


TOBIAS FENSTER

SPEAKER INTRO

Business

• Managing Director at 4PS Germany, part of 4PS by Hilti

• BC ISV for the construction industry

Community

• Microsoft Regional Director and MVP for BC and Azure

• Docker Captain

Socials etc

• tobiasfenster at Twitter and LinkedIn

• tobiasfenster@hachyderm.io at Mastodon

• Blog at tobiasfenster.io, incl. “Window on Technology” podcast



Intro

QUALITY?!



Quality

https://knowyourmeme.com/memes/this-is-fine

Is this your approach?

Might turn really 
uncomfortable some 
day…



Quality

IEEE says: Software quality refers to the degree to 
which software conforms to its requirements and 
meets the needs of its users. It is formally defined as 
“the capability of a software product to satisfy stated 
and implied needs when used under specified 
conditions.” Another definition states that software 
quality depends on “the degree to which those 
established requirements accurately represent 
stakeholder needs, wants, and expectations.” High 
quality software meets its requirements, which in 
turn should accurately reflect stakeholder needs. 
Quality is about aligning the software with both its 
formal requirements as well as true user needs.

https://www.computer.org/resources/what-is-software-quality



Quality

works

performs

works
(and performs)

if the room is on fire



Quality

works performs

works
(and performs)

if the room is on fire

→ Functional testing → Load testing

→Chaos engineering



Quality

works performs

works
(and performs)

if the room is on fire

→ Functional testing → Load testing

→Chaos engineering
Automated: on-demand

and continuously



Functional testing: Playwright

Load testing: Azure Load Testing (JMeter)

Chaos engineering: Azure Chaos Studio

For each of the topics

- Intro

- Practical scenario and demo incl. automation

- How to repro at home

Combined questions in the end (or in between for the very unlikely and surprising 
case that something in Azure is slower than expected)

Warning: Some experimentation on my side, not a ton of practical prod experience

Structure



Quality

works performs

works
(and performs)

if the room is on fire

→ Functional testing → Load testing

→Chaos engineering



“Make sure the application provides the expected functionality”

Validate

- (core) processes and features

- status, e.g. what is visible / available and what isn’t

- results: success and failure

- using different datasets, typically inputs

Key requirement: Know what to test → test plan. Talk to my colleague Luc van Vugt if 
you want to know how

Functional testing: what



Playwright

- Open-source test framework for browser-based testing built
and maintained by Microsoft

- Cross-browser: Chromium (Chrome, Edge), WebKit (Safari), Firefox

- Cross-OS: Windows, MacOS, Linux

- Cross-language: Node.js, .NET, Java, Python

Key features

- Code generation through recording

- Playwright inspector to help with target analysis

- Trace Viewer to get all execution information

- Easy headless execution in pipelines

Functional testing: how



Functional testing: how

https://learn.microsoft.com/en-us/azure/playwright-testing/overview-what-is-microsoft-playwright-testing



Functional testing: demo time

Scenario

- Blazor web app: BC TechDays Pizza! Based on Blazor Workshop by Jeffrey Fritz
(github.com/csharpfritz/BlazingPizzaWorkshop)

- Non-trivial dynamic website

- Do some recording, coding, playback



Functional testing: automation

Easy to set up on Azure Pipelines, Github Actions and others

Continuous Integration | Playwright

https://playwright.dev/docs/ci


Functional testing: try at home

Run application in dev container: https://github.com/tfenster/BlazingPizzaWorkshop

Install Playwright through the 
VS Code extension

- Natively, not in dev container

Get started!

- Record, code, playback

- Push to Github→CI!

https://github.com/tfenster/BlazingPizzaWorkshop


Quality

works performs

works
(and performs)

if the room is on fire

→ Functional testing → Load testing

→Chaos engineering



“Make sure the application can handle a load of X using Y resources with a response 
time of Z (and an acceptable level or errors)”

Test

- (core) processes

- expected, realistic load scenarios

- more than expected → identify bottlenecks and breaking points

- establish a base line and compare against it

Test critical (initial screen, payment, posting, …) or highly resource intensive parts 
(complex calculation, data analysis, batch writing, …)

Performance testing: what



Azure Load Testing

- Cloud-based load-testing service

- Generate load on demand with very little setup

- Generate geographically distributed load to match
real-world scenarios

Key features

- Quick-start features for simple to medium scenarios

- Full power of established load-testing framework JMeter if needed

- Integrated in Azure to simultaneously get metrics of system under test

- Azure CLI or IaC tools to create tests

Performance testing: how



Performance testing: how

https://learn.microsoft.com/en-us/azure/load-testing/overview-what-is-azure-load-testing



Performance testing: demo time

Scenario

- Service to convert PDF to PNG (and a simple GET to begin) 

- Containerized code running on Azure Function and on Azure VM

- Generate load, find bottlenecks, scale infrastructure

POST /pdfConversion

POST /pdfConversion



Performance testing: automation

Easy to set up on Azure Pipelines and Github Actions

Quickstart: Automate load tests with CI/CD - Azure Load Testing | Microsoft Learn

