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Chapter 1

Setting up R and RStudio

Learning objective

1. You can access R and RStudio, either through RStudio.cloud or by downloading and installing these soft-
ware to your computer.

1.1 Introduction

To start you off on your R journey, we’ll need to set you up with the required software, R and RStudio. R is the
programming language that you’ll use write code, while RStudio is an integrated development environment
(IDE) that makes working with R easier.

1.2 Working locally vs. on the cloud

There are twomain ways that you can access and work with R and RStudio: download them to your computer,
or use a web server to access them on the cloud.

Using R and RStudio on the cloud is the less common option, but it may be the right choice if you are just
getting started with programming, and you do not yet want to worry about installing software. You may also
prefer the cloud option if your local computer is old, slow, or otherwise unfit for running R.

Below, we go through the setup process for RStudio Cloud, Rstudio on Windows and RStudio on macOS sep-
arately. Jump to the section that is relevant for you!

¾ Watch Out

RStudio cloud will only give you 25 free project hours per month. After that, you will need to upgrade to
a paid plan. If you think you’ll need more than 25 hours per month, you may want to avoid this option.
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1.3. RSTUDIO ON THE CLOUD CHAPTER 1. SETTING UP R AND RSTUDIO

1.3 RStudio on the cloud

If you’ll be working on the cloud, follow the steps below:

1. Go to the website rstudio.cloud and follow the instructions to sign up for a free account. (We recom-
mend signing up with Google if you have a Google account, so you don’t need to remember any new
passwords).

2. Once you’re done, click on the “New Project” icon at the top right, and select “New RStudio Project”.

You should see a screen like this:

This is RStudio, your new home for a long time to come!

At the top of the screen, rename the project from “Untitled Project” to something like “r_intro”.
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You can start using R by typing code into the “console” pane on the left:

Try using R as a calculator here; type 2 + 2 and press Enter.

That’s it; you’re ready to roll. Whenever you want to reopen RStudio, navigate to rstudio.cloud,

Proceed to the “wrapping up” section of the lesson.

1.4 Set up on Windows

1.4.1 Download and install R

If you’re working on Windows, follow the steps below to download and install R:

1. Go to cran.rstudio.com to access the R installation page. Then click the download link for Windows:

12

https://cran.rstudio.com/


1.4. SET UP ONWINDOWS CHAPTER 1. SETTING UP R AND RSTUDIO

2. Choose the “base” sub-directory.

3. Then click on the download link at the top of the page to download the latest version of R:

Note that the screenshot above may not show the latest version.

4. After the download is finished, click on the downloaded file, then follow the instructions on the instal-
lation pop-up window. During installation, you should not have to change any of the defaults; just keep
clicking “Next” until the installation is done.

Well done! You should now have R on your computer. But you likely won’t ever need to interact with R
directly. Instead you’ll use the RStudio IDE to work with R. Follow the instructions in the next section to
get RStudio.

1.4.2 Download, install & run RStudio

To download RStudio, go to rstudio.com/products/rstudio/download/#download and download theWindows
version.

After the download is finished, click on the downloaded file and follow the installation instructions.

Once installed, RStudio can be opened like any application on your computer: press theWindows key to bring
up the Start menu, and search for “rstudio”. Click to to open the app:
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You should see a window like this:

This is RStudio, your new home for a long time to come!

You can start using R by typing code into the “console” pane on the left:
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Try using R as a calculator here; type 2 + 2 and press Enter.

That’s it; you’re ready to roll. Proceed to the “wrapping up” section of the lesson.

1.5 Set up on macOS

1.5.1 Download and install R

If you’re working on macOS, follow the steps below to download and install R:

1. Go to cran.rstudio.com to access the R installation page. Then click the link for macOS:

2. Download and install the relevant R version for yourMac. Formost people, thefirst option under “Latest
release” will be the one to get.
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3. After the download is finished, click on the downloaded file, then follow the instructions on the instal-
lation pop-up window.

Well done! You should now have R on your computer. But you likely won’t ever need to interact with R directly.
Instead you’ll use the RStudio IDE to work with R. Follow the instructions in the next section to get RStudio.

1.5.2 Download, install & run RStudio

To download RStudio, go to rstudio.com/products/rstudio/download/#download and download the version
for macOS.

After the download is finished, click on the downloaded file and follow the installation instructions.

Once installed, RStudio can be opened like any application on your computer: Press Command + Space to open
Spotlight, then search for “rstudio”. Click to open the app.

You should see a window like this:
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This is RStudio, your new home for a long time to come!

You can start using R by typing code into the “console” pane on the left:

Try using R as a calculator here; type 2 + 2 and press Enter.

1.6 Wrap up

You should now have access to R and RStudio, so you’re all set to begin the journey of learning to use these
immensely powerful tools. See you in the next session!
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Chapter 2

Setting up R and RStudio

Learning objective

1. You can access R and RStudio, either through RStudio.cloud or by downloading and installing these soft-
ware to your computer.

2.1 Introduction

To start you off on your R journey, we’ll need to set you up with the required software, R and RStudio. R is the
programming language that you’ll use write code, while RStudio is an integrated development environment
(IDE) that makes working with R easier.

2.2 Working locally vs. on the cloud

There are twomain ways that you can access and work with R and RStudio: download them to your computer,
or use a web server to access them on the cloud.

Using R and RStudio on the cloud is the less common option, but it may be the right choice if you are just
getting started with programming, and you do not yet want to worry about installing software. You may also
prefer the cloud option if your local computer is old, slow, or otherwise unfit for running R.

Below, we go through the setup process for RStudio Cloud, Rstudio on Windows and RStudio on macOS sep-
arately. Jump to the section that is relevant for you!

¾ Watch Out

RStudio cloud will only give you 25 free project hours per month. After that, you will need to upgrade to
a paid plan. If you think you’ll need more than 25 hours per month, you may want to avoid this option.
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2.3 RStudio on the cloud

If you’ll be working on the cloud, follow the steps below:

1. Go to the website rstudio.cloud and follow the instructions to sign up for a free account. (We recom-
mend signing up with Google if you have a Google account, so you don’t need to remember any new
passwords).

2. Once you’re done, click on the “New Project” icon at the top right, and select “New RStudio Project”.

You should see a screen like this:

This is RStudio, your new home for a long time to come!

At the top of the screen, rename the project from “Untitled Project” to something like “r_intro”.
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You can start using R by typing code into the “console” pane on the left:

Try using R as a calculator here; type 2 + 2 and press Enter.

That’s it; you’re ready to roll. Whenever you want to reopen RStudio, navigate to rstudio.cloud,

Proceed to the “wrapping up” section of the lesson.

2.4 Set up on Windows

2.4.1 Download and install R

If you’re working on Windows, follow the steps below to download and install R:

1. Go to cran.rstudio.com to access the R installation page. Then click the download link for Windows:
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2. Choose the “base” sub-directory.

3. Then click on the download link at the top of the page to download the latest version of R:

Note that the screenshot above may not show the latest version.

4. After the download is finished, click on the downloaded file, then follow the instructions on the instal-
lation pop-up window. During installation, you should not have to change any of the defaults; just keep
clicking “Next” until the installation is done.

Well done! You should now have R on your computer. But you likely won’t ever need to interact with R
directly. Instead you’ll use the RStudio IDE to work with R. Follow the instructions in the next section to
get RStudio.

2.4.2 Download, install & run RStudio

To download RStudio, go to rstudio.com/products/rstudio/download/#download and download theWindows
version.

After the download is finished, click on the downloaded file and follow the installation instructions.

Once installed, RStudio can be opened like any application on your computer: press theWindows key to bring
up the Start menu, and search for “rstudio”. Click to to open the app:
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You should see a window like this:

This is RStudio, your new home for a long time to come!

You can start using R by typing code into the “console” pane on the left:
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Try using R as a calculator here; type 2 + 2 and press Enter.

That’s it; you’re ready to roll. Proceed to the “wrapping up” section of the lesson.

2.5 Set up on macOS

2.5.1 Download and install R

If you’re working on macOS, follow the steps below to download and install R:

1. Go to cran.rstudio.com to access the R installation page. Then click the link for macOS:

2. Download and install the relevant R version for yourMac. Formost people, thefirst option under “Latest
release” will be the one to get.
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3. After the download is finished, click on the downloaded file, then follow the instructions on the instal-
lation pop-up window.

Well done! You should now have R on your computer. But you likely won’t ever need to interact with R directly.
Instead you’ll use the RStudio IDE to work with R. Follow the instructions in the next section to get RStudio.

2.5.2 Download, install & run RStudio

To download RStudio, go to rstudio.com/products/rstudio/download/#download and download the version
for macOS.

After the download is finished, click on the downloaded file and follow the installation instructions.

Once installed, RStudio can be opened like any application on your computer: Press Command + Space to open
Spotlight, then search for “rstudio”. Click to open the app.

You should see a window like this:
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This is RStudio, your new home for a long time to come!

You can start using R by typing code into the “console” pane on the left:

Try using R as a calculator here; type 2 + 2 and press Enter.

2.6 Wrap up

You should now have access to R and RStudio, so you’re all set to begin the journey of learning to use these
immensely powerful tools. See you in the next session!
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Chapter 3

Using RStudio

3.1 Learning objectives

1. You can identify and use the following tabs in RStudio: Source, Console, Environment, History, Files,
Plots, Packages, Help and Viewer.

2. You can modify RStudio’s interface options to suit your needs.

3.2 Introduction

Now that you have access to R & RStudio, let’s go on a quick tour of the RStudio interface, your digital home
for a long time to come.

We will cover a lot of territory quickly. Do not panic. You are not expected to remember it all this. Rather, you
will see these topics again and again throughout the course, and youwill naturally assimilate them that way.

You can also refer back to this lesson as you progress.

The goal here is simply to make you aware of the tools at your disposal within RStudio.

To get started, you need to open the RStudio application:

• If you are working with RStudio Cloud, go to rstudio.cloud, log in, then click on the “r_intro” project that
you created in the last lesson. (If you do not see this, simply create a new R project using the “New
Project” icon at the top right).

