

∇L̂(fθt) = ∇L̂(gtθt) (8.106)

This is really saying that fθ and gtθ agree up to first-order at θt. This implies that L(fθ) and L(gtθ) also agree

to first-order at θt. This also means that T steps of gradient descent on L̂(fθ) is the same as performing
online gradient descent4 on a sequence of changing objectives L(g0

θ), . . . , L(gTθ ), and this online learning
perspective is useful in the approach (ii).

We will now show that under the strong convexity regime, optimizing a neural network fθ is equivalent
to optimizing a linear model gθ. We will also observe that this regime is not particularly practically relevant,
but this analysis is nevertheless of interest to us for two reasons. First, the approach used in the subsequent
exposition is of technical interest and second, it remains quite interesting that optimizing fθ and optimization
gθ yields the same results under any regime.

Optimizing gθ

We relate the optimization of gθ to performing linear regression. Recall that we can think of ∇fθ0(x) as
a feature map. Then, the problem of choosing ∆θ to get gθ(x) to be close to ~y is a linear regression. In
particular, we use gradient descent to minimize

‖~y − Φ∆θ‖22, (8.107)

where

Φ =

∇fθ0(x(1))>

...
∇fθ0(x(n))>

 ∈ Rn×p. ~y =

y
(1)

...
y(n)

 ∈ Rn (8.108)

3Recall that a differentiable function f is µ-strongly convex if

f(y) ≥ f(x) +∇f(x)>(y − x) +
µ

2
‖y − x‖22 (8.104)

for some µ > 0 and all x, y.
4Online gradient descent is the algorithm that takes one gradient descent step upon receiving a new objective function. See

Chapter 11 for more discussions about online learning.
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For learning rate η, the gradient descent update rule is

∆θt+1 = ∆θt − ηΦ>(Φ∆θt − ~y). (8.109)

This analysis considers changes in the output space. Define ŷt = Φ∆θt. Then, we’re interested in changes
in

ŷt+1 − ~y = Φ∆θt+1 − ~y (8.110)

= Φ
(
∆θt − ηΦ>(Φ∆θt − ~y)

)
− ~y (by (8.109)) (8.111)

=
(
Φ− ηΦΦ>Φ

)
∆θt − (I − ηΦΦ>)~y (8.112)

= (I − ηΦΦ>)Φ∆θt − (I − ηΦΦ>)~y (8.113)

= (I − ηΦΦ>)(Φ∆θt − ~y) (8.114)

= (I − ηΦΦ>)(ŷt − ~y). (8.115)

From this decomposition, we see that the residuals, ŷt− ~y, are monotonically shrinking since ηΦΦ>, i.e. the
term we are subtracting from I in (8.115), is positive semidefinite. Next, we quantify how quickly we are
shrinking the residuals. Define

τ2 = σmax(ΦΦ>) (8.116)

σ = σmin(Φ) =
√
σmin(ΦΦ>). (8.117)

Then, we claim that when η ≤ 1
τ2 ,

‖I − ηΦΦ>‖op ≤ 1− ησ2. (8.118)

Why? Let the eigenvalues of ΦΦ> be (in descending order) τ2
1 , . . . , τ

2
n. By definition, τ2

1 = τ2 and τ2
n = σ2.

Now, given the singular value decomposition, Φ = UΣV >, we obtain the eigendecomposition:

I − ηΦΦ> = I − ηUΣ2U> (8.119)

= UU> − ηUΣ2U> (8.120)

= U(I − ηΣ2)U>. (8.121)

(8.121) is the eigendecomposition of I − ηΦΦ>, so I − ηΦΦ> has eigenvalues 1 − ητ2
1 , . . . , 1 − ητ2

n. Note
that assuming η ≤ 1

τ2 ensures that all eigenvalues of I − ηΦΦ> are non-negative. Thus,

‖I − ηΦΦ>‖op ≤ max
j
|1− ητ2

j | (8.122)

= 1− ητ2
n (8.123)

= 1− ησ2, (8.124)

where the non-negativity of 1− ητ2
j for all j implies (8.123).

Using this result, we obtain our desired result. Namely, assuming η ≤ 1
τ2 ,

‖ŷt+1 − ~y‖2 = ‖I − ηΦΦ>‖op · ‖ŷt − ~y‖2 (8.125)

≤ (1− ησ2)‖ŷt − ~y‖2 (8.126)

≤ (1− ησ2)t+1‖ŷ0 − ~y‖2. (8.127)

This yields the desired exponential decay in the error. Thus, after T = O
(

log 1/ε
ησ2

)
iterations,

‖ŷT − ~y‖2 ≤ ε‖ŷ0 − ~y‖2. (8.128)
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Optimizing fθ

We now transition to an analysis of the optimization of fθ. Our key result is Theorem 8.33. If we compare
it against what we have in (8.128), we see the claimed similarity between fθ and gθ in error decay under
optimization.

Theorem 8.33. There exists a constant c0 ∈ (0, 1) such that for β
σ2 ≤ c0

n and sufficiently small η (which

could depend on β, σ, or p), L̂ (fθT ) ≤ ε after T = O
(

log 1/ε
ησ2

)
steps.

Proof. (This is actually a proof sketch that elides a few technical details for the sake of a simpler exposition.)
Our approach is to follow the preceding analysis of gθ, making changes where necessary.

Let

Φt =

∇fθt(x
(1))>

...
∇fθt(x(n))>

 ∈ Rn×p. (8.129)

To obtain our gradient descent update rule, we find, using the chain rule,

∇L̂ (fθt) =

n∑
i=1

(
fθt
(
x(i)
)
− y(i)

)
∇fθt

(
x(i)
)

(8.130)

=

n∑
i=1

(
ŷ(i),t − y(i)

)
∇fθt

(
x(i)
)

(8.131)

= (Φt)>
(
ŷt − ~y

)
. (8.132)

This results in the policy

θt+1 = θt − η∇L̂ (fθt) (8.133)

= θt − η(Φt)>
(
ŷt − ~y

)
(8.134)

= θt − ηbt, (8.135)

where we have let bt = (Φt)> (ŷt − ~y). Following our treatment of gθ, we want to express ŷt+1 as a function
of ŷt. The challenge now is that f is nonlinear. To deal with this, we Taylor expand fθ at θt:

fθt+1(x(i)) = fθt(x
(i)) +

〈
∇fθt(x(i)), θt+1 − θt

〉
+ high order terms (8.136)

= fθt(x
(i)) +

〈
∇fθt(x(i)),−ηbt

〉
+O

(
‖θt+1 − θt‖22

)
. (8.137)

Since O
(
‖θt+1 − θt‖22

)
is O

(
η2
)
, we can ignore this term as η → 0. Vectorizing (8.137) without

O
(
‖θt+1 − θt‖22

)
,

ŷt+1 = ŷt − ηΦtbt (8.138)

= ŷt + ηΦt
(
Φt
)>

(~y − ŷt). (8.139)

Subtracting ~y and re-arranging,

ŷt+1 − ~y = ŷt − ~y + ηΦt
(
Φt
)>

(~y − ŷt) (8.140)

=
(
I − ηΦt

(
Φt
)>) (

ŷt − ~y
)
. (8.141)
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Comparing (8.141) with (8.115), we see one difference: in (8.141), our convergence depends on ηΦt (Φt)
>

,
which is a matrix that changes as we iterate, whereas in (8.115), convergence is controlled by a matrix that
is fixed as we iterate.

To understand the convergence implications of (8.141), we examine the eigenvalues of I−ηΦt (Φt)
>

. For
now, suppose

‖θt − θ0‖2 ≤ σ/(4
√
nβ) (8.142)

at time t. This implies that ‖Φt − Φ‖F ≤ σ
4 by the Lipschitzness of ∇fθ(x) in θ. Then, we claim that

σmin(Φt) ≥ 3σ/4. (8.143)

Why does (8.143) hold? Observe that

σmin(Φt) = min
‖x‖2=1

x>Φtx (8.144)

≥ min
‖x‖2=1

x>(Φt − Φ)x+ min
‖x‖2=1

x>Φx. (8.145)

We can lower bound the first term of (8.145) as follows:

x>(Φt − Φ)x ≥ −|
〈
x, (Φt − Φ)x

〉
| (8.146)

≥ −‖x‖2‖(Φt − Φ)x‖2 (Cauchy-Schwarz) (8.147)

≥ −‖Φt − Φ‖2 (‖x‖2 = 1) (8.148)

≥ −σ/4 (Lipschitzness of Φ). (8.149)

Next, we note that the second term of (8.145) is lower bounded by σ by simplifying and applying the
definition of σ given in (8.117). Combining this observation with (8.149), we conclude that (8.143) must
hold.

Applying this lower bound on the eigenvalues of Φt, we can use the same argument we used to establish
(8.118) to conclude that

‖I − ηΦt
(
Φt
)> ‖op ≤ 1− 3ησ/4, (8.150)

and

‖ŷt+1 − ~y‖2 ≤ (1− 3ησ/4)
t+1 ‖ŷ0 − ~y‖2. (8.151)

So, as desired, we see exponential decay in the error at each iteration and after T = O
(

log 1/ε
nσ2

)
iterations,

L̂(fθT ) ≤ ε. (8.152)

To complete our proof, observe that this argument is predicated upon the assumption that ‖θt − θ0‖2 ≤
σ/(4
√
nβ). This assumption is reasonable, however, given what we have already proven. Recall that in

Lemma 8.25, we proved that

‖∆θ̂‖2 = ‖θ̂ − θ0‖2 .
√
n/σ. (8.153)

Thus, when β/σ2 → 0, eventually,
√
n/σ � σ/(4

√
nβ). To extend this to ‖θ̂ − θt‖2 for arbitrary t, we

heuristically argue that since the empirical minimizer is within σ/(4
√
nβ) of θ0, we would not expect to have

traveled more than σ/(4
√
nβ) from θ0 at any iteration.

More formally, we claim that for all t ∈ N,

‖ŷt − ~y‖2 ≤ O(
√
n). (8.154)
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We proceed via induction. For t = 0, because each element of ŷ is of order 1, we know that:

1√
n
‖ŷ0 − ~y‖2 ≤ O(1). (8.155)

Now, suppose that (8.154) holds for some t. Then, because the errors are monotonically decreasing, (cf.
(8.141) and (8.150)),

1√
n
‖ŷt+1 − ~y‖2 ≤

1√
n
‖ŷt − ~y‖2 ≤ O(1). (8.156)

Thus, (8.154) holds for all t ∈ N.
Next, applying Lemma 8.28 with θ = θt and our assumption that β

σ2 . 1
n , we conclude that:

1√
n
‖Φθt − ŷt‖2 ≤ O(1) (8.157)

Using this result and (8.154), we can show that 1√
n
‖Φ(θt − θ̂)‖2 is O(1).

1√
n
‖Φ(θt − θ̂)‖2 =

1√
n
‖Φθt − ~y‖2 (~y = Φθ̂) (8.158)

=
1√
n
‖Φθt − ŷt + ŷt − ~y‖2 (8.159)

≤ 1√
n
‖Φθt − ŷt‖2 +

1√
n
‖ŷt − ~y‖2 (triangle ineq.) (8.160)

≤ O(1). (8.161)

Then, leveraging the definition of σ given in (8.117) and rearranging, we obtain (nearly) the desired result:

‖θt − θ̂‖2 ≤
1

σ
‖Φ(θt − θ̂)‖2 ≤ O(

√
n/σ). (8.162)

Recall that in Lemma 8.25, we proved that

‖θ̂ − θ0‖2 ≤ O(
√
n/σ). (8.163)

If β/σ2 � 1/n, we conclude that

‖θt − θ0‖2 ≤ ‖θ̂ − θ0‖2 + ‖θt − θ̂‖2 (triangle ineq.) (8.164)

≤ O
(√

n

σ

)
≤ σ

4
√
nβ

. (8.165)

8.4.3 Limitations of NTK

The NTK approach has its limitations.

• Empirically, optimizing gθ(x) as described in the theory does not work as well as state-of-the-art (or
even standard) deep learning methods. For example, using the NTK approach (i.e., taking the Taylor
expansion and optimizing gθ(x)) with a ResNet generally does not perform as well as ResNet with
best-tuned hyperparameters.

• The NTK approach requires a specific initialization scheme and learning rate which may not coincide
with what is commonly used in practice.
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• The analysis above was for gradient descent, while stochastic gradient descent is used in practice,
introducing noise in the procedure. This means that NTK with stochastic gradient descent requires
a small learning rate to stay in the initialization neighborhood. Deviating from the requirements can
lead to leaving the initialization neighborhood.

One possible explanation for the gap between theory and practice is because NTK effectively requires a
fixed kernel, so there is no incentive to select the right features. Furthermore, the minimum `2-norm solution
is typically dense. This is similar to the difference between sparse and dense combinations of features
observed in the `1-SVM/two-layer network versus the standard kernel method SVM (or `2-SVM) analyzed
previously.

To make these ideas more concrete, consider the following example [Wei et al., 2020].

Example 8.34. Let x ∈ Rd and y ∈ {−1, 1}. Assume that each component of x satisfies xi ∈ {−1, 1}.
Define the output y = x1x2, that is, y is only a function of the first two components of x.

This output function can be described exactly by a neural network consisting of a sparse combination of
the features (4 neurons to be exact):

ŷ =
1

2
[φrelu(x1 + x2) + φrelu(−x1 − x2)− φrelu(x1 − x2)− φrelu(x2 − x1)] (8.166)

=
1

2
(|x1 + x2| − |x1 − x2|) (8.167)

= x1x2. (8.168)

(8.167) follows from the fact that φrelu(t) + φrelu(−t) = |t| for all t, while (8.168) follows from evaluating
the 4 possible values of (x1, x2). Thus, we can solve this problem exactly with a very sparse combination of
features.

However, if we were to use the NTK approach (kernel method), the network’s output will always involve
σ(w>x) where w is random so it includes all components of x (i.e. a dense combination of features), and
cannot isolate just the relevant features x1 and x2. This is illustrated in the following informal theorem:

Theorem 8.35. The kernel method with NTK requires n = Ω(d2) samples to learn Example 8.34 well. In
contrast, the neural network regularized by

∑m
j=1 |uj |‖wj‖2 only requires n = O(d) samples.
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Chapter 9

Implicit/Algorithmic Regularization
Effect

One of the miracles of modern deep learning is the phenomenon of algorithmic regularization (also known
as implicit regularization or implicit bias): although the loss landscape may contain infinitely many global
minimizers, many of which do not generalize well, in practice our optimizer (e.g. SGD) tends to recover
solutions with good generalization properties.

The focus of this chapter will be to illustrate algorithmic regularization in simple settings. In particular,
we first show that gradient descent (with the right initialization) identifies the minimum norm interpolating
solution in overparametrized linear regression. Next, we show that for a certain non-convex reparametrization
of the linear regression task where the data is generated from a sparse ground-truth model, gradient descent
(again, suitably initialized) approximately recovers a sparse solution with good generalization. Finally,
we discuss algorithmic regularization in the classification setting, and how stochasticity can contribute to
algorithmic regularization.

9.1 Implicit regularization effect of zero initialization in over-
parametrized linear regression

We prove that gradient descent initialized at the origin converges to the minimum norm interpolating solution
(assuming such a solution exists).

Let X
∆
=
[
x(1), ..., x(n)

]> ∈ Rn×d denote our data matrix and ~y
∆
=
[
y(1), ..., y(n)

]> ∈ Rn denote our label
vector, where n < d. Assume X is full rank. Our goal is to find a weight vector β that minimizes our

empirical loss function L̂(β)
∆
= 1

2‖~y −Xβ‖
2
2.

As we are in the overparametrized setting with n < d and X full rank, there exist infinitely many global
minimizers that interpolate the data and hence achieve zero loss. In fact, the following lemma shows that
the set of global minimizers forms a subspace.

Lemma 9.1. Let X+ denote the pseudoinverse1 of X. Then β is a global minimizer if and only if β =
X+~y + ζ for some ζ such that ζ ⊥ x1, ..., xn.

Proof. For any β ∈ Rd, we can decompose it as β = X+ + ζ for some ζ ∈ Rd. Since

Xβ = X(X+~y + ζ) = ~y +Xζ, (9.1)

β is a global minimizer if and only if Xζ = 0, which happens if and only if ζ ⊥ x1, ..., xn.

1Since X is full rank, XX> is invertible and so we have X+ = X>(XX>)−1. Note that XX+X = X.
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Figure 9.1: Visualization of proof intuition for Theorem 9.3. The solution β? is the projection of the origin
onto the subspace of global minima.

From Lemma 9.1, we can derive an explicit formula for the minimum norm interpolant β?
∆
=

argminβ:L̂(β)=0 ‖β‖2.

Corollary 9.2. β? = X+~y.

Proof. Take any β such that L̂(β) = 0, and write β = X+~y + ζ. Then from the definition of X+ and the
fact that Xζ = 0 (see the proof of Lemma 9.1), we have

||β||22 = ||X+~y||22 + ||ζ||22 + 2〈X+~y, ζ〉 (9.2)

= ||X+~y||22 + ||ζ||22 + 2〈X>(XX>)−1~y, ζ〉 (9.3)

= ||X+~y||22 + ||ζ||22 + 2〈(XX>)−1y,Xζ〉 (9.4)

= ||X+~y||22 + ||ζ||22 (because Xζ = 0) (9.5)

≥ ||X+~y||22, (9.6)

with equality if and only if ζ = 0.

Now, suppose we learn β using gradient descent with initialization β0, where at iteration t we set βt =
βt−1 − η∇L̂(βt−1) for some learning rate η. Since L̂(β) is convex, we know from standard results in convex
optimization that gradient descent will converge to a global minimizer for a suitably chosen learning rate
η (in particular, taking η to be sufficiently small). Assuming β0 = 0, we will in fact recover the minimum
norm interpolating solution.

Theorem 9.3. Suppose gradient descent on L̂(β) with initialization β0 = 0 converges to a solution β̂ such

that L̂(β̂) = 0. Then β̂ = β?.

The main idea of the proof is that the iterates of gradient descent always lie in the span of the x(i)’s (see
Figure 9.1 for an illustration).

Proof. We first show via induction that βt ∈ span
{
x(1), . . . , x(n)

}
for all t. For the induction base case, note

that β0 = 0 ∈ span
{
x(1), . . . , x(n)

}
. Now suppose βt−1 ∈ span

{
x(1), . . . , x(n)

}
. Recall that βt = βt−1 −

η∇L̂(βt−1). Since left-multiplying any vector by X> amounts to taking a linear combination of the rows of

X, it follows that η∇L̂(βt−1) = ηX>(Xβt−1 − ~y) ∈ span
{
x(1), . . . , x(n)

}
, and so βt = βt−1 − η∇L̂(βt−1) ∈

span
{
x(1), . . . , x(n)

}
. This proves the induction step.

Next, we show that β̂ ∈ span
{
x(1), . . . , x(n)

}
and L̂(β̂) = 0 implies β̂ = β?. By definition, β̂ ∈

span
{
x(1), . . . , x(n)

}
implies β̂ = X>v for some v ∈ Rn. Since L̂(β̂) = 0, we have 0 = Xβ̂ − ~y = XX>v− ~y.

This implies v = (XX>)−1y, and so β̂ = X>v = X>(XX>)−1~y = X+~y = β̂?.
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9.2 Implicit regularization of small initialization in nonlinear mod-
els

We give another example of implicit regularization effect of small initialization in a non-convex version of
the overparametrized linear regression task considered in the previous section. The results in this subsection
are largely simplifications of the paper Li et al. [2017] which studies over-parameterized compressed sensing
and two-layer neural nets with quadratic activation.

We assume x(1), ..., x(n) iid∼ N (0, Id×d) and y(i) = fβ?(x(i)), where the ground truth vector β? is r-sparse
(i.e. ‖β?‖0 = r). For simplicity, we assume β?i = 1{i ∈ S} for some S ⊂ [d] such that |S| = r. We again

analyze the overparametrized setting, where this time n� d but also n ≥ Ω̃(r2).
Our goal is to find a weight vector that minimizes our empirical loss function

L̂(β)
∆
=

1

4n

n∑
i=1

(
y(i) − fβ(x(i))

)2

, (9.7)

where fβ(x)
∆
= 〈β � β, x〉. The operation � denotes the Hadamard product: for u, v ∈ Rd, u � v ∈ Rd is

defined by (u� v)i
∆
= uivi for i = 1, . . . , d.

9.2.1 Main results of algorithmic regularization

Note that while fβ is still linear over x, our loss is no longer convex over β. (To see this, suppose β 6= 0

is a global minimizer. Then we have L̂(0) > L̂(β) = L̂(−β).) Thus, the effect of algorithmic regularization
induced by gradient descent will be much different from the overparametrized linear regression setting.

In the previous setting of linear regression, solutions with low `2 norm are desirable as they tend to
generalize well. In the present setting, we know our ground-truth parameter β? is sparse. Thus, we want
to learn a sparse solution β̂, avoiding non-sparse solutions that may not generalize well. One approach to
finding sparse solutions, called lasso regression, is to minimize the `1-regularized proxy loss

n∑
i=1

(
〈θ, x(i)〉 − y(i)

)2

+ λ‖θ‖1 (9.8)

with respect to θ, where θ = β � β. However, it turns out that we can equivalently learn a sparse solution
by running gradient descent from a suitable initialization on the original unregularized loss.

To be specific, let β0 = α1 ∈ Rd be the initialization where α is a small positive number. The update
rule of gradient descent algorithm is given by βt+1 = βt − η∇L̂(βt). The next theorem shows that when

n = Ω̃(r2), gradient descent on L̂(β) converges to β?.

Theorem 9.4. Let c be a sufficiently large universal constant. Suppose n ≥ cr2 log2(d) and α ≤ 1/dc, then

when
log(d/α)

η
. T .

