--- title: "RNA-Seq Workflow Template" author: "Author: First Last" date: "Last update: `r format(Sys.time(), '%d %B, %Y')`" output: BiocStyle::html_document: toc_float: true code_folding: show package: systemPipeR vignette: | %\VignetteIndexEntry{WF: RNA-Seq Workflow Template} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} fontsize: 14pt bibliography: bibtex.bib --- ```{css, echo=FALSE} pre code { white-space: pre !important; overflow-x: scroll !important; word-break: keep-all !important; word-wrap: initial !important; } ``` ```{r style, echo = FALSE, results = 'asis'} BiocStyle::markdown() options(width=60, max.print=1000) knitr::opts_chunk$set( eval=as.logical(Sys.getenv("KNITR_EVAL", "TRUE")), cache=as.logical(Sys.getenv("KNITR_CACHE", "TRUE")), tidy.opts=list(width.cutoff=60), tidy=TRUE) ``` ```{r setup_libraries, echo=FALSE, message=FALSE, warning=FALSE} suppressPackageStartupMessages({ library(systemPipeR) library(BiocParallel) library(Biostrings) library(Rsamtools) library(GenomicRanges) library(ggplot2) library(GenomicAlignments) library(ShortRead) library(ape) library(batchtools) }) ``` # Introduction This report describes the analysis of the RNA-Seq data set from Howard et al [-@Howard2013-fq]. The corresponding FASTQ files were downloaded from GEO (Accession: [SRP010938](http://www.ncbi.nlm.nih.gov/sra/?term=SRP010938)). This data set contains 18 paired-end (PE) read sets from *Arabidposis thaliana*. The details about all download steps are provided [here](https://girke.bioinformatics.ucr.edu/GEN242/assignments/projects/project_data/). Users want to provide here additional background information about the design of their RNA-Seq project. ## Experimental design Typically, users want to specify here all information relevant for the analysis of their NGS study. This includes detailed descriptions of FASTQ files, experimental design, reference genome, gene annotations, etc. ## Workflow environment NOTE: this section describes how to set up the proper environment (directory structure) for running `systemPipeR` workflows. After mastering this task the workflow run instructions can be deleted since they are not expected to be included in a final HTML/PDF report of a workflow. 1. If a remote system or cluster is used, then users need to log in to the remote system first. The following applies to an HPC cluster (_e.g._ HPCC cluster). A terminal application needs to be used to log in to a user's cluster account. Next, one can open an interactive session on a computer node with `srun`. More details about argument settings for `srun` are available in this [HPCC manual](http://hpcc.ucr.edu/manuals_linux-cluster_jobs.html#partitions) or the HPCC section of this website [here](https://girke.bioinformatics.ucr.edu/GEN242/tutorials/linux/linux/#job-submission-with-sbatch). Next, load the R version required for running the workflow with `module load`. Sometimes it may be necessary to first unload an active software version before loading another version, _e.g._ `module unload R`. ```sh srun --x11 --partition=short --mem=8gb --cpus-per-task 4 --ntasks 1 --time 20:00:00 --pty bash -l module unload R; module load R/4.0.3_gcc-8.3.0 ``` 2. Load a workflow template with the `genWorkenvir` function. This can be done from the command-line or from within R. However, only one of the two options needs to be used. From command-line ```sh $ Rscript -e "systemPipeRdata::genWorkenvir(workflow='rnaseq')" $ cd rnaseq ``` From R ```{r gen_workflow_envir, eval=FALSE} library(systemPipeRdata) genWorkenvir(workflow="rnaseq") setwd("rnaseq") ``` 3. Optional: if the user wishes to use another `Rmd` file than the template instance provided by the `genWorkenvir` function, then it can be copied or downloaded into the root directory of the workflow environment (_e.g._ with `cp` or `wget`). 