• If you areworking on your local computer, go to your applications folder and double click on the RStudio
icon. Or you search for this application from your Start Menu (Windows), or through Spotlight (Mac).
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3.3 The RStudio panes

By default, RStudio is arranged into four window panes.

If you only see three panes, open a new script with File > New File > R Script . This should reveal one
more pane.

Before we go any further, we will rearrange these panes to improve the usability of the interface.

To do this, in the RStudio menu at the top of the screen, select Tools > Global Options to bring up RStu-
dio’s options. Then under Pane Layout, adjust the pane arrangement. The arrangement we recommend is
shown below.

At the top left pane is the Source tab, and at the top right pane, you should have the Console tab.

Then at the bottom left pane, no tab options should checked—this section should be left empty, with the
drop-down saying just “TabSet”.

Finally, at the bottom right pane, you should check the following tabs: Environment, History, Files, Plots, Pack-
ages, Help and Viewer.
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Great, now you should have an RStudio window that looks something like this:

The top-left pane is where you will do most of the coding. Make this larger by clicking on its maximize icon:

Note that you can drag the bar that separates the window panes to resize them.

Now let’s look at each of the RStudio tabs one by one. Below is a summary image of what we will discuss:
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3.3.1 Source/Editor

The source or editor is where your R “scripts” go. A script is a text document where youwrite and save code.

Because this is where you will do most of your coding, it is important that you have a lot of visual space. That
is why we rearranged the RStudio pane layout above—to give the Editor more space.

Now let’s see how to use this Editor.

First, open a new script under the File menu if one is not yet open: File > New File > R Script. In the
script, type the following:

31



3.3. THE RSTUDIO PANES CHAPTER 3. USING RSTUDIO

print("excited for R!")

To run code, place your cursor anywhere in the code, then hit Command + Enter on macOS, or Control +
Enter on Windows.

This should send the code to the Console and run it.

You can also run multiple lines at once. To try this, add a second line to your script, so that it now reads:

print("excited for R!")
print("and RStudio!")

Now drag your cursor to highlight both lines and press Command/Control + Enter.

To run the entire script, you can use Command/Control + A to select all code, then press Command/Control
+ Enter. Try this now. Deselect your code, then try to the shortcut to select all.

Ĺ Side Note

There is also a ‘Run’ button at the top right of the source panel ( ), with which you can run code

(either the current line, or all highlighted code). But you should try to use the keyboard shortcut instead.

To open the script in a new window, click on the third icon in the toolbar directly above the script.

To put the window back, click on the same button on the now-external window.

Next, save the script. Hit Command/Control + S to bring up the Save dialog box. Give it a file name like
“rstudio_intro”.

• If you are working with RStudio cloud, the file will be saved in your project folder.

• If you are working on your local computer, save the file in an easy-to-locate part of your computer, per-
haps your desktop. (Later on we will think about the “proper” way to organize and store scripts).

You can view data frames (which are like spreadsheets in R) in the same pane. To observe this, type and run
the code below on a new line in your script:
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View(women)

Notice the uppercase “V” in View().

women is thenameof adataset that comes loadedwithR. It gives the averageheights andweights forAmerican
women aged 30–39.

You can click on the “x” icon to the right of the “women” tab to close this data viewer.

3.3.2 Console

The console, at the bottom left, is where code is executed. You can type code directly here, but it will not be
saved.

Type a random piece of code (maybe a calculation like 3 + 3) and press ‘Enter’.

If you place your cursor on the last line of the console, and you press the up arrow, you can go back to the last
code that was run. Keep pressing it to cycle to the previous lines.

To run any of these previous lines, press Enter.
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3.3.3 Environment

At the top right of the RStudio Window, you should see the Environment tab.

The Environment tab shows datasets and other objects that are loaded into R’s working memory, or
“workspace”.

To explore this tab, let’s import a dataset into your environment from the web. Type the code below into your
script and run it:

ebola_data <- read.csv("https://tinyurl.com/ebola-data-sample")

Ĺ Side Note

You don’t need to understand exactly what the code above is doing for now. We just want to quickly
show you the basic features of the Environment pane; we’ll look at data importing in detail later.
Also, if you do not have active internet access, the code above will not run. You can skip this section and
move to the “History” tab.

You have now imported the dataset and stored it in an object named ebola_data. (You could have named the
object anything you want.)

Now that the dataset is stored by R, you should be able to see it in the Environment pane. If you click on the
blue drop-down icon beside the object’s name in the Environment tab to reveal a summary.

Try clicking directly on the ebola_data dataset from the Environment tab. This opens it in a ‘View’ tab.

You can remove an object from the workspace with the rm() function. Type and run the following in a new
line on your R script.
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rm(ebola_data)

Notice that the ebola_data object no longer shows up in your environment after having run that code.

The broom icon, at the top of the Environment pane can also be used to clear your workspace.

To practice using it, try re-running the line above that imports the Ebola dataset, then clear the object using
the broom icon.

3.3.4 History

Next, the History tab shows previous commands you have run.

You can click a line to highlight it, then send it to the console or to your script with the “To Console” and “To
Source” icons at the top of this tab.

To select multiple lines, use the “Shift-click” method: click the first item you want to select, then hold down
the “Shift” key and click the last item you want to select.

Finally, notice that there is a search bar at the top right of the History pane where you can search for past
commands that you have run.

3.3.5 Files

Next, the Files tab. This shows the files and folders in the folder you are working in.
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The tab allows you to interact with your computer’s file system.

Try playing with some of the buttons here, to see what they do. You should try at least the following:

• Make a new folder

• Delete that folder

• Make a new R Script

• Rename that script

3.3.6 Plots

Next, the Plots tab. This is where figures that are generated by R will show up. Try creating a simple plot with
the following code:

plot(women)

That code creates a plot of the two variables in the women dataset. You should see this figure in the Plots
tab.
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Now, test out the buttons at the top of this tab to explore what they do. In particular, try to export a plot to
your computer.

3.3.7 Packages

Next, let’s look at the Packages tab.

Packages are collections of R code that extend the functionality of R. We will discuss packages in detail in a
future lesson.

For now, it is important to know that to use a package, you need to install then load it. Packages need to be
installed only once, but must be loaded in each new R session.

All the package names you see (in blue font) are packages that are installed on your system. And packages
with a checkmark are packages which are loaded in the current session.

You can install a package with the Install button of the Packages tab.

But it is better to install and load packages with R code, rather than the Install button. Let’s try this. Type and
run the code below to install the {highcharter} package.

install.packages("highcharter")
library(highcharter)

The first line installs the package. The second line loads the package from your package library.

Because you only need to install a package once, you can now remove the installation line from your script.

Now that the {highcharter} package has been installed and loaded, you can use the functions that come in the
package. To try this, type and run the code below:

highcharter::hchart(women$weight)

Registered S3 method overwritten by 'quantmod':
method from
as.zoo.data.frame zoo
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This code uses thehchart() function from the {highcharter} package to plot an interactive histogram showing
the distribution of weights in the women dataset.

(Of course, you may not yet know what a function is. We’ll get to this soon.)
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3.3.8 Viewer

Notice that the histogram above shows up in a Viewer tab. This tab allows you to preview HTML files and
interactive objects.

3.3.9 Help

Lastly, the Help tab shows the documentation for different R objects. Try typing out and running each line
below to see what this documentation looks like.

?hchart
?women
?read.csv

Help files are not always very easy to understand for beginners, but with time theywill becomemore useful.

3.4 RStudio options

RStudio has a number of useful options for changing it’s look and functionality. Let’s try these. You may not
understand all the changes made for now. That’s fine.

In the RStudio menu at the top of the screen, select Tools > Global Options to bring up RStudio’s op-
tions.

• Now, under Appearance, choose your ideal theme. (We like the “Crimson Editor” and “TomorrowNight”
themes.)
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• Under Code > Display, check “Highlight R function calls”. What this does is give your R functions a
unique color, improving readability. You will understand this later.

• Also under Code > Display, check “Rainbow parentheses”. What this does is make your “nested
parentheses” easier to read by giving each pair a unique color.
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• Finally under General > Basic, uncheck the box that says “Restore .RData into workspace at
startup”. You don’t want to restore any data to your workspace (or environment) when you start
RStudio. Starting with a clean workspace each time is less likely to lead to errors.

This also means that you never want to “save your workspace to .RData on exit”, so set this toNever.

3.5 Command palette

The Rstudio command palette gives instant, searchable access to many of the RStudio menu options and set-
tings that we have seen so far.

The palette can be invoked with the keyboard shortcut Ctrl + Shift + P (Cmd + Shift + P on macOS).

It’s also available on the Tools menu (Tools -> Show Command Palette).

Try using it to:

• Create a new script (Search “new script” and click on the relevant option)

• Rename a script (Search “rename” and click on the relevant option)

3.6 Wrapping up

Congratulations! You are now a new citizen of RStudio.

Of course, you have only scratched the surface of RStudio functionality. As you advance in your R journey,
you will discover new features, and you will hopefully grow to love the wonderful integrated development
environment (IDE) that is RStudio. One good place to start is the official RStudio IDE cheatsheet.

Below is one section of that sheet:
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See you in the next lesson!

3.7 Further resources

1. 23 RStudio Tips, Tricks, and Shortcuts

3.8 References

Some material in this lesson was adapted from the following sources:

• “Rstudio Cheatsheets.” RStudio, https://www.rstudio.com/resources/cheatsheets/.
• “Chapter 1 Getting Started: Data Skills for Reproducible Research.” Chapter 1 Getting Started | Data
Skills for Reproducible Research, https://psyteachr.github.io/reprores-v2/intro.html.
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Chapter 4

Coding basics

Learning objectives

1. You can write comments in R.

2. You can create section headers in RStudio.

3. You know how to use R as a calculator.

4. You can create, overwrite and manipulate R objects.

5. You understand the basic rules for naming R objects.

6. You understand the syntax for calling R functions.

7. You know how to nest multiple functions.

8. You can use install and load add-on R packages and call functions from these packages.

4.1 Introduction

In the last lesson, you learned how to use RStudio, the wonderful integrated development environment (IDE)
that makes working with R much easier. In this lesson, you will learn the basics of using R itself.