1

η
√
dα
, we have

∥∥β> � β> − β? � β?∥∥2

2
≤ O

(
α
√
d
)
. (9.9)

(Here, T indexes the gradient descent steps.)

We make several remarks about Theorem 9.4 before presenting the proof.

Remark 9.5. In this problem we do not use β0 = 0 as the initialization point because β = 0 is a critical
point, that is, ∇L̂(0) = 0. Note that the lower bound on T depends logarithimically on 1/α, so we can take
α to be a small inverse polynomial on d and the lower bound won’t change much. Also, the upper bound
depends polynomially on 1/α (which is considered very big when c is sufficiently large), so we do not need
to use early stopping in a serious way.
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Remark 9.6. Theorem 9.4 is a simplified version of Theorem 1.1 in [Li et al., 2018].

Remark 9.7. L̂(β) has many global minima. To see this, observe that the number of parameters is d and
the number of constraints to fit all the examples is O(n) because there are only n examples. Recall that for

overparameterized model we have d� n; consequently, there exists many global minima of L̂(β).

Remark 9.8. β? is the min-norm solution in this case. That is,

β? = argmin ‖β‖22 s.t. L̂(β) = 0. (9.10)

Informally, this is because we can view β � β as a vector θ ∈ Rd, which leads to ‖β‖22 = ‖θ‖1. Then in the θ
space (and with a little abuse of notation), the optimization problem (9.10) becomes

θ? = argmin ‖θ‖1 s.t. L̂(θ) = 0, (9.11)

which is a lasso regression, whose solution is sparse.

Remark 9.9. In this non-linear case and the linear case before, gradient descent with small initialization
converges to minimum `2-norm solution. Similarly, in the NTK regime, gradient descent converges to a
solution that is very close to the initialization. Therefore, it seems conceivable that GD generally prefers
global minima nearest to the initialization. However, we do not have a general theorem for this phenomenon
(and the instructor also believes that this is not universally true without other conditions).

9.2.2 Ground work for proof and the restricted isometry property

In this section we prepare the ground work for the proof of Theorem 9.4.
We start by showing several basic properties about L̂(β). Note that for any fixed vector v ∈ Rd and

x ∈ Rd, when x is drawn from N (0, I), we have

E
[
〈x, v〉2

]
= E

[
v>xx>v

]
= v> E

[
xx>

]
v = ‖v‖22. (9.12)

It follows that

L(β) =
1

4
E

x∼N (0,I)

[
(y − 〈β � β, x〉2

]
(9.13)

=
1

4
E

x∼N (0,I)

[
〈β? � β? − β � β, x〉2

]
(by definition of y) (9.14)

=
1

4
‖β? � β? − β � β‖22 . (by (9.12)) (9.15)

Note that (9.15) is the metric that we use to characterize how close β is to the ground-truch parameter β?

(see (9.9)).

In the following lemma we show that L̂(β) ≈ L(β) by uniform convergence. Generally speaking, uniform
convergence of the loss function for all β requires n ≥ Ω(d) samples, so in our setting (where n � d)

L̂(β) ≈ L(β) does not always hold. However, since we assume β? is sparse, the analysis only requires
uniform convergence for sparse vectors.

Lemma 9.10. Assume n ≥ Ω̃(r2). With high probability over the randomness in x(1), · · · , x(n), ∀v such
that ‖v‖0 ≤ r we have

(1− δ)‖v‖22 ≤
1

n

n∑
i=1

〈v, x(i)〉2 ≤ (1 + δ)‖v‖22. (9.16)

Lemma 9.10 is a special case of Lemma 2.2 in [Li et al., 2018] so the proof is omitted here. We say the
set

{
x(1), · · · , x(n)

}
(or X = [x(1), · · · , x(n)]) satisfies (r, δ)-RIP condition (restricted isometric property) if

(9.16) holds.
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By algebraic manipulation, (9.16) is equivalent to

(1− δ)‖v‖22 ≤ v>
(

1

n

n∑
i=1

x(i)(x(i))>

)
v ≤ (1 + δ)‖v‖22. (9.17)

In other words, from the point of view of a sparse vector v we have
∑n
i=1 x

(i)(x(i))> ≈ I. (Note however
that

∑n
i=1 x

(i)(x(i))> is not close to Id×d in other notions of closeness. For example,
∑n
i=1 x

(i)(x(i))> is not
close to Id×d in spectral norm. Another way to see this is that

∑n
i=1 x

(i)(x(i))> is a d × d matrix but only
has rank n� d.)

As a result, with the RIP condition we have L̂(β) ≈ L(β) if β is sparse. With more tools we can also get

∇L̂(β) ≈ ∇L(β). Let us define the set Sr = {β : ‖β‖0 ≤ O(r)}, the set where we have uniform convergence

of L̂ and ∇L̂. Informally, as long as we are in the set Sr, L̂ and ∇L̂ have similar behavior to their population
counterparts. (Note, on the other hand, that there exists a dense β 6∈ Sr such that L̂(β) = 0 but L(β)� 0.)

The RIP condition also gives us the following lemma which will be needed for the proof of Theorem 9.4.

Lemma 9.11. Suppose x(1), x(2), . . . x(n) satisfy the (r, δ)-RIP condition. Then, ∀v, w such that ‖v‖0 ≤ r
and ‖w‖0 ≤ r, we have that∣∣∣∣∣ 1n

n∑
i=1

〈x(i), v〉〈x(i), w〉 − 〈v, w〉

∣∣∣∣∣ =

∣∣∣∣∣vT
(

1

n

n∑
i=1

x(i)(x(i))>

)
w − 〈v, w〉

∣∣∣∣∣ (9.18)

≤ 4δ ‖v‖2 · ‖w‖2 . (9.19)

Corollary 9.12. Taking w = e1, . . . , ed in Lemma 9.11, we can conclude that∥∥∥∥∥ 1

n

n∑
i=1

〈x(i), v〉x(i) − v

∥∥∥∥∥
∞

=

∥∥∥∥∥
(

1

n

n∑
i=1

x(i)(x(i))>

)
v − v

∥∥∥∥∥
∞

(9.20)

≤ 4δ ‖v‖2 . (9.21)

9.2.3 Warm-up for analysis: Gradient descent on population loss

The main intuition for proving Theorem 9.4 is to leverage the uniform convergence when β belongs to the
set Sr (see Figure 9.2). Note that the initialization β0 is not exactly r-sparse, but taking α to be sufficiently
small, β0 is approximately 0-sparse. The proof is decomposed into the following steps:

1. Gradient descent on L(β) converges to β? without leaving Sr, and

2. Gradient descent on L̂(β) is similar to gradient descent on L(β) inside Sr.

Combining the two steps we can show that gradient descent on L̂(β) does not leave Sr and converges to
β?.

As a warm up, we prove the following theorem for gradient descent on L(β).

Theorem 9.13. For sufficiently small η, gradient descent on L(β) converges to β? in Θ

(
log(1/(εα))

η

)
iteration with ε-error in `2-distance.

Proof. Since
∇L(β) = (β � β − β? � β?)� β, (9.22)

the gradient descent step is

βt+1 = βt − η(βt � βt − β? � β?)� βt. (9.23)
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Figure 9.2: Visualization of proof intuition for Theorem 9.4.

Recall that β? = 1{i ∈ S} and β0 = α1, and the update rule above decouples across the coordinates of
βt. Thus, we only need to show that |β?i − βt| ≤ ε for the number of iterations stated in the Theorem.

Case 1: i ∈ S. For i ∈ S, the update rule for coordinate i is

βt+1
i = βti − η(βti · βti − 1 · 1) · βti (9.24)

= βti − η
[(
βti
)2 − 1

]
βti . (9.25)

Consider the following two cases:

• If βti ≤ 1/2, we have

βt+1
i = βti

[
1 + η

(
1−

(
βti
)2)]

(9.26)

≥ βti
(

1 +
3

4
η

)
. (9.27)

Consequently, βt+1
i grow exponentially, and it takes Θ

(
log(1/α)

η

)
iterations for βti to grow from α to

at least 1/2.2 This will bring us into the second case.

• if βti ≥ 1/2, we have

1− βt+1
i = 1− βti + η

[(
βti
)2 − 1

]
βti (9.28)

= 1− βti − η
(
1− βti

) (
1 + βti

)
βti (9.29)

≤ 1− βti − η
(
1− βti

)
βti (because 1 + βti ≥ 1) (9.30)

=
(
1− βti

) (
1− ηβti

)
(9.31)

≤
(
1− βti

)
(1− η/2) . (because βti ≥ 1/2) (9.32)

Therefore it takes Θ

(
log(1/ε)

η

)
iterations to achieve 1− βti ≤ ε.

Case 2: i /∈ S. For all i /∈ S, we claim (informally) that it is sufficient to show that when t ≤ 1/(10ηα2),
βti ≤ 2α. This is because when i /∈ S, βi stays small and will take many iterations before it even gets to 2α,
which is close to 0 since α is chosen to be small.

2This is because (1 + η)1/η ≈ e, so (1 + η)c/η ≈ ec.
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For a coordinate i /∈ S, the gradient descent update for this problem becomes

βt+1
i =

[
βt − η(βt � βt − β? � β?)� βt

]
i

(9.33)

= βti − η(βti · βti ) · βti (since β?i = 0 ∀i /∈ S) (9.34)

= βti − η(βti )
3. (9.35)

Since our initialization β0 was small, the update to these coordinates will be even smaller because (βti )
3

is small. We can prove the desired claim using strong induction. Suppose βsi ≤ 2α for all s ≤ t and i /∈ S,
and that t+ 1 ≤ 1/(10ηα2). Then, for all s ≤ t,

βs+1
i = (1− η(βsi )2)βsi (9.36)

≤ (1 + η(βsi )2)βsi (9.37)

≤ (1 + 4ηα2)βsi . (since βsi ≤ 2α) (9.38)

With strong induction, we can repeatedly apply this gradient update starting from t = 0 to obtain

βt+1
i ≤ β0 · (1 + 4ηα2)t (9.39)

≤ β0(1 + 4ηα2)
1

10ηα2 (9.40)

≤ β0 exp

(
4ηα2

10ηα2

)
(9.41)

= β0 · e2/5 (9.42)

≤ 2α, (9.43)

which completes the inductive proof of the claim.

9.2.4 Proof of main result: gradient descent on empirical loss

Analyzing gradient descsent on the empirical risk L̂(β) is more complicated than analyzing gradient descent
on the population risk, so we focus on the case when β? is 1-sparse, i.e. r = 1. (When r > 1, the main idea
is the same but requires some more advanced analysis techniques.)

Note that in our setup, i.e. when x(1) . . . x(n) iid∼ N (0, Id×d) and when n ≥ Ω̃(r/δ2), with high probability

the data satisfy the (r, δ)-RIP condition. It follows that when r = 1 and δ = Õ(1/
√
n), the data are

(1, δ)-RIP. This will allow us to use the lemmas involving the RIP condition for the proof.
We restate the case of r = 1 in the following theorem.

Theorem 9.14. Suppose η ≥ Ω̃(1). Then, gradient descent on L̂(β) with t = Θ
(
α log(1/δ)

η

)
steps satisfies

∥∥βt � βt − β? � β?∥∥2

2
≤ Õ

(
1√
n

)
. (9.44)

Remark 9.15. Note that Theorem 9.14 is a slightly weaker version of Theorem 9.4 for r = 1, since the bound
on the RHS depends on the number of examples and not the initialization α. In Theorem 9.4, we could take
α as small as we like to drive the bound to zero; we cannot do this for Theorem 9.14.

We proceed to prove Theorem 9.14 with the follow steps:

1. Computing the gradient update ∇L̂(β),

2. Dynamics analysis of noise ζt,

3. Dynamics analysis of signal rt, and
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4. Putting it all together.

Computing the gradient update ∇L̂(β)

WLOG, assume that β? = e1. We can decompose the gradient descent iterate βt as

βt = rt · e1 + ζt, (9.45)

where ζt ⊥ e1. The idea is to prove convergence to β? by showing that (i) rt → 1 as t → ∞, and (ii)

‖ζt‖∞ ≤ O(α) for t ≤ Õ
(
1/η). In other words, the signal rt converges quickly to 1 while the noise ζt remains

small for some number of initial iterations. One may be concerned that it is possible for the noise to amplify
after many iterations, but we will not have to worry about this scenario if we can guarantee that βt converges
to β? first.

We can compute the gradient of L̂(βt) as follows. Since y(i) = 〈β?�β?, x(i)〉 and βt = rte1+ζt = rtβ
?+ζt,

∇L̂(βt) =
1

n

n∑
i=1

(〈βt � βt, x(i)〉 − y(i))x(i) � βt (9.46)

=
1

n

n∑
i=1

(〈βt � βt − β? � β?, x(i)〉)x(i) � βt (9.47)

=
1

n

n∑
i=1

〈r2
t β

? � β? + ζt � ζt − β? � β?, x(i)〉x(i) � βt (9.48)

=
1

n

n∑
i=1

〈(
r2
t − 1

)
β? � β? + ζt � ζt, x(i)

〉
x(i)

︸ ︷︷ ︸
mt

�βt. (9.49)

To simplify the analysis, we can rearrange some of the terms that are part of the gradient. Define mt

such that ∇L̂(βt) = mt � βt. Also, let X = 1
n

∑n
i=1 x

(i)(x(i))>. Then,

mt =
1

n

n∑
i=1

〈(
r2
t − 1

)
β? � β? + ζt � ζt, x(i)

〉
x(i) (9.50)

=

(
1

n

n∑
i=1

x(i)
(
x(i)
)>)(

r2
t − 1

)
· (β? � β?) +

(
1

n

n∑
i=1

x(i)(x(i))>

)
(ζt � ζt) (9.51)

= X
(
r2
t − 1

)
·
(
β? � β?

)︸ ︷︷ ︸
part of ut

+X
(
ζt � ζt

)︸ ︷︷ ︸
vt

. (9.52)

Now, define ut
∆
= (r2

t − 1)(β? � β?)−X(r2
t − 1)(β∗ � β∗) and vt

∆
= X

(
βt � βt

)
. Then we can rewrite the

gradient as

∇L̂(βt) = mt � βt = [(r2
t − 1)β? � β? − ut + vt]� βt. (9.53)

Our goal is to show that both ut and vt are small, so that ∇L̂(βt) is close to its population version
∇L(βt). Observe that X appears in both ut and vt. This matrix is challenging to deal with mathematically
because it does not have full rank (because n < d). Instead, we rely on the RIP condition to reason about
the behavior of X: the idea is that X behaves like the identity for sparse vector multiplication. Applying
Corollary 9.12, we can bound ‖ut‖∞ as

‖ut‖∞ ≤ 4δ
∥∥(r2

t − 1)β? � β?
∥∥

2
≤ 4δ||β? � β?||2 ≤ 4δ. (9.54)

(In the second inequality, we assume that |rt| < 1. We can do this because rt starts out at α which is
small; if rt ≥ 1, then we are already in the regime where gradient descent has converged.) We can bound
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‖vt‖∞ in a similar manner: since Corollary 9.12 implies ‖vt − ζt � ζt‖∞ ≤ 4δ ‖ζt � ζt‖2,

‖vt‖∞ ≤ ‖ζt � ζt‖∞ + 4δ ‖ζt � ζt‖2 (by the triangle inequality) (9.55)

≤ ‖ζt‖2∞ + 4δ ‖ζt � ζt‖1 (since ζt very small) (9.56)

= ‖ζt‖2∞ + 4δ ‖ζt‖22 . (9.57)

Note that the size of vt depends on the size of the noise ζt. Thus, by bounding ζt (e.g. with a small
initialization), we can ensure that vt is also small. (Ensuring bounds on ut is more difficult because it
depends only on δ.) In the next two subsections, we analyze the growth of ζt and rt.

Dynamics analysis of ζt
First, we analyze the dynamics of the noise ζt, which we want to ensure does not grow too fast.

Lemma 9.16. For all t ≤ 1/(cηδ) with sufficiently large constant c, we have

‖ζt‖∞ ≤ 2α, ‖ζt‖22 ≤
1

2
, and ‖ζt+1‖∞ ≤

(
1 +O(ηδ)

)
‖ζt‖∞ . (9.58)

Note that this result is weaker than what we were able to show for the population gradient (exponential
growth with a small fixed rate), but we will ultimately show that the growth of the signal will be even faster.

Proof. Recall that the empirical gradient (9.53) is ∇L̂(β) =
[
(r2
t − 1)β? � β? − ut + vt

]
� βt. Hence, the

gradient update to βt is

βt+1 = βt − η
[(
r2
t − 1

)
β? � β? − ut + vt

]
� βt (9.59)

= βt − η
(
r2
t − 1

)
β? � β? � βt︸ ︷︷ ︸

GD update for population loss

−η (−ut + vt)� βt. (9.60)

Recall that ζt+1 is simply βt+1 except for the first coordinate (where it has a zero instead of rt+1), i.e.
ζt+1 is the projection of βt+1 onto the subspace orthogonal to e1. Hence,

ζt+1 =
(
I − e1e

>
1

)
βt+1 (9.61)

=
(
I − e1e

>
1

)
· βt − η

(
I − e1e

>
1

)
(vt − ut)� βt (by (9.60), second term = 0) (9.62)

= ζt − η
[(
I − e1e

T
1

)
(vt − ut)�

(
I − e1e

T
1

)
βt
]

(by distribution law for �) (9.63)

= ζt − η
[(
I − e1e

T
1

)
(vt − ut)

]︸ ︷︷ ︸
ρt

�ζt. (9.64)

If we define ρt such that ζt+1 = ζt − ηρt � ζt, then the growth of ζt is dictated by the size of ρt. We can
bound this as

‖ζt+1‖∞ ≤ (1 + η ‖ρt‖∞) ‖ζt‖∞ . (9.65)

Now, we will prove the lemma by using strong induction on t. Suppose that the first two pieces of (9.58)
hold for all iterations up to t. We can show that

‖ρt‖∞ ≤ ‖ut‖∞ + ‖vt‖∞ (9.66)

≤ 4δ + ‖ζt‖2∞ + 4δ ‖ζt‖22 (by (9.54) and (9.57)) (9.67)

≤ 4δ + (2α)2 + 4δ · 1

2
(by the inductive hypothesis) (9.68)

≤ 8δ, (9.69)

where the last step holds because we can take α to be arbitrarily small (e.g. α ≤ poly(1/n) ≤ O(δ)).
Plugging this into (9.65), we have

‖ζt+1‖∞ ≤ (1 + 8ηδ) ‖ζt‖∞ =
(
1 +O(ηδ)

)
‖ζt‖∞ , (9.70)
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which proves the third piece of the lemma. Using this piece, we can show that

‖ζt+1‖∞ ≤ (1 + 8ηδ)
t+1 ‖ζ0‖∞ ≤

(
1 + 8ηδ

)1/(cηδ) · α ≤ 2α (9.71)

for a sufficiently large constant c, which proves the second piece. Finally, we show that

‖ζt+1‖22 ≤
(
1 + 8ηδ

)t+1 ‖ζ0‖22 ≤
(
1 + 8ηδ)1/(cηδ) · α

√
d ≤ 1

2
, (9.72)

if α ≤ 1
nO(1) , which proves the first piece.

Dynamics analysis of rt
Next, we analyze the dynamics of the signal rt, which we want to show converges to 1.

Lemma 9.17. For all t ≤ 1/(cηδ) with sufficiently large constant c, we have that

rt+1 =
(
1 + η

(
1− r2

t

))
rt +O

(
ηδ
)
rt.

Note that the first term on the RHS is rt+1 during gradient descent on the population loss, and the
second term captures the error.

Proof. Recall that the gradient descent update from the empirical gradient (9.53) is

βt+1 = βt − η
[(
r2
t − 1

)
β? � β? − ut + vt

]
� βt. (9.73)

We have that

rt+1 =
〈
βt+1, e1

〉
(9.74)

=
〈
βt, e1

〉
− η
(
r2
t − 1

)〈
βt, e1

〉
− η
〈
vt − ut, e1

〉〈
βt, e1

〉
(9.75)

= rt − η
(
r2
t − 1

)
rt − η

〈
vt − ut, e1

〉
rt (9.76)

=
(

1 + η
(
1− r2

t

))
rt + η

〈
ut − vt, e1

〉
rt (9.77)

so all we need to do is bound the second term as follows:

|η〈vt − ut, e1〉rt| ≤ η · rt ‖vt − ut‖∞ (9.78)

≤ η · rt · 8δ (by (9.69)) (9.79)

= O(ηδ) · rt. (9.80)

Putting it all together Finally, we return to the proof of Theorem 9.14. By Lemma 9.17, we know that
as long as rt ≤ 1/2 it will grow exponentially fast, since

rt+1 ≥
(

1 + η
(
1− r2

t

)
−O(ηδ)

)
· rt ≥

(
1 +

η

2

)
· rt. (9.81)

This implies that at some t0 = O
(

log(1/α)
η

)
, we’ll observe rt0 > 1/2 for the first time. Consider what happens

after this point.

110



• When 1/2 < rt ≤ 1, we have that

1− rt+1 ≤ 1− rt − η
(
1− r2

t

)
rt +O(ηδ) · rt (9.82)

≤ 1− rt −
η
(
1− r2

t

)
2

+O(ηδ) (9.83)

≤ 1− rt −
η
(
1− rt

)
2

+O(ηδ) (9.84)

=

(
1− η

2

)
(1− rt) +O(ηδ). (9.85)

Thus, we can achieve 1− rt+1 ≤ 2 · O(nδ)
η/2 = O(δ) in Θ

(
log(1/δ)

η

)
iterations.

• When rt > 1, we can show in a similar manner that

rt+1 − 1 ≤ (1− η)(rt − 1) +O(ηδ) ≤ O(δ), (9.86)

implying that rt remains very close to 1 after the same order of iterations.