4. Now one can open from the root directory of the workflow the corresponding R Markdown script (_e.g._ systemPipeChIPseq.Rmd) using an R IDE, such as _nvim-r_, _ESS_ or RStudio. Subsequently, the workflow can be run as outlined below. For learning purposes it is recommended to run workflows for the first time interactively. Once all workflow steps are understood and possibly modified to custom needs, one can run the workflow from start to finish with a single command using `rmarkdown::render()` or `runWF()`. ## Load packages The `systemPipeR` package needs to be loaded to perform the analysis steps shown in this report [@H_Backman2016-bt]. The package allows users to run the entire analysis workflow interactively or with a single command while also generating the corresponding analysis report. For details see `systemPipeR's` main [vignette](http://www.bioconductor.org/packages/devel/bioc/vignettes/systemPipeR/inst/doc/systemPipeR.html). ```{r load_systempiper, eval=TRUE, message=FALSE} library(systemPipeR) ``` To apply workflows to custom data, the user needs to modify the _`targets`_ file and if necessary update the corresponding parameter (_`.cwl`_ and _`.yml`_) files. A collection of pre-generated _`.cwl`_ and _`.yml`_ files are provided in the _`param/cwl`_ subdirectory of each workflow template. They are also viewable in the GitHub repository of _`systemPipeRdata`_ ([see here](https://github.com/tgirke/systemPipeRdata/tree/master/inst/extdata/param/cwl)). For more information of the structure of the *targets* file, please consult the documentation [here](http://www.bioconductor.org/packages/release/bioc/vignettes/systemPipeR/inst/doc/systemPipeR.html#25_structure_of_targets_file). More details about the new parameter files from systemPipeR can be found [here](http://www.bioconductor.org/packages/release/bioc/vignettes/systemPipeR/inst/doc/systemPipeR.html#26_structure_of_the_new_param_files_and_construct_sysargs2_container). ## Import custom functions Custem functions for the challenge projects can be imported with the source command from a local R script (here [challengeProject_Fct.R](https://raw.githubusercontent.com/tgirke/GEN242/main/content/en/tutorials/spchipseq/challengeProject_Fct.R)). Skip this step if such a script is not available. Alternatively, these functions can be loaded from a custom R package. ```{r load_custom_fct, eval=TRUE, message=FALSE} source("challengeProject_Fct.R") ``` ## Experiment definition provided by `targets` file The `targets` file defines all FASTQ files and sample comparisons of the analysis workflow. If needed the tab separated (TSV) version of this file can be downloaded from [here](https://github.com/tgirke/GEN242/tree/main/content/en/assignments/Projects/targets_files) and the corresponding Google Sheet is [here](https://docs.google.com/spreadsheets/d/1DTgTGlZZscSPjlHOGdJC8QK4vvimN1BORjXKXzd_cfA/edit#gid=472150521). ```{r load_targets_file, eval=TRUE} targetspath <- "targetsPE.txt" targets <- read.delim(targetspath, comment.char = "#") DT::datatable(targets, options = list(scrollX = TRUE, autoWidth = TRUE)) ``` # Read preprocessing ## Read quality filtering and trimming The function `preprocessReads` allows to apply predefined or custom read preprocessing functions to all FASTQ files referenced in a `SYSargs2` container, such as quality filtering or adapter trimming routines. The paths to the resulting output FASTQ files are stored in the `output` slot of the `SYSargs2` object. The following example performs adapter trimming with the `trimLRPatterns` function from the `Biostrings` package. After the trimming step a new targets file is generated (here `targets_trim.txt`) containing the paths to the trimmed FASTQ files. The new targets file can be used for the next workflow step with an updated `SYSargs2` instance, _e.g._ running the NGS alignments using the trimmed FASTQ files. Construct _`SYSargs2`_ object from _`cwl`_ and _`yml`_ param and _`targets`_ files. ```{r construct_SYSargs2_trim-se, eval=FALSE} dir_path <- "param/cwl/preprocessReads/trim-pe" trim <- loadWorkflow(targets=targetspath, wf_file="trim-pe.cwl", input_file="trim-pe.yml", dir_path=dir_path) trim <- renderWF(trim, inputvars=c(FileName1="_FASTQ_PATH1_", FileName2="_FASTQ_PATH2_", SampleName="_SampleName_")) trim output(trim)[1:2] ``` ```{r preprocessing, eval=FALSE} preprocessReads(args=trim, Fct="trimLRPatterns(Rpattern='GCCCGGGTAA', subject=fq)", batchsize=100000, overwrite=TRUE, compress=TRUE) writeTargetsout(x=trim, file="targets_trim.txt", step = 1, new_col = c("FileName1", "FileName2"), new_col_output_index = c(1, 2), overwrite = TRUE) ``` ## FASTQ quality report The following `seeFastq` and `seeFastqPlot` functions generate and plot a series of useful quality statistics for a set of FASTQ files including per cycle quality box plots, base proportions, base-level quality trends, relative k-mer diversity, length and occurrence distribution of reads, number of reads above quality cutoffs and mean quality distribution. The results are written to a PDF file named `fastqReport.pdf`. ```{r fastq_report, eval=FALSE} fqlist <- seeFastq(fastq=infile1(trim), batchsize=10000, klength=8) png("./results/fastqReport.png", height=18*96, width=4*96*length(fqlist)) seeFastqPlot(fqlist) dev.off() ``` ![](./results/fastqReport.png)
Figure 1: FASTQ quality report for 18 samples

# Alignments ## Read mapping with `HISAT2` The following steps will demonstrate how to use the short read aligner `Hisat2` [@Kim2015-ve] in both interactive job submissions and batch submissions to queuing systems of clusters using the _`systemPipeR's`_ new CWL command-line interface. Build `Hisat2` index. ```{r hisat_index, eval=FALSE} dir_path <- "param/cwl/hisat2/hisat2-idx" idx <- loadWorkflow(targets=NULL, wf_file="hisat2-index.cwl", input_file="hisat2-index.yml", dir_path=dir_path) idx <- renderWF(idx) idx cmdlist(idx) # Run runCommandline(idx, make_bam = FALSE) ``` The parameter settings of the aligner are defined in the `hisat2-mapping-se.cwl` and `hisat2-mapping-se.yml` files. The following shows how to construct the corresponding *SYSargs2* object, here *args*. ```{r hisat_SYSargs2_object, eval=TRUE} dir_path <- "param/cwl/hisat2/hisat2-pe" args <- loadWorkflow(targets="targets_trim.txt", wf_file="hisat2-mapping-pe.cwl", input_file="hisat2-mapping-pe.yml", dir_path=dir_path) args <- renderWF(args, inputvars=c(FileName1="_FASTQ_PATH1_", FileName2="_FASTQ_PATH2_", SampleName="_SampleName_")) args cmdlist(args)[1:2] output(args)[1:2] ``` ### Interactive job submissions on a single machine To simplify the short read alignment execution for the user, the command-line can be run with the *`runCommandline`* function. The execution will be on a single machine without submitting to a queuing system of a computer cluster. This way, the input FASTQ files will be processed sequentially. By default *`runCommandline`* auto detects SAM file outputs and converts them to sorted and indexed BAM files, using internally the `Rsamtools` package. Besides, *`runCommandline`* allows the user to create a dedicated results folder for each workflow and a sub-folder for each sample defined in the *targets* file. This includes all the output and log files for each step. When these options are used, the output location will be updated by default and can be assigned to the same object. ```{r hisat_SYSargs2_singleM, eval=FALSE} # Run single