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Abstract

This practice is developed in the context of the subject of Computational Intelligence (Msc.
Artificial Intelligence). The aim of this practice is to develope some genetic algorithm in order to
simulate protein folding with a model of protein called HP model. Only the 2D case will be studied.

1 Introduction

1.1 Protein [1]

Proteins are large biological molecules consisting of one or more chains of amino acids. They are one of
the most important elements in biology for the understanding of the metabolism of living organisms. This
is due to the vast array of functionalities they perform such as catalyzing chemical reacions, replicating
DNA or transporting molecules from one location to another.

One of the most interesting characteristics of proteins is that they are not operative if they aren’t in
their native states. In nature, mistakes during the folding process can lead to a loss of protein function,
which can cause several sporadic and genetic diseases. Because of that, the direct application of a better
understanding of protein folding would lead us to an improved treatment of these diseases.

1.2 Aim

In 2005, Science named the protein folding problem one of the 125 biggest unsolved problems in science
[2].

Protein folding problem is a complex problem which consists of three basic subproblems.[3]

• it Folding code: The physical problem which tries to solve which are the interactions and the factors
more relevant to the dynamics of the protein and tries to modelize them. In our problem we consider
the HP model in 2D.

• Protein structure prediction: The computational problem of how to predict the native structure of
a protein from its amino acid sequence.

There are a huge number of comformations possible and the objective is to search in this conforma-
tional space for the native state. Using the model created we have to search the space under some
conditions or try to optimize the energy function of the model.

The aim of this subproblem is to find the global minimum of the energy function in the model
considered.

• Protein folding speed: The problem of how proteins can fold so fast. Even though proteins have
a vast conformational space, proteins can search and converge quickly to native states. [4] This is
known as the Levinthal’s ’paradox’.

Some people think that understanding the mechanism of protein folding might lead to fast compu-
tational algorithms, for predicting native structures from their amino acid sequences.

The aim of this subproblem is to simulate folding faithfully.
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The difficulty of these problems gains the attention of scientists from diverse fields as computer
scientists, physicists and chemists, in order to modelize and symplify a problem which keeps being a
NP-complete problem[5].

Nowadays, it is still a multidisciplinary problem and many work teams try to tackle it.

1.3 Modeling the problem

According to the thermodynamic hypothesis the native state of a protein is that conformation which has
the lowest free energy.

So, we have to define the free energy for every state and find a search algorithm to localize the native
state. First of all we have to consider some simplification of the real protein, that is, a model is necessary.

The great challenge when making a model is to be able to pick up the important features while
discarding some details and still being able to reproduce the major part of the phenomena.

In the protein there are different types of interactions between its components such as hydrogen bonds,
van der Waals interactions and electrostatic interactions. However, the hydrophobic force is the most
influential one for determining the native structure of globular proteins (proteins with a globular native
conformation).[6][8]

Following thermodynamics principles we see that it is unfavourable for a protein to fold into native
globular conformations because this process leads to a reduction of freedom, and thus a decreased en-
tropy. As a consequence, there is a tradeoff between thermodynamcs and the hydrophobic force which
induces a compact globular state where non-polar aminoacids are inside, minimizing their contact with
the exterior (water). This is known as the hydrophobic effect which causes an increase of the entropy
which compensates the decrease for adopting a globular conformation.

The assumption that the native structure of a protein corresponds to a free energy minimum is the
basis for many computational simulations which attempt to predict the tertiary structure of proteins
from its amino acids sequence. Consequently, the native structure is then presumed to be a conformation
which minimizes the energy function over the set of possible conformations.

One of the simplest but more explanatory models used for protein folding simulations is the hydrophobic-
hydrophilic (HP) model, which was introduced by Lau and Dill[7],in order to explore the whole confor-
mational and sequence spaces of proteins. The great achievement of this model is being able to keep the
main features of real protein folding despite its simplicity.

The HP model belongs to the family of lattice models. These are characterized by the following
simplifications:

• uniform size of the residues (the amino acids).

• uniform bond length

• the positions are restricted to these in a regular lattice

The HP model is based on the fact that the hydrophobic force is the main force in protein folding. In
this model, a protein is represented by a linear sequence of amino acids of only two types: Hydrophobic
amino acids, represented by the letter H, and hydrophilic or polar amino acids, represented by the letter
P.