This completes the proof of Theorem 9.14, bounding the number of iterations needed for gradient descent
on the empirical loss to converge to β∗.

9.3 From small to large initialization: a precise characterization

We have previously discussed how certain initializations of gradient descent converge to minimum-norm
solutions. In the sequel, we characterize the effect of initialization more precisely—we will show that in a
variant of the settings in Section 9.2, we can precisely compute the corresponding regularizer induced by any
initialization. We will see that when the initialization is small, we obtain the bias towards minimum norm
solution (in the parameter space used in optimization), whereas when the initialization is large, we are in the
NTK regime (Section 8.4) where the implicit bias is towards the min norm solution under the NTK kernel.
The materials in this subsection are simplifications of results in the recent paper Woodworth et al. [2020].

9.3.1 Preparation: gradient flow

To simplify the analysis, we will consider the concept of gradient flow, i.e. gradient descent with an in-
finitesimal learning rate. This allows us omit the second order effect from the learning rate and simplify the
analysis.

We begin by recalling the gradient descent update formula. In our previous description of gradient
descent, we indexed the updated parameters by t = 1, 2, . . . . Anticipating our generalization to infinitesimal
steps, we will index the updated parameters using parentheses instead of subscripts. In particular, the
standard gradient descent update given a loss function L(w) is

w(t+ 1) = w(t)− η∇L(w(t)). (9.87)

If we scale the time by η so that each update by gradient descent corresponds to a time step of size η (rather
than size 1), the update becomes

w(t+ η) = w(t)− η∇L(w(t)). (9.88)

Taking η → 0 yields a differential equation, which can be thought of as a continuous process rather than
discrete updates:

w(t+ dt) = w(t)− dt · ∇L(w(t)). (9.89)
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This can also be written as:

ẇ(t) = −∇L(w(t) with ẇ(t) =
∂w(t)

∂t
(9.90)

This allows us to ignore the η2 term (alternatively the (dt2) term), which will simplify some of the technical
details that follow.

9.3.2 Characterizing the implicit bias of initialization

The results in this section are slight simplification of the recent paper by Woodworth et al. [2020]. The
model is a variant of the one we introduced in (9.7). Recalling that x�2 = x� x, let

fw(x) =
(
w�2

+ − w�2
−
)>
x. (9.91)

where w+, w− ∈ Rd. Let w denote the concatenation of the two parameter vectors, i.e. = (w+, w−). In
(9.7), we defined fβ(x) = (β � β)>x; this model can only represent positive linear combinations of x. By
contrast, fw(x) can represent any linear model. Moreover, if we choose our initialization for w such that
w+(0) = w−(0), we obtain fw(0)(x) ≡ 0 for all x. Similar to our analysis of the NTK, this initialization will
simplify the subsequent derivations.

Next, we define the following loss function,

L̂(w) =
1

2

n∑
i=1

(
y(i) − fw(x(i))

)2

, (9.92)

and consider the initialization

w+(0) = w−(0) = α · ~1 (9.93)

where ~1 denotes the all-ones vector. The analysis technique still applies to any general initializations as
long as all the dimension are initialized to be non-zero, but the the initialization scale is the most important
factor, and therefore we chose this simplification for the ease of exposition.

Note that every w = (w+, w−) corresponds to a de facto linear function of x. We denote the resulting
linear model as θw:

θw = w�2
+ − w�2

− . (9.94)

Note that θ>wx = fw(x).
Let w(∞) denote the limit of the gradient flow, i.e.

w(∞) = lim
t→∞

w(t). (9.95)

Then, the converged linear model in the θ space is defined by θα(∞) = θw(∞)—we are interested in under-
standing its properties. For simplicity, we will omit the∞ index and refer to this quantity as θα. We assume
throughout that the limit exists and all corresponding regularity conditions are met.

Let

X =

x
(1)>

...

x(n)>

 ∈ Rn×d and ~y =

y
(1)

...
y(n)

 . (9.96)

In the sequel, we formally state our result relating the complexity of the solution discovered by gradient flow
to the size of the initialization.
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Theorem 9.18 (Theorem 1 in Woodworth et al. [2020]). For any 0 < α < ∞, assume that gradient flow
with initialization w+(0) = w−(0) = α ·~1 converges to a solution that fits the data exactly: Xθα = ~y.3 Then,
the solution satisfies the following notion of minimum complexity:

θα = argmin
θ

Qα(θ) (9.97)

s.t. Xθ = ~y (9.98)

where

Qα(θ) = α2 ·
n∑
i=1

q

(
θi
α2

)
(9.99)

and

q(z) = 2−
√

4 + z2 + z · arcsinh
(z

2

)
(9.100)

In words, Theorem 9.18 claims that θα is the minimum complexity solution for the complexity measure
Qα.

Remark 9.19. In particular, when α→∞ we have that

q(θi/α
2) � θ2

i /α
4 (9.101)

and so

Qα(θ) � 1

α2
‖θ‖22 . (9.102)

This means that if α → ∞ than the complexity measure Qα is the `2-norm, ||θ||2. If α → 0, then the
complexity measure becomes

q

(
θi
α2

)
� |θi|

α2
log

(
1

α2

)
(by Taylor expansion) (9.103)

and so,

Qα (θ) �
‖θ‖1
α2

log

(
1

α2

)
(9.104)

To summarize, for α → ∞, the constrained minimization problem we solve in (9.98) yields the minimum
`2-norm solution of θ (i.e. the `4-norm for w). When α → 0, solving (9.98) yields the minimum `1-norm θ
(which is the `2-norm for w). For 0 < α < ∞, we obtain some interpolation of `1 and `2 regularization of
the optimum.

Remark 9.20. Note that when α→ 0, the intuition is similar to what we had observed in previous analyses;
in particular, the solution is the global minimum closest to the initialization. Note however, that when
α 6= 0, the solution discovered by gradient descent will not exactly correspond to the solution closest to the
initialization.

Remark 9.21. When α → ∞, we claim that the model optimization is in the neural tangent kernel (NTK)
regime. Recall that we had two parameters, (σ, β), that determined if we could treat the optimization
problem as a kernel regression. Further recall that σ denotes the minimum singular value of Φ and β is the
Lipschitzness of the gradient. Let us now compute σ and β for large α initializations of our model.

3This assumption can likely be proved to be true and thus not required. Here we still include the condition because the
original paper Woodworth et al. [2020] assumed it.
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For w−(0) = w+(0) = α~1,

∇fw(0)(x) = 2

[
w+(0) · x
−w−(0)� x

]
= 2α

[
x
−x

]
(9.105)

by the chain rule. It is clear then that both σ and β linearly depend on α. This implies that

β

σ2
→ 0 as α→∞ (9.106)

since the denominator is O(α2), while the numerator is O(α). In particular, the features used in this kernel
method are:

φ(x) = ∇fw(0)(x) = 2α

[
x
−x

]
(9.107)

The neural tangent kernel perspective then gives an alternative proof of this complexity minimization result
for α → ∞. In the NTK regime, the solution (to our convex problem) is always the minimum `2-norm

solution for the feature matrix, which in this case equals

[
X
−X

]
.

Note that practice tends not to follow the assumptions made here. Often, people either do not use large
initializations or do not use infinitesimally small step sizes. But this is a good thing because we do not want
to be in the NTK regime; being in the NTK regime implies that we are doing no different or better than
just using a kernel method.

We can now prove Theorem 9.18, which is similar to the overparametrized linear regression proof of
Theorem 9.3.

This proof follows in two steps:

1. We find an invariance maintained by the optimizer. In the overparametrized linear regression proof
of Theorem 9.3, we required θ ∈ span{x(i)}. For this proof, we will use a slightly more complicated
invariance.

2. We characterize the solution using this invariance. The invariance, which depends on α, will tell us
which zero error solution the optimization converges to.

Note also that all of these conditions only depend upon the empirically observed samples. The invariance
and minimum is not defined with respect to any population quantities.

Proof. Let

X̃ =
[
X −X

]
∈ Rn×2d and w(t) =

[
w+(t)
w−(t)

]
∈ R2d. (9.108)

Then, the model output on n data points can be described in matrix notation as follows:

X̃w(t)�2 =
[
X −X

] [w+(t)�2

w−(t)�2

]
=

fw(t)(x
(1))

...
fw(t)(x

(n))

 ∈ Rn. (9.109)

Given the loss function,

L(w(t)) =
1

2

∥∥∥X̃w(t)�2 − ~y
∥∥∥2

2
, (9.110)
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the gradient of w(t) can be computed as

ẇ(t) = −∇L(w(t)) (9.111)

= −∇
(∥∥∥X̃w(t)�2 − ~y

∥∥∥2

2

)
(9.112)

=
(
X̃>r(t)

)
� w(t) (chain rule) (9.113)

where r(t) = X̃w(t)�2−~y denotes the residual vector. We see that the X̃>r(t) term in (9.113) is reminiscent
of linear regression for which it would correspond to the gradient, although the �w(t) reminds us that this
problem is indeed quadratic.

We cannot directly solve this differential equation, but we claim that

w(t) = w(0)� exp

(
−2X̃>

∫ >
0

r(s)ds

)
(exp is applied entry-wise) (9.114)

which is not quite a closed form solution of equation 9.113 since r(s) is still a function of w(t). To understand
how we obtained this “solution,” we consider a more abstract setting. Suppose that

u̇(t) = v(t)u̇(t) (9.115)

We can then “solve” this differential equation as follows. Rearranging, we observe that

u̇(t)

u(t)
= v(t) (9.116)

d log u(t)

dt
= v(t) (chain rule) (9.117)

log u(t)− log u(0) =

∫ t

0

v(s)ds (integration) (9.118)

u(t)

u(0)
= exp

(∫ t

0

v(s)ds

)
(9.119)

In our problem, u↔ wi and v ↔ (X̃>r(t))i.
We have characterized w, but we want to transform this to a characterization that involves θ. Recall that

w+(0) = α~1 and w−(0) = α~1 so that w(0) = α~1 ∈ R2d. Additionally, we have that θ(t) = w+(t)�2−w−(t)�2.
We can now apply (9.114) to expand w(t) and simplify.

Note that if we have X̃> =

[
X>

−X>
]
∈ R2n×d, then for some vector v,

(
exp(−2x̃>v)

)�2
=

[
exp(−2X>v)
exp(2X>v)

]�2

(9.120)

=

[
exp(−4X>v)
exp(4X>v)

]
. (9.121)

Applying this result for v =
∫ T

0
r(s)ds, we obtain that:

θ(t) = w+(t)�2 − w−(t)�2 (9.122)

= α2

[
exp

(
−4X>

∫ t

0

r(s)ds

)
− exp

(
4X>

∫ t

0

r(s)ds

)]
(9.123)

= 2α2 sinh

(
−4X>

∫ t

0

r(s)ds

)
. (9.124)
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Letting t→∞, we have that

θα = 2α2 sinh

(
−4X>

∫ ∞
0

r(s)ds

)
. (9.125)

Lastly, we also know

Xθα = ~y (9.126)

since this is the assumption by the theorem (which should can be proven because the optimization should
converge to a zero-error solution). We next show that (9.125) and (9.126) are also sufficient conditions
for a solution to the constrained optimization problem given by (9.98). In particular, (9.125) and (9.126)
correspond to the Karush-Kuhn-Tucker (or KKT) conditions of (9.98).

A KKT condition is an optimality condition for constrained optimization problems. While these condi-
tions can have a variety of formulations and typically one can invoke some off-the-shelf theorems to use them,
we can motivate the conditions we encountered by considering the following general optimization program:

argmin Q(θ) (9.127)

s.t. Xθ = ~y. (9.128)

We say that θ satisfies the (first order) KKT conditions if

∇Q(θ) = X>ν for some ν ∈ Rn (9.129)

Xθ = ~y (9.130)

More intuitively, we know that optimality implies that there are no first order local improvements that satisfy
the constraint (up to first order). Then, consider a perturbation ∆θ. In order to satisfy the constraint, we
must enforce the following:

∆θ ⊥ row-span{X} so X∆θ = 0 (9.131)

So, if we look at θ + ∆θ satisfying the constraint, we can use a Taylor expansion to show that

Q(θ + ∆θ) = Q(θ) + 〈∆θ,∇Q(θ)〉 ≤ Q(θ) (9.132)

because if 〈∆θ,∇Q(θ)〉 is positive it violates the optimality assumption. In fact, it is very easy to make the
sign flip for 〈∆θ,∇Q(θ)〉 because you can flip ∆θ to be the opposite direction. This means that

∀∆θ ⊥ row-span{X}, 〈∆θ,∇Q(θ)〉 = 0 (9.133)

because if it is negative, you can equivalently flip it to be positive which violates optimality. This means
that Q(θ) ⊆ row-span{X}, or Q(θ) = X>ν for some ν.

Returning to our problem, the KKT condition gives

∇Q(θ) = X>ν (9.134)

and the invariance gives us

θα = 2α2 sinh

(
−4X>

∫ ∞
0

r(s)ds

)
(9.135)

= 2α2 sinh
(
−4X>v′

)
(9.136)

where we let v′ =
∫∞

0
r(s)ds for simplicity. Taking the gradient of Q gives

∇Qα(θ) = arcsinh

(
1

2α2
θ

)
(9.137)

Plugging in θα, we get

∇Q(θα) = arcsinh

(
1

2α2
θα

)
= −4X>v′ (9.138)

Thus, θα satisfies both KKT conditions. Even further, since our optimization problem (9.98) is convex (we
do not formally argue this), we conclude that θα is a global minimum.
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9.4 Implicit regularization towards max-margin solutions in clas-
sification

We now switch our focus to classification problems. We consider linear models (though these results also
apply to nonlinear models with a weaker version of the conclusion). We assume that our data is separable and
will prove that gradient descent converges to the max-margin solution. This result holds for any initialization
and does not require any additional regularization; we only require the use of gradient descent and the
standard logistic loss function. The results in this subsection are originally given by Soudry et al. [2018],
and our exposition heavily depends on those in [Ji and Telgarsky, 2018, Telgarsky, 2021].

Assume we have data {(x(i), y(i))}ni=1, where x(i) ∈ Rd and y(i) ∈ {±1}. We consider the linear model

hw(x) = w>x and the cross entropy loss function L̂(w) =
∑n
i=1 `

(
y(i), hw

(
x(i)
))

, where `(t) = log(1 +
exp(−t)) is the logistic loss.

As we have separable data, there can be multiple global minima, as you can trivially take an infinite
number of separators. More formally, there are an infinite number of unit vectors w̄ such that w̄>x(i)y(i) > 0
for all i as one can perturb any strict separator while still maintaining a separation of classes. Then, we can
scale the separator to make the loss arbitrarily small—we have that L̂(αw̄)→ 0 as α→∞. Thus, informally,
for any unit vector w̄ that separate the data, ∞ · w̄ is a global minimum.

We would like to understand which global minimum gradient descent converges to. We will now show
that it finds the max-margin solution. Before we can do so, we recall/introduce the following definitions.

Definition 9.22 (Margin). Let {(x(i), y(i))}ni=1 be given data. Assuming {(x(i), y(i))}ni=1 is linearly separa-
ble, the margin is defined as

min
i∈[n]

y(i)w>x(i) (9.139)

Definition 9.23 (Normalized Margin). Let {(x(i), y(i))}ni=1 be given data. Assuming {(x(i), y(i))}ni=1 is
linearly separable, the normalized margin is defined as

γ(w) =
mini∈[n] y

(i)w>x(i)

‖w‖2
(9.140)

Definition 9.24 (Max-Margin Solution). Using the normalized margin γ defined in Definition 9.23, we
define a max-margin solution as

γ̄ = max
w

γ(w) (9.141)

and let w∗ be the unit-norm maximizer. 4

Using these definitions, we claim the following result.

Theorem 9.25. Gradient flow converges to the direction of max-margin solution in the sense that

γ(w(t))→ γ̄ as t→∞ (9.142)

where w(t) is the iterate at time t.

The following observations provide some intuition for Theorem 9.25.

1. L̂(w(t)) → 0 by a standard optimization argument. Namely, if the objective is monotone decreasing

at each iteration, L̂(w(t)) ≈ 0 for large enough t.

2. Using a Taylor expansion, we can show that `(z) = log(1 + exp(−z)) ≈ exp(−z) for large z. Thus,
logistic loss is close to exponential loss when z is very large.

4The normalized margin γ̄ is scale-invariant. For c 6= 0, γ(cw) = mini∈[n]
y(i)cw>x(i)

‖cw‖2
= mini∈[n]

y(i)w>x(i)

‖w‖2
= γ(w).
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3. Using observation 1, we see that ‖w(t)‖2 → ∞ because if ‖w(t)‖2 were instead bounded, then the

loss L̂(w(t)) will be bounded below by a constant that is strictly greater than zero, contradicting
observation 1. Formally, if ‖w(t)‖2 ≤ B, then

|y(i)wtx(i)| ≤ B‖x(i)‖, (9.143)

and therefore we get

L̂(w(t)) ≥
n∑
i=1

exp
(
−B‖x(i)‖2

)
> 0. (9.144)

4. Suppose we have w such that ‖w‖2 = q is very big. Then, using observation 2, we see that

L̂(w) =

n∑
i=1

`(y(i)w>x(i)) (9.145)

≈
n∑
i=1

exp
(
−y(i)w>x(i)

)
(9.146)

log L̂(w) ≈ log

n∑
i=1

exp
(
−y(i)w>x(i)

)
(9.147)

= log

n∑
i=1

exp
(
−qy(i)w̄>x(i)

)
(9.148)

≈ max
i∈[n]
−qy(i)w̄>x(i) (9.149)

where w̄ = w
‖w‖2 and the last step holds because the log of a sum of exponentials (log-sum-exp) is a

smooth approximation to the maximum function. To motivate this claim, observe that:

log

n∑
i=1

exp(aui) ≥ qmax
i
ui (9.150)

log

n∑
i=1

exp(aui) ≤ log
(
n exp(qmax

i
ui)
)

(9.151)

= log n+ qmax
i
ui (9.152)

≈ qmax
i∈[n]

ui + o(q) as q →∞ (9.153)

Thus, minimizing the loss is the same as

min
w

max
i∈[n]
−qy(i)w̄>x(i) (9.154)

which can be reformulated as

max
w

min
i∈[n]

qy(i)w̄>x(i) (9.155)

The above observations heuristically demonstrate that minimizing the logistic loss with gradient descent
is equivalent (in the limit) to maximizing the margin. Below, we prove Theorem 9.25 rigorously for the
exponential loss function `(t) = exp(−t), which is nearly the same as the logistic loss.
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Proof of Theorem 9.25. We begin by defining the smooth margin as

γ̃(w)
∆
=
− log L̂(w)

‖w‖2
(9.156)

=
− log

(∑n
i=1 exp(−y(i)w>x(i))

)
‖w‖2

. (9.157)

Note that γ̃(w) approximates γ(w) by the log-sum-exp approximation. To make this precise, recall that
γ(w) ≥ γ̃(w) because y(i)w>x(i) ≥ γ(w)‖w‖2 for all i.

Then, since γ(w) ≤ γ̄ by definition, it suffices to show that

lim
t→∞

γ̃(w(t)) = γ̄. (9.158)

Let ẇ(t) = −∇L̂(w(t)). Then,

∂

∂t

(
− log L̂(w(t))

)
=
〈
∇
(
− log L̂(w(t))

)
, ẇ(t)

〉
(9.159)

=

〈
−∇L̂(w(t))

L̂(w(t))
, ẇ(t)

〉
(9.160)

=
‖∇L̂(w(t))‖22
L̂(w(t))

(9.161)

=
‖ẇ(t)‖22
L̂(w(t))

≥ 0 (9.162)

This result tells us that the log loss is decreasing at each infinitesimal step of the gradient flow. By integrating
(9.162), we can also evaluate the log loss at time T :

− log L̂(w(T )) = − log L̂(w(0)) +

∫ T

0

∂

∂t
log L̂(w(t))dt (9.163)

= − log L̂(w(0)) +

∫ T

0

‖ẇ(t)‖22
L̂(w(t))

dt. (9.164)

While the derivation above tells us how the numerator of (9.156) is changing, we have yet to relate this to
the denominator, i.e. the norm of w. Recall that w∗ is the direction of the max-margin solution. Then, we
have

‖ẇ(t)‖2 ≥ 〈ẇ(t), w∗〉 (Cauchy-Schwarz) (9.165)

=
〈
−∇L̂(w(t)), w∗

〉
(9.166)

=

〈
n∑
i=1

y(i) exp(−y(i)w>x(i)) · x(i), w∗

〉
(9.167)

=

n∑
i=1

y(i) exp(−y(i)w>x(i)) ·
〈
w∗, x(i)

〉
(9.168)

≥ γ̄
n∑
i=1

exp(−y(i)w>x(i)) (9.169)

= γ̄ · L̂(w(t)). (9.170)

This shows that ẇ(t) is correlated to w∗, and that this correlation depends on γ̄ and the loss. In addition,
ẇ(t) is not too small compared to the loss.
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Next, we substitute (9.165) into the second term of the right-hand-side of (9.163):∫ T

0

‖ẇ(t)‖22
L̂(w(t))

dt ≥ γ̄ ·
∫ T

0

‖ẇ(t)‖2dt (9.171)

≥ γ̄ ·

∥∥∥∥∥
∫ T

0

ẇ(t)dt

∥∥∥∥∥
2

(9.172)

= γ̄‖w(T )‖2. (9.173)

Applying this bound to the RHS of (9.163), we obtain

− log L̂(w(T )) ≥ − log L̂(w(0)) + γ̄‖w(T )‖2. (9.174)

Dividing both sides by ‖w(T )‖2,

− log L̂(w(T ))

‖w(T )‖2
≥ − log L̂(w(0))

‖w(T )‖2
+ γ̄. (9.175)

Since limT→∞ ‖w(T )‖2 =∞, we know that the first term on the RHS of (9.175) goes to 0 in the limit. Thus,

lim
T→∞

− log L̂(w(T ))

‖w(T )‖2
≥ γ̄. (9.176)

Recognizing the LHS as the definition of the smooth margin, i.e. (9.156), we conclude that

lim
T→∞

γ̃(w(T )) ≥ γ̄. (9.177)

Meanwhile, since we know that

γ̄ ≥ γ(w(T )) ≥ γ̃(w(T )), (9.178)

we conclude by the squeeze theorem that

lim
T→∞

γ(w(T )) = lim
T→∞

γ̃(w(T )) = γ̄. (9.179)

9.5 Implicit regularization effect of noise in SGD

In the previous section, we discussed implicit regularization via initialization and the implicit regularization
of gradient descent for logistic loss-minimizing classifiers. In the sequel, we will move forward to the implicit
regularization effect of SGD noise. Starting from the quadratic case, we analyze how the SGD noise will
affect the optimization solution, and present (heuristically) a result for non-quadratic loss functions. In
particular, the main (heuristic) results are:

1. On the one dimensional quadratic function, the iterate can be disentangled into a contraction part and
a stochastic part, the latter of which is characterized by the Ornstein–Uhlenbeck (OU) process. The
noise makes the iterate bounce around the global minimum.