Manually configure CI/CD for load tests - Azure Load Testing | Microsoft Learn

https://learn.microsoft.com/en-us/azure/load-testing/quickstart-add-load-test-cicd?wt.mc_id=loadtesting_acomresources_webpage_cnl&tabs=pipelines
https://learn.microsoft.com/en-us/azure/load-testing/how-to-configure-load-test-cicd?tabs=pipelines


Performance testing: try at home

Run conversion service in Azure Function or VM: 
https://github.com/tfenster/presentation-src/tree/bctechdays-24-loadtest

- createAzInfra*.sh

Create load tests based on resources in same repo

- load-test.*

- createLoadTests.sh

Install JMeter (Java!) to adjust tests

https://github.com/tfenster/presentation-src/tree/bctechdays-24-loadtest


Quality

works performs

works
(and performs)

if the room is on fire

→ Functional testing → Load testing

→Chaos engineering



“Make sure the application works and performs even if something drastic goes 
wrong”

Validate

- (core) processes and features

- resiliency against things that shouldn’t happen

- acceptable fallback behavior

Tricky: What to test? 

- the things you already planned resiliency for

- the things you haven’t planned for…

Chaos engineering: what



Azure Chaos Studio

- Experimentation platform to introduce faults and stresses

- Managed service by Microsoft

- Allows you to design and run experiments

Key features

- Running an experiment (“simulation”) means actually injecting the problems →
Understand what you do!

- Either service-direct or agent-based faults

- Multiple security measures in place to make sure you don’t accidentally break 
anything

- Can be used in both shift left and shift right approaches

Chaos engineering : how



Chaos engineering : how

https://thomasvanlaere.com/posts/2021/12/azure-chaos-studio-and-powershell/



Chaos engineering: demo time

Scenario 1

- Web application uses Azure Key Vault to access a service key that is needed to call 
an external API

- Azure Chaos Studio is used to introduce unavailability of the Key Vault

- Check application behavior

3rd party 
API



Chaos engineering: demo time

Scenario 2

- Same as in load testing: Web API hosted on an Azure VM to convert PDFs to PNGs

- Azure Chaos Studio is used to introduce high CPU load on the Azure VM

- Check application behavior with load test

POST /pdfConversion

Agent



Chaos engineering: automation / plan B for scenario 2

Possible to set up using Azure CLI or IaC tools like Terraform or Bicep

Automated performance test included in a chaos engineering experiment can be 
useful



Chaos engineering: try at home

Scenario 1:

- Run web application using KV in dev container: 
https://github.com/tfenster/presentation-src/tree/bctechdays-24-kv

- Use scripts (createCert.sh and createAzInfra.sh) to create required resources

- Inject KV unavailability through Chaos Studio

- Observe application

Scenario 2:

- Create Azure infrastructure using same scripts as for load test: 
https://github.com/tfenster/presentation-src/tree/bctechdays-24-loadtest

- Deploy containerized Web API to VM

- Inject CPU stress to VM and run load test in parallel (or use pipeline as fallback)

- Observe application

https://github.com/tfenster/presentation-src/tree/bctechdays-24-kv
https://github.com/tfenster/presentation-src/tree/bctechdays-24-loadtest


Shift left / shift right?

Functional testing: Shift left as far as 
possible

Performance testing: Shift left to catch 
relative problems early, shift right to 
validate absolute numbers

- Requires QA / Staging scale as close as 
possible to Prod

Chaos engineering: Shift left to catch 
problems early. Once confident, shift right 
to validate

- Requires QA / Staging on architecture as 
close as possible to Prod

When and where to test

Develop Build QA env
Staging 

env
Prod 
env



Recap

works performs

works
(and performs)

if the room is on fire

→ Functional testing → Load testing

→Chaos engineering
Automated: on-demand

and continuously



Any Questions?




	template BC TechDays 2024
	Slide 1

	Intro
	Slide 2: Tobias fenster
	Slide 3: Intro
	Slide 4: Quality
	Slide 5: Quality
	Slide 6: Quality
	Slide 7: Quality
	Slide 8: Quality
	Slide 9: Structure

	Playwright
	Slide 10: Quality
	Slide 11: Functional testing: what
	Slide 12: Functional testing: how
	Slide 13: Functional testing: how
	Slide 14: Functional testing: demo time
	Slide 15: Functional testing: automation
	Slide 16: Functional testing: try at home

	Az load testing
	Slide 17: Quality
	Slide 18: Performance testing: what
	Slide 19: Performance testing: how
	Slide 20: Performance testing: how
	Slide 21: Performance testing: demo time
	Slide 22: Performance testing: automation
	Slide 23: Performance testing: try at home

	Az Chaos Studio
	Slide 25: Quality
	Slide 26: Chaos engineering: what
	Slide 27: Chaos engineering : how
	Slide 28: Chaos engineering : how
	Slide 29: Chaos engineering: demo time
	Slide 30: Chaos engineering: demo time
	Slide 31: Chaos engineering: automation / plan B for scenario 2
	Slide 32: Chaos engineering: try at home

	When and where
	Slide 33: When and where to test

	Outro
	Slide 34: Recap
	Slide 35
	Slide 36