Machine args <- runCommandline(args) ``` ### Parallelization on clusters Alternatively, the computation can be greatly accelerated by processing many files in parallel using several compute nodes of a cluster, where a scheduling/queuing system is used for load balancing. For this the *`clusterRun`* function submits the computing requests to the scheduler using the run specifications defined by *`runCommandline`*. To avoid over-subscription of CPU cores on the compute nodes, the value from _`yamlinput(args)['thread']`_ is passed on to the submission command, here _`ncpus`_ in the _`resources`_ list object. The number of independent parallel cluster processes is defined under the _`Njobs`_ argument. The following example will run 18 processes in parallel using for each 4 CPU cores. If the resources available on a cluster allow running all 18 processes at the same time then the shown sample submission will utilize in total 72 CPU cores. Note, *`clusterRun`* can be used with most queueing systems as it is based on utilities from the _`batchtools`_ package which supports the use of template files (_`*.tmpl`_) for defining the run parameters of different schedulers. To run the following code, one needs to have both a conf file (see _`.batchtools.conf.R`_ samples [here](https://mllg.github.io/batchtools/)) and a template file (see _`*.tmpl`_ samples [here](https://github.com/mllg/batchtools/tree/master/inst/templates)) for the queueing available on a system. The following example uses the sample conf and template files for the Slurm scheduler provided by this package. ```{r hisat2_clusterRun, eval=FALSE} library(batchtools) resources <- list(walltime=120, ntasks=1, ncpus=4, memory=1024) reg <- clusterRun(args, FUN = runCommandline, more.args = list(args=args, make_bam=TRUE, dir=FALSE), conffile = ".batchtools.conf.R", template = "batchtools.slurm.tmpl", Njobs=18, runid="01", resourceList=resources) getStatus(reg=reg) waitForJobs(reg=reg) args <- output_update(args, dir=FALSE, replace=TRUE, extension=c(".sam", ".bam")) ## Updates the output(args) to the right location in the subfolders output(args) ``` Check whether all BAM files have been created. ```{r check_files_exist, eval=FALSE} outpaths <- subsetWF(args , slot="output", subset=1, index=1) file.exists(outpaths) ``` ## Read and alignment stats The following provides an overview of the number of reads in each sample and how many of them aligned to the reference. ```{r align_stats, eval=FALSE} read_statsDF <- alignStats(args=args) write.table(read_statsDF, "results/alignStats.xls", row.names=FALSE, quote=FALSE, sep="\t") ``` The following shows the alignment statistics for a sample file provided by the `systemPipeR` package. ```{r align_stats_view, eval=TRUE} read.table("results/alignStats.xls", header=TRUE)[1:4,] ``` ## Create symbolic links for viewing BAM files in IGV The `symLink2bam` function creates symbolic links to view the BAM alignment files in a genome browser such as IGV. The corresponding URLs are written to a file with a path specified under `urlfile` in the `results` directory. ```{r bam_urls, eval=FALSE} symLink2bam(sysargs=args, htmldir=c("~/.html/", "somedir/"), urlbase="http://cluster.hpcc.ucr.edu/~/", urlfile="./results/IGVurl.txt") ``` # Read quantification ## Read counting with `summarizeOverlaps` in parallel mode using multiple cores Reads overlapping with annotation ranges of interest are counted for each sample using the `summarizeOverlaps` function [@Lawrence2013-kt]. The read counting is preformed for exonic gene regions in a non-strand-specific manner while ignoring overlaps among different genes. Subsequently, the expression count values are normalized by *reads per kp per million mapped reads* (RPKM). The raw read