2. On the multi-dimensional quadratic function, the iterate can be disentangled into multiple separate 1-D
OU processes. The noise makes the iterate bounce around the global minimum, while the fluctuation
is closely related to the shape of the noise.

3. On non-quadratic functions, SGD with label noise on empirical loss L̂(θ) converges to a stationary
point of the regularized loss L̂(θ) + λtr(∇2L̂(θ)), which is mainly due to the accumulation of a third
order effect.
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Given the score of the lectures, we will only be able to discuss some of these results informally and
heuristically. For example, we refer to the paper Damian et al. [2021] for the a concrete, formal version
result for the third bullet.

For the remainder of this section, let g(x) denote the general loss function. Then, the formulation of
SGD is: for t in [0, T ],

θt+1 = xt − η(∇g(xt) + ξt), (9.180)

where η > 0 is the learning rate, ξt denotes the SGD noise, and E[ξt] = 0. Note that in the most general
case, ξt can depend on xt.

9.5.1 Warmup: SGD on the one dimensional quadratic function

In this section, we consider the one dimensional function g(x) = 1
2x

2. Suppose the noise ξt are independent
Gaussians, i.e. ξt ∼ N (0, 1),

xt+1 = xt − η(∇g(xt) + σξt) (9.181)

= xt − η(xt + σξt) (9.182)

= (1− η)xt︸ ︷︷ ︸
contraction

− ησξt︸︷︷︸
stochastic

. (9.183)

(1−η)xt is called the contraction because η > 0, which means that this term will shrink after each iteration.
The random noise term ησξt will accumulate over time, and the scale of ησξt remains unchanged. When
xt is large, the contraction term will dominate. When xt is small, the noise term will dominate. Without
the noise term, as xt continues its contraction, we approach the global minimum x = 0. However, with the
presence of the noise σξt, xt will not stay at 0, but instead bounce around it.

To characterize this intuition more precisely, we have

xt+1 = (1− η)xt − ησξt (9.184)

= (1− η)((1− η)xt−1 − ησξt−1)− ησξt (9.185)

= (1− η)2xt−1 − (1− η)ησξt−1 − ησξt (9.186)

= (1− η)3xt−2 − (1− η)2ησξt−2 − (1− η)ησξt−1 − ησξt (9.187)

... (9.188)

= (1− η)t+1x0 − ησ
t∑

k=0

ξt−k(1− η)k. (9.189)

The first term in (9.189) becomes negligible when ηt � 1 (since (1 − η)t ≈ e−ηt). The second term in
(9.189) is the accumulation of noise, which is the sum of Gaussians. Leveraging the properties of Gaussian
distributions, we know that its variance equals η2σ2

∑t
k=0(1− η)2k.

From the analysis above, we know that as t → ∞, Var(xt) ≈ η2σ2
∑∞
k=0(1 − η)2k = η2σ2

2η−η2 = Θ(ησ2).

Therefore, as t→∞, xt ∼ N (0,Θ(ησ2)).

Interpretation. In the one dimensional case, the noise only makes it harder to converge to the global
minimum. Classical convex optimization tells us: (1) noisy GD leads to a less accurate solution and (2)
noisy GD is faster than GD. What we do in practice is achieve a balance between (1) and (2). This does not
lead to implicit regularization since E[xt]→ 0 as t→∞. However, this case is important for further analysis
because (9.183) corresponds to the Ornstein–Uhlenbeck (OU) process which we use more extensively in the
multi-dimensional cases.

121



9.5.2 SGD on multi-dimensional quadratic functions

Consider a PSD matrix A ∈ Rd×d. In this section, g(x) = 1
2x
>Ax. Suppose ξt ∼ N (0,Σ). For ease of

presentation, assume that A and Σ are simultaneously diagonizable (they have the same set of eigenvectors).
We use K to denote the span of the eigenvectors of A/Σ. Then, consider the following SGD iterate:

xt+1 = xt − η(∇g(xt) + ξt) (9.190)

= xt − η(Axt + ξt) (9.191)

= (I − ηA)xt − ηξt (9.192)

= (I − ηA)t+1x0︸ ︷︷ ︸
contraction

− η
t∑

k=0

(I − ηA)kξt−k︸ ︷︷ ︸
noise accumulation

. (9.193)

Similar to the analysis in the 1-D case above, we have xt ∼ N (0, η2
∑∞
k=0(I − ηA)kΣ(I − ηA)k) as t→∞. 5

Since A and Σ are simultaneously diagonizable, we can easily disentangle the iterates into d separate OU
process in the eigencoordinate system. Concretely, by eigendecomposition, suppose that A = U>diag(di)U
and Σ = U>diag(σ2

i )U , where U is the orthogonal matrix consisting of the eigenvectors of A and Σ. We can
express the covariance of the stationary distribution as

η2
∞∑
k=0

(I − ηA)kΣ(I − ηA)k = η2Udiag

( ∞∑
k=0

σ2
i (1− ηdi)2k

)
U> (9.194)

= ηUdiag

(
σ2
i

di

)
U>. (9.195)

Interpretation. Intuitively,
σ2
i

di
here is the iterate fluctuation in the direction of the i-th eigenvector. This

results tell us that the fluctuation of the iterates depends on the shape of Σ and A. If Σ is not full rank,
the fluctuations will be limited to the subspace K. Also note that E[‖xt‖2] = Θ(

√
η). This reflects the

noise accumulation since the scale of noise in each step is Θ(η). However, we still do not have any implicit
regularization effect. This is because the Hessian of the quadratic objective is unchanged. When we have
the change in Hessian, SGD noise will exert an implicit bias on the iterate. See Figure 9.3 for an example.

Figure 9.3: The effect of SGD noise with the change in Hessian when x = 0. Consider the objective F (x) = x2

when x ≤ 0 and F (x) = 1
10x

2 when x > 0. Suppose we initialize SGD at x = 0 and run 1024 steps of SGD
with step size 0.01. We plot the probability density of the iterate after various steps of SGD. Note that the
density function and the mean gradually move to the left.

In the sequel, we separately analyze the second order and third order effects of SGD on a general non-
quadratic function. The second order effect exactly corresponds to this section’s analysis when A equals the
Hessian of the general non-quadratic function.

5For random variable ξ ∈ Rd, E[(Wξ)(Wξ)>] = W E[ξξ>]W>
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9.5.3 SGD on non-quadratic functions

In this section, we analyze SGD on non-quadratic functions based on [Damian et al., 2021]. Due to the
complexity of the analysis, we provide heuristic derivations to convey the main insights.

Without loss of generality, suppose a global minimum of g(x) is x = 0. Therefore, ∇xg(0) = 0 and
∇2
xg(0) is PSD. We also assume the iterates xt are close to 0, so we can Taylor expand around 0.

xt+1 = xt − η(∇g(xt) + ξt) (9.196)

= xt − η(∇g(0) +∇2g(0)(xt − 0) +∇3g(0)[xt, xt] + higher order terms + ξt). (9.197)

Let H = ∇2
xg(0) and T = ∇3

xg(0). Since T is a tensor, we first clarify our notation. First, for T ∈ Rd×d×d,
x, y ∈ Rd, T [x, y] ∈ Rd, and

T [x, y]i
∆
=
∑
j,k∈[d]

Tijkxjyk. (9.198)

For S ∈ Rd×d, T (S) ∈ Rd, and

T (S)i
∆
=
∑
j,k∈[d]

TijkSjk (9.199)

Now returning to (9.197), after dropping the higher order terms, we obtain the following third-order
Taylor expansion:

xt+1 ≈ xt − ηHxt − ηξt − ηT [xt, xt] (9.200)

= (I − ηH)xt − ηξt − ηT [xt, xt]. (9.201)

If we don’t consider the third order term ηT [xt, xt], the update reduces to the one we studied in the
previous subsection. Next, recall that ‖xt‖2 ≈

√
η. Therefore, ηT [xt, xt] ≈ η2. This quantity is dominated

by both ηξt and ηHxt ≈ η1.5.
So, when H is positive definite, the third order term can be negligible. However, in overparametrized

models, H is typically low-dimensional. For instance, if the NTK matrix is full rank, then the manifold
of interpolators has dimension d − n. Then, in the direction orthogonal to the span of H, the contraction
term disappears. Letting ΠA denote projections onto the subspace A, we see that ηHΠK⊥(xt) = 0 and
T [xt, xt] ≈ η2 will dominate the update in that direction.

Consider the case in which both H and Σ are not full rank. When the loss is quadratic as in the previous
section, we know that the iterate xt bounces in the subspace K and remains stable in the subspace K⊥.
What happens when the loss is not quadratic, i.e. T [xt, xt] affects the gradient update?

To answer this question, we decompose the effect of the update in (9.201) between the two subspaces of
interest, K and K⊥. First, observe that (I − ηH)xt − ηξt is working in K, and −ηT [xt, xt] is only working
in K⊥ because in K the effect of ηT [xt, xt] is dominated by (I − ηH)xt − ηξt. In previous section, we
already well-characterized the effect of optimization without a third order effect. To refine our analysis of
the gradient update, we define an iterate ut+1 = (I − ηH)yt − ηξt in which we do not have the third order
effect.6 Then, to analyze what the implicit regularization effect is, we study rt = xt − ut.

rt+1 = xt+1 − ut+1

= (I − ηH)(xt − ut)− ηT [xt, xt]

= (I − ηH)rt − ηT [xt, xt]

≈ (I − ηH)rt − ηT [ut, ut].

Note that we only have the contraction and the bias terms for the rt iterate. The stochasticity term ηξt is
canceled out.

6Note that ξt is the same for each ut and xt.
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In the subspace K = span(H), the effect of ηT [xt, xt] is again dominated by (I − ηH)xt − ηξt, so no
meaningful regularization occurs. But letting ΠA denote the projection onto the subspace A, we have that
in K⊥,

ΠK⊥rt+1 = ΠK⊥rt − ηΠK⊥T [ut, ut] (9.202)

= ΠK⊥r0 − η
t∑

k=0

ΠK⊥T [uk, uk]. (9.203)

Namely, the effect of T [uk, uk] is slowly accumulating in K⊥. In Figure 9.4, an illustration of this phenomenon
is provided.

Note that the OU process is a Markov chain and a Gaussian process. Here we assume thatH is constructed
such that ut converges to its stationary distribution. Suppose the Markov chain ut mixes as t→∞. Then,∑t
k=0 ΠK⊥T [uk, uk] ≈ tE[T [u∞, u∞]]. By equation (9.198) and equation (9.199),

E[T [u, u]]i = E[
∑
j,k

Tijkuiuj ] (9.204)

=
∑
j,k

Tijk E[uu>]jk (9.205)

= T (E[uu>])i. (9.206)

Therefore
∑t
k=0 ΠK⊥T [uk, uk] ≈ tT (S) where S

∆
= E[u∞u

>
∞] is the covariance of the stationary distribu-

tion.

Figure 9.4: The effect of SGD noise on non-quadratic functions. K is the span of the noise covariance Σ.
In the quadratic case, the iterates will fluctuate in K, but remains unchanged in K⊥. When the function is
non-quadratic, the third order effect slowly accumulates in K⊥, resulting in implicit regularization.

Interpretation. Intuitively, the direction of the implicit regularization is T (S) = ∇x
(
〈∇2

xg(0), S〉
)
. In

other words, the implicit bias −T (S) is trying to make 〈∇2
xg(0), S〉 small. [Damian et al., 2021] further

prove that SGD with label noise on loss L̂(θ) converges to a stationary point of the regularized loss L̂(θ) +
λtr(∇2

θL̂(θ)). In the next subsection, we will heuristically explain why this regularization term is useful.

124



9.5.4 SGD with label noise

We previously claimed that SGD with label noise minimizes the regularized loss

L̂(θ) + λtr(∇2
θL̂(θ)). (9.207)

But why is tr(∇2
θL̂(θ)) a useful regularizer? This question has been the subject of recent study in the

implicit regularization literature. [Wei and Ma, 2019b] show that the complexity of neural networks can be
controlled by its Lipschitzness. Indeed, we will see that tr(∇2L̂(θ)) is intimately related to the Lipschitzness
of the networks. [Foret et al., 2020] also discover empirically that regularizing the sharpness of the local
curvature leads to better generalization performance on a wide range of tasks. In the sequel, we will unpack

some of these arguments to justify regularizing by R(θ)
∆
= tr

(
∇2L̂(θ)

)
.

We first consider the case of one data point, i.e. L̂(θ) = `(fθ(x), y). For notational simplicity, let

f
∆
= fθ(x) denote the model output, p be the number of parameters, and `(f, y) be the loss function. Then,

∇2L̂(θ) = ∇θ
(
∂`

∂f
· ∂f
∂θ

)
(9.208)

= ∇θ
(
∂`

∂f
· ∇θfθ(x)

)
(9.209)

=
∂2`

∂f2
· ∇θfθ(x)∇θfθ(x)> +

∂`

∂f
∇2
θfθ(x)︸ ︷︷ ︸
∈Rp×p

. (9.210)

Suppose the loss function is `(f, y) = 1
2 (f − y)2. Then, observing that ` is simply a quadratic function of f ,

we have

∇2L̂(θ) = 1 · ∇θf(x)∇θfθ(x)> + (f − y) · ∇2
θfθ(x), (9.211)

Note that the first term of (9.211) is positive semi-definite (PSD), while the second term is not necessarily
PSD. In general, (9.211) is referred to as the Gauss-Newton decomposition. Note also that for convex losses
`,

∂2`

∂f2
≥ 0, (9.212)

which further implies that

∂2`

∂f2
∇fθ(x)∇fθ(x)> < 0. (9.213)

Empirically, we observe that the second term (f − y)∇2fθ(x) is generally smaller. This is especially
evident when θ is at a global minimum for which `(fθ, y) = 0. In this case, (f − y)∇2fθ(x) = 0 because
fθ(x) = y. These two observations suggest that we can ignore the second term. In that case,

tr
(
∇2L̂(θ)

)
≈ ∂2`

∂f2
· tr
(
∇f(x)∇f(x)>

)
(9.214)

=
∂2`

∂f2
· ‖∇fθ(x)‖22 (9.215)

Thus, minimizing tr
(
∇2L̂(θ)

)
is approximately equivalent to minimizing the Lipschitzness of the model

output with respect to θ, which is approximately equivalent to minimizing the Lipschitzness of the model
output with respect to hidden variables.
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For example, let θ = (w1, . . . , wr), then we have

∂f

∂wi
=

∂f

∂h′i+1

· h>i , (9.216)

where h′i+1 = wihi, and hi denotes the hidden variables of the i-th layer and h′i+1 is the pre-activation of
the (i+ 1)-th layer. Then, ∥∥∥∥ ∂f∂wi

∥∥∥∥
F

=

∥∥∥∥ ∂f

∂hi+1

∥∥∥∥
2

· ‖hi‖2. (9.217)

This validates our claim that minimizing the Lipschitzness of the model output with respect to the parameters
is (approximately) equivalent to minimizing the Lipschitzness of the model output with respect to the hidden
variables. We have previously connected the latter concept to generalization of deep neural networks. See
Section 6.1 for a discussion of the all-layer margin, a measure of Lipschitzness of the model with respect to
hidden layer variables that can be directly used to bound generalization error of a deep net.
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Chapter 10

Unsupervised Learning and
Self-supervised Learning

We venture into unsupervised learning by first studying classical (and analytically tractable) approaches
to unsupervised learning. Classical unsupervised learning usually consists of specifying a latent variable
model and fitting using the expectation-maximization (EM) algorithm. However, so far we do not have a
comprehensive theoretical analysis for the convergence of EM algorithms because fundamentally analyzing
EM algorithms involves understanding non-convex optimization. Most analysis of EM only applies to special
cases (e.g., see Xu et al. [2016], Daskalakis et al. [2016]) and it is not clear whether any of the results can
be extended to more realistic, complex setups, without a fundamentally new technique for understanding
nonconvex optimization. Instead, we will analyze a family of algorithms which are broadly referred to as
spectral methods or tensor methods, which are a particular application of the method of moments [Pearson,
1894] with the algorithmic technique of tensor decomposition [Anandkumar et al., 2015]. While the spectral
method appears to be not as empirically sample-efficient as EM, it has provable guarantees and arguably is
more reliable than EM given the provable guarantees.

After discussing the basics of classical unsupervised learning, we will move on to modern applications
of deep learning. In particular, we’ll focus on theoretical interpretations of contrastive learning, which is a
class of successful self-supervised learning algorithms in computer vision.

10.1 Method of Moments for mixture models

We begin by formally describing the unsupervised learning problem. First, assume that we are studying a
family of distributions Pθ parameterized by θ ∈ Θ, where Pθ can be described by a latent variable model.
Then, given data x(i), ..., x(n) that is sampled i.i.d. from some distribution in {Pθ}θ∈Θ, our goal is to recover
the true θ.

Perhaps the most well-studied latent variable model in machine learning is the mixture of Gaussians. We
consider the following model for the mixture of k d-dimensional Gaussians. Let

θ = ((µ1, · · · , µk), (p1, · · · , pk)) , (10.1)

where µi ∈ Rd is the mean of the i-th component and p is a vector of probabilities belonging to the k-simplex,

which represents the mixture coefficient for clusters. Formally, for ∆(k)
∆
= {p : ‖p‖1 = 1, p ≥ 0, p ∈ Rk},

p = (p1, · · · , pk) ∈ ∆(k). (10.2)

We then sample x ∼ Pθ in a two-step approach:

i ∼ categorical(p),

x ∼ N (µi, I). (10.3)
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Here i is called the latent variable since we only observe x. Here we assume the covariances of the Gaussians
to be identity, but they can also be parameters that are to be learned.

There are many other latent variables that could be defined via a similar generative process, such as
Hidden Markov Models, Independent Component Analysis, which we will discuss later.

10.1.1 Warm-up: mixture of two Gaussians

We first study a simple case: the mixture of two Gaussians. In this case, k = 2, and we assume p1 = p2 = 1
2 .

For simplicity, we also assume µ1 = −µ2, that is, the means of the two Gaussians are symmetric around the
origin. To simplify our notation, let µ1 = µ and µ2 = −µ. These assumptions yield the following model for
x:

x ∼ 1

2
N (µ, I) +

1

2
N (−µ, I). (10.4)

To implement the moment method, we need to complete the following two tasks:

1. Estimate the moment(s) of x using empirical samples.

2. Recover parameters from the moment(s) of x.

The first moment of x is

M1
∆
= E[x] (10.5)

=
1

2
E[x|i = 1] +

1

2
E[x|i = 2] (10.6)

=
1

2
µ+

1

2
(−µ) (10.7)

= 0. (10.8)

Therefore, the first moment provides no information about µ. We compute the second moment as

M2
∆
= E[xx>] (10.9)

=
1

2
E[xx>|i = 1] +

1

2
E[xx>|i = 2] (10.10)

To compute these expectations, consider an arbitrary Z ∼ N (µ, I). Then,

E[ZZ>] = E[Z]E[Z]> + Cov(Z) (10.11)

= µµ> + I (10.12)

Recognizing that this second moment calculation is the same for both Gaussians in our mixture, we obtain:

M2 =
1

2
(µµ> + I) +

1

2
(µµ> + I) (10.13)

= µµ> + I (10.14)

Since the second moment provides information about µ, we can complete the two tasks required for the
moment method using the second moment.

If we had access to infinite data, then we can compute the exact second moment M2 = µµ>+I. Then, we
can recover µ by evaluating the top eigenvector and eigenvalue of M2.1 The top eigenvector and eigenvalue

of M2 is µ̄
∆
= µ
‖µ‖2 and ‖µ‖22 + 1, respectively.

In practice, however, we do not have infinite data. In that case, we need to estimate the second moment
by an empirical average.

M̂2 =
1

n

n∑
i=1

x(i)x(i)> (10.15)

1This approach is known as the spectral method.
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We can then recover µ by evaluating the top egivenvector and eigenvalue of M̂2. However, we need this
algorithm to be robust to errors, i.e., similar estimates, M̂2, of the second moment should yield similar
estimates of µ. Fortunately, most algorithms we might use for obtaining the top eigenvector and eigenvalue
are robust, so we can limit our attention to the infinite data case. Having outlined the moment method
approach to the mixture of two Gaussians problem, we study a generalization of this problem in the sequel.