To get started, open RStudio, and open a new script with File > New File > R Script on the RStudio
menu.

Next, save the script with File > Save on the RStudio menu or by using the shortcut Command/Control +
S . This should bring up the Save File dialog box. Save the file with a name like “coding_basics”.

You should now type all the code from this lesson into that script.
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4.2 Comments

There are two main types of text in an R script: commands and comments. A command is a line or lines of R
code that instructs R to do something (e.g. 2 + 2)

A comment is text that is ignored by the computer.

Anything that follows a # symbol (pronounced “hash” or “pound”) on a given line is a comment. Try typing out
and running the code below to see this:

## A comment
2 + 2 # Another comment
## 2 + 2

Since they are ignored by the computer, comments are meant for humans. They help you and others keep
track of what your code is doing. Use them often! Like your mother always says, “too much everything is bad,
except for R comments”.

Ď Practice

Question 1
True or False: both code chunks below are valid ways to comment code:?

## add two numbers
2 + 2

2 + 2 # add two numbers

Note: All question answers can be found at the end of the lesson.

A fantastic use of comments is to separate your scripts into sections. If you put four dashes after a comment,
RStudio will create a new section in your code:

## New section ----

This has twonicebenefits. Firstly, you can click on the little arrowbeside the sectionheader to fold, or collapse,
that section of code:

Second, you can click on the “Outline” icon at the top right of the Editor to view and navigate through all the
contents in your script:

44



4.3. R S A CALCULATOR CHAPTER 4. CODING BASICS

4.3 R s a calculator

Rworks as a calculator, and obeys the correct order of operations. Type and run the following expressions and
observe their output:

2 + 2

[1] 4

2 - 2

[1] 0

2 * 2 # two times two

[1] 4

2 / 2 # two divided by two

[1] 1

2 ^ 2 # two raised to the power of two

[1] 4

2 + 2 * 2 # this is evaluated following the order of operations

[1] 6

sqrt(100) # square root

[1] 10

The square root command shownon the last line is a good example of an R function, where 100 is the argument
to the function. You will see more functions soon.

Ĺ Reminder

We hope you remember the shortcut to run code!
To run a single line of code, place your cursor anywhere on that line, then hit Command + Enter on
macOS, or Control + Enter on Windows.
To run multiple lines, drag your cursor to highlight the relevant lines then again press
Command/Control + Enter.
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Ď Practice

Question 2
In the following expression, which sign is evaluated first by R, the minus or the division?

2 - 2 / 2

[1] 1

4.4 Formatting code

R does not care how you choose to space out your code.

For the math operations we did above, all the following would be valid code:

2+2

[1] 4

2 + 2

[1] 4

2 + 2

[1] 4

Similarly, for the sqrt() function used above, any of these would be valid:

sqrt(100)

[1] 10

sqrt( 100 )

[1] 10

## you can even space the command out over multiple lines
sqrt(
100

)

[1] 10
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But of course, you should try to space out your code in sensible ways. What exactly is “sensible”? Well, it may
be hard for you to know at the moment. Over time, as you read other people’s code, you will learn that there
are certain R conventions for code spacing and formatting.

In the meantime, you can ask RStudio to help format your code for you. To do this, highlight any section of
code you want to reformat, and, on the RStudio menu, go to Code > Reformat Code, or use the shortcut
Shift + Command/Control + A.

¾ Watch Out

Stuck on the + sign
If you run an incomplete line of code, R will print a + sign to indicate that it is waiting for you to finish the
code.
For example, if you run the following code:

sqrt(100

you will not get the output you expect (10). Rather the console will sqrt( and a + sign:

R is waiting for you complete the closing parenthesis. You can complete the code and get rid of the + by
just entering the missing parenthesis:

)

Alternatively, press the escape key, ESCwhile your cursor is in the console to start over.

4.5 Objects in R

4.5.1 Create an object

When you run code as we have been doing above, the result of the command (or its value) is simply displayed
in the console—it is not stored anywhere.

2 + 2 # R prints this result, 4, but does not store it

[1] 4

To store a value for future use, assign it to an object with the assignment operator, <- :

my_obj <- 2 + 2 # assign the result of `2 + 2 ` to the object called `my_obj`
my_obj # print my_obj

[1] 4
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The assignment operator, <- , is made of the ‘less than’ sign, < , and a minus, -. You will use it thousands of
times over your R lifetime, so please don’t type it manually! Instead, use RStudio’s shortcut, alt + - (alt AND
minus) on Windows or option + - (option ANDminus) on macOS.

Ĺ Side Note

Also note that you can use the equals sign, =, for assignment.

my_obj = 2 + 2

But this is not commonly used by the R community (mostly for historical reasons), so we discourage it
too. Follow the convention and use <-.

Now that you’ve created the object my_obj, R knows all about it and will keep track of it during this R session.
You can view any created objects in the Environment tab of RStudio.

4.5.2 What is an object?

So what exactly is an object? Think of it as a named bucket that can contain anything. When you run the code
below:

my_obj <- 20

you are telling R, “put the number 20 inside a bucket named ‘my_obj’ ”.

Once the code is run, we would say, in R terms, that “the value of object called my_obj is 20”.

And if you run this code:
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first_name <- "Joanna"

you are instructing R to “put the value ‘Joanna’ inside the bucket called ‘first_name’ ”.

Once the code is run, we would say, in R terms, that “the value of the first_name object is Joanna”.

Note that R evaluates the code before putting it inside the bucket.

So, before when we ran this code,

my_obj <- 2 + 2

R firsts does the calculation of 2 + 2, then stores the result, 4, inside the object.

Ď Practice

Question 3
Consider the code chunk below:

result <- 2 + 2 + 2

What is the value of the result object created?
A. 2 + 2 + 2
B. numeric
C. 6
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4.5.3 Datasets are objects too

So far, you have beenworkingwith very simple objects. Youmay be thinking “Where are the spreadsheets and
datasets? Why are we writing my_obj <- 2 + 2? Is this a primary school maths class?!”

Be patient.

Wewant you to get familiar with the concept of an R object because once you start dealing with real datasets,
these will also be stored as R objects.

Let’s see a preview of this now. Type out the code below to download a dataset on Ebola cases that we stored
on Google Drive and put it in the object ebola_sierra_leone_data.

ebola_sierra_leone_data <- read.csv("https://tinyurl.com/ebola-data-sample")
ebola_sierra_leone_data # print ebola_data

id age sex status date_of_onset date_of_sample district
1 167 55 M confirmed 2014-06-15 2014-06-21 Kenema
2 129 41 M confirmed 2014-06-13 2014-06-18 Kailahun
3 270 12 F confirmed 2014-06-28 2014-07-03 Kailahun
4 187 NA F confirmed 2014-06-19 2014-06-24 Kailahun
5 85 20 M confirmed 2014-06-08 2014-06-24 Kailahun

This data contains a sample of patient information from the 2014-2016 Ebola outbreak in Sierra Leone.

Because you can store datasets as objects, its very easy to work with multiple datasets at the same time.

Below, we import and view another dataset from the web:

diabetes_china <- read.csv("https://tinyurl.com/diabetes-china")

Because the dataset above is quite large, it may be helpful to look at it in the data viewer:

View(diabetes_china)

Notice that both datasets now appear in your Environment tab.

Ĺ Side Note

Rather than reading data from an internet drive as we did above, it is more likely that you will have the
data on your computer, and you will want to read it into R from your there. We will cover this in a future
lesson.
Later in the course, we will also show you how to store and read data from a web service like Google
Drive, which is nice for easy portability.
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4.5.4 Rename an object

You sometimes want to rename an object. It is not possible to do this directly.

To rename an object, you make a copy of the object with a new name, and delete the original.

For example, maybe we decide that the name of the ebola_sierra_leone_data object is too long. To
change it to the shorter “ebola_data” run:

ebola_data <- ebola_sierra_leone_data

This has copied the contents from the ebola_sierra_leone_data bucket to a new ebola_data bucket.

You can now get rid of the old ebola_sierra_leone_data bucket with the rm() function, which stands for
“remove”:

rm(ebola_sierra_leone_data)

4.5.5 Overwrite an object

Overwriting an object is like changing the contents of a bucket.

For example, previously we ran this code to store the value “Joanna” inside the first_name object:

first_name <- "Joanna"

To change this to a different, simply re-run the line with a different value:

first_name <- "Luigi"

You can take a look at the Environment tab to observe the change.

4.5.6 Working with objects

Most of your time in R will be spent manipulating R objects. Let’s see some quick examples.

You can run simple commands on objects. For example, below we store the value 100 in an object and then
take the square root of the object:

my_number <- 100
sqrt(my_number)

[1] 10

R “sees” my_number as the number 100, and so is able to evaluate it’s square root.
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You can also combine existing objects to create new objects. For example, type out the code below to add
my_number to itself, and store the result in a new object called my_sum:

my_sum <- my_number + my_number

What should be the value of my_sum? First take a guess, then check it.

Ĺ Side Note

To check the value of anobject, such asmy_sum, you can type and run just the codemy_sum in theConsole
or the Editor. Alternatively, you can simply highlight the value my_sum in the existing code and press
Command/Control + Enter.

But of course, most of your analysis will involve working with data objects, such as the ebola_data object we
created previously.

Let’s see a very simple example of how to interact with a data object; we will tackle it properly in the next
lesson.

To get a table of the different sex distribution of patients in the ebola_data object, we can run the follow-
ing:

table(ebola_data$sex)

F M
124 76

The dollar sign symbol, $, above allowed us subset to a specific column.

Ď Practice

Question 4

a. Consider the code below. What is the value of the answer object?

eight <- 9
answer <- eight - 8

b. Use table() to make a table with the distribution of patients across districts in the ebola_data
object.