count table (`countDFeByg.xls`) and the corresponding RPKM table (`rpkmDFeByg.xls`) are written to separate files in the directory of this project. Parallelization is achieved with the `BiocParallel` package, here using 8 CPU cores. ```{r read_counting1, eval=FALSE} library("GenomicFeatures"); library(BiocParallel) txdb <- makeTxDbFromGFF(file="data/tair10.gff", format="gff", dataSource="TAIR", organism="Arabidopsis thaliana") saveDb(txdb, file="./data/tair10.sqlite") txdb <- loadDb("./data/tair10.sqlite") outpaths <- subsetWF(args, slot="output", subset=1, index=1) # (align <- readGAlignments(outpaths[1])) # Demonstrates how to read bam file into R eByg <- exonsBy(txdb, by=c("gene")) bfl <- BamFileList(outpaths, yieldSize=50000, index=character()) multicoreParam <- MulticoreParam(workers=4); register(multicoreParam); registered() counteByg <- bplapply(bfl, function(x) summarizeOverlaps(eByg, x, mode="Union", ignore.strand=TRUE, inter.feature=FALSE, singleEnd=FALSE)) countDFeByg <- sapply(seq(along=counteByg), function(x) assays(counteByg[[x]])$counts) rownames(countDFeByg) <- names(rowRanges(counteByg[[1]])); colnames(countDFeByg) <- names(bfl) rpkmDFeByg <- apply(countDFeByg, 2, function(x) returnRPKM(counts=x, ranges=eByg)) write.table(countDFeByg, "results/countDFeByg.xls", col.names=NA, quote=FALSE, sep="\t") write.table(rpkmDFeByg, "results/rpkmDFeByg.xls", col.names=NA, quote=FALSE, sep="\t") ``` Shows count table generated in previous step (`countDFeByg.xls`). To avoid slowdowns of the load time of this page, ony 200 rows of the source table are imported into the below `datatable` view . ```{r show_counts_table, eval=TRUE} countDF <- read.delim("results/countDFeByg.xls", row.names=1, check.names=FALSE)[1:200,] library(DT) datatable(countDF, options=list(scrollX=TRUE, autoWidth=TRUE)) ``` A data slice of RPKM table (`rpkmDFeByg.xls`) is shown here. ```{r view_rpkm, eval=TRUE} read.delim("results/rpkmDFeByg.xls", row.names=1, check.names=FALSE)[1:4,1:4] ``` Note, for most statistical differential expression or abundance analysis methods, such as `edgeR` or `DESeq2`, the raw count values should be used as input. The usage of RPKM values should be restricted to specialty applications required by some users, *e.g.* manually comparing the expression levels among different genes or features. ## Sample-wise correlation analysis The following computes the sample-wise Spearman correlation coefficients from the `rlog` transformed expression values generated with the `DESeq2` package. After transformation to a distance matrix, hierarchical clustering is performed with the `hclust` function and the result is plotted as a dendrogram (also see file `sample_tree.pdf`). ```{r sample_tree, eval=FALSE} library(DESeq2, quietly=TRUE); library(ape, warn.conflicts=FALSE) countDF <- as.matrix(read.table("./results/countDFeByg.xls")) colData <- data.frame(row.names=targets.as.df(targets(args))$SampleName, condition=targets.as.df(targets(args))$Factor) dds <- DESeqDataSetFromMatrix(countData = countDF, colData = colData, design = ~ condition) d <- cor(assay(rlog(dds)), method="spearman") hc <- hclust(dist(1-d)) png("results/sample_tree.png") plot.phylo(as.phylo(hc), type="p", edge.col="blue", edge.width=2, show.node.label=TRUE, no.margin=TRUE) dev.off() ``` ![](./results/sample_tree.png)
Figure 2: Correlation dendrogram of samples