10.1.2 Mixture of Gaussians with more components via tensor decomposition

The general moment method for solving latent variable models is summarized by the following steps.

1. Compute M1 = E[x], M2 = E[xx>], M3 = E[x⊗ x⊗ x], M4 = · · · . Note that x⊗ x⊗ x is in Rd×d×d
and (x⊗ x⊗ x)ijk = xi · xj · xk. For example, M3,ijk = E[xixjxk].

2. Design as algorithm A(M1,M2,M3, . . . ) that outputs θ.

3. Show that A is robust to errors in our moment estimates, i.e., we apply A to (M̂1, M̂2, M̂3, ...) in reality.

In the sequel, we instantiate this paradigm for mixtures of k Gaussians (k ≥ 3).

For the simplicity of demonstrating the idea, we assume p1 = · · · = pk = 1
k , i.e. i

unif∼ [k], and x ∼ N (µi, I).
Equivalently,

x ∼ 1

k

k∑
i=1

N (µi, I). (10.16)

In this example, we only describe steps (1) and (2) in the general algorithm described above.
We first evaluate the first and second moments. The first moment follows from

M1 = E[x] (10.17)

=

k∑
i=1

1

k
E[x|i] (10.18)

=
1

k

k∑
i=1

µi, (10.19)

and the second moment is computed as

M2 = E[xx>] (10.20)

=

k∑
i=1

1

k
E[xx>|i] (10.21)

=

k∑
i=1

1

k
(µiµ

>
i + I) (10.22)

=
1

k

k∑
i=1

µiµ
>
i + I. (10.23)

Second moments do not suffice

Can we recover µ = (µ1, ..., µk) from 1
k

∑k
i=1 µi and 1

k

∑k
i=1 µiµ

>
i ? Unfortunately, in most of the cases when

k ≥ 3, the first and second moments are not sufficent to recover µ.
One reason is the so-called “missing rotation information” problem. Let

U =

µ1 · · · µk

 ∈ Rd×k (10.24)
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denote the matrix we aim to recover. Then, consider some rotation matrix R ∈ Rk×k. We consider U versus
UR:

1

k

k∑
i=1

µiµ
>
i =

1

k
UU> (10.25)

=
1

k
(UR)(UR)> (RR> = I) (10.26)

This result proves that the second moment is invariant to rotations. To prove a similar claim for the first
moment, we also constrain our choice of R such that

R ·~1 = ~1 (10.27)

Then,

1

k

k∑
i=1

µi =
1

k
U ·~1 (10.28)

=
1

k
UR ·~1 (10.29)

Therefore, the first and second moments of U and UR are indistinguishable, and we must consider the third
moment in order to identify U .

Computing the third moment

The third moment is the tensor E[x ⊗ x ⊗ x] ∈ Rd×d×d. To express this expectation in terms of tractable
quantities, we can condition on the Gaussian observed and average:

E[x⊗ x⊗ x] =
1

k

k∑
i=1

E[x⊗ x⊗ x | i] (10.30)

Each term in the sum now corresponds to the third moment for some multivariate Gaussian. Fortunately,
Lemma 10.1 suggests a formula for estimating its value.

Lemma 10.1. Suppose z ∈ N (v, I). Then,

E[z ⊗ z ⊗ z] = v ⊗ v ⊗ v +

d∑
l=1

E[z]⊗ el ⊗ el +

d∑
l=1

el ⊗ E[z]⊗ el +

d∑
l=1

el ⊗ el ⊗ E[z] (10.31)

where e1, . . . , ed denote the canonical basis vectors.

This lemma suggests that we can compute v ⊗ v ⊗ v from a linear combination of E[z ⊗ z ⊗ z] and E[z].
Also note that E[z] = v. .

Proof. We compute the third moment element-wise. That is,

(E[z ⊗ z ⊗ z])ijk = E[zizjzk] (10.32)

= E[(vi + ξi) · (vj + ξj) · (vk + ξk)] (z = v + ξ, ξ ∼ N (0, I)) (10.33)

= vivjvk + E[vivjξk] + E[viξjvk] + E[ξivjvk]︸ ︷︷ ︸
=0

+ E[viξjξk] + E[vjξiξk] + E[vkξiξj ] + E[ξiξjξk] (10.34)
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To explicitly compute the last four terms in (10.34), we note that:

E[ξiξk] =

{
0 if i 6= k

E[ξ2
i ] = 1 if i = k

(10.35)

and that for any choice of i, j, and k,

E[ξiξjξk] = 0. (10.36)

Therefore,
(E[z ⊗ z ⊗ z])ijk = vivjvk + vi1[j = k] + vj1[i = k] + vk1[i = j] (10.37)

Since (
∑d
l=1 v ⊗ el ⊗ el)ijk =

∑d
l=1 vieljelk = viI(j = k), we have proven that:

E[z ⊗ z ⊗ z] = v ⊗ v ⊗ v +

d∑
l=1

v ⊗ el ⊗ el +

d∑
l=1

el ⊗ v ⊗ el +

d∑
l=1

el ⊗ el ⊗ v. (10.38)

We can now apply Lemma 10.1 to compute the third moment of the mixture of k Gaussians. In particular,

E[x⊗ x⊗ x] =
1

k

k∑
i=1

E[x⊗ x⊗ x | i] (10.39)

=
1

k

k∑
i=1

(
µi ⊗ µi ⊗ µi +

d∑
l=1

µi ⊗ el ⊗ el +

d∑
l=1

el ⊗ µi ⊗ el +

d∑
l=1

el ⊗ el ⊗ µi

)
(10.40)

=
1

k

k∑
i=1

µi ⊗ µi ⊗ µi +

d∑
l=1

1

k

(
k∑
i=1

µi

)
⊗ el ⊗ el +

d∑
l=1

el ⊗
1

k

(
k∑
i=1

µi

)
⊗ el

+

d∑
l=1

el ⊗ el ⊗
1

k

(
k∑
i=1

µi

)
(10.41)

=
1

k

k∑
i=1

µi ⊗ µi ⊗ µi +

d∑
l=1

E[x]⊗ el ⊗ el +

d∑
l=1

el ⊗ E[x]⊗ el +

d∑
l=1

el ⊗ el ⊗ E[x] (10.42)

(10.43)

For notational convenience, let

a⊗3 ∆
= a⊗ a⊗ a. (10.44)

So far, we have shown how to compute 1
k

∑k
i=1 µ

⊗3
i from E[x⊗3] and E[x]. In the sequel, we will formalize the

remaining problem, recovering {µi}ki=1 from 1
k

∑k
i=1 µ

⊗3
i , as the tensor decomposition problem, and discuss

efficient algorithms for it.

Tensor decomposition Recovering the Gaussian means, {µi}ki=1, from the third mixture moment,
1
k

∑k
i=1 µ

⊗3
i , is a special case of the general tensor decomposition problem. That problem is set up as

follows: Assume that a1, · · · ak ∈ Rd are unknown. Then, given
∑k
i=1 a

⊗3
i , our goal is to reconstruct the ai

vectors.
Before we present some standard results on tensor decomposition, we first describe some basic facts about

tensors. Much like matrices, tensors have an associated rank. For example, a⊗ b⊗ c is a rank-1 tensor. In
general, the rank of a tensor T is the minimum k such that T can be decomposed as

T =

k∑
i=1

ai ⊗ bi ⊗ ci. (10.45)
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for some {ai}ki=1, {bi}ki=1, {ci}ki=1. Another difference between tensors and matrices is that the former objects
do not have the typical rotational invariance. In particular, consider applying a right rotation R ∈ Rk×k to
the matrix

A =

a1 · · · ak

 ∈ Rd×k (10.46)

and get

Ã = AR =

ã1 · · · ãk

 ∈ Rd×k (10.47)

Then,

k∑
i=1

aia
>
i = AA> = (AR) · (AR)> =

k∑
i=1

ãiã
>
i (10.48)

However, there is no tensor analogue to the rotation invariance result above. But tensors do maintain an
interesting (and useful) permutation invariance; that is, T =

∑k
i=1 a

⊗3
i is invariant to permutations of the

indices of ai. Or in other words, let P ∈ Rk×k be a permutation matrix suppose, and let

Ã = AP =

ã1 · · · ãk

 ∈ Rd×k (10.49)

Then,

k∑
i=1

a⊗3
i =

k∑
i=1

ã⊗3
i (10.50)

The lack of rotation invariance in the sense above and the existence of permutation invariance make tensor
decomposition computationally challenging as well as powerful.

We now summarize some standard results regarding tensor decomposition for T =
∑k
i=1 a

⊗3
i . The results

for decomposing the asymmetric version T =
∑k
i=1 ai ⊗ bi⊗ are largely analogous. We will not prove these

results here.

0. In the most general case, recovering the ai’s from T is computationally hard. Any procedure will either
fail to find a unique ai or it fails to find ai efficiently.

1. In the orthogonal case, i.e. a1, . . . , ak are orthogonal vectors, each ai is a global maximizer of

max
‖x‖2=1

T (x, x, x) =
∑
i,j,k

Tijkxixjxk (10.51)

We can heuristically think of ai as eigenvectors of T and there exists an algorithm to compute ai in
poly-time.

2. In the independent case, i.e. a1, . . . , ak are linearly independent. Jennrich’s algorithm can be used to
efficiently recover {ai}ki=1.

Results 1 and 2 above both involve the so-called “under-complete” case (k ≤ d), e.g., when the number of
Gaussians in the mixture is smaller than the dimension of the data. Next, we describe certain overcomplete
cases for which efficient tensor decomposition is possible.
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3. Suppose a⊗2
1 , . . . , a⊗2

k are independent for k ≤ d2. Then, applying Result 2, we can recover ai from∑k
i=1(a⊗2

i )⊗3 =
∑k
i=1(a⊗6

i ) ∈ Rd6

.

4. Excluding an algebraic set of measure 0, we can use the FOOBI algorithm to recover ai from the
fourth-order tensor

∑k
i=1 a

⊗4
i when k ≤ d2. A robust version of the FOOBI algorithm is described in

Ma et al. [2016].

5. Assume ai are randomly generated unit vectors. Then, for the third order tensor, k can be large as
d1.5 [Ma et al., 2016, Schramm and Steurer, 2017].

In summary, the moment method is a recipe in which we first compute high order moments (i.e. tensors),
assume that these estimates are noiseless, and decompose these tensors to recover the latent variables.
Though we do not discuss these results here, there is an extensive literature analyzing the robustness of
the moment method to error in the moment estimates. Last, we note that even though we only explicitly
analyze the mixture of Gaussians model here, latent variable models amenable to analysis by the moment
method include ICA, Hidden Markov Models, topic models, etc.

10.2 Graph Decomposition and Spectral Clustering

Introduced by Shi and Malik [2000] and Ng et al. [2001], spectral clustering learns a model for the data
points using a pairwise notion of similarity. Formally, assume that we are given n data points x(1), . . . , x(n)

as well as a similarity matrix G ∈ Rn×n such that

Gij = ρ(x(i), x(j)) (10.52)

where ρ is some measure of similarity that assigns larger values to more similar pairs of points.
For example, x(i) could denote images for which ρ(x(i), x(j)) measures the semantic similarity. Alterna-

tively, x(i) might be users of a social network and ρ(x(i), x(j)) = 1 if x(i) and x(j) are friends (hence usually
share similar interests / jobs / · · · ).

We note that in moment methods, E[xx>] captures pairwise information between coordinates / dimen-
sions, whereas matrix G here captures pairwise information between datapoints.

Our goal is to cluster the data points by viewing G as a graph. For instance, in the social network
example, we can naturally view G as the adjacency matrix of an unweighted graph, where Gij ∈ {0, 1}
defines the edges. Then, the clustering problem is to partition the graph into distinct neighborhoods, i.e.,
components that are as separate from each other as possible. As we will see repeatedly in the sequel, the
eigendecomposition of G is closely related to this graph paritioning / clustering problem.

1

2

3

4 5

6

7

S1 S2

Figure 10.1: A demonstration of graph partitioning. Sets S1 and S2 form a good partition of the graph since
there’s only one edge between them.

10.2.1 Stochastic block model

In the stochastic block model (SBM), G is assumed to be generated randomly from two hidden communities.
Formally,

{1, · · ·n} = S ∪ S̄, (10.53)
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where S and S̄ partition [n]. Assume |S| = n
2 . We then assume the following generative model for G. If

i, j ∈ S or i, j ∈ S̄, then

Gij =

{
1 w.p. p

0 w.p. 1− p
. (10.54)

Otherwise, for i and j in distinct components,

Gij =

{
1 w.p. q

0 w.p. 1− q
(10.55)

for p > q (i.e., more likely to be connected if from the same group). For instance, S and S̄ could mean two
companies, and i ∈ [n] is a user of a social network. Two users i, j are more likely to know each other if they
are in the same company.

𝑆

𝑆̅

Figure 10.2: A graph generated by the stochastic block model with p = 2
3 and q = 1

5 .

Our goal is then to recover S and S̄ from G; the primary tool we use towards this goal is the eigende-
composition of G.

In some trivial cases, it is not necessary to eigendecompose G to recover the two hidden communities.
Suppose, for instance, that p = 0.5 and q = 0. Then, the graph represented by G will contain two connected
components that correspond to S and S̄.

As a warm-up to motivate our approach, we eigendecompose Ḡ = E[G]. Observe that

Ḡij =

{
p if i, j from the same community

q o.w.
. (10.56)

It is then easy to see that Ḡ is a matrix of rank 2:

Ḡ =



p · · · p q · · · q
...

...
p · · · p q · · · q
q · · · q p · · · p

...
...

q · · · q p · · · p


. (10.57)
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Lemma 10.2. Let Ḡ = E[G] for the stochastic block model. Then, letting ui(A) denote the i-th eigenvector
of the matrix A,

u1(Ḡ) = ~1 (10.58)

u2(Ḡ) = [1, . . . , 1︸ ︷︷ ︸
|S|

,−1, . . . ,−1︸ ︷︷ ︸
|S̄|

]> (10.59)

where u2(Ḡ) has |S| entries of 1 and |S̄| entries of −1.

Proof. We begin by directly proving (10.58).

Ḡ ·~1 =


pn
2 + qn

2
...

pn
2 + qn

2

 (10.60)

=
p+ q

2
· n ·~1. (10.61)

More generally, ~1 is the top eigenvector for any matrix with fixed row sum or any graph with uniform degree
(i.e., regular graph).

Next, we prove (10.59). Let

G′ =



r · · · r
... 0

r · · · r
r · · · r

0 ...
r · · · r


(10.62)

for r = p− q. To precisely define G′, we note that G′ is block diagonal with two blocks of size |S| and |S̄|,
respectively. Then,

Ḡ = ~1~1>q +G′. (10.63)

Thus,

G′ · u =



r · · · r
... 0

r · · · r
r · · · r

0 ...
r · · · r


·



1
...
1
−1
...
−1


= r · n

2
· u. (10.64)

Then, because u ⊥ ~1, we can combine (10.63) and (10.64) to obtain

Ḡ · u = G′ · u = r · n
2
· u =

p− q
2
· n · u (10.65)

Thus, u has eigenvalue p−q
2 · n.

Remark 10.3. Lemma 10.2 shows that

Ḡ =
p+ q

2
·~1~1> +

p− q
2
· uu>. (10.66)

135



More generally, when we have more than two clusters in the graph, G′ is block diagonal with more than
two blocks. In this setting, the eigenvectors will still align with the blocks. We illustrate this below for a
generic block diagonal matrix. Let

A =



1 · · · 1
... 0 0

1 · · · 1
1 · · · 1

0 ... 0
1 · · · 1

1 · · · 1

0 0 ...
1 · · · 1


(10.67)

Then, the three eigenvectors of A are 

1
...
1
0
...
0
0
...
0


,



0
...
0
1
...
1
0
...
0


,



0
...
0
0
...
0
1
...
1


(10.68)

Furthermore, the rows of the matrix formed by the three eigenvectors given by (10.68) clearly give the
cluster IDs of the vertices in G. Note also that permutations of A will result in equivalent permutations in
the coordinates of each of the three eigenvectors.

Next, we relate this observation to the result in Lemma 10.2. While there are no negative values in the
eigenvectors given in (10.68), we observe that any linear combination of eigenvectors is also an eigenvector,
so recovering a solution that look more like (10.59) is straightforward. Indeed, taking linear combinations of
the eigenvectors defined above shows that there is an alternative eigenbasis that includes the all-ones vector,
~1. How for this choice of A, the all-ones vector is not the unique top eigenvector. For that to be the case,
we require background noise in Ḡ.

In reality, we only observe G. In the sequel, we will show that in terms of the spectrum, G ≈ E[G].
Formally, we will leverage earlier concentration results to prove that ‖G−E[G]‖op is small. Concretely, then,

G = (G− E[G]) + E[G] (10.69)

= (G− E[G]) +
p+ q

2
·~1~1> +

p− q
2
· uu> (10.70)

Rearranging, we obtain that:

G− p+ q

2
·~1~1> = (G− E[G]) +

p− q
2
· uu> (10.71)

We then hope that G−E[G] is a small perturbation, so that the top eigenvector of G− p+q
2 ·~1~1

> is close to
u. Namely, it suffices to show that

‖G− E[G]‖op �
∥∥∥∥p− q2

· uu>
∥∥∥∥

op

. (10.72)

We will start by proving the following lemma.
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Lemma 10.4. With high probability,

‖G− E[G]‖op ≤ O(
√
n log n) . (10.73)

Note that this concentration inequality is different from the ones we have seen in the course so far because
both G and E[G] are matrices, not scalars. Our goal will be to turn the quantity on the LHS into something
that we are familiar with.

Proof. The key idea is that we can use uniform convergence, after noting that

‖G− E[G]‖op = max
‖v‖2=1

∣∣v>(G− E[G])v
∣∣ (10.74)

= max
‖v‖2=1

∣∣v>Gv − v> E[G]v
∣∣ (10.75)

= max
‖v‖2=1

∣∣∣∣∣∣
∑
i,j∈[n]

vivjGij − E

 ∑
i,j∈[n]

vivjGij

∣∣∣∣∣∣ . (10.76)

Now, the quantity inside the max is the difference between the sum of independent random variables and
their expectation, which we are familiar with. We can use brute force discretization to deal with the max.
First, note that for a fixed v with ‖v‖2 = 1, we can use Hoeffding’s inequality to find that

Pr

∣∣∣∣∣∣
∑
i,j∈[n]

vivjGij − E

 ∑
i,j∈[n]

vivjGij

∣∣∣∣∣∣ ≥ ε
 ≤ exp(−ε

2

2
) . (10.77)

Then, we choose ε = O(
√
n log n), take a discretization of the unit ball with granularity 1/nO(1) (which

yields a cover of cardinality exp(n log n)), and take a union bound over this discretized set to achieve the
desired result.

Remark 10.5. Comparing this bound to p−q
2 ·n, we can deduce that if p−q �

√
logn√
n

, then we can recover the

vector u approximately. Via a post-processing step that we do not discuss here, u can actually be recovered
exactly.

10.2.2 Clustering the worst-case graph

Given a graph G(V,E) where V denotes the set of vertices and E the set of edges, we define the conductance
of a component S as

φ(S)
∆
=
|E(S, S̄)|
Vol(S)

(10.78)

where E(S, S̄) is the total number of edges between S and S̄, and Vol(S) is the total number of edges
connecting to S. To be precise, let A be the adjacency matrix of G,

E(S, S̄) =
∑

i∈S,j∈S̄

Aij (10.79)

Vol(S) =
∑

i∈S,j∈[n]

Aij . (10.80)

Intuitively, conductance captures how separated S and S̄ are.
Since Vol(S) ≥ E(S, S̄), it follows that φ(S) ≤ 1. Next, observe that Vol(S) + Vol(S̄) = Vol(V ). Then,

if Vol(S) ≤ Vol(V )/2, it must be the case that Vol(S) ≤ Vol(S̄) and therefore φ(S) ≥ φ(S̄). In some sense,
thus suggests that the conductance of a set S̄ with volume larger than Vol(V )/2 could be misleading, because
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the conductance of the other part could be larger. Therefore, typically people only consider the conductance
of a smaller part of the partition.

Next, we define φ(G) to be the sparsest cut of G:

φ(G) = min
S:Vol(S)≤Vol(V )/2

φ(S) . (10.81)

One may wonder why we need to normalize by Vol(S) in the definition of conductance. The reason is that
E(S, S̄) itself is typically minimized when S is small. Thus, without this normalization, the sparsest cut
would not be very meaningful. For instance, suppose the graph G contains N nodes and can be divided
into two halves each containing N/2 nodes, and every node is connected to all the other nodes in the
same half, but is connected to only 2 nodes in the other half (as shown in Figure 10.3). Then, we can
consider two subsets S1 and S2, where S1 contains half the nodes, and S2 contains two nodes in the same
half. It’s easy to see that E(S1, S̄1) = N

2 · 2 > E(S2, S̄2) = N
2 . However, the conductance of S1 is

φ(S1) = E(S1,S̄1)
Vol(S1) =

N
2 ·2

N
2 ·(

N
2 −1)+N

2 ·2
≈ 4

N , whereas the conductance of S2 is φ(S2) = E(S2,S̄2)
Vol(S2) =

N
2

N+2 ≈
1
2 .

Thus, when n is large, S1 is a sparser cut than S2 under φ(·).

𝑆!

𝑆"

Figure 10.3: A demonstration of the sparsest cut. S1 is a sparser cut than S2.