4.5.7 Some errors with objects

first_name <- "Luigi"
last_name <- "Fenway"
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full_name <- first_name + last_name

Error in first_name + last_name : non-numeric argument to binary operator

The error message tells you that these objects are not numbers and therefore cannot be added with +. This
is a fairly common error type, caused by trying to do inappropriate things to your objects. Be careful about
this.

In this particular case, we can use the function paste() to put these two objects together:

full_name <- paste(first_name, last_name)
full_name

[1] "Luigi Fenway"

Another error you’ll get a lot is Error: object 'XXX' not found. For example:

my_number <- 48 # define `my_obj`
My_number + 2 # attempt to add 2 to `my_obj`

Error: object 'My_number' not found

Here, R returns an error message because we haven’t created (or defined ) the object My_obj yet. (Recall that
R is case-sensitive.)

When you first start learning R, dealing with errors can be frustrating. They’re often difficult to understand
(e.g. what exactly does “non-numeric argument to binary operator” mean?).

Try Googling any error messages you get and browsing through the first few results. This will lead you to
forums (e.g. stackoverflow.com) where other R learners have complained about the same error. Here youmay
find explanations of, and solutions to, your problems.

Ď Practice

Question 5

a. The code below returns an error. Why?

my_first_name <- "Kene"
my_last_name <- "Nwosu"
my_first_name + my_last_name

b. The code below returns an error. Why? (Look carefully)
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my_1st_name <- "Kene"
my_last_name <- "Nwosu"

paste(my_Ist_name, my_last_name)

4.5.8 Naming objects

There are only two hard things in Computer Science: cache invalidation and naming things.

— Phil Karlton.

Because much of your work in R involves interacting with objects you have created, picking intelligent names
for these objects is important.

Naming objects is difficult because names should be both short (so that you can type them quickly) and infor-
mative (so that you can easily rememberwhat is inside the object), and these two goals are often in conflict.

So names that are too long, like the one below, are bad because they take forever to type.

sample_of_the_ebola_outbreak_dataset_from_sierra_leone_in_2014

And a name like data is bad because it is not informative; the name does not give a good idea of what the
object is.

As you write more R code, you will learn how to write short and informative names.

For names with multiple words, there are a few conventions for how to separate the words:

snake_case <- "Snake case uses underscores"
period.case <- "Period case uses periods"
camelCase <- "Camel case capitalizes new words (but not the first word)"

We recommend snake_case, which uses all lower-case words, and separates words with _.

Note too that there are some limitations on objects’ names:

• names must start with a letter. So 2014_data is not a valid name (because it starts with a number).

• names can only contain letters, numbers, periods (.) and underscores (_). So ebola-data or
ebola~data or ebola datawith a space are not valid names.

If you really want to use these characters in your object names, you can enclose the names in backticks:

`ebola-data`
`ebola~data`
`ebola data`

All of the above are valid R object names. For example, type and run the following code:
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`ebola~data` <- ebola_data
`ebola~data`

But in general you should avoid using backticks to rescue bad object names. Just write proper names.

Ď Practice

Question 6
In the code chunk below, we are attempting to take the top 20 rows of the ebola_data table. All but
one of these lines has an error. Which line will run properly?

20_top_rows <- head(ebola_data, 20)
twenty-top-rows <- head(ebola_data, 20)
top_20_rows <- head(ebola_data, 20)

4.6 Functions

Much of your work in R will involve calling functions.

You can thinkof each function as amachine that takes in some input (orarguments) and returns someoutput.

So far you have already seenmany functions, including, sqrt(), paste() and plot(). Run the lines below to
refresh your memory:

sqrt(100)
paste("I am number", 2 + 2)
plot(women)

4.6.1 Basic function syntax

The standard way to call a function is to provide a value for each argument :

function_name(argument1 = "value", argument2 = "value")

Let’s demonstrate this with the head() function, which returns the first few elements of an object.
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To return the first three rows of the Ebola dataset, you run:

head(x = ebola_data, n = 3)

id age sex status date_of_onset date_of_sample district
1 167 55 M confirmed 2014-06-15 2014-06-21 Kenema
2 129 41 M confirmed 2014-06-13 2014-06-18 Kailahun
3 270 12 F confirmed 2014-06-28 2014-07-03 Kailahun

In the code above, head() takes in two arguments:

• x , the object of interest, and

• n, the number of elements to return.

We can also swap the order of the arguments:

head(n = 3, x = ebola_data)

id age sex status date_of_onset date_of_sample district
1 167 55 M confirmed 2014-06-15 2014-06-21 Kenema
2 129 41 M confirmed 2014-06-13 2014-06-18 Kailahun
3 270 12 F confirmed 2014-06-28 2014-07-03 Kailahun

If you put the argument values in the right order, you can skip typing their names. So the following two lines
of code are equivalent and both run:

head(x = ebola_data, n = 3)

id age sex status date_of_onset date_of_sample district
1 167 55 M confirmed 2014-06-15 2014-06-21 Kenema
2 129 41 M confirmed 2014-06-13 2014-06-18 Kailahun
3 270 12 F confirmed 2014-06-28 2014-07-03 Kailahun

head(ebola_data, 3)

id age sex status date_of_onset date_of_sample district
1 167 55 M confirmed 2014-06-15 2014-06-21 Kenema
2 129 41 M confirmed 2014-06-13 2014-06-18 Kailahun
3 270 12 F confirmed 2014-06-28 2014-07-03 Kailahun

But if the argument values are in thewrong order, youwill get an error if you do not type the argument names.
Below, the first line runs but the second does not run:

head(n = 3, x = ebola_data)
head(3, ebola_data)

(To see the “correct order” for the arguments, take a look at the help file for the head() function)
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Some function arguments can be skipped altogether, because they have default values.

For example, with head(), the default value of n is 6, so running just head(ebola_data)will return the first
6 rows.

head(ebola_data)

id age sex status date_of_onset date_of_sample district
1 167 55 M confirmed 2014-06-15 2014-06-21 Kenema
2 129 41 M confirmed 2014-06-13 2014-06-18 Kailahun
3 270 12 F confirmed 2014-06-28 2014-07-03 Kailahun
4 187 NA F confirmed 2014-06-19 2014-06-24 Kailahun
5 85 20 M confirmed 2014-06-08 2014-06-24 Kailahun
6 277 30 F confirmed 2014-06-29 2014-07-01 Kenema

To see the arguments to a function, press the Tab key when your cursor is inside the function’s parentheses:

Ď Practice

Question 7
In the code lines below, we are attempting to take the top 6 rows of the women dataset (which is built
into R). Which line is invalid?

head(women)
head(women, 6)
head(x = women, 6)
head(x = women, n = 6)
head(6, women)

(If you are not sure, just try typing and running each line. Remember that the goal here is for you to gain
some practice.)

Let’s spend some time playingwith another function, the paste() function, which we already saw above, This
function is a bit special because it can take in any number of input arguments.

So you could have two arguments:

paste("Luigi", "Fenway")
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[1] "Luigi Fenway"

Or four arguments:

paste("Luigi", "Fenway", "Luigi", "Fenway")

[1] "Luigi Fenway Luigi Fenway"

And so on up to infinity.

And as you might recall, we can also paste() named objects:

first_name <- "Luigi"
paste("My name is", first_name, "and my last name is", last_name)

[1] "My name is Luigi and my last name is Fenway"

Ĺ Pro Tip

Functions like paste() can take in many values because they have a special argument, an ellipsis: … If
you consult the help file for the paste function, you will see this:

Another useful argument for paste() is called sep. It tells R what character to use to separate the terms:

paste("Luigi", "Fenway", sep = "-")

[1] "Luigi-Fenway"

4.6.2 Nesting functions

The output of a function can be immediately taken in by another function. This is called function nesting.

For example, the function tolower() converts a string to lower case.

tolower("LUIGI")

[1] "luigi"

You can take the output of this and pass it directly into another function:

paste(tolower("LUIGI"), "is my name")

[1] "luigi is my name"
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Without this option of nesting, you would have to assign an intermediate object:

my_lowercase_name <- tolower("LUIGI")
paste(my_lowercase_name, "is my name")

[1] "luigi is my name"

Function nesting will come in very handy soon.

Ď Practice

Question 8
The code chunks below are all examples of function nesting. One of the lines has an error. Which line is
it, and what is the error?

sqrt(head(women))

paste(sqrt(9), "plus 1 is", sqrt(16))

sqrt(tolower("LUIGI"))

4.7 Packages

As we mentioned previously, R is wonderful because it is user extensible: anyone can create a software pack-
age that adds new functionality. Most of R’s power comes from these packages.

In the previous lesson, you installed and loaded the {highcharter} package using the install.packages()
and library() functions. Let’s learn a bit more about packages now.

4.7.1 A first example: the {tableone} package

Let’s now install and use another R package, called tableone:

install.packages("tableone")

library(tableone)

Note that you only need to install a package once, but you have to load it with library() each time you want
to use it. This means that you should generally run the install.packages() line directly from the console,
rather than typing it into your script.
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The package eases the construction of “Table 1”, i.e. a table with characteristics of the study sample that is
commonly found in biomedical research papers.

The simplest use case is summarizing the whole dataset. You can just feed in the data frame to the data
argument of the main workhorse function CreateTableOne().