The sequence folds into a two-dimensional (2D) square lattice. Thus, each amino acid is occupying
one lattice square unit and is connected to its chain neighbours. Only self-avoiding structures are valid
conformations of the sequence, that is, there can’t be more than one residue in the same square unit.
This sums up an extra difficulty in the problem because it is an important restriction. In fact, the
self-avoidingness is a complex feature as we will see later on.

There will be two types of neighbours:

• Connected neighbours (adjacent along the chain sequence)

• Toplogical neighbours (adjacents in the lattice space and not in the chain)

2



Figure 1: Protein in the HP model[9].

In order to modelize its dynamic and determine the free energy we define an energy funcion in which
the only contribution to the energy is due to the H-H pairs of topological neighbors.

So, we can define the energy function of the protein by:

E =
∑

1≤i+1≤j≤n

Bi,jδ(ri, r) (1)

where

δ(ri, rj) =

{
1 if ri − rj = 1 and i 6= j ± 1
0 otherwise

and

Bi,j =

{
−1 if i and j are hydrophobic
0 otherwise

This leads to low energy conformations which are compact and have a hydrophobic core. Because of
that, the hydrophobic residues tend to be inside in a low energy conformation, while polar residues are
forced to the surface, since minizing this function is equal to mazimizing the number of topological H-H
neighbours.

Hydrophobic cores appear in globular proteins.

Figure 2: A core in the globular protein [10].

Our next objective is how to code the protein conformation. In order to do that in the most simplest
way, we try to simplify and generalize the conformation describing it by the direction of its edges with the
previous residue. The vocabulary to code them will be Σ = l, r, s (left, right, straight). There are only
n− 1 edges, so we can define the conformations with only these variables. However, as conformations are
completely rotational invariant, n− 2 variables will be enough. This implies we do not need to represent
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the direction of the first edge. The conformation will be coded as a string with n − 2 elements of the
alphabet Σ = l, r, s.

To end up the coding problem, the protein’s composition will be coded as a string with n elements of
the alphabet: Σ = H,P

1.4 Computational problem

Once modeled, it is time to solve the computational problem. The model provides us an energy function
for each conformation.

Our goal now is to search the space of conformations for the one which has the minimum energy. This
problem remains a NP-complete problem. [11]

In order to solve it we have to find a randomize search algorithm. This problem has already been
solved with some of them but the idea of this work is developing a genetic one.

The idea of the genetic algorithm is to mimic the natural process of evolution in biology. An initial
population is selected. This is changed in different combinatorial fashions which are then recombined in
order to improve the results. The conformations which give the best results are selected in some way to
be the next populations.

In this genetic algorithm the search space will be all the possible conformations of the protein con-
sidered.

2 The problem nowadays

Lately the protein folding problem has become one of the problems of the decade and it seems that it
will be one of the problems of the next century. The incredible velocity of the folding of proteins into the
native state and the importance of the proteins theirselves in diseases make it an interesting problem.

Physicists began working with biologists in the 80’s trying to modelize and simplify the problem in
order to get useful works for bioengineering and pharmacology.

The incresing power of the computers allows to explore more complex and faithfully models. In the
last years they’ve tried to use some networks systems as folding@home.

The significance of the problem make the folding@home the most power computing system over
the Earth during some years[12]. It is a distributed computing project for simulating protein folding.
The purposes of the project are drug design and simulations of some models. The project uses the idle
processing resources of thousands of personal computers or ps3 owned by volunteers. Its primary purpose
is to determine the mechanisms of protein folding, which is the process by which proteins reach their final
three-dimensional structure, and to examine the causes of protein misfolding.

In the same direction was born foldit. It is an online puzzle video game about protein folding where
players have to fold some proteins in order to get the best score possible. The results of this will be used
by scientists to improve algorithms[13].

In the technical part of the protein folding problem, scientists have been trying some algorithms in
order to solve this problems. The algorithms used depends on the model considered but all are parrallel-
based algorithms. [14] Some of them are presented as a Constraint satisfaction problems, some others
are trying to be solved with Ant colony optimization [15][16] or evolutionary algorithms as genetic ones.