# Analysis of DEGs The analysis of differentially expressed genes (DEGs) is performed with the glm method of the `edgeR` package [@Robinson2010-uk]. The sample comparisons used by this analysis are defined in the header lines of the `targets.txt` file starting with ``. ## Run `edgeR` ```{r run_edger, eval=FALSE} library(edgeR) countDF <- read.delim("results/countDFeByg.xls", row.names=1, check.names=FALSE) targets <- read.delim("targetsPE.txt", comment="#") cmp <- readComp(file="targetsPE.txt", format="matrix", delim="-") edgeDF <- run_edgeR(countDF=countDF, targets=targets, cmp=cmp[[1]], independent=FALSE, mdsplot="") ``` Add gene descriptions ```{r custom_annot, eval=FALSE} library("biomaRt") m <- useMart("plants_mart", dataset="athaliana_eg_gene", host="plants.ensembl.org") desc <- getBM(attributes=c("tair_locus", "description"), mart=m) desc <- desc[!duplicated(desc[,1]),] descv <- as.character(desc[,2]); names(descv) <- as.character(desc[,1]) edgeDF <- data.frame(edgeDF, Desc=descv[rownames(edgeDF)], check.names=FALSE) write.table(edgeDF, "./results/edgeRglm_allcomp.xls", quote=FALSE, sep="\t", col.names = NA) ``` ## Plot DEG results Filter and plot DEG results for up and down regulated genes. The definition of *up* and *down* is given in the corresponding help file. To open it, type `?filterDEGs` in the R console. ```{r filter_degs, eval=FALSE} edgeDF <- read.delim("results/edgeRglm_allcomp.xls", row.names=1, check.names=FALSE) png("results/DEGcounts.png") DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=20)) dev.off() write.table(DEG_list$Summary, "./results/DEGcounts.xls", quote=FALSE, sep="\t", row.names=FALSE) ``` ![](./results/DEGcounts.png)
Figure 3: Up and down regulated DEGs with FDR of 1%

## Venn diagrams of DEG sets The `overLapper` function can compute Venn intersects for large numbers of sample sets (up to 20 or more) and plots 2-5 way Venn diagrams. A useful feature is the possibility to combine the counts from several Venn comparisons with the same number of sample sets in a single Venn diagram (here for 4 up and down DEG sets). ```{r venn_diagram, eval=FALSE} vennsetup <- overLapper(DEG_list$Up[6:9], type="vennsets") vennsetdown <- overLapper(DEG_list$Down[6:9], type="vennsets") png("results/vennplot.png") vennPlot(list(vennsetup, vennsetdown), mymain="", mysub="", colmode=2, ccol=c("blue", "red")) dev.off() ``` ![](./results/vennplot.png)
Figure 4: Venn Diagram for 4 Up and Down DEG Sets

# GO term enrichment analysis ## Obtain gene-to-GO mappings The following shows how to obtain gene-to-GO mappings from `biomaRt` (here for *A. thaliana*) and how to organize them for the downstream GO term enrichment analysis. Alternatively, the gene-to-GO mappings can be obtained for many organisms from Bioconductor’s `*.db` genome annotation packages or GO annotation files provided by various genome databases. For each annotation this relatively slow preprocessing step needs to be performed only once. Subsequently, the preprocessed data can be loaded with the `load` function as shown in the next subsection. ```{r get_go_annot, eval=FALSE} library("biomaRt") listMarts() # To choose BioMart database listMarts(host="plants.ensembl.org") m <- useMart("plants_mart", host="plants.ensembl.org") listDatasets(m) m <- useMart("plants_mart", dataset="athaliana_eg_gene", host="plants.ensembl.org") listAttributes(m) # Choose data types you want to download go <- getBM(attributes=c("go_id", "tair_locus", "namespace_1003"), mart=m) go <- go[go[,3]!="",]; go[,3] <- as.character(go[,3]) go[go[,3]=="molecular_function", 3] <- "F"; go[go[,3]=="biological_process", 3] <- "P"; go[go[,3]=="cellular_component", 3] <- "C" go[1:4,] dir.create("./data/GO") write.table(go, "data/GO/GOannotationsBiomart_mod.txt", quote=FALSE, row.names=FALSE, col.names=FALSE, sep="\t") catdb <- makeCATdb(myfile="data/GO/GOannotationsBiomart_mod.txt", lib=NULL, org="", colno=c(1,2,3), idconv=NULL) save(catdb, file="data/GO/catdb.RData") ``` ## Batch GO term enrichment analysis Apply the enrichment analysis to the DEG sets obtained the above differential expression analysis. Note, in the