CreateTableOne(data = ebola_data)

Overall
n 200
id (mean (SD)) 146.00 (82.28)
age (mean (SD)) 33.12 (17.85)
sex = M (%) 76 (38.0)
status = suspected (%) 18 ( 9.0)
date_of_onset (%)

2014-05-18 1 ( 0.5)
2014-05-20 1 ( 0.5)
2014-05-21 1 ( 0.5)
2014-05-22 2 ( 1.0)
2014-05-23 1 ( 0.5)
2014-05-24 2 ( 1.0)
2014-05-26 8 ( 4.0)
2014-05-27 7 ( 3.5)
2014-05-28 1 ( 0.5)
2014-05-29 9 ( 4.5)
2014-05-30 4 ( 2.0)
2014-05-31 2 ( 1.0)
2014-06-01 2 ( 1.0)
2014-06-02 1 ( 0.5)
2014-06-03 1 ( 0.5)
2014-06-05 1 ( 0.5)
2014-06-06 5 ( 2.5)
2014-06-07 3 ( 1.5)
2014-06-08 4 ( 2.0)
2014-06-09 1 ( 0.5)
2014-06-10 22 (11.0)
2014-06-11 1 ( 0.5)
2014-06-12 7 ( 3.5)
2014-06-13 15 ( 7.5)
2014-06-14 8 ( 4.0)
2014-06-15 3 ( 1.5)
2014-06-16 1 ( 0.5)
2014-06-17 4 ( 2.0)
2014-06-18 5 ( 2.5)
2014-06-19 8 ( 4.0)
2014-06-20 7 ( 3.5)
2014-06-21 2 ( 1.0)
2014-06-22 1 ( 0.5)
2014-06-23 2 ( 1.0)
2014-06-24 8 ( 4.0)
2014-06-25 6 ( 3.0)
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2014-06-26 10 ( 5.0)
2014-06-27 9 ( 4.5)
2014-06-28 17 ( 8.5)
2014-06-29 7 ( 3.5)

date_of_sample (%)
2014-05-23 1 ( 0.5)
2014-05-25 1 ( 0.5)
2014-05-26 1 ( 0.5)
2014-05-27 2 ( 1.0)
2014-05-28 1 ( 0.5)
2014-05-29 2 ( 1.0)
2014-05-31 9 ( 4.5)
2014-06-01 6 ( 3.0)
2014-06-02 1 ( 0.5)
2014-06-03 9 ( 4.5)
2014-06-04 4 ( 2.0)
2014-06-05 1 ( 0.5)
2014-06-06 2 ( 1.0)
2014-06-07 2 ( 1.0)
2014-06-10 2 ( 1.0)
2014-06-11 4 ( 2.0)
2014-06-12 3 ( 1.5)
2014-06-13 3 ( 1.5)
2014-06-14 1 ( 0.5)
2014-06-15 21 (10.5)
2014-06-16 1 ( 0.5)
2014-06-17 5 ( 2.5)
2014-06-18 13 ( 6.5)
2014-06-19 9 ( 4.5)
2014-06-21 8 ( 4.0)
2014-06-22 7 ( 3.5)
2014-06-23 6 ( 3.0)
2014-06-24 6 ( 3.0)
2014-06-25 3 ( 1.5)
2014-06-27 5 ( 2.5)
2014-06-28 2 ( 1.0)
2014-06-29 8 ( 4.0)
2014-06-30 6 ( 3.0)
2014-07-01 4 ( 2.0)
2014-07-02 16 ( 8.0)
2014-07-03 13 ( 6.5)
2014-07-04 2 ( 1.0)
2014-07-05 2 ( 1.0)
2014-07-06 1 ( 0.5)
2014-07-08 3 ( 1.5)
2014-07-12 1 ( 0.5)
2014-07-14 1 ( 0.5)
2014-07-17 1 ( 0.5)
2014-07-21 1 ( 0.5)

district (%)
Bo 4 ( 2.0)
Kailahun 146 (73.0)
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Kenema 41 (20.5)
Kono 2 ( 1.0)
Port Loko 2 ( 1.0)
Western Urban 5 ( 2.5)

You can see there are 200 patients in this dataset, the mean age is 33 and 38% of the sample of the sample is
male, among other details.

Very cool! (One problem is that the package is assuming that the date variables are categorical; because of
this the output table is much too long!)

The point of this demonstration of {tableone} is to show you that there is a lot of power in external R packages.
This is a big strength of working with R, an open-source language with a vibrant ecosystem of contributors.
Thousands of people are working right now on packages that may be helpful to you one day.

You can Google search “Cool R packages” and browse through the answers if you are eager to learn about
more R packages.

Ĺ Side Note

You may have noticed that we embrace package names in curly braces, e.g. {tableone}. This is just a
styling convention among R users/teachers. The braces do notmean anything.

4.7.2 Full signifiers

The full signifier of a function includesboth thepackagenameand the functionname: package::function().

So for example, instead of writing:

CreateTableOne(data = ebola_data)

We could write this function with its full signifier, package::function():

tableone::CreateTableOne(data = ebola_data)

You usually do not need to use these full signifiers in your scripts. But there are some situations where it is
helpful:

The most common reason is that you want to make it very clear which package a function comes from.

Secondly, you sometimes want to avoid needing to run library(package) before accessing the functions
in a package. That is, you want to use a function from a package without first loading that package from the
library. In that case, you can use the full signifier syntax.

So the following:

tableone::CreateTableOne(data = ebola_data)

is equivalent to:

library(tableone)
CreateTableOne(data = ebola_data)
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Ď Practice

Question 9
Consider the code below:

tableone::CreateTableOne(data = ebola_data)

Which of the following is a correct interpretation of what this code means:
A. The code applies the CreateTableOne function from the {tableone} package on the ebola_data
object.
B. The code applies the CreateTableOne argument from the {tableone} function on the ebola_data
package.
C. The code applies the CreateTableOne function from the {tableone} package on the ebola_data
package.

4.7.3 pacman::p_load()

Rather than use two separate functions, install.packages() then library(), to install then load pack-
ages, you can use a single function, p_load(), from the {pacman} package to automatically install a package
if it is not yet installed, and load the package. We encourage this approach in the rest of this course.

Install {pacman} now by running this in your console:

install.packages("pacman")

Fromnowon,whenyouare introduced toanewpackage, you can simplyuse,pacman::p_load(package_name)
to both install and load the package:

Try this now for the outbreaks package, which we will use soon:

pacman::p_load(outbreaks)

Now we have a small problem. The wonderful function pacman::p_load() automatically installs and loads
packages.

But it would be nice to have some code that automatically installs the {pacman} package itself, if it is missing
on a user’s computer.

But if you put the install.packages() line in a script, like so:

install.packages("pacman")
pacman::p_load(here, rmarkdown)

you will waste a lot of time. Because every time a user opens and runs a script, it will reinstall {pacman}, which
can take a while. Instead we need code that first checks whether pacman is not yet installed and installs it if
this is not the case.

We can do this with the following code:

if(!require(pacman)) install.packages("pacman")
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You do not have to understand it at the moment, as it uses some syntax that you have not yet learned. Just
note that in future chapters, we will often start a script with code like this:

if(!require(pacman)) install.packages("pacman")
pacman::p_load(here, rmarkdown)

The first line will install {pacman} if it is not yet installed. The second line will use p_load() function from
{pacman} to load the remaining packages (and pacman::p_load() installs any packages that are not yet in-
stalled).

Phew! Hope your head is still intact.

Ď Practice

Question 10
At the start of an R script, we would like to install and load the package called {janitor}. Which of the
following code chunks do we recommend you have in your script?

A.

if(!require(pacman)) install.packages("pacman")
pacman::p_load(janitor)

B.

install.packages("janitor")
library(janitor)

C.

install.packages("janitor")
pacman::p_load(janitor)

4.8 Wrapping up

With your new knowledge of R objects, R functions and the packages that functions come from, you are ready,
believe it or not, to dobasic data analysis in R.We’ll jump into this headfirst in thenext lesson. See you there!

4.9 Answers

1. True.

2. The division sign is evaluated first.

3. The answer is C. The code 2 + 2 + 2 gets evaluated before it is stored in the object.

4. a. The value is 1. The code evaluates to 9-8.

b. table(ebola_data$district)

64



4.9. ANSWERS CHAPTER 4. CODING BASICS

5. a. You cannot add two character strings. Adding only works for numbers.

b. my_1st_name is typed with the number 1 initially, but in the paste() command, it is typed with the
letter “I”.

6. The third line is the only line with a valid object name: top_20_rows

7. The last line, head(6, women), is invalid because the arguments are in the wrong order and they are
not named.

8. The third code chunk has a problem. It attempts to find the square root of a character, which is impos-
sible.

9. The first line, A, is the correct interpretation.

10. The first code chunk is the recommended way to install and load the package {janitor}
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Chapter 5

Data dive: Ebola in Sierra Leone

Learning objectives

1. You can use RStudio’s graphic user interface to import CSV data into R.

2. You can explain the concept of reproducibility.

3. You can use the nrow(), ncol() and dim() functions to get the dimensions of a dataset, and the
summary() function to get a summary of the dataset’s variables.

4. You can use vis_dat(), inspect_num() and inspect_cat() to obtain visual summaries of a dataset.

5. You can inspect a numeric variable:

• with the summary functions mean() , median(), max(), min(), length() and sum();

• with esquisse-generated ggplot2 code.

6. You can inspect a categorical variable:

• with the summary functions table() and janitor::tabyl();

• with the graphical functions barplot() and pie().

5.1 Introduction

With your newly-acquired knowledgeof functions andobjects, younowhave thebasic buildingblocks required
to do simple data analysis in R. So let’s get started. The goal is to start workingwith data as quickly as possible,
even before you feel ready.

Here you will analyze a dataset of confirmed and suspected cases of Ebola hemorrhagic fever in Sierra Leone
in May and June of 2014 (Fang et al., 2016). The data is shown below:
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# A tibble: 10 x 7
id age sex status date_of_onset date_of_sample district

<dbl> <dbl> <chr> <chr> <date> <date> <chr>
1 92 6 M confirmed 2014-06-10 2014-06-15 Kailahun
2 51 46 F confirmed 2014-05-30 2014-06-04 Kailahun
3 230 NA M confirmed 2014-06-26 2014-06-30 Kenema
4 139 25 F confirmed 2014-06-13 2014-06-18 Kailahun
5 8 8 F confirmed 2014-05-22 2014-05-27 Kailahun
6 215 49 M confirmed 2014-06-24 2014-06-29 Kailahun
7 189 13 F confirmed 2014-06-19 2014-06-24 Kailahun
8 115 50 M confirmed 2014-06-10 2014-06-25 Kailahun
9 218 35 F confirmed 2014-06-25 2014-06-28 Kenema
10 159 38 F confirmed 2014-06-14 2014-06-22 Kailahun

You will import and explore this dataset, then use R to answer the following questions about the outbreak:

• When was the first case reported?
• What was the median age of those affected?
• Had there been more cases in men or women?
• What district had had the most reported cases?
• By the end of June 2014, was the outbreak growing or receding?