3 Algorithm

3.1 Genetic algorithms

Genetic algorithms were developed by John H. Holland[17]. They have been derived from evolutionary
biology, adaptation designates a process whereby a structure is progressively modified to make it better
suited to its environment. A genetic algorithm is a search technique that is loosely based on simulated
evolution. It uses optimization techniques inspired by biological adaptive processes such as mutation,
selection and recombination. This approach makes it possible to explore a far greater range of potential
solutions to a problem than conventional methods. But this generality has a tradeoff. There are other
specific algorithms which exploit better the knowledge of the problem. This will perform better in this
specific problems. This is the No-free-lunch theorem[18].
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The generic algorithm can be described with the pseudocode showed below.

A pseducode of genetic algorithm[19]:
begin

t=0;
initialize P(t);
evaluate procedures in P(t);
while termination condition not satisfied do

begin
t = t + 1;
select repro C(t) from P(t-1);
recombine and mutate structures in C(t) forming C’(t);
evaluate structures in C’(t);
select replace P(t) from C’(t) and P(t-1);

end
end

end

An initial population of individual structures P(0) is generated (usually randomly) and each individual
is evaluated for fitness. Then some of the individuals are selected to reproduce him (select repro) to the
mating buffer C(t). In this step better individuals are priorized to produce offspring. Recombining and
mutating these we obtain C’(t). The elements of this are selected to form P(t).

3.2 Our algorithm

Population
We are codifying our possible solutions in a chain of N−2 digits (whence N is the number of aminoacids

in the protein considered), in which every digit can take 3 possible values: Σ = {l, r, s}.
Not all the posible combinations of our digit values can create a valid conformation. So we will have

to check the feasibility of each conformation. The biggest problem of our approach is the solution of this
problem.

Initialization is one of the problems we find in the first steps. There are many different ways to
initialize the populations. For this work I have considered only two:

• Fully extended: all the chains of the population are initialized fully extended.

• Random Coil: Random self-avoiding walk. It is the most faithfully representation of the problem.
The protein is usually in some state similar to a random coil[20]. The problem of this is to deal
with a NP complete problem of the self-avoiding walks. This is the reason why some people search
solutions taking the problem as a constraint satisfaction problem. In the next figure we can see the
space available considering the number of steps.

Figure 3: Space available considering the number of steps.
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One of the most important factors in which the performance of the genetic algorithm improves depends
on the diversity of the population. If the average distance between individuals is large, the diversity is
high; if the average distance is small, the diversity is low. Getting the right amount of diversity can
ensure the success of the algorithm but if the diversity is too high or too low, the genetic algorithm might
not perform well.

Selection
The selection function chooses parents for the next generation using their scaled values from fitness

scaling function. The function I used to check the algorithm are:

• Stochastic uniform lays out a line in which each parent corresponds to a section of the line of
length proportional to its expectation. The algorithm make some stocastic steps moving along the
line. Each step will assign the point in which it lands on to one parent.

• Remainder: assigns parents deterministically from the integer part of each individual’s scaled
value and then uses roulette selection on the remaining fractional part.

• Uniform: select parents at random from a uniform distribution using the expectations and number
of parents. Uniform selection is not a useful search strategy, but you can use it to test the genetic
algorithm.

• Roulette: simulates a roulette wheel with the area of each segment proportional to its expectation.
The algorithm then uses a random number to select one of the sections with a probability equal to
its area.

• Tournament: selects each parent by choosing individuals at random (I choose 4 of 20), and then
choosing the best individual out of that set to be a parent.

In the results we will try to compare these methods using some examples.
In this algorithm there is elitism. The best two are selected to the next generation in order to maintain

optimal or close-optimal solutions.

Mutation
Mutation functions make small random changes in the individuals in the population, which provide

genetic diversity and enable the genetic algorithm to search a broader space.
Mutation developed in this practice depends on some parameter (mutationRate) which works as a

threshold of acceptance to mute some gene. So, we have codified our protein conformation as a genome
of Σ = {l, r, s}. We assign a random number to each gene of the chain and the ones who have bigger
number than a threshold mutationRate their genes are randomly reassigned. This will be used in the
next generation if it is a valid conformation (self-avoiding chain) and if they pass through the acceptance
criteria. This criteria is a stocastic decision which favors the changes that reduce energy. It will be made
with a Boltzmann factor implementing a Metropolis Montecarlo decision.