Our goal is to find an approximate sparsest cut Ŝ such that φ(Ŝ) ≈ φ(G).2 Our main technique is
eigendecomposition or spectral clustering, though in the literature much more advanced and better algorithms
have been proposed, e.g., the famous ARV algorithm [Arora et al., 2009]. Let di = Vol({i}) be the degree of
node i, and let D = diag({di}) be the diagonal matrix that contains the degrees di as entries. Furthermore,
let

Ā = D−
1
2AD

1
2 (10.82)

be the normalized adjacency matrix. This is equivalent to normalizing each element Aij of the adjacency

matrix by 1√
didj

(i.e., Āij =
Aij√
didj

). In most cases, it suffices to starting with considering G as a regular

graph (whose degrees are all the same), because the proof for regular graph can oftentimes extend to general
graph easily. Assuming G is a κ-regular graph, i.e. di = κ; then, this normalization simply scales A by 1

κ .
Let L = I − Ā be the Laplacian matrix. Note that any eigenvector of L is also an eigenvector of Ā.

Suppose L has eigenvalues λ1 ≤ . . . ≤ λn with corresponding eigenvectors u1 . . . un, then Ā has eigenvalues
1− λ1 ≥ . . . ≥ 1− λn with the same eigenvectors.

The following famous Cheeger’s inequality relates the eigendecompositions to the graph partitioning.

Theorem 10.6 (Cheeger’s inequality). The second eigenvalue of L, namely λ2, is related to the sparsest cut
φ(G) as follows:

λ2

2
≤ φ(G) ≤

√
2λ2 . (10.83)

Moreover, we can find Ŝ such that φ(Ŝ) ≤
√

2λ2 ≤ 2
√
φ(G) efficiently by rounding the second eigenvector.

Suppose u2 = [β1 · · ·βn]> ∈ Rn is the second eigenvector of L. Then we can choose a threshold τ = βi and
consider Ŝi = {j ∈ [n] : βj ≤ τ}. At least one such Ŝi satisfies φ(Ŝi) ≤ 2

√
φ(G).

2Finding the exact sparsest cut is a NP-hard problem.
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Note that this can be viewed as a general but weaker version of the theorem that we proved for stochastic
block model. There is no randomized assumption; the conclusion is weaker than those for SBM; also the
rounding algorithm to recover the cluster is also more complicated—one has to try multiple thresholding
instead of using threshold 1/2.

We will refer the readers to Chung [2007] for the proof of the theorem. Here below we give a few basic
lemmas that help build up intuitions on why eigendecompositions relate to graph decomposition.

First, one might wonder why this algorithm uses the second eigenvector of Ā, but not the first eigenvector.
As we have seen in the SBM case, the first eigenvector captures the background in some sense. Here for
general graph, we see the same phenomenon. The top eigenvector is generally not that interesting as it only
captures the “background density” of the graph. For instance, when A is κ-regular, ~1 is the top eigenvector
of A and is thus also the top eigenvector of Ā = 1

κ ·A. More generally, we have the following lemma:

Lemma 10.7. The top eigenvector of Ā (respectively, the smallest eigenvector of L) is u1 = [
√
d1 · · ·

√
dn]>.

Proof.

(Ā · u1)i =
∑
j

Āij
√
dj (10.84)

=
∑
j

Aij√
di
√
dj

√
dj (10.85)

=
1√
di

∑
j

Aij (10.86)

=
di√
di

=
√
di. (10.87)

To understand why the eigenvectors of the Laplacian are related to the sparsest cut, we examine the
quadratic form the Laplacian. In particular, we have the following lemma:

Lemma 10.8. Let v ∈ RN be a vector, L is the graph Laplacian. Then,

v>Lv =
1

2

∑
(i,j)∈E

(
vi√
di
− vj√

dj

)2

. (10.88)

Proof.

v>Lv = v>Iv − v>Āv (10.89)

=

n∑
i=1

v2
i −

n∑
i,j=1

vivjĀij (10.90)

=

n∑
i=1

v2
i −

n∑
i,j=1

vivj
Aij√
didj

(10.91)

=
1

2
·

2

n∑
i=1

v2
i − 2

∑
(i,j)∈E

vi√
di
· vj√

dj

 (10.92)

=
1

2

∑
(i,j)∈E

(
vi√
di
− vj√

dj

)2

. (10.93)
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If G is κ-regular, then this becomes v>Lv = 1
2κ

∑
(i,j)∈E(vi − vj)2. Furthermore, suppose v ∈ {0, 1} is a

binary vector with support S = supp(v). Then,

1

2κ

∑
(i,j)∈E

(vi − vj)2 =
1

κ
E(S, S̄) (10.94)

=
1

κ
E(supp(v), supp(v)) . (10.95)

If | supp(v)| ≤ n/2, implying Vol(S) ≤ Vol(V )/2, then

v>Lv

‖v‖22
=

1
κE(S, S̄)
1
κ Vol(S)

= φ(S) . (10.96)

The term v>Lv
‖v‖22

is also called the Rayleigh quotient. This result nicely connects the abstract linear algebraic

approach to the sparsest cut approach. Note that we only achieve an approximate sparsest cut because when
we compute eigenvectors, we minimize the Rayleigh quotient without any constraints on v. By contrast, the
sparsest cut minimizes the Rayleigh quotient subject to the constraint that v ∈ {0, 1}n. Proving Cheeger
inequality essentially involves controlling the difference caused by real v vs binary v. We omit the proof of
Cheeger’s inequality because it’s beyond the scope of this notes.

10.2.3 Applying spectral clustering

How do the ideas from the previous sections connect to our previous discussion of spectral clustering?
Suppose that we have some raw data x(1) · · ·x(n) that we’d like to group into k clusters. Ng et al. [2001]
propose to define a weighted graph G such that each element

Gij = exp

(
−‖x

(i) − x(j)‖22
2σ2

)
(10.97)

represents a distance between two data points. Then, we compute the first k eigenvectors of the Laplacian
L and arrange them into the columns of a matrix: | |

u1 · · · uk
| |

 ∈ Rn×k. (10.98)

The i-th row of this matrix (which we denote by vi) is then a k-dimensional embedding of the i-th example.
Note that this is usually a much lower-dimensional representation than the raw data. Finally, we can use
k-means to cluster the embeddings {v1, . . . , vn}.

In high dimensions, the issue with Ng et al. [2001]’s approach is that the training data points are all far
away from each other. The Euclidean distance between points becomes meaningless, and so our definition
of G does not make sense.

How do we solve this issue? HaoChen et al. [2021] propose a solution. They consider an infinite weighted
graph G(V,w), where w are the edge weights, and V = X ⊆ Rn is the set of all possible data points. We
define w(x, x′) to be large only if x and x′ are very close in `2 distance. Now, the graph is more meaningful,
because only data points that are small perturbations of each other have high connection weights. However,
we do not have explicit access to this graph, and its eigenvectors are infinite-dimensional.

Now, suppose we have some eigenvector u = (ux)x∈X . Rather than explicitly represent ux, we represent
ux by fθ(x) where fθ is some parameterized model. Now, the challenge is to find θ such that [fθ(x)]x∈X is the
second smallest eigenvector of Laplacian of G. It turns out solving this problem gives a form of contrastive
learning, which we will discuss in Section 10.3.2.

140



10.3 Self-supervised Learning

10.3.1 Pretraining / self-supervised learning / foundation model basics

Self-supervised learning is widely used for pretraining modern models. These large pretrained models are also
called foundation models [Bommasani et al., 2021]. One simplified setup / workflow contains the following
two stages:

Pretraining on unlabeled, massive data. Let {x(1), · · · , x(n)} be a dataset where x(i) ∈ Rd is sampled
from some pretraining data distribution x(i) ∼ Ppre. The goal is to learn a pretrained model fθ : Rd → Rk,
where k is the dimension of features / representations / embeddings, and θ is the model parameter. This
model can be learned by minimizing certain pretrained loss function: L̂pre(θ) = L̂pre(x(1), · · · , x(n); θ), which

sometimes is of the form L̂pre(θ) = 1
n

∑n
i=1 `pre(x(i); θ). We use θ̂ = argminθ L̂pre(θ) to denote the parameter

learned during pretraining.

Adaptation. During adaptation, we have access to a set of labeled downstream task examples

{(x(1)
task, y

(1)
task), · · · , (x(ntask)

task , y
(ntask)
task )}, where usually ntask � n. One popular adapataion method is lin-

ear probe, which uses fθ̂(x) as features / representations / embeddings, and train a linear classifier
on downstream tasks. Concretely, the prediction on data x is w>fθ̂(x), where w is the linear head

learned from minw L̂task(w) = 1
ntask

∑ntask

i=1 `task(y
(i)
task, w

>fθ̂(x
(i)
task)). Another popular adaptation method

is finetuning, which also updates the parameter θ. Concretely, one initializes from θ = θ̂, and solve

minθ,w L̂task(w, θ) = 1
ntask

∑ntask

i=1 `task(y
(i)
task, w

>fθ(x
(i)
task)).

Why does pretraining on unlabeled data with an unsupervised (self-supervised) loss help a wide range
of downstream prediction tasks? There are many open questions to be answered in this field. For instance,
we may ask: (1) how pretraining helps label efficiency of downstream tasks, (2) why pretraining can give
“universal” representations, and (3) why does pretraining provide robustness to distribution shift.

10.3.2 Analysis of contrastive learning

Let X̄ be the set of all natural images in the image domain, P̄X̄ be the distribution over X̄. Contrastive learn-
ing learns fθ such that representations of augmentations of the same image are close, whereas augmentations
of random images are far away (as visualized in Figure 10.4).

augmentation

Figure 10.4: A demonstration of contrastive learning. Representations of augmentations of the same image
are pulled close, whereas augmentations of random images are pushed far away.

Given a natural image x̄ ∈ X̄, one can generate augmentations by random cropping, flipping, adding
Gaussian noise or color transformation. We use x ∼ A(·|x̄) to denote the conditional distribution of aug-
mentations given the natural image. For simplicity, we consider the case where Gaussian blurring is the
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augmentation, we have

x ∼ A(·|x̄)⇔ x = x̄+ ξ ξ ∼ N (0, σ2I), (10.99)

where ‖ξ‖2 ≈ σ
√
d should be � ‖x̄‖.

We say (x, x+) is a positive pair if they are generated as follows: first sample x̄ ∼ P̄X̄ , then sample
x ∼ A(·|x̄) and x+ ∼ A(·|x̄) independently. In other words, (x, x+) are augmentations of the same natural
image.

We say (x, x′) is a random pair / negative pair if they are sampled as: first sample two natural images
x̄ ∼ P̄X̄ and x̄′ ∼ P̄X̄ , then sample augmentations x ∼ A(·|x̄) and x′ ∼ A(·|x̄′).

The design principle for contrastive learning is to find θ such that fθ(x), fθ(x
+) are close, while

fθ(x), fθ(x
′) are far away [Chen et al., 2020, Zbontar et al., 2021, He et al., 2020].

One example of contrastive learning is SimCLR [Chen et al., 2020]. Given B positive pairs
(x(1), x(1)+), · · · , (x(B), x(B)+), note that (x(i), x(j)+) is a random pair if i 6= j, SimCLR defines the loss
on the i-th pair as

lossi = − log
exp(fθ(x

(i))>fθ(x
(i)+))

exp(fθ(x(i))>fθ(x(i)+)) +
∑
j 6=i exp(fθ(x(i))>fθ(x(j)+))

. (10.100)

Notice that − log A
A+B is decreasing in A but increasing in B, the loss above encourages fθ(x

(i))>fθ(x
(i)+)

to be large, while fθ(x
(i))>fθ(x

(j)+) to be small.
In the rest of this section, we consider a variant of contrastive loss, proposed in [HaoChen et al., 2021]:

L(θ) = −2 E
(x,x+)∼positive

fθ(x)>fθ(x
+) + E

(x,x′)∼random

(
fθ(x)>fθ(x

′)
)2
. (10.101)

This contrastive loss follows the same design principle as other contrastive losses in the literature: suppose
all representations have the same norm, then the first term encourages the representations of a positive pair
to be closer while the second term encourages the representations of a random pair to be orthogonal to each
other (hence far away). [HaoChen et al., 2021] show that the loss function, though inspired by theoretical
derivations, still perform competitively, nearly matching the SOTA methods.

We can also define the empirical loss on a set of tuples (x(i), x+(i), x′(i)) sampled i.i.d. as follows: x̄ ∼
P̄X̄ , x

(i) ∼ A(·|x̄(i)), x+(i) ∼ A(·|x̄(i)), x̄′ ∼ P̄X̄ , x′(i) ∼ A(·|x̄′(i)). The empirical loss is defined as

L̂(θ) =

n∑
i=1

[
−2fθ(x

(i))>fθ(x
+(i)) +

(
fθ(x

(i))>fθ(x
′(i))
)2
]
. (10.102)

Then the empirically learned parameter is θ̂ = minθ L̂(θ).
Suppose the downatream task is binary classification with label set {1,−1}. We define the downstream

loss as

L̂task(w, θ) =
1

ntask

ntask∑
i=1

1

2

(
y

(i)
task − w

>fθ(x
(i)
task)

)2

. (10.103)

We learn the linear head ŵ = argminw L̂task(w, θ̂), and the evaluate its performance on downstream
population data:

Ltask(ŵ, θ̂) = E
[

1

2

(
ytask − ŵ>fθ(xtask)

)2]
. (10.104)

Analysis pipeline. We give a summary of our analysis pipeline below. The key takeaway is that we only
have to focus on the population distribution case (step 3).

0. Assume expressivity, i.e., assuming ∃θ∗ such that L(θ∗) is sufficiently small (the details will be quan-
tified later).
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1. For large enough n (e.g., n > Comp(F)/ε2 where F = {fθ} is the function class, Comp(·) is some
measure of complexity, ε is the target error), show that L̂(θ) = L(θ)± ε.

2. Let θ̂ be the parameter learned on empirical data. Since L̂(θ̂) = minθ L̂(θ) ≤ L̂(θ∗) ≤ L(θ∗) + ε, we
have

L̂(θ̂) ≤ ε⇒ L(θ̂) ≤ 2ε (10.105)

3. Key step: (infinite data case) We will prove a theorem (Theorem 10.12 below as a simplified version,

or Theorem 3.8 of HaoChen et al. [2021]) that shows if L(θ̂) ≤ 2ε, then there exists w such that
Ltask(θ, w) ≤ δ, where δ is a function of ε and data distribution P̄ .

4. When we have enough downstream data ntask ≥ poly(k, 1
ε′ ), for any θ, with high probability we have

(via uniform convergence) that for any w, L̂task(w, θ) ≈ Ltask(w, θ)± ε′.

5. Using the results in step 3 and step 4, we have L̂task(ŵ, θ̂) = minw L̂task(w, θ̂) ≤ minw Ltask(w, θ̂)+ε′ ≤
δ+ ε′. Thus, the final evaluation loss on the downstream task is Ltask(ŵ, θ̂) ≤ L̂task(ŵ, θ̂)+ ε′ ≤ δ+2ε′.

Key step: the case with population pretraining and downstream data. We will now dive into the
analysis of step 3, as all the other steps are from standard concentration inequalities. Recall that

L(θ) = −2 E
(x,x+)

fθ(x)>fθ(x
+) + E

(x,x′)

(
fθ(x)>fθ(x

′)
)2
. (10.106)

As expected, the analysis requires structural assumptions on the data. In particular, we will use the
graph-theoretic language to describe the assumptions on population data. Let X be the set of all augmented
data, P be the distribution of augmented data x ∼ A(·|x̄) where x̄ ∼ P̄X̄ . Let p(x, x+) be the probability
density of positive pair (x, x+). We define a graph G(V,w) where vertex set V = X and edge weights
w(x, z) = p(x, z) for any (x, z) ∈ X ×X. In general, this graph may be infinitely large. To simplify math
and avoid integrals, we assume |X| = N where N is the number of all possible augmented images (which
can be infinite or exponential in dimension).

The degree of node x is p(x) =
∑
z∈X p(x, z). Let A ∈ RN×N be the adjacency matrix of this graph

defined as Ax,z = p(x, z), and let Ā ber the normalized adjacency matrix such that Āx,z = p(x,z)√
p(x)p(z)

.

The following lemma shows that contrastive learning is closely related to the eigendecomposition of Ā.

Lemma 10.9. Let L(f) = −2E(x,x+) f(x)>f(x+) + E(x,x′)

(
f(x)>f(x′)

)2
. Suppose X = {x1, · · · , xN}, let

matrix

F =

 p(x1)
1
2 f(x1)>

...

p(xN )
1
2 f(xN )>

 . (10.107)

Then,

L(f) = ‖Ā− FF>‖2F + const. (10.108)

Hence, minimizing L(f) w.r.t the variable f is equivalent to eigendecomposition of Ā.

Proof. Directly expanding the Frobenius norm ‖Ā− FF>‖2F as a sum over entries, we have

‖Ā− FF>‖2F =
∑
x,z∈X

(
p(x, z)√
p(x)

√
p(z)

− f(x)>f(z)
√
p(x)

√
p(z)

)2

(10.109)

= const− 2
∑
x,z∈X

p(x, z)f(x)>f(z) +
∑
x,z∈X

p(x)p(z)
(
f(x)>f(z)

)2
(10.110)

= const− 2 E
(x,x+)∼positive

f(x)>f(x+) + E
(x,x′)∼random

(
f(x)>f(x′)

)2
, (10.111)
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where the last equation uses the fact that p(x, z) and p(x)p(z) are the probability densities of (x, z) being a
positive pair and a random pair, respectively.

Standard matrix decomposition results tell us that the minimizer of ‖Ā−FF>‖2F satisfies F = U ·diag(γ
1
2
i ),

where γi’s are the eigenvalues of Ā and U ∈ RN×k contains the top k eigenvectors of Ā as its columns.
Suppose we use v1, · · · , vN to represent the rows of U , i.e.,

U =

v
>
1
...
v>N

 . (10.112)

Then we know f(xj) = p(xj)
− 1

2 · diag(γ
1
2
i ) · vj is the minimizer of the contrastive loss.

One interesting thing is that f(xi) has the same separability as vi. This is because for any vector b ∈ Rk,

we have 1
[
b>vi > 0

]
= 1

[
b>diag(γ

− 1
2

i )f(x) > 0
]
, suggesting linear head diag(γ

− 1
2

i )b applied on feature

f(xi) would achieve the same classification accuracy as v applied on vi. Thus, it suffices to analyze vi’s
downstream accuracy under linear head.

Since vi is exactly the feature used by the classic spectral clustering algorithm, we may ask when spectral
clustering produces good features. As discussed in Section 10.2, spectral clustering is good at graph partition-
ing in stochastic block models. In this section, we aim to find more general settings where spectral clustering
produces good features. For simplicity, let’s consider a regular graph where w(x) =

∑
x′∈V w(x, x′) = κ.3

The following lemma shows that suppose the graph roughly contains two clusters, then the spectral
clustering features can be used to accurately predict which cluster a node belongs to.

Lemma 10.10. Suppose the graph G can be partitioned into 2 clusters S1, S2 with size |S1| = |S2| = N
2 ,

such that E(S1, S2) =
∑
x∈S1,z∈S2

w(x, z) ≤ ακN . Furthermore, suppose G cannot be partitioned well into
3 clusters in the sense that for all partition T1, T2, T3, we have max{φ(T1), φ(T2), φ(T3)} ≥ ρ. (Figure 10.5
gives a demonstration of these assumptions.) Then, let g = 1(S1) ∈ RN (i.e., gi = 1 if i ∈ S1), and k ≥ 6,

𝑇!

𝑇"

𝑇#

≤ 𝛼
𝐸 𝑇!, 𝑇"
𝑉𝑜𝑙(𝑇!)

≥ 𝜌

Figure 10.5: A demonstration of the assumptions in Lemma 10.10. The left half and right half of the graph
can be chosen as S1 and S2, since there’s at most α proportion of edges between them. Sets T1, T2, T3 form
a 3-way partition where φ(T1) ≥ ρ.

there exists linear classifier b such that

‖Ub− g‖22 .
Nα

ρ2
, (10.113)

where U contains the top k eigenvectors of Ā as its columns.

3It turns out that most, if not all, spectral graph theory tools on regular graph can extend to general graph settings.
Therefore, it oftentimes suffices to consider a regular graph.
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The above lemma essentially says that 〈vx, b〉 ≈ gx for all data x ∈ X, where vx is the x-th row of U .
Before proving the above lemma, we first introduce the following higher-order Cheeger inequality, which

shows that when the graph cannot be partitioned well into 3 clusters, the 6-th smalled eigenvalue of the
Laplacian cannot be too small.

Lemma 10.11 (Proposition 1.2 in [Louis and Makarychev, 2014]). Let G = (V,w) be a weight graph.
Suppose the graph cannot be partitioned into 3 sets S1, S2, S3 such that max{φ(S1), φ(S2), φ(S3)} ≤ ρ. Then,
we have

λ6 & ρ2.

Now we give a proof of Lemma 10.10.

Proof of Lemma 10.10. By Lemma 10.8 we know that

2

N
g>Lg =

1

Nκ

∑
x,z

(gx − gz)2w(x, z) (10.114)

=
1

Nκ

 ∑
x∈S1,z∈S2

w(x, z) +
∑

x∈S2,z∈S1

w(x, z)

 (10.115)

=
2

Nκ
E(S1, S2) (10.116)

≤ α. (10.117)

Thus, g has to be mostly in the smaller eigenspace of L. Suppose L has eigenvalue 0 = λ1 ≤ λ2 ≤ · · · ≤ λN ,

with corresponding eigenvectors u1, u2, · · ·uN . Define matrix U = [u1, · · · , uk] ∈ RN×k. Suppose
√

2
N g =∑N

i=1 βiui. Since ‖
√

2
N g‖ = 1, we know

∑N
i=1 β

2
i = 1.

Since we know g>Lg =
∑N
i=1 β

2
i λi ≤ Nα

2 , we can conclude
∑
i>k β

2
i λi ≤ Nα

2 , which implies that∑
i>k β

2
i ≤ Nα

2λk+1
. Nα

ρ2 . Here we used the fact λ6 & ρ2 by higher-order Cheeger inequality (Lemma 10.11).

Thus, we have ‖g −
∑k
i=1 βiui‖22 = ‖

∑
i>k βiui‖22 . Nα

ρ2 which finishes the proof.

We can combine Lemma 10.9 and Lemma 10.10 to prove the following theorem, which shows that when
the graph roughly contains 2 clusters, the feature learned from contrastive learning can be used to predict
the cluster membership accurately.

Theorem 10.12. Let L(f) = −2E(x,x+) f(x)>f(x+) + E(x,x′)

(
f(x)>f(x′)

)2
, and f∗ : X → Rk is a

minimizer of L(f) for k ≥ 6. Suppose the graph G can be partitioned into 2 clusters S1, S2 with size
|S1| = |S2| = N

2 , such that E(S1, S2) =
∑
x∈S1,z∈S2

w(x, z) ≤ ακN . Furthermore, suppose G cannot be parti-
tioned well into 3 clusters in the sense that for all partition T1, T2, T3, we have max{φ(T1), φ(T2), φ(T3)} ≥ ρ.
Let y(xi) = 1(xi ∈ S1) (i.e., y(xi) = 1 if xi ∈ S1, otherwise y(xi) = 0). Then, there exists linear classifier
b ∈ Rk such that

1

N

∑
i∈[N ]

(
f(xi)

>b− y(xi)
)2

.
α

ρ2
. (10.118)

Proof. Let U ∈ RN×k contains the top k eigenvectors of Ā as its columns. By Lemma 10.10, we know there
exists some b̂ ∈ Rk such that ‖Ub̂ − g‖22 . Nα

ρ2 , where g ∈ RN such that gi = y(xi). Let v1, · · · , vN be the

rows of U . According to Lemma 10.9, we know that f(xi) = p(xi)
− 1

2 · diag(γ
1
2
j ) · vi = κ−

1
2 · diag(γ

1
2
j ) · vi,

where γj is the j-th largest eigenvalue of Ā, and diag(γ
1
2
j ) is a diagonal matrix containing γ

1
2
1 , γ

1
2
2 , · · · , γ

1
2

k as
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its entries. Thus, if we let b =
√
κ · diag(γ

− 1
2

j ) · b̂, we would have

∑
i∈[N ]

(f(xi)
>b− y(xi))

2 =
∑
i∈[N ]

(v>i b̂− gi)2 = ‖Ub̂− g‖22 .
Nα

ρ2
. (10.119)
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Chapter 11

Online learning

In this chapter, we switch gears and talk about online learning and online convex optimization. The main
idea driving online learning is that we move away from the assumption that the training and test data are
both drawn i.i.d from some fixed distribution. In the online setting, training data and test data come to
the user in an interwoven manner, and data can be generated adversarially. We will describe how online
learning can be reduced to online convex optimization, some important algorithms, as well as applications
of these algorithms to some illustrative examples.

11.1 Online learning setup

In classical supervised learning, we train the model with the assumption that (x(i), y(i))
i.i.d.∼ Ptrain, where

Ptrain is the underlying distribution of the training data. In most cases, we assume the test data, i.e., the data
we want our model to predict well, comes from the same distribution (or at least one that is close to Ptrain).
Reality is often more complicated: data could indeed be generated in sequence, or even in an adversarial
manner, so it is often the case that Ptest differs from Ptrain. The situation where Ptest and Ptrain are different
is known as domain shift. There are some theories that tackle the issue of domain shift and generalization
properties of transfer learning. However, the field is still largely being developed. (See [Ben-David et al.,
2007], for example.)

Online learning is an attempt to deal with domain shift in a way that is agnostic to the relationship
between the training and test data distributions (i.e. deal with “worst-case” domain shift). As an example,
many recommendation systems today collect users’ historical trace of shopping behavior, which are not i.i.d.
samples, and makes adaptive recommendations based on users’ changing shopping behavior. Hence, one can
see that online learning attempts to adapt to the constantly evolving reality on time. Notice that unlike the
“offline model” (i.e., classical supervised learning), online learning learns while testing, and hence there is
no rigid division in time to differentiate training and testing phase.

Online learning has several distinctive features [Liang, 2016]:

1. The data may be adversarial. We cannot assume that sample is drawn independently from some
distribution.

2. The data and predictions are sequential. At each step, the algorithm makes a prediction after given a
single piece of data.

3. The feedback is limited. For example, in bandit problems, the algorithm only knows if its right or
wrong, but no other feedback is given.

Online learning can be viewed as a game between two parties: (i) the learner/agent/algorithm/player, and
(ii) the environment/nature. For simplicity, we will refer to the two parties as “learner” and “environment”
in the remainder of this chapter.
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The game takes place over T rounds or time steps. At each step t = 1, . . . , T , the learner receives an
input xt ∈ X from the environment and makes a prediction ŷ ∈ Y in response. The learner then receives
the label yt from the environment and suffers some loss. This procedure is outlined in Algorithm 1 and is
illustrated in Figure 11.1.

Algorithm 1: General online learning problem

1 for t = 1, ...T do
2 Learner receives xt ∈ X from environment, which may be chosen adversarially;
3 Learner predicts ŷ ∈ Y;
4 Learner receives the label yt, from environment, which may be chosen adversarially; Learner

suffers some loss `(yt, ŷt).

Figure 11.1: A representation of the online learning problem.

Later, we will see that the manner in which nature generates (xt, yt) leads to different types of online
learning. In the most adversarial setting of online learning, it is possible that the “true label” yt is not
generated at the same time as xt. The environment could generate the label yt depending on the prediction
ŷt made by the learner. We can also see that Algorithm 1 is a very general framework as there are very few
constraints on how xt and yt are generated.

11.1.1 Evaluation of the learner

Given this setup, a natural question to ask is how one can evaluate the performance of the learner. Intuitively,
one could simply evaluate the learner’s performance by computing the loss between the predicted label and
the “true” label sent by the environment `(yt, ŷt). For the entire sequence of tasks, one can then evaluate in
terms of the cumulative loss:

T∑
t=1

`(yt, ŷt). (11.1)

However, as the environment can be adversarial, the task itself might be inherently hard and even the
best possible learner fails to achieve a small loss. Hence, instead instead of using the cumulative loss for
a learner by itself, we compare its performance against a suitable baseline, the “best model in hindsight”.
Assume that our learner comes from a set of hypotheses H. Let us choose the hypothesis h ∈ H that
minimizes the cumulative loss, i.e.

h? = argmin
h∈H

T∑
t=1

`(yt, h(xt)). (11.2)
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Note here that in minimizing the cumulative loss, the learner gets to see all the data points (xt, yt) at
once. The cumulative loss of h? is the best we can ever hope to do, and so it would be better to compare
the cumulative loss of the learner against it. (This approach is analogous to “excess risk”, which tells how
far the current model is away from the best we could hope for.) This measurement is denoted as regret, and
is formally defined as:

Regret
∆
=

[
T∑
t=1

`(yt, ŷt)

]
−

[
min
h∈H

T∑
t=1

`(yt, h(xt))

]
︸ ︷︷ ︸

best loss in hindsight

(11.3)

Using this definition, if the best model in hindsight performs well, then the learner has more responsibility
to learn to predict well in order to match up the performance of the baseline.

11.1.2 The realizable case

In general, if the environment is too powerful, leading the learner to a large loss, it will also hinder the
best model in hindsight from doing well. On the other hand, there are settings where some members of the
hypothesis class can actually do well. Such settings/problems are usually referred to as realizable:

Definition 11.1 (Realizable problem). An online learning problem is realizable (for a family of predictors

H) if there exists h ∈ H such that for any T ,
∑T
t=1 `(yt, h(xt)) = 0.

Note that even though zero error is possible, this is still an interesting problem to consider because the
xt’s are not i.i.d. as they are in classical supervised learning. Hence, standard statistical learning theory
does not apply, and there is still research to be done here.

Example 11.2. Consider a classification problem on (xt, yt), and for simplicity assume yt ∈ {0, 1}. Suppose
there exists h? ∈ H such that we always have yt = ŷ?t = h?(xt). In this case, the problem is realizable.

In this case, the learner can adopt a “majority algorithm”. At each time, the learner maintains a set
Vt ⊂ H so that

∑T
t=1 `(yt, h(xt)) = 0 for all h ∈ Vt, and ŷt is simply the prediction made by the majority of

h ∈ Vt. Based on the loss received, learners h ∈ Vt that fail for time t+ 1 will be eliminated from future Vt’s.
With this setup, we can see that for each wrong prediction made by the learner, at least half of the

hypotheses h ∈ Vt will be eliminated. Hence, 1 ≤ |Vt+1| ≤ |H|2−M where M is the number of mistakes made
so far. Thus, one has M ≤ log |H| by taking log on both sides of inequalities and rearrange.

Now, if one puts ` as the zero-one loss, the regret for this example will be

Regret =

T∑
t=1

`(yt, h(xt)) = M, (11.4)

so in this example, one has regret ≤ log |H|, which is a non-trivial bound when H is finite.

As one can see in the example, the realizable case usually indicates that the problem is not too far
out of reach. Indeed, for finite hypothesis classes and linear models, the realizable case is considered to be
straightforward to solve. This is perhaps why most of the past literature has focused on non-realizable cases.
However, the realizable case is still an interesting problem and perhaps a very good starting point when the
model class is beyond linear models and when the loss function is no longer convex, because the xt’s are not
i.i.d. as they are in classical supervised learning. Hence, standard statistical learning theory does not apply,
and there is still research to be done here.

In the rest of the chapter, we will only focus on the convex loss case, where we reduce online learning to
online convex optimization.
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11.2 Online (convex) optimization (OCO)

Online convex optimization (OCO) is a particularly useful tool to get results for online learning. Many online
learning problems (and many other types of problems!) can be reduced to OCO problems, which allow them
to be solved and analyzed algorithmically. Algorithm 2 describes the OCO problem, which is more general
than the online learning problem. (Note: Online optimization (OO) refers to Algorithm 2 except that the
ft’s need not be convex. However, due to the difficulty in non-convex function optimization, most research
has focused on OCO.)

Algorithm 2: Online (convex) optimization problem

1 for t = 1, ..., T do
2 The learner picks some action wt ∈ Ω from the action space Ω;
3 The environment picks a (convex) function ft : Ω→ [0, 1];
4 The learner suffers the loss ft(wt) and observes the entire loss function ft(·).

Essentially the learner is trying to minimize the function ft at each step. As with online learning, one
evaluates the performance of learner in online optimization setting using the regret:

Regret =

T∑
t=1

ft(wt)− min
w∈Ω

T∑
t=1

ft(w)︸ ︷︷ ︸
best action in hindsight

. (11.5)

At some level, OCO seems like an impossible task, since we are trying to minimize a function ft that we
only get to see after we have made our prediction! This is certainly the case for t = 1. However, as time
goes on, we see more and more functions and, if future functions are somewhat related to past functions,
we have more information to make better predictions. (And if the future functions are completely unrelated
or contradictory to past functions, then the best action in hindsight would also be bad and therefore our
algorithm does not have to do much.)

11.2.1 Settings and variants of OCO

There are multiple settings of the OCO network, which can vary the power of the environment and observa-
tions.

• Stochastic setting: f1, ..., fT are i.i.d samples from some distribution P . This corresponds to (xt, yt)
being i.i.d. in online learning. Under this setting, the environment is not adversarial.

• Oblivious setting: f1, ..., fT are chosen arbitrarily but before the game starts. This corresponds to
(xt, yt being chosen before the game starts. In this setting, the environment can be adversarial but
cannot be adaptive. The environment can choose these functions based on the learner’s algorithm, but
not the actual action if the learner’s algorithm contains randomness. (This is the setting that we focus
on in this course.)

• Non-oblivious/adaptive setting: For all t, ft can depend on the learner’s actions w1, ...wt. Under this
setting, the environment can be adversarial and adaptive. This is the most challenging setting because
the environment is powerful enough to know not only the strategy of the learner, but also the exact
choice the learner finally made. (Note however that If the learner is deterministic, the environment
does not have more power here than in the oblivious setting. The oblivious adversary can simulate the
game before the game starts, and chose the most adversarial input accordingly.)
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11.3 Reducing online learning to online optimization

There is a natural way to reduce the online learning problem to online optimization, with respect to a specific
type of model hw parametrized by w ∈ Ω. Recall that in online learning problem, the learner predicts yt
upon receiving xt. If the learner possesses oracle to solve online optimization problem, the learner can consult
the oracle to obtain wt, the parameter of the model as in online optimization problem, and then predict
ŷt = hwt(xt).

In the next two subsections, we give two examples of how an online learning problem can be reduced to
an OCO problem.

11.3.1 Example: Online learning regression problem

Consider the regression model hw(x) = w>x parameterized by w in parameter space Ω with squared error
loss `. Here is the online learning formulation of the regression problem:

Algorithm 3: Online learning regression problem

1 for t = 1, ..., T do
2 The learner receives xt ∈ Rd from the environment;
3 The learner predicts ŷt;
4 The environment selects yt and sends it to the learner;
5 The learner suffers loss `(yt, ŷt) = (yt − ŷt)2.

This can be reduced to the OCO problem in the following way:

Algorithm 4: OCO formulation of regression problem

1 for t = 1, ..., T do
2 The learner receives xt ∈ Rd from the environment;

3 The learner gives xt to the OCO solver and obtains wt ∈ Rd;
4 The learner predicts ŷt = hwt(xt) = w>t xt;
5 The environment selects yt and sends it to the learner;
6 The learner suffers loss (yt − hwt(xt))2;
7 With (xt, yt) observed, the learner can reconstruct the loss function ft(w) = (yt − hw(xt))

2 and
give it to the OCO solver.

In this example, we have the following correspondence:

• ft in online optimization ↔ squared error loss functions for (xt, yt).

• wt in online optimization ↔ parameters of the linear model hwt .

Since hw(·) is linear, the corresponding squared error loss function ft are convex, and so we have effectively
reduced the online linear regression problem to an online convex optimization problem.

Notice that in the previous example, the loss function ft actually depends on the label yt, which demon-
strates that the key challenge in online optimization is that the function ft is unknown to the learner when
the prediction ŷt is made.

11.3.2 Example: The expert problem

Suppose we wish to predict tomorrow’s weather and 10 different TV channels provide different forecasts.
Which one should we follow? Formally, consider a finite hypothesis class H, where each h ∈ H represents
an expert, and we wish to choose a ht wisely at each time step. For simplicity, we assume the prediction is
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binary, i.e. ŷ ∈ {0, 1}, and suppose the loss function is 0-1 loss. (The problem can easily be generalized to
more general predictions and losses.) The problem is outlined in Algorithm 5.

Algorithm 5: The expert problem

1 for t = 1, ..., T do
2 The learner obtains predictions from N experts;
3 The learner chooses to follow prediction of one of the experts it ∈ [N ];
4 The environment gives the learner the true value. The learner is thus able to learn the loss of

each of the experts: `t ∈ {0, 1}N ;
5 The learner suffers the loss of the expert which was chosen: `t(it).

We want to design a method that chooses it for each step (line 3 in Algorithm 5) to minimize the regret:

Regret
∆
= E


T∑
t=1

`t(it)− min
i∈[N ]

T∑
t=1

`t(i)︸ ︷︷ ︸
the best expert in hindsight

 , (11.6)

where the expected value is over it, thus covering the case where the it’s could be random.
To make the expert problem amenable to reduction to OCO, we introduce idea of a continuous action

space. Instead of choosing it from Ω = [N ], the learner chooses a distribution pt from the N -dimensional
simplex ∆(N) =

{
p ∈ RN : ‖p‖1 = 1, p ≥ 0

}
. The learner then samples it ∼ pt. With this formulation,

instead of selecting particular expert it to follow, the learner adjusts the belief pt, and samples from the
distribution to choose which expert to follow. Algorithm 6 outlines this procedure. Note that the loss is the
expected loss Ei∼pt [`t(i)] instead of the sampled `t(it).

Algorithm 6: The expert problem with continuous action

1 for t = 1, ..., T do
2 The learner obtains predictions from N experts;
3 The learner chooses a distribution pt ∈ ∆(N);
4 The learner samples one expert it ∼ pt;
5 The environment gives the learner the true value and the loss/error of all experts: `t ∈ {0, 1}N ;
6 The learner suffers expected loss

∑
i∈[N ] pt(i)`t(i) = 〈pt, `t〉;

With the continuous action space, it is easy to reduce the expert problem to an OCO: see Algorithm 7.
(The problem is convex since the loss function is convex and the parameter space ∆(N) is convex.)

Algorithm 7: The expert problem

1 for t = 1, ..., T do
2 The learner obtains predictions from N experts;
3 The learner invokes the OCO oracle to obtain pt ∈ ∆(N);
4 The learner chooses to follow prediction of one of the experts it ∈ [N ];
5 The environment gives the learner the true value. The learner is thus able to learn the loss of

each of the experts: `t ∈ {0, 1}N ;
6 The learner suffers the loss of the expert which was chosen: `t(it). The learner can reconstruct

the loss function ft(p) = 〈p, `t〉 and give it to the OCO oracle.
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In this setting, one can rewrite the regret as:

Regret =

T∑
t=1

〈pt, `t〉 − min
i∈[N ]

T∑
t=1

`t(i) (11.7)

=

T∑
t=1

〈pt, `t〉 − min
p∈∆(N)

T∑
t=1

〈p, `t〉 (11.8)

=

T∑
t=1

ft(pt)− min
p∈∆(N)

T∑
t=1

ft(p). (11.9)

We obtain (11.8) because

T∑
t=1

〈p, `t〉 =

〈
p,

T∑
t=1

`t

〉
≥ min
i∈[N ]

[
T∑
t=1

`t(i)

]
, (11.10)

with equality for the probability distribution p(i) = 1 when i = argmini

[∑T
t=1 `t(i)

]
and p(i) = 0 otherwise,

and (11.9) is by definition of ft.

11.4 Reducing online learning to batch learning

In this section, we present a reduction from online learning to standard supervised learning problem, also
known as the “batch problem” in this literature.

As in the standard supervised learning setting, consider an i.i.d dataset {(xt, yt)}Tt=1 and some parameter

w. Let L(w) and L̂(w) be the population loss and empirical loss respectively. For simplicity, assume
|`((xi, yi), w)| ≤ 1. The theorem below establishes a link between the regret obtained in online learning and
the excess risk obtained in the batch setting.

Theorem 11.3 (Relationship between excess risk and regret). Assume `((x, y), w) is convex. Suppose we
run an online learning algorithm on the dataset {(xi, yi)}Ti=1 and obtain a sequence of models w1, . . . , wT ,

and regret RT . Let w = 1
T

∑T
i=1 wi, then the excess risk of w can be bounded above:

L(w)− L(w?) ≤ RT
T

+ Õ

(
1√
T

)
, (11.11)

where w? = argminw∈Ω L(w).

Here are some intuitive interpretations of the theorem:

• If RT = O(T ), then we have some non-trivial result. Otherwise, the bound in (11.11) is increasing T
and does not provide any useful information.

• If the batch problem has a 1/
√
T generalization bound, then the best you can hope for in online

learning is RT = O(
√
T ).

• If the batch problem has a 1/T generalization bound, you can hope for O(1) regret (or Õ(1) regret in
some cases).

• We often have O(
√
T ) excess risk supervised learning problems; hence it is reasonable to expect O(

√
T )

regret in online learning problems.
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11.5 Follow-the-Leader (FTL) algorithm

In this section, we analyze an algorithm called “Follow-the-Leader” (FTL) for OCO, which is intuitive but
fails to perform well in many cases.

The FTL algorithm behaves as its name suggests: it always selects the action wt such that it minimizes
the historical loss the learner has seen so far, i.e.

wt = argmin
w∈Ω

t−1∑
i=1

fi(w). (11.12)

We now demonstrate how the FTL algorithm can fail for the expert problem. In the expert problem,
ft(p) = 〈p, `t〉, so

pt = argmin
p∈∆(N)

t−1∑
i=1

fi(p) (11.13)

= argmin
p∈∆(N)

t−1∑
i=1

〈`i, p〉 (11.14)

= argmin
p∈∆(N)

〈
t−1∑
i=1

`i, p

〉
. (11.15)

The minimizer p ∈ ∆(N) is a point-mass probability, with the point mass at the smallest coordinate of∑t−1
i=1 `i. This gives regret

Regret =

t−1∑
i=1

`i(it), where it = argmin
j∈[N ]

t−1∑
i=1

`i(j). (11.16)

Now, consider the following example: suppose we have only two experts. Suppose expert 1 makes perfect
predictions on even days while expert 2 makes perfect predictions on odd days. Assume also that the FTL
algorithm chooses expert 1 to break ties (this is not an important point but makes the exposition simpler.)
In this setting, the FTL algorithm always selects the wrong expert to follow. A few rounds of simulation of
this example is shown in Table 11.1.

Table 11.1: An example where FTL fails

Day 1 2 3 4 . . . . . .

Expert 1’s loss 1 0 1 0 . . . . . .
Expert 2’s loss 0 1 0 1 . . . . . .

FTL choice it 1 2 1 2 1 . . .

The best expert in hindsight has a loss of T/2 (choosing either expert all the time incurs this loss, and
so the regret of the FTL algorithm is T − T/2 = T/2 = Θ(T ). The main reason for FTL’s failure is that is
a deterministic algorithm driven by an extreme update, with no consideration on potential domain shift (it
always selects the best expert based on the past with no consideration of the potential next ft). Knowing
its deterministic strategy, the environment can easily play in an adversarial manner. To perform better in a
problem like this, we need some randomness to hedge risk.