following example the `FDR` filter is set here to an unreasonably high value, simply because of the small size of the toy data set used in this vignette. Batch enrichment analysis of many gene sets is performed with the function. When `method=all`, it returns all GO terms passing the p-value cutoff specified under the `cutoff` arguments. When `method=slim`, it returns only the GO terms specified under the `myslimv` argument. The given example shows how a GO slim vector for a specific organism can be obtained from BioMart. ```{r go_enrich, eval=FALSE} library("biomaRt") load("data/GO/catdb.RData") DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=50), plot=FALSE) up_down <- DEG_list$UporDown; names(up_down) <- paste(names(up_down), "_up_down", sep="") up <- DEG_list$Up; names(up) <- paste(names(up), "_up", sep="") down <- DEG_list$Down; names(down) <- paste(names(down), "_down", sep="") DEGlist <- c(up_down, up, down) DEGlist <- DEGlist[sapply(DEGlist, length) > 0] BatchResult <- GOCluster_Report(catdb=catdb, setlist=DEGlist, method="all", id_type="gene", CLSZ=2, cutoff=0.9, gocats=c("MF", "BP", "CC"), recordSpecGO=NULL) write.table(BatchResult, "results/GOBatchAll.xls", row.names=FALSE, quote=FALSE, sep="\t") library("biomaRt") m <- useMart("plants_mart", dataset="athaliana_eg_gene", host="plants.ensembl.org") goslimvec <- as.character(getBM(attributes=c("goslim_goa_accession"), mart=m)[,1]) BatchResultslim <- GOCluster_Report(catdb=catdb, setlist=DEGlist, method="slim", id_type="gene", myslimv=goslimvec, CLSZ=10, cutoff=0.01, gocats=c("MF", "BP", "CC"), recordSpecGO=NULL) write.table(BatchResultslim, "results/GOBatchSlim.xls", row.names=FALSE, quote=FALSE, sep="\t") ``` Shows GO term enrichment results from previous step. The last gene identifier column (10) of this table has been excluded in this viewing instance to minimze the complexity of the result. To avoid slowdowns of the load time of this page, ony 200 rows of the source table are loaded below. ```{r show_GO_table, eval=TRUE} BatchResult <- read.delim("results/GOBatchAll.xls")[1:200,] library(DT) datatable(BatchResult, options=list(scrollX=TRUE, autoWidth=TRUE)) ``` ## Plot batch GO term results The `data.frame` generated by `GOCluster` can be plotted with the `goBarplot` function. Because of the variable size of the sample sets, it may not always be desirable to show the results from different DEG sets in the same bar plot. Plotting single sample sets is achieved by subsetting the input data frame as shown in the first line of the following example. ```{r go_plot, eval=FALSE} gos <- BatchResultslim png("results/GOslimbarplotMF.png"); goBarplot(gos, gocat="MF"); dev.off() png("results/GOslimbarplotBP.png"); goBarplot(gos, gocat="BP"); dev.off() png("results/GOslimbarplotCC.png"); goBarplot(gos, gocat="CC"); dev.off() ``` ![](./results/GOslimbarplotMF.png)
Figure 5: GO Slim Barplot for MF Ontology

# Clustering and heat maps The following example performs hierarchical clustering on the `rlog` transformed expression matrix subsetted by the DEGs identified in the above differential expression analysis. It uses a Pearson correlation-based distance measure and complete linkage for cluster joining. ```{r heatmap, eval=FALSE} library(pheatmap) geneids <- unique(as.character(unlist(DEG_list[[1]]))) y <- assay(rlog(dds))[geneids, ] png("results/heatmap1.png") pheatmap(y, scale="row", clustering_distance_rows="correlation", clustering_distance_cols="correlation") dev.off() ``` ![](./results/heatmap1.png)
Figure 6: Heat Map with Hierarchical Clustering Dendrograms of DEGs

# Version Information ```{r sessionInfo} sessionInfo() ``` # Funding This project was supported by funds from the National Institutes of Health (NIH). # References