In conclusion, if the new conformation reduces the energy of his parent it will be accepted. If not we
get a random number rand and:

rand < exp

[
Ei − Ef

c

]
(2)

whence c is a parameter. In literature it is widely extended and it is called Temperature (because of its
statistical physics origin). The attitude to reduce the value of c with the performance of the energy is
called simulated annealing[21]. This technique is interesting to implement in this problem but due to my
time constraints at this moment it will be keeped to future works and improvements.
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Crossover
Crossover is the process to combine two individuals (parents) to form a new individual (child) for the

next generation. Crossover is useful to expand the space of search of the population. There are some
kinds of crossover depending on the way the parents are selected to exchange genes:

• 1-point crossover: In this process it is selected one gene. From the initial gene to the crossover
point (not included) it is get from one parent and the other part from the other. In our problem
the crossover point value is changed randomly in order to give flexibility and the posibility to get
more range of valid conformations available. So, the gene who acts as a crosspoint don’t receive
gene from any of its parents.

• n-point crossover: There are selected n points over the two parents and the n+ 1 parts are selected
to the child in certain defined order.

• random crossover: Each gene of the child is selected randomly from one of his two parents.

In this practice is only implemented the first one. The others will be reserved to future works.
Not all the possible childs are valids (self-avoiding paths) so we have to introduce a control system

to not allow invalid conformations get into consideration. Also, we have to reward better conformation
than other, so we will use Boltzmann factors as before. Lower energy are directly selected and the others
are selected in this way:

rand < exp

[
Ea − Ef

c

]
(3)

where Ea is the average energy of the parents and c is a parameter as it is explained in the previous
section.

4 Program

I used the optimtool of matlab for support the execution of the code I wrote. The main functions are:

• energy function: It fills a square space using the indications of the conformation and searching
in the neighbors of each H aminoacid to measure the energy.

• initialization: There are two posible implemented: Random coils and fully extended.4 In fully
extended way all the conformation of all the populations are ’s’. In Random coils we try to fill
space aminoacid by aminoacid in order try to selecting from a random ordering posible directions.
If it is not posible to continue the process is reset.

• mutation: The posible mutations are selected randomly. There are a threshold tunable. It call the
function acceptance which implements the decision described before.

• crossover:It is only implemented the 1-point crossover. It also call to acceptance.
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5 Results

In order to take comparisons the first thing I have do is compare between the different types of imple-
mentation.

The first comparisons will be done considering different selection processes. This comparison will be
done for the same initialization method.

Figure 4: All of this are Fully Extended initializations for HPHHPHPHPHPHHHPHPHHHHHPHPH,
from left to rigth: Stochastic uniform, remainder, roulette, uniform and tournament. We can see not
only the evolution of the best and the average along generations but also the distances between them.
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In this graphics is interesting to see that some of the methods don’t achieve native state. Another
thing interesting to see is the evolution of the distance between individuals. This graph shows a measure
of diversity of population. We can see that in tournament the diversity is not only lower than others but
also decreases quickly because it finds a low energy individual.

Comparing different initializations with a composition HHHHHHHPPHHPPHPPHHPHPPHH.
’

Figure 5: Remainder selection. Fully extended on the left, random coil on the rigth.

Figure 6: Roulette selection. Fully extended on the left, random coil on the rigth.

Global comparison between all the posibilities considered for the case of a composition: HPHHPH-
PHPHPHHHPHPHHHHHPHPH.

Selection RC FE
Stochastic uniform -10 -9

Remainder -10 -10
Roulette -10 -10
Uniform -8 -9

Tournament -9 -10

Tabla 1: Comparation of methods in of the solutions obtained in one attempt.
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6 Conclusions and further work

In this work I implement a hybrid genetic algorithm for the protein folding problem in 2D HP model,
based on works like the Unger and Moult ones [22].

The algorithm doesn’t have a great preformance but for short proteins it usually finds properly their
naturalized states, how we can see in the results exposed in the previous section.

Large proteins only composed by Hidrophobic aminoacids are also well suited. For long chains the
algorithm is too slow and has more problems to achieve the native state.

The method of selection which seems to work better in this case is the reminder selection. It could
be due the rendomness in the mutation process and a too high temperature parameter in the selection
which allows flexibility.

In future works the intention could be to speed up the program, implement some other method and
make more comparisons between them. Also, one could try to compare different values of the posible
tunable parameters.
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