5.2 Script setup

First, open a new script in RStudiowith File > New File > R Script. (If you are on RStudio, you can open
up any of your previously-created projects.)

Next, save the script with File > Save As or press Command/Control + S to bring up the Save File dialog
box. Save the file with the name “ebola_analysis” or something similar

Ĺ Side Note

Empty your environment at the start of the analysis
When you start a new analysis, your R environment should usually be empty. Verify this by opening
the Environment tab; it should say “Environment is empty”. If instead, it shows some previously-loaded
objects, it is recommended to restart R by going to the menu option Session > Restart R

5.2.1 Header

Add a title, name and date to the start of the script, as code comments. This is generally good practice for
writing R scripts, as it helps give you and your collaborators context about your script. Your header may look
like this:

## Ebola Sierra Leone analysis
## John Sample-Name Doe
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## 2024-01-01

5.2.2 Packages

Next, use the p_load() function from {pacman} to load the packages you will be using. Put this under a
section header called “Load packages”, with four hyphens, as shown below:

## Load packages ----
if(!require(pacman)) install.packages("pacman")
pacman::p_load(
tidyverse, # meta-package
inspectdf,
plotly,
janitor,
visdat,
esquisse

)

Ĺ Reminder

Remember that the full signifier of a function includes both the package name and the function name,
package::function(). This full signifier is handy if youwant to use a function before you have loaded
its source package. This is the case in the code chunk above: we want use p_load() from {pacman}
without formally loading the {pacman} package, so we type pacman::p_load()
We could also first load {pacman} before using the p_load function:

library(pacman) # first load {pacman}
p_load(tidyverse) # use `p_load` from {pacman} to load other packages

(Also recall that the benefit of p_load() is that it automatically installs a package if it is not yet installed.
Withoutp_load(), you have tofirst install the packagewithinstall.packages()before you can load
it with library().)

5.3 Importing data into R

Now that the needed packages are loaded, you should import the dataset.

Ĺ Side Note

About the Ebola dataset
The data youwill be working on contains a sample of patient information from the 2014-2016 Ebola out-
break in Sierra Leone. It comes from a research paper which analyzed the transmission dynamics of that
outbreak. Key variables include the status of a case, whether the case was “confirmed” or “suspected”;
the date_of_onset, when Ebola-like symptoms arose in a patient; and the date_of_sample, when the
test sample was taken. To learn more about these data, visit the source publication here: bit.ly/ebola-
data-source. Or search the following DOI on DOI.org: 10.1073/pnas.1518587113.

Go to bit.ly/view-ebola-data to view the dataset you will be working on. Then click the download icon at the
top to download it to your computer.
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You can leave the dataset in your downloads folder, ormove it to somewheremore respectable; the upcoming
stepswill work independent ofwhere the data is stored. In the next lesson, youwill learn how to organize your
data analysis projects properly, and we will think about the ideal folder setup for storing data.

Ĺ RStudio Cloud

NOTE: If you are using RStudio Cloud, you need to upload your dataset to the cloud. Do this in the “Files”
tab by clicking on the “Upload” button.

Next, on theRStudiomenu, go toFile > Import Dataset > From Text (readr).

Browse through the computer’s files and navigate to the downloaded dataset. Click to open it. You should
see an import dialog box like this:
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Leave all the import settings at the default values; simply click on “Import” at the bottom; this should load
the dataset into R. You can tell this by looking at your environment pane, which should now feature an object
called “ebola_sierra_leone” or something similar:

RStudio should also have called the View() function on your dataset, so you should see a familiar spreadsheet
view of this data:

Now take a look at your console. Do you observe that your actions in the graphical user interface actually
triggered some R code to be run? Copy the line of code that includes the read_csv() function, leaving out
the > symbol.

Paste the copied code into your R script, and label this section “Load data”. This may look something like the
below (the file path inside quotes will differ from computer to computer.
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## Load data ----
ebola_sierra_leone <- read_csv("~/Downloads/ebola_sierra_leone.csv")

Ĺ Recap

Nice work so far!
Your R script should look similar to this:

## Ebola Sierra Leone analysis
## John Sample-Name Doe
## 2024-01-01

## Load packages ----
if(!require(pacman)) install.packages("pacman")
pacman::p_load(
tidyverse,
inspectdf,
plotly,
janitor,
visdat

)

## Load data ----
ebola_sierra_leone <- read_csv("~/Downloads/ebola_sierra_leone.csv")

5.4 Intro to reproducibility

Now that the code for importing data is in your R script, you can easily rerun this script anytime to reimport
the dataset; there will be no need to redo the manual point-and-click procedure for data import.

Try restarting R and rerunning the script now. Save your script with Control/Command + s , then restart R
with the RStudio Menu, at Session > Restart R. On RStudio Cloud, the menu option looks like this:

If restarting is successful, your console should print this message:

You should also see the phrase “Environment is empty” in the Environment tab, indicating that the dataset
you imported is no longer stored by R—you are starting with a fresh workspace.
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To re-run your script, use Command/Control + a to highlight all the code, then Command/Control + Enter to
run it.

If this worked, congratulations; you have the beginnings of your first “reproducible” analysis script!

Ĺ Vocab

What does “reproducible” mean?
When you do things with code rather than by pointing and clicking, it is easy for anyone to re-run, or
reproduce these steps, by simply re-running your script.
While you can use RStudio’s graphical user interface to point-and-click your way through the data import
process, you should always copy the relevant code to your script so that your script remains a repro-
ducible record of all your analysis steps.
Of course, your script so far is not yet entirely reproducible, because the file path for the dataset (the
one that looks like this: “…intro-to-data-analysis-with-r/ch01_getting_started/data…”) is specific to just
your computer. Later on we will see how to use relative file paths, so that the code for importing data
can work on anyone’s computer.

¾ Watch Out

If your environment was not empty after restarting R, it means you skipped a step in a previous lesson.
Do this now:

• In the RStudio Menu, go to Tools > Global Options to bring up RStudio’s options dialog box.

• Then go to General > Basic, and uncheck the box that says “Restore .RData into workspace at
startup”.

• For the option, “save your workspace to .RData on exit”, set this to “Never”.
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5.5 Quick data exploration

Now let’s walk through some basic steps of data exploration—taking a broad, bird’s eye look at the dataset.
You should put this section under a heading like “Explore data” in your script.

To view the top and bottom 6 rows of the dataset, you can use the head() and tail() functions:

## Explore data ----
head(ebola_sierra_leone)

# A tibble: 6 x 7
id age sex status date_of_onset date_of_sample district

<dbl> <dbl> <chr> <chr> <date> <date> <chr>
1 92 6 M confirmed 2014-06-10 2014-06-15 Kailahun
2 51 46 F confirmed 2014-05-30 2014-06-04 Kailahun
3 230 NA M confirmed 2014-06-26 2014-06-30 Kenema
4 139 25 F confirmed 2014-06-13 2014-06-18 Kailahun
5 8 8 F confirmed 2014-05-22 2014-05-27 Kailahun
6 215 49 M confirmed 2014-06-24 2014-06-29 Kailahun

tail(ebola_sierra_leone)

# A tibble: 6 x 7
id age sex status date_of_onset date_of_sample district

<dbl> <dbl> <chr> <chr> <date> <date> <chr>
1 214 6 F confirmed 2014-06-24 2014-06-30 Kenema
2 28 45 F confirmed 2014-05-27 2014-06-01 Kailahun
3 12 27 F confirmed 2014-05-22 2014-05-27 Kailahun
4 110 6 M confirmed 2014-06-10 2014-06-15 Kailahun
5 209 40 F confirmed 2014-06-24 2014-06-27 Kailahun
6 35 29 M suspected 2014-05-28 2014-06-01 Kenema
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To view the whole dataset, use the View() function.

View(ebola_sierra_leone)

This will again open a familiar spreadsheet view of the data:

You can close this tab and return to your script.

The functions nrow(), ncol() and dim() give you the dimensions of your dataset:

nrow(ebola_sierra_leone) # number of rows

[1] 200

ncol(ebola_sierra_leone) # number of columns

[1] 7

dim(ebola_sierra_leone) # number of rows and columns

[1] 200 7

Ĺ Reminder

If you’re not surewhat a function does, remember that you can get function helpwith the questionmark
symbol. For example, to get help on the ncol() function, run:

?ncol

Another often-helpful function is summary():

summary(ebola_sierra_leone)
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id age sex status
Min. : 1.00 Min. : 1.80 Length:200 Length:200
1st Qu.: 62.75 1st Qu.:20.00 Class :character Class :character
Median :131.50 Median :35.00 Mode :character Mode :character
Mean :136.72 Mean :33.85
3rd Qu.:208.25 3rd Qu.:45.00
Max. :285.00 Max. :80.00

NA's :4
date_of_onset date_of_sample district
Min. :2014-05-18 Min. :2014-05-23 Length:200
1st Qu.:2014-06-01 1st Qu.:2014-06-07 Class :character
Median :2014-06-13 Median :2014-06-18 Mode :character
Mean :2014-06-12 Mean :2014-06-17
3rd Qu.:2014-06-23 3rd Qu.:2014-06-29
Max. :2014-06-29 Max. :2014-07-17

As you can see, for numeric columns in your dataset, summary() gives you the minimum value, the maximum
value, the mean, median and the 1st and 3rd quartiles.

For character columns it gives you just the length of the column (the number of rows), the “class” and the
“mode”. We will discuss what “class” and “mode” mean later.

5.5.1 vis_dat()

The vis_dat() function from the {visdat} package is a wonderful way to quickly visualize the data types and
the missing values in a dataset. Try this now:

vis_dat(ebola_sierra_leone)
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From this figure, you can quickly see the character, date and numeric data types, and you can note that age is
missing for some cases.

5.5.2 inspect_cat() and inspect_num()

Next, inspect_cat() and inspect_num() from the {inspectdf} package give you visual summaries of the
distribution of variables in the dataset.

If you run inspect_cat() on the data object, you get a tabular summary of the categorical variables in the
dataset, with some information hidden in the levels column (later you will learn how to extract this informa-
tion).

inspect_cat(ebola_sierra_leone)

# A tibble: 5 x 5
col_name cnt common common_pcnt levels
<chr> <int> <chr> <dbl> <named list>

1 date_of_onset 39 2014-06-10 10 <tibble [39 x 3]>
2 date_of_sample 45 2014-06-15 9.5 <tibble [45 x 3]>
3 district 7 Kailahun 77.5 <tibble [7 x 3]>
4 sex 2 F 57 <tibble [2 x 3]>
5 status 2 confirmed 91 <tibble [2 x 3]>

But the magic happens when you run show_plot() on the result from inspect_cat():

## store the output of `inspect_cat()` in `cat_summary`
cat_summary <- inspect_cat(ebola_sierra_leone)

## call the `show_plot()` function on that summmary.
show_plot(cat_summary)

confirmed

MF

Kailahun Kenema

2014−06−10

status

sex

district

date_of_sample

date_of_onset

Gray segments are missing values
Frequency of categorical levels in df::ebola_sierra_leone
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You get a wonderful figure showing the distribution of all categorical and date variables!

Ĺ Side Note

You could also run:

show_plot(inspect_cat(ebola_sierra_leone))

confirmed

MF

Kailahun Kenema

2014−06−10

status

sex

district

date_of_sample

date_of_onset

Gray segments are missing values
Frequency of categorical levels in df::ebola_sierra_leone

From this plot, you can quickly tell that most cases are in Kailahun, and that there are more cases in women
than in men (“F” stands for “female”).

One problem is that in this plot, the smaller categories are not labelled. So, for example, we are not sure what
value is represented by the white section for “status” at the bottom right. To see labels on these smaller cat-
egories, you can turn this into an interactive plot with the ggplotly() function from the {plotly} package.

cat_summary_plot <- show_plot(cat_summary)
ggplotly(cat_summary_plot)

Wonderful! Now you can hover over each of the bars to see the proportion of each bar section. For example
you can now tell that 9% (0.090) of the cases have a suspected status:

Ĺ Reminder

The assignment arrow, <-, can bewrittenwith the RStudio shortcut alt + - (altANDminus) onWindows
or option + - (option ANDminus) on macOS.
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You can obtain a similar plot for the numerical (continuous) variables in the dataset with inspect_num().
Here, we show all three steps in one go.

num_summary <- inspect_num(ebola_sierra_leone)
num_summary_plot <- show_plot(num_summary)
ggplotly(num_summary_plot)

This gives you anoverviewof the numerical columns, age andid. (Of course, the distribution of theid variable
is not meaningful.)

You can tell that individuals aged 35 to 40 (mid-point 37.5) are the largest age group, making up 13.8%
(0.1377…) of the cases in the dataset.

5.6 Analyzing a single numeric variable

Now that you have a sense of what the entire dataset looks like, you can isolate and analyze single variables
at a time—this is called univariate analysis.

Go ahead and create a new section in your script for this univariate analysis.

## Univariate analysis, numeric variables ----

Let’s start by analyzing the numeric age variable.

5.6.1 Extract a column vector with $

To extract a single variable/column from a dataset, use the dollar sign, $ operator:

ebola_sierra_leone$age # extract the age column in the dataset

[1] 6.0 46.0 NA 25.0 8.0 49.0 13.0 50.0 35.0 38.0 60.0 18.0 10.0 14.0 50.0
[16] 35.0 43.0 17.0 3.0 60.0 38.0 41.0 49.0 12.0 74.0 21.0 27.0 41.0 42.0 60.0
[31] 30.0 50.0 50.0 22.0 40.0 35.0 19.0 3.0 34.0 21.0 73.0 65.0 30.0 70.0 12.0
[46] 15.0 42.0 60.0 14.0 40.0 33.0 43.0 45.0 14.0 14.0 40.0 35.0 30.0 17.0 39.0
[61] 20.0 8.0 40.0 42.0 53.0 18.0 40.0 20.0 45.0 40.0 60.0 44.0 33.0 23.0 45.0
[76] 7.0 NA 35.0 36.0 42.0 35.0 25.0 30.0 30.0 28.0 14.0 20.0 60.0 67.0 35.0
[91] 50.0 4.0 28.0 38.0 30.0 26.0 37.0 30.0 3.0 56.0 32.0 35.0 54.0 42.0 48.0
[106] 11.0 1.8 63.0 55.0 20.0 62.0 62.0 42.0 65.0 29.0 20.0 33.0 30.0 35.0 NA
[121] 50.0 16.0 3.0 22.0 7.0 50.0 17.0 40.0 21.0 9.0 27.0 52.0 50.0 25.0 10.0
[136] 30.0 32.0 38.0 30.0 50.0 26.0 35.0 3.0 50.0 60.0 40.0 34.0 4.0 42.0 NA
[151] 54.0 18.0 45.0 30.0 35.0 35.0 16.0 26.0 23.0 45.0 45.0 45.0 38.0 45.0 35.0
[166] 30.0 60.0 5.0 18.0 2.0 70.0 35.0 3.0 30.0 80.0 62.0 20.0 45.0 18.0 28.0
[181] 48.0 38.0 39.0 26.0 60.0 35.0 20.0 50.0 11.0 36.0 29.0 57.0 35.0 26.0 6.0
[196] 45.0 27.0 6.0 40.0 29.0
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Ĺ Vocab

This list of values is called a vector in R. A vector is a kind of data structure that has elements of one type.
In this case, the type is “numeric”. We will formally introduce you to vectors and other data structures in
a future chapter. In this lesson, you can take “vector” and “variable” to be synonyms.

5.6.2 Basic operations on a numeric variable

To get the mean of these ages, you could run:

mean(ebola_sierra_leone$age)

[1] NA

But it seemswe have a problem. R says themean is NA, whichmeans “not applicable” or “not available”. This is
because there are somemissing values in the vector of ages. (Did you notice thiswhen you printed the vector?)
By default, R cannot find themean if there aremissing values. To ignore these values, use the argument na.rm
(which stands for “NA remove”) setting it to T, or TRUE:

mean(ebola_sierra_leone$age, na.rm = T)

[1] 33.84592

Great! This need to remove the NAs before computing a statistic applies to many functions. The median()
function for example, will also return NA by default if it is called on a vector with any NAs:

median(ebola_sierra_leone$age) # does not work

[1] NA

median(ebola_sierra_leone$age, na.rm = T) # works

[1] 35

mean and median are just two of many R functions that can be used to inspect a numerical variable. Let’s look
at some others.

Butfirst, we canassign theagevector toanewobject, so youdon’t have tokeep typingebola_sierra_leone$age
each time.

age_vec <- ebola_sierra_leone$age # assign the vector to the object "age_vec"

Now run these functions on age_vec and observe their outputs:
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sd(age_vec, na.rm = T) # standard deviation

[1] 17.26864

max(age_vec, na.rm = T) # maximum age

[1] 80

min(age_vec, na.rm = T) # minimum age

[1] 1.8

summary(age_vec) # min, max, mean, quartiles and NAs

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
1.80 20.00 35.00 33.85 45.00 80.00 4

length(age_vec) # number of elements in the vector

[1] 200

sum(age_vec, na.rm = T) # sum of all elements in the vector

[1] 6633.8

Donot feel intimidated by the long list of functions! You should not have tomemorize them; rather you should
feel free to Google the function for whatever operation you want to carry out. You might search something
like “what is the function for standard deviation in R”. One of the first results should lead you to what you
need.

5.6.3 Visualizing a numeric variable

Now let’s create a graph to visualize the age variable. The two most common graphics for inspecting the
distribution of numerical variables are histograms (like the output of the inspect_num() function you saw
earlier) and boxplots.

R has built-in functions for these:

hist(age_vec)
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Histogram of age_vec
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Nice and easy!

Graphical functions like boxplot() and hist() are part of R’s base graphics package. These functions are quick
and easy to use, but they do not offer a lot of flexibility, and it is difficult to make beautiful plots with them.
So most people in the R community use an extension package, {ggplot2}, for their data visualization.

In this course, we’ll use ggplot indirectly; by using the {esquisse} package, which provides a user-friendly inter-
face for creating ggplot2 plots.

Theworkhorse functionof the {esquisse} package isesquisser(), and this function takes a single argument—
the dataset you want to visualize. So we can run:

esquisser(ebola_sierra_leone)
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This should bring a graphic user interface that you can use to plot different variables. To visualize the age
variable, simply drag age from the list of variables into the x axis box:

When age is in the x axis box, you should automatically get a histogram of ages:

You can change the plot type by clicking on the “Histogram” button and selecting one of the other valid plot
types. Try out the boxplot, violin plot and density plot and observe the outputs.
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When you are done creating a plot with {esquisse}, you should copy the code that was created by clicking on
the “Code” button at the bottom right then “Copy to clipboard”:

Now, paste that code into your script, andmake sure you can run it fromthere. The code should look something
like this:

ggplot(ebola_sierra_leone) +
aes(x = age) +
geom_histogram(bins = 30L, fill = "#112446") +
theme_minimal()
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By copying the generated code into your script, you ensure that the data visualization you created is fully
reproducible.

Ĺ Pro Tip

{esquisse} canonly create fairly simple graphics, sowhen youwant tomakehighly customizedor complex
plots, you will need to learn how to write {ggplot} codemanually. This will be the focus of a later course.

You should also test out the other tabs on the bottom toolbar to seewhat they do: Labels & Title, Plot options,
Appearance and Data.

Ĺ Challenge

Easy bivariate and multivariate plots
In this lessonwe are focusing on univariate analysis: exploring and visualizing one variable at a time. But
with esquisse; it is so easy to make a bivariate or multivariate plot, so you can already get your feet wet
with this.
Try the following plots:

• Drag age to the X box and sex to the Y box.

• Drag age to the X box, sex to the Y box, and sex to the fill box.

• Drag age to the X box and district to the Y box.

5.7 Analyzing a single categorical variable

Next, let’s look at a categorical variable, the districts of reported cases:

## Univariate analysis, categorical variables ----
ebola_sierra_leone$district

[1] "Kailahun" "Kailahun" "Kenema" "Kailahun"
[5] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[9] "Kenema" "Kailahun" "Kailahun" "Kailahun"
[13] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[17] "Kailahun" "Kenema" "Kono" "Kailahun"
[21] "Kailahun" "Kailahun" "Kenema" "Kailahun"
[25] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[29] "Kenema" "Kenema" "Kenema" "Kailahun"
[33] "Kailahun" "Bo" "Kailahun" "Kailahun"
[37] "Kailahun" "Kenema" "Kenema" "Kenema"
[41] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[45] "Kailahun" "Kailahun" "Western Urban" "Kailahun"
[49] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[53] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[57] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[61] "Kailahun" "Kenema" "Western Urban" "Kambia"
[65] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[69] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[73] "Kenema" "Kailahun" "Kailahun" "Kenema"
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[77] "Kailahun" "Kailahun" "Kenema" "Kailahun"
[81] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[85] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[89] "Kailahun" "Kenema" "Kailahun" "Kailahun"
[93] "Kailahun" "Kono" "Port Loko" "Kenema"
[97] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[101] "Kenema" "Kailahun" "Kailahun" "Kenema"
[105] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[109] "Kailahun" "Kailahun" "Kenema" "Western Urban"
[113] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[117] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[121] "Kailahun" "Kailahun" "Kenema" "Kailahun"
[125] "Kailahun" "Kenema" "Kailahun" "Port Loko"
[129] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[133] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[137] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[141] "Kailahun" "Kailahun" "Kailahun" "Kenema"
[145] "Kenema" "Kailahun" "Kenema" "Kailahun"
[149] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[153] "Kenema" "Kailahun" "Kailahun" "Kenema"
[157] "Kailahun" "Kenema" "Kailahun" "Kailahun"
[161] "Kenema" "Kailahun" "Kailahun" "Kailahun"
[165] "Kailahun" "Bo" "Kailahun" "Kailahun"
[169] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[173] "Kenema" "Kailahun" "Kailahun" "Kenema"
[177] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[181] "Kailahun" "Kailahun" "Kailahun" "Western Urban"
[185] "Kailahun" "Kailahun" "Kenema" "Kailahun"
[189] "Kailahun" "Kailahun" "Kailahun" "Kailahun"
[193] "Kailahun" "Kenema" "Kenema" "Kailahun"
[197] "Kailahun" "Kailahun" "Kailahun" "Kenema"

Sorry for printing that very long vector!

5.7.1 Frequency tables

You can use the table() function to create a frequency table of a categorical variable:

table(ebola_sierra_leone$district)

Bo Kailahun Kambia Kenema Kono
2 155 1 34 2

Port Loko Western Urban
2 4

You can see that most cases are in Kailahun and Kenema.
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table() is auseful “base” function. But there is a better function for creating frequency tables, called
tabyl(), from the {janitor} package.

To use it, you supply the name of your data frame as the first argument, then the name of variable to be
tabulated:

tabyl(ebola_sierra_leone, district)

district n percent
Bo 2 0.010

Kailahun 155 0.775
Kambia 1 0.005
Kenema 34 0.170
Kono 2 0.010

Port Loko 2 0.010
Western Urban 4 0.020

As you can see, tabyl() gives you both the counts and the percentage proportions of each value. It also has
some other attractive features you will see later.

Ĺ Pro Tip

You can also easily make cross-tabulations with tabyl(). Simply add additional variables separated by
a comma. For example, to create a cross-tabulation by district and sex, run:

tabyl(ebola_sierra_leone, district, sex)

district F M
Bo 0 2

Kailahun 91 64
Kambia 0 1
Kenema 20 14
Kono 0 2

Port Loko 1 1
Western Urban 2 2

The output shows us that there were 0 women in the Bo district, 2 men in the Bo district, 91 women in
the Kailahun district, and so on.

5.7.2 Visualizing a categorical variable

Now, let’s try to visualize the district variable. As before, the best way to do this is with the esquisser()
function from {esquisse}. Run this code again:

esquisser(ebola_sierra_leone)

Then drag the district variable to the X axis box:
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You should get a bar chart showing the count of individuals across districts. Copy the generated code and
paste it into your script.

5.8 Answering questions about the outbreak

With the functions you have just learned, you have the tools to answer the questions about the Ebola outbreak
that were listed at the top. Give it a go. Attempt these questions on your own, then look at the solutions
below.

• When was the first case reported? (Hint: look at the date of sample)
• As at the end of June 2014, which 10-year age group had had the most cases?
• What was the median age of those affected?
• Had there been more cases in men or women?
• What district had had the most reported cases?
• By the end of June 2014, was the outbreak growing or receding?

Solutions

• When was the first case reported?

min(ebola_sierra_leone$date_of_sample)

[1] "2014-05-23"

We don’t have the date of report, but the first “date_of_sample” (when the Ebola test sample was taken from
the patient) is May 23rd. We can use this as a proxy for the date of first report.

• What was the median age of cases?

median(ebola_sierra_leone$age, na.rm = T)

[1] 35

The median age of cases was 35.

• Are there more cases in men or women?
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tabyl(ebola_sierra_leone$sex)

ebola_sierra_leone$sex n percent
F 114 0.57
M 86 0.43

As seen in the table, there were more cases in women. Specifically, 57% of cases are of women.

• What district has had the most reported cases?

tabyl(ebola_sierra_leone$district)

ebola_sierra_leone$district n percent
Bo 2 0.010

Kailahun 155 0.775
Kambia 1 0.005
Kenema 34 0.170
Kono 2 0.010

Port Loko 2 0.010
Western Urban 4 0.020

## We can also plot the following chart (generated with esquisse)
ggplot(ebola_sierra_leone) +
aes(x = district) +
geom_bar(fill = "#112446") +
theme_minimal()
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As seen, the Kailahun district had the majority of cases.

• By the end of June 2014, was the outbreak growing or receding?

For this, we can use esquisse to generate a bar chart that shows a count of cases in each day. Simply drag the
date_of_onset variable to the x axis. The output code from esquisse should resemble the below:
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ggplot(ebola_sierra_leone) +
aes(x = date_of_onset) +
geom_histogram(bins = 30L, fill = "#112446") +
theme_minimal()
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Great! But it is debatable whether the outbreak was growing or receding at the end of June 2014; a precise
trend is not really clear!

5.9 Haven’t had enough?

If you would like to practice some of the methods and functions you learned on a similar dataset, try down-
loading the data that is stored on this page: https://bit.ly/view-yaounde-covid-data

That dataset is in the form of an Excel spreadsheet, so when you are importing the dataset with RStudio, you
should use the “From Excel” option (File > Import Dataset > From Excel).

This dataset contains the results of a COVID-19 serological survey conducted in Yaounde, Cameroon in late
2020. The survey estimated how many people had been infected with COVID-19 in the region, by testing for
IgG and IgM antibodies. The full dataset can be obtained from here: go.nature.com/3R866wx

5.10 Wrapping up

Congratulations! You have now taken your first baby steps in analyzing data with R: you imported a dataset,
explored its structure, performed basic univariate analysis and visualization on its numeric and categorical
variables, and you were able to answer important questions about the outbreak based on this.

Of course, this was only a sneak peek of the data analysis process—a lot was left out. Hopefully, though, this
sneak peek has gotten you a bit excited about what you can do with R. And hopefully, you can already start to
apply some of these to your own datasets. The journey is only beginning! See you soon.
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Chapter 6

RStudio projects

6.1 Learning objectives

1. You can set up an RStudio Project and create sub-directories for input data, scripts and analytic outputs.

2. You can import and export data within an RStudio Project.

3. You understand the difference between relative and absolute file paths.

4. You recognize the value of Projects for organizing and sharing your analyses.

6.2 Introduction

Previously, youwalked through someof the essential steps of data analysis, from importing data to calculating
basic statistics. But you skipped over one crucial step: setting up a data analysis project.

Experienced data analysts keep all the files associated with a specific analysis—input data, R scripts and ana-
lytic outputs—together in a single folder. These folders are called projects (small p), and RStudio has built-in
support for them via RStudio Projects (capital P).

In this lesson you will learn how to use these RStudio Projects to organize your data analysis coherently, and
improve the reproducibility of your work. You will replicate some of the analysis you did in the last data dive
lesson, but in the context of an RStudio Project.

Let’s get started.

6.3 Creating a new RStudio Project

Creating a new RStudio Project looks different if you are on a local computer and if you are on RStudio Cloud.
Jump to the section that is relevant for you.
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6.3.1 On RStudio Cloud

If you are using RStudio Cloud, you have probably already created a project, because you can’t do any analysis
without projects.

The steps are pretty simple: go to your Cloud homepage, rstudio.cloud, and click on the “New Project” but-
ton.

Name your Project something like ebola_analysis or ebola_analysis_proj if you already have a project
named ebola_analysis.

The RStudio Project you have now created is just a folder on a virtual computer, which has a .Rproj file within
it (and maybe a .RHistory file). You should be able to see this .Rproj file in the Files pane of RStudio:

Ĺ Key Point

The .RProj file is what turns a regular computer folder into an “RStudio Project”.

6.3.2 On a local computer

If you are on a local computer, open RStudio, then on the RStudio menu, go to File > New Project. Your
options may look a little different from the screenshots below depending on your operating system.

Choose “New directory”
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Then choose “New Project”:

You can call your Project something like “ebola