11.6 Be-the-leader (BTL) algorithm

A better strategy is called “Be the Leader” (BTL). At time t, the BTL strategy chooses the action that
would have performed best on f1, · · · , ft−1 and ft. In other words, the BTL action at time t is wt+1, as
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defined for the FTL algorithm. Note that this is an “illegal” choice for the action because wt+1 depends on
ft: in online convex optimization, the action at time t is required to be chosen before seeing the function ft.
Nevertheless, we can still gain some useful insights by analyzing this procedure. In particular, the following
lemma shows that the BTL strategy is worth emulating because it achieves very good regret.

Lemma 11.4. The BTL strategy has non-positive regret. That, is, if wt is defined as in the FTL algorithm,
then

BTL regret =

T∑
t=1

ft(wt+1)−min
w∈Ω

T∑
t=1

ft(w) ≤ 0, (11.17)

for any T and any sequence of functions f1, · · · , fT .

Proof. We prove the lemma by induction on T . (11.17) holds trivially for T = 1. Suppose that (11.17)
holds for all t ≤ T − 1 and any f1, · · · , fT−1. Now we wish to extend (11.17) to time t = T . Let fT be any

function. Since wT+1 = argminw
∑T
t=1 ft(w), we can write:

T∑
t=1

ft(wt+1)−min
w∈Ω

T∑
t=1

ft(w) =

T∑
t=1

ft(wt+1)−
T∑
t=1

ft(wT+1) (11.18)

=

T−1∑
t=1

ft(wt+1)−
T−1∑
t=1

ft(wT+1) (final summands cancel) (11.19)

≤
T−1∑
t=1

ft(wt+1)−min
w∈Ω

T−1∑
t=1

ft(w) (11.20)

≤ 0. (induction hypothesis) (11.21)

A useful consequence of this lemma is a regret bound for the FTL strategy.

Lemma 11.5. (FTL regret bound) Again, let wt be as in the FTL algorithm. The FTL strategy has the
regret guarantee

FTL regret =

T∑
t=1

ft(wt)−min
w∈Ω

T∑
t=1

ft(w) ≤
T∑
t=1

[ft(wt)− ft(wt+1)]. (11.22)

Proof.

FTL regret =

T∑
t=1

ft(wt)−min
w∈Ω

T∑
t=1

ft(w) (11.23)

=

T∑
t=1

ft(wt+1)−min
w∈Ω

T∑
t=1

ft(w) +

T∑
t=1

[ft(wt)− ft(wt+1)] (11.24)

≤ 0 +

T∑
t=1

[ft(wt)− ft(wt+1)], (11.25)

where the last inequality is due to (11.17).

Lemma 11.5 tells us that if terms ft(wt)− ft(wt+1) are small (e.g. wt does not change much from round
to round), then the FTL strategy can have small regret. It suggests that the player should adopt a stable
policy, i.e. one where the terms ft(wt) − ft(wt+1) are small. It turns out that following this intuition will
lead to a strategy that improves the regret all the way to O(

√
T ) in certain cases.
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11.7 Follow-the-regularized-leader (FTRL) strategy

Now, we discuss a OCO strategy aims to improve the stability of FTL by controlling the differences ft(wt)−
ft(wt+1). To describe the method, we will first need a preliminary definition.

Definition 11.6. We say that a differentiable function φ : Ω 7→ R is α-strongly-convex with respect to the
norm || · || on Ω if we have

φ(x) ≥ φ(y) + 〈∇f(y), x− y〉+
α

2
‖x− y‖2 (11.26)

for any x, y ∈ Ω.

Remark 11.7. If φ is convex, then we know that f(x) has a linear lower bound φ(y) + 〈∇f(y), x− y〉. Being
α-strong-convex means that f(x) has a quadratic lower bound, the RHS of (11.26). This quadratic lower
bound is very useful in proving theorems in optimization.

Remark 11.8. If ∇2f(y) � αI for all y, then f is α-strongly-convex. This follows directly from writing the
second-order Taylor expansion of f around y.

Given a 1-strongly-convex function φ(·), which we call a regularizer, we can implement the “Follow the
Regularized Leader” (FTRL) strategy. At time t, this strategy chooses the action

wt = argmin
w∈Ω

[
t−1∑
i=1

fi(w) +
1

η
φ(w)

]
, (11.27)

where η > 0 is a tuning parameter that we will tune later.

11.7.1 Regularization and stability

To understand why we might use the FTRL policy, we first establish that it achieves the intended goal of
controlling the differences ft(wt) − ft(wt+1). Actually, we will show a more general result that adding a
regularizer induces stability for any convex objective.

Lemma 11.9. (Regularizers induce stability) Let F and f be functions taking Ω into R, and assume that
F is α-strongly-convex with respect to the norm ‖ · ‖ and that f is convex. Let w = argminz∈Ω F (z) and
w′ = argminz∈Ω[f(z) + F (z)]. Then

0 ≤ f(w)− f(w′) ≤ 1

α
‖∇f(w)‖2∗, (11.28)

where ‖ · ‖∗ is the dual norm of ‖ · ‖.

Proof. By strong convexity,

F (w′)− F (w) ≥ 〈∇F (w), w′ − w〉+
α

2
‖w − w′‖2 (11.29)

≥ α

2
‖w − w′‖2, (11.30)

where in the second step we used the fact that the KKT optimality conditions for w imply 〈∇F (w), w′−w〉 ≥
0. (Informally, if Ω = Rd, then ∇F (w) = 0 as w minimizes F . If Ω is a convex subset of Rd, then the gradient
∇F (w) must be perpendicular to the tangent to Ω at w; otherwise, we could move in the direction of the
negative gradient and project back to the set Ω to lower the value of F .) Since F + f is also α-strongly
convex, exactly the same argument implies:

[F (w) + f(w)]− [F (w′) + f(w′)] ≥ α

2
‖w − w′‖2. (11.31)
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Adding these two inequalities gives

f(w)− f(w′) ≥ α‖w − w′‖2. (11.32)

Since this lower bound is clearly positive, this shows 0 ≤ f(w)− f(w′).
Next, we prove the upper bound on f(w)− f(w′). Rearranging the inequality (11.32), we obtain

‖w − w′‖ ≤
√

1

α
[f(w)− f(w′)]. (11.33)

Since f is convex, we have f(w′) ≥ f(w) + 〈∇f(w), w′ − w〉. Rearranging this gives

f(w)− f(w′) ≤ 〈∇f(w), w − w′〉
≤ ‖∇f(w)‖∗ · ‖w − w′‖ (by Cauchy-Schwarz)

≤ ‖∇f(w)‖∗

√
1

α
[f(w)− f(w′)]. (by (11.33))

Since f(w)− f(w′) ≥ 0, we can square both sides of this inequality to conclude that

[f(w)− f(w′)]2 ≤ ||∇f(w)||2∗
1

α
[f(w)− f(w′)]. (11.34)

Dividing both sides of this expression by f(w)− f(w′) gives the desired upper bound.

Remark 11.10. Consider the special case where ∇f(w) = 0. In this situation, w is the minimizer of both
F and f , and hence is the minimizer of F + f . This implies that w = w′, and the inequalities in (11.28)
become equalities.

11.7.2 Regret of FTRL

We are now ready to prove a regret bound for the FTRL procedure, based on the idea that strongly convex
regularizers induce stability.

Theorem 11.11. (Regret of FTRL) Let φ be a 1-strongly-convex regularizer with respect to the norm ‖ · ‖
on Ω. Then the FTRL algorithm (11.27) satisfies the regret guarantee

FTRL regret =

T∑
t=1

ft(wt)− argmin
w∈Ω

T∑
t=1

ft(w) ≤ D

η
+ η

T∑
t=1

‖∇ft(wt)‖2∗, (11.35)

where D = maxw∈Ω φ(w)−minw∈Ω φ(w).

Remark 11.12. Suppose that for all t and w, we have the uniform bound ||∇ft(w)||∗ ≤ G. Then Theorem
11.11 implies that the regret is upper bounded by D/η + ηGT . Optimizing this upper bound over η by

taking η =

√
D

TG2
gives the guarantee

FTRL regret ≤ 2
√
DG×

√
T . (11.36)

In other words, optimally-tuned FTRL can achieve O(
√
T ) regret in many cases.

Proof. For convenience, define f0(w) = φ(w)/η. Then the FTRL policy can be written as

wt = argmin
w∈Ω

t−1∑
i=0

fi(w), (11.37)
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i.e. FTRL is just FTL with an additional “round” of play at time zero. Thus, by Lemma 11.5 with time
starting from t = 0, we have

T∑
t=0

ft(wt)− argmin
w∈Ω

T∑
t=0

ft(w) ≤
T∑
t=0

[ft(wt)− ft(wt+1)]. (11.38)

For any t ≥ 1, applying Lemma 11.9 with F (w) =
∑t−1
i=0 fi(w) (which is 1/η-strongly-convex) and f(w) =

ft(w) gives the bound ft(wt)− ft(wt+1) ≤ η||∇ft(wt)||2∗. Plugging this into the preceding display gives the
upper bound:

T∑
t=0

ft(wt)− argmin
w∈Ω

T∑
t=0

ft(w) ≤ f0(w0)− f0(w1) + η

T∑
t=1

‖∇ft(wt)‖2∗. (11.39)

Next, we need to relate the LHS of the above display (which starts at time t = 0) to the actual regret of

FTRL (which starts at time t = 1). To do this, define w∗ = argminw∈Ω

∑T
t=1 ft(w). Then,

T∑
t=0

ft(wt)− argmin
w∈Ω

T∑
t=0

ft(w) ≥
T∑
t=0

ft(wt)−
T∑
t=0

ft(w
∗) (11.40)

= f0(w0)− f0(w∗) +

(
T∑
t=1

ft(wt)− argmin
w∈Ω

T∑
t=1

ft(w)

)
︸ ︷︷ ︸

Regret of FTRL

. (11.41)

Combining this inequality with (11.39) gives

Regret of FTRL ≤ f0(w0)− f0(w1) + f0(w∗)− f0(w0) + η

T∑
t=1

‖∇ft(wt)‖2∗ (11.42)

=
φ(w∗)− φ(w1)

η
+ η

T∑
t=1

‖∇ft(wt)‖2∗ (11.43)

≤ D

η
+ η

T∑
t=1

‖∇ft(wt)‖2∗. (11.44)

This concludes the proof of the theorem.

11.7.3 Applying FTRL to online linear regression

We apply the FTRL algorithm to a concrete machine learning problem. Let Ω = {ω : ‖w‖2 ≤ 1}, and let
ft(ω) = 1

2 (yt − ω>xt)2 for some observation pair (xt, yt) satisfying ‖xt‖2 ≤ 1 and |yt| ≤ 1. This corresponds
to a problem where we are trying to make accurate predictions using a linear model, but we do not assume
any structure on the observation sequence (xt, yt) beyond boundedness.

Consider using FTRL in this problem with a ridge regularizer, φ(ω) = 1
2‖w‖

2
2. One can check that φ

is 1-strongly-convex with respect to the `2-norm, and also that D = maxω∈Ω φ(ω) − minω∈Ω φ(ω) = 1
2 .

Moreover, for all t and w we have

∇ft(w) = −(yt − w>xt)xt, (11.45)

‖∇ft(w)‖2 ≤ |yt − w>xt| · ‖xt‖2 (11.46)

≤ 2 · 1 = 2. (11.47)
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Therefore, by choosing η =
√

1/(8T ) and applying the FTRL regret theorem (Theorem 11.11), we can obtain
the regret guarantee

T∑
t=1

(yt − w>t xt)2 − min
||w||2≤1

T∑
t=1

(yt − w>xt)2 ≤ 4
√
T . (11.48)

11.7.4 Applying FTRL to the expert problem

For the expert problem, recall that the action space is ∆(N) and ft = 〈`t, p〉, where `t ∈ [0, 1]N . As a first
attempt at applying FTRL to this problem, we set φ(p) = 1

2‖p‖
2
2. With this choice,

D = max
p∈∆(N)

φ(p)− min
p∈∆(N)

φ(p) (11.49)

≤ max
p∈∆(N)

1

2
‖p‖22 (11.50)

≤ max
p∈∆(N)

1

2
‖p‖21 (11.51)

=
1

2
. (11.52)

Also,

‖∇ft‖2 = ‖`t‖2 ≤
√
N. (11.53)

Thus, the regret bound is O(G
√
DT ) = O(

√
NT ). This is optimal dependency on T , but not good

dependency on N .
Next, we show that if we change our regularization, we can get a better regret guarantee which is

logarithmic in N , i.e., the regret is O(
√

(logN) · T ). The new regularizer we choose is the (negative) entropy
regularizer :

φ(p) = −H(p) =

N∑
j=1

p(j) log p(j), (11.54)

where p ∈ ∆(N) is in the set of distributions over [N ]. We first introduce the following nice property of this
regularizer:

Lemma 11.13. φ(p) defined above is 1-strongly convex with respective to the `1 norm ‖ · ‖1.

Proof. By definition of strong convexity, we need to show that for all p, q ∈ ∆(N),

φ(p)− φ(q)− 〈∇φ(q), p− q〉 ≥ 1

2
‖p− q‖21. (11.55)

From direct computation, we know the gradient of φ(q) is

∇φ(q) =

 1 + log q(1)
· · ·

1 + log q(N)

 . (11.56)
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Plugging this into the LHS of (11.55), we get

φ(p)− φ(q)− 〈∇φ(q), p− q〉 (11.57)

=

N∑
j=1

p(j) log p(j)−
N∑
j=1

q(j) log q(j)−
N∑
j=1

(1 + log q(j)) (p(j)− q(j)) (11.58)

=

N∑
j=1

p(j) log p(j)−
N∑
j=1

p(j) log q(j)−
N∑
j=1

(p(j)− q(j)) (11.59)

=

N∑
j=1

p(j) log
p(j)

q(j)
(11.60)

=KL(p||q), (11.61)

where KL(p||q) is the KL-divergence between p and q. (We used the fact that
∑N
j=1 p(j) =

∑N
j=1 q(j) = 1

to get (11.60).) Finally, we finish the proof by applying Pinsker’s inequality: KL(p||q) ≥ 1
2‖p− q‖

2
1.

Hence, φ is a satisfies the condition on the regularizer for our FTRL regret guarantee. To obtain the
regret bound (11.36), we also need to bound D = supφ(p)− inf φ(p) and G = sup ‖∇ft(w)‖∞ (since ‖ · ‖∞
is the dual norm of ‖ · ‖1 ). Since negative entropy is always non-positive and (positive) entropy is always
bounded above by logN , we bound D with

D = supφ(p)− inf φ(p) ≤ − inf φ(p) = − inf(−H(p)) = sup(H(p)) ≤ logN, (11.62)

and we bound G with
G = ‖∇ft(w)‖∞ = ‖lt‖∞ ≤ 1. (11.63)

Plugging these two into the regret bound (11.36) we get bound O(
√

(logN) · T ).
Thus far, we have looked at FTRL and the expert problem abstractly: at each time t we choose action

pt based on the update

pt = argmin
p∈∆(N)

t+1∑
i=1

ft(p)−
1

η
H(p). (11.64)

Can we get an exact analytical solution for pt? Since we are minimizing a convex function, we
can call some off-the-shelf convex optimization algorithm to solve this at each step. Another way is to write
down the KKT conditions and solve that set of equations. Instead, we will show that there exists much
simpler ways to solve this update. In particular, we will be using the Gibbs variational principle, which is
essentially the KKT conditions under the hood.

Lemma 11.14 (Gibbs variational principle). Let ν, µ be probability distributions on [N ]. Then

sup
ν

(
E
ν

[f ]−KL(ν||µ)
)

= logE
µ

[
ef
]
, (11.65)

where Eν [f ] = Ex∼ν [f(x)] = 〈v, f〉 and Eµ
[
ef
]

= Ex∼µ
[
ef(x)

]
. Moreover, the optimal solution is attained

at

ν(x) ∝ µ(x) · ef(x). (11.66)

Intuitively, Lemma 11.14 says that taking the supremum over distributions µ of a linear function plus
the KL divergence as the regularizer will give us the same distribution as exponentiating f .

If we take µ to be the uniform distribution on [N ] and replace f with −f in Lemma 11.14, we get the
following corollary:
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Corollary 11.15. Let ν be a probability distribution. Then, Eν [f ]−H(ν) is minimized at ν(x) ∝ e−f(x).

Proof. When µ is uniform distribution, we have

KL(ν||µ) =
∑
x

ν(x) log
ν(x)

µ(x)
(11.67)

= logN −
∑
x

ν(x) log
1

ν(x)
(11.68)

= logN −H(ν). (11.69)

So supν (Eν [−f ]−KL(ν||µ)) = − infν (Eν [f ]−H(ν) + logN). This means that the value of ν that
attains the infimum of Eν [f ]−H(ν) is the same ν attaining the supremum of Eν [−f ]−KL(ν||µ), which by
Lemma 11.14 is proportional to e−f(x).

We now apply the Gibbs variational principle to the expert problem. Notice that our FTRL update for
the expert problem at time t can be written as

argmin
pt∈∆(N)

〈
t−1∑
i=1

li, pt

〉
− 1

η
H(pt) = argmin

pt∈∆(N)

〈
η

t−1∑
i=1

li, pt

〉
−H(pt), (11.70)

where li is the vector of expert losses at time i. Letting f = η
∑t−1
i=1 li, we know from Corollary 11.15 that

the minimizer is attained at pt ∝ exp
(
−η
∑t−1
i=1 li

)
, or equivalently,

pt(j) =
exp(−ηLt(j))∑N
k=1 exp(−ηLt(k))

, (11.71)

where Lt =
∑t−1
i=1 li is the cumulative loss vector. Basically, solving the expert problem is to look a the

historical loss of each expert and take softmax to find the probability distribution of how much to trust each
expert.

This algorithm is also called the “Multiplicative Weights Update”, which has been studied before online
learning framework became popular [Arora et al., 2005, Freund and Schapire, 1997, Littlestone and War-
muth, 1994]. One way of doing multiplicative weights update is the following: Let p̃t be the unnormalized
distribution that we keep track of. At each time step t, for each expert j, we look at lt−1(j). if lt−1(j) = 1,
i.e. the expert made a mistake at the previous time step, we update p̃t(j) = p̃t−1(j) · exp(−η); otherwise we
make no change. We then get a distribution by normalizing p̃t:

pt =
p̃t
‖p̃t‖1

. (11.72)

11.8 Convex to linear reduction

In the previous section we considered the expert problem, where the loss function is a linear function of the
parameters. At first glance we may think this is a very restrictive constraint for online convex optimization.
However, as we will see in this section, we can always assume ft to be linear in online convex optimization
without loss of generality. That means that for online learning, the linear case is the hardest one.

More concretely, assume we have an algorithm A that solves the linear case. Given any online convex
optimization, we will build an algorithm A′ which invokes algorithm A in the following fashion: for t =
1, . . . , T ,

1. The learner invoke A to get output action wt ∈ Ω.

2. The environment gives the learner the loss function ft(·).
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3. The learner construct a linear function gt(w) = 〈∇ft(wt), w〉, which is the local linear approximation
of f at w. (Technically the local linear approximation of f and w is 〈∇ft(wt), w − wt〉, but we drop
the wt shift for convenience.)

4. The learner feeds gt(·) to algorithm A as the loss function.

We have the following informal claim1:

Proposition 11.8.1 (Informal). If a deterministic algorithm A has regret no more than γ(T ) for linear
cases for some function γ(·), then A′ stated above has regret no more than γ(T ) for convex functions.

Proof. For all w ∈ Ω, the regret guarantee on A tells us that

T∑
t=1

gt(wt)−
T∑
t=1

gt(w) ≤ γ(T ). (11.73)

Since ft is convex, we also know that

gt(wt)− gt(w) = 〈∇ft(wt), wt − w〉 ≥ ft(wt)− ft(w). (11.74)

Therefore, for all w ∈ Ω,

T∑
t=1

ft(wt)−
T∑
t=1

ft(w) ≤
T∑
t=1

gt(wt)−
T∑
t=1

gt(w) (11.75)

≤ γ(T ). (11.76)

Hence, the regret for A′ is upper bounded by γ(T ) as well.

11.8.1 Online gradient descent

In this section we combine the FTRL framework with `2-regularization and the online-to-linear reduction.
The resulting algorithm is online gradient descent.

Concretely, given any convex online optimization problem, we first do the online-to-linear reduction, then
we use FTRL with `2 regularization (φ(w) = 1

2‖w‖
2
2) to solve the resulting linear case. This gives us the

following update:

wt = argmin

t−1∑
i=1

gi(w) +
1

η
‖w‖22 (11.77)

= argmin
w∈Ω

t−1∑
i=1

〈∇fi(wi), w〉+
1

η
‖w‖22 (11.78)

= ΠΩ

(
−η ·

t−1∑
i=1

∇fi(wi)

)
, (11.79)

where ΠΩ(·) is the projection operator onto the set Ω.The last equality is because for any vector a, we have

argmin
w∈Ω

〈a,w〉+
1

η
‖w‖22 = argmin

w∈Ω

1

2η
‖w + ηa‖22 − η‖a‖22 (11.80)

= argmin
w∈Ω

‖w + ηa‖22 (11.81)

= argmin
w∈Ω

‖w − (−ηa)‖22 (11.82)

= ΠΩ(−ηa). (11.83)

1For rigorous proof, we need additional assumptions and restrictions on ft, gt.
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Intuitively, we can think of this algorithm as gradient descent with “lazy” projection:

ut = ut−1 − η∇ft−1(wt−1), (11.84)

wt = ΠΩ(ut). (11.85)

Similarly, we can define gradient descent with “eager” projection (which can get similar regret bounds):

ut = wt−1 − η∇ft−1(wt−1), (11.86)

wt = ΠΩ(ut). (11.87)

This concludes our discussion of online learning in this course.
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