# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Self-diagnosis script for TensorBoard. Instructions: Save this script to your local machine, then execute it in the same environment (virtualenv, Conda, etc.) from which you normally run TensorBoard. Read the output and follow the directions. """ # This script may only depend on the Python standard library. It is not # built with Bazel and should not assume any third-party dependencies. import dataclasses import errno import functools import hashlib import inspect import logging import os import pipes import shlex import socket import subprocess import sys import tempfile import textwrap import traceback # A *check* is a function (of no arguments) that performs a diagnostic, # writes log messages, and optionally yields suggestions. Each check # runs in isolation; exceptions will be caught and reported. CHECKS = [] @dataclasses.dataclass(frozen=True) class Suggestion: """A suggestion to the end user. Attributes: headline: A short description, like "Turn it off and on again". Should be imperative with no trailing punctuation. May contain inline Markdown. description: A full enumeration of the steps that the user should take to accept the suggestion. Within this string, prose should be formatted with `reflow`. May contain Markdown. """ headline: str description: str def check(fn): """Decorator to register a function as a check. Checks are run in the order in which they are registered. Args: fn: A function that takes no arguments and either returns `None` or returns a generator of `Suggestion`s. (The ability to return `None` is to work around the awkwardness of defining empty generator functions in Python.) Returns: A wrapped version of `fn` that returns a generator of `Suggestion`s. """ @functools.wraps(fn) def wrapper(): result = fn() return iter(()) if result is None else result CHECKS.append(wrapper) return wrapper def reflow(paragraph): return textwrap.fill(textwrap.dedent(paragraph).strip()) def pip(args): """Invoke command-line Pip with the specified args. Returns: A bytestring containing the output of Pip. """ # Suppress the Python 2.7 deprecation warning. PYTHONWARNINGS_KEY = "PYTHONWARNINGS" old_pythonwarnings = os.environ.get(PYTHONWARNINGS_KEY) new_pythonwarnings = "%s%s" % ( "ignore:DEPRECATION", ",%s" % old_pythonwarnings if old_pythonwarnings else "", ) command = [sys.executable, "-m", "pip", "--disable-pip-version-check"] command.extend(args) try: os.environ[PYTHONWARNINGS_KEY] = new_pythonwarnings return subprocess.check_output(command) finally: if old_pythonwarnings is None: del os.environ[PYTHONWARNINGS_KEY] else: os.environ[PYTHONWARNINGS_KEY] = old_pythonwarnings def which(name): """Return the path to a binary, or `None` if it's not on the path. Returns: A bytestring. """ binary = "where" if os.name == "nt" else "which" try: return subprocess.check_output([binary, name]) except subprocess.CalledProcessError: return None def sgetattr(attr, default): """Get an attribute off the `socket` module, or use a default.""" sentinel = object() result = getattr(socket, attr, sentinel) if result is sentinel: print("socket.%s does not exist" % attr) return default else: print("socket.%s = %r" % (attr, result)) return result @check def autoidentify(): """Print the Git hash of this version of `diagnose_tensorboard.py`. Given this hash, use `git cat-file blob HASH` to recover the relevant version of the script. """ module = sys.modules[__name__] try: source = inspect.getsource(module).encode("utf-8") except TypeError: logging.info("diagnose_tensorboard.py source unavailable") else: # Git inserts a length-prefix before hashing; cf. `git-hash-object`. blob = b"blob %d\0%s" % (len(source), source) hash = hashlib.sha1(blob).hexdigest() logging.info("diagnose_tensorboard.py version %s", hash) @check def general(): logging.info("sys.version_info: %s", sys.version_info) logging.info("os.name: %s", os.name) na = type("N/A", (object,), {"__repr__": lambda self: "N/A"}) logging.info( "os.uname(): %r", getattr(os, "uname", na)(), ) logging.info( "sys.getwindowsversion(): %r", getattr(sys, "getwindowsversion", na)(), ) @check def package_management(): conda_meta = os.path.join(sys.prefix, "conda-meta") logging.info("has conda-meta: %s", os.path.exists(conda_meta)) logging.info("$VIRTUAL_ENV: %r", os.environ.get("VIRTUAL_ENV")) @check def installed_packages(): freeze = pip(["freeze", "--all"]).decode("utf-8").splitlines() packages = {line.split("==")[0]: line for line in freeze} packages_set = frozenset(packages) # For each of the following families, expect exactly one package to be # installed. expect_unique = [ frozenset( [ "tensorboard", "tb-nightly", "tensorflow-tensorboard", ] ), frozenset( [ "tensorflow", "tensorflow-gpu", "tf-nightly", "tf-nightly-2.0-preview", "tf-nightly-gpu", "tf-nightly-gpu-2.0-preview", ] ), frozenset( [ "tensorflow-estimator", "tensorflow-estimator-2.0-preview", "tf-estimator-nightly", ] ), ] salient_extras = frozenset(["tensorboard-data-server"]) found_conflict = False for family in expect_unique: actual = family & packages_set for package in actual: logging.info("installed: %s", packages[package]) if len(actual) == 0: logging.warning("no installation among: %s", sorted(family)) elif len(actual) > 1: logging.warning("conflicting installations: %s", sorted(actual)) found_conflict = True for package in sorted(salient_extras & packages_set): logging.info("installed: %s", packages[package]) if found_conflict: preamble = reflow( """ Conflicting package installations found. Depending on the order of installations and uninstallations, behavior may be undefined. Please uninstall ALL versions of TensorFlow and TensorBoard, then reinstall ONLY the desired version of TensorFlow, which will transitively pull in the proper version of TensorBoard. (If you use TensorBoard without TensorFlow, just reinstall the appropriate version of TensorBoard directly.) """ ) packages_to_uninstall = sorted( frozenset().union(*expect_unique) & packages_set ) commands = [ "pip uninstall %s" % " ".join(packages_to_uninstall), "pip install tensorflow # or `tensorflow-gpu`, or `tf-nightly`, ...", ] message = "%s\n\nNamely:\n\n%s" % ( preamble, "\n".join("\t%s" % c for c in commands), ) yield Suggestion("Fix conflicting installations", message) @check def tensorboard_python_version(): from tensorboard import version logging.info("tensorboard.version.VERSION: %r", version.VERSION) @check def tensorflow_python_version(): import tensorflow as tf logging.info("tensorflow.__version__: %r", tf.__version__) logging.info("tensorflow.__git_version__: %r", tf.__git_version__) @check def tensorboard_data_server_version(): try: import tensorboard_data_server except ImportError: logging.info("no data server installed") return path = tensorboard_data_server.server_binary() logging.info("data server binary: %r", path) if path is None: return try: subprocess_output = subprocess.run( [path, "--version"], capture_output=True, check=True, ) except subprocess.CalledProcessError as e: logging.info("failed to check binary version: %s", e) else: logging.info( "data server binary version: %s", subprocess_output.stdout.strip() ) @check def tensorboard_binary_path(): logging.info("which tensorboard: %r", which("tensorboard")) @check def addrinfos(): sgetattr("has_ipv6", None) family = sgetattr("AF_UNSPEC", 0) socktype = sgetattr("SOCK_STREAM", 0) protocol = 0 flags_loopback = sgetattr("AI_ADDRCONFIG", 0) flags_wildcard = sgetattr("AI_PASSIVE", 0) hints_loopback = (family, socktype, protocol, flags_loopback) infos_loopback = socket.getaddrinfo(None, 0, *hints_loopback) print("Loopback flags: %r" % (flags_loopback,)) print("Loopback infos: %r" % (infos_loopback,)) hints_wildcard = (family, socktype, protocol, flags_wildcard) infos_wildcard = socket.getaddrinfo(None, 0, *hints_wildcard) print("Wildcard flags: %r" % (flags_wildcard,)) print("Wildcard infos: %r" % (infos_wildcard,)) @check def readable_fqdn(): # May raise `UnicodeDecodeError` for non-ASCII hostnames: # https://github.com/tensorflow/tensorboard/issues/682 try: logging.info("socket.getfqdn(): %r", socket.getfqdn()) except UnicodeDecodeError as e: try: binary_hostname = subprocess.check_output(["hostname"]).strip() except subprocess.CalledProcessError: binary_hostname = b"" is_non_ascii = not all( 0x20 <= (ord(c) if not isinstance(c, int) else c) <= 0x7E # Python 2 for c in binary_hostname ) if is_non_ascii: message = reflow( """ Your computer's hostname, %r, contains bytes outside of the printable ASCII range. Some versions of Python have trouble working with such names (https://bugs.python.org/issue26227). Consider changing to a hostname that only contains printable ASCII bytes. """ % (binary_hostname,) ) yield Suggestion("Use an ASCII hostname", message) else: message = reflow( """ Python can't read your computer's hostname, %r. This can occur if the hostname contains non-ASCII bytes (https://bugs.python.org/issue26227). Consider changing your hostname, rebooting your machine, and rerunning this diagnosis script to see if the problem is resolved. """ % (binary_hostname,) ) yield Suggestion("Use a simpler hostname", message) raise e @check def stat_tensorboardinfo(): # We don't use `manager._get_info_dir`, because (a) that requires # TensorBoard, and (b) that creates the directory if it doesn't exist. path = os.path.join(tempfile.gettempdir(), ".tensorboard-info") logging.info("directory: %s", path) try: stat_result = os.stat(path) except OSError as e: if e.errno == errno.ENOENT: # No problem; this is just fine. logging.info(".tensorboard-info directory does not exist") return else: raise logging.info("os.stat(...): %r", stat_result) logging.info("mode: 0o%o", stat_result.st_mode) if stat_result.st_mode & 0o777 != 0o777: preamble = reflow( """ The ".tensorboard-info" directory was created by an old version of TensorBoard, and its permissions are not set correctly; see issue #2010. Change that directory to be world-accessible (may require superuser privilege): """ ) # This error should only appear on Unices, so it's okay to use # Unix-specific utilities and shell syntax. quote = getattr(shlex, "quote", None) or pipes.quote # Python <3.3 command = "chmod 777 %s" % quote(path) message = "%s\n\n\t%s" % (preamble, command) yield Suggestion('Fix permissions on "%s"' % path, message) @check def source_trees_without_genfiles(): roots = list(sys.path) if "" not in roots: # Catch problems that would occur in a Python interactive shell # (where `""` is prepended to `sys.path`) but not when # `diagnose_tensorboard.py` is run as a standalone script. roots.insert(0, "") def has_tensorboard(root): return os.path.isfile(os.path.join(root, "tensorboard", "__init__.py")) def has_genfiles(root): sample_genfile = os.path.join("compat", "proto", "summary_pb2.py") return os.path.isfile(os.path.join(root, "tensorboard", sample_genfile)) def is_bad(root): return has_tensorboard(root) and not has_genfiles(root) tensorboard_roots = [root for root in roots if has_tensorboard(root)] bad_roots = [root for root in roots if is_bad(root)] logging.info( "tensorboard_roots (%d): %r; bad_roots (%d): %r", len(tensorboard_roots), tensorboard_roots, len(bad_roots), bad_roots, ) if bad_roots: if bad_roots == [""]: message = reflow( """ Your current directory contains a `tensorboard` Python package that does not include generated files. This can happen if your current directory includes the TensorBoard source tree (e.g., you are in the TensorBoard Git repository). Consider changing to a different directory. """ ) else: preamble = reflow( """ Your Python path contains a `tensorboard` package that does not include generated files. This can happen if your current directory includes the TensorBoard source tree (e.g., you are in the TensorBoard Git repository). The following directories from your Python path may be problematic: """ ) roots = [] realpaths_seen = set() for root in bad_roots: label = repr(root) if root else "current directory" realpath = os.path.realpath(root) if realpath in realpaths_seen: # virtualenvs on Ubuntu install to both `lib` and `local/lib`; # explicitly call out such duplicates to avoid confusion. label += " (duplicate underlying directory)" realpaths_seen.add(realpath) roots.append(label) message = "%s\n\n%s" % ( preamble, "\n".join(" - %s" % s for s in roots), ) yield Suggestion( "Avoid `tensorboard` packages without genfiles", message ) # Prefer to include this check last, as its output is long. @check def full_pip_freeze(): logging.info( "pip freeze --all:\n%s", pip(["freeze", "--all"]).decode("utf-8") ) def set_up_logging(): # Manually install handlers to prevent TensorFlow from stomping the # default configuration if it's imported: # https://github.com/tensorflow/tensorflow/issues/28147 logger = logging.getLogger() logger.setLevel(logging.INFO) handler = logging.StreamHandler(sys.stdout) handler.setFormatter(logging.Formatter("%(levelname)s: %(message)s")) logger.addHandler(handler) def main(): set_up_logging() print("### Diagnostics") print() print("
") print("Diagnostics output") print() markdown_code_fence = "``````" # seems likely to be sufficient print(markdown_code_fence) suggestions = [] for (i, check) in enumerate(CHECKS): if i > 0: print() print("--- check: %s" % check.__name__) try: suggestions.extend(check()) except Exception: traceback.print_exc(file=sys.stdout) pass print(markdown_code_fence) print() print("
") for suggestion in suggestions: print() print("### Suggestion: %s" % suggestion.headline) print() print(suggestion.description) print() print("### Next steps") print() if suggestions: print( reflow( """ Please try each suggestion enumerated above to determine whether it solves your problem. If none of these suggestions works, please copy ALL of the above output, including the lines containing only backticks, into your GitHub issue or comment. Be sure to redact any sensitive information. """ ) ) else: print( reflow( """ No action items identified. Please copy ALL of the above output, including the lines containing only backticks, into your GitHub issue or comment. Be sure to redact any sensitive information. """ ) ) if __name__ == "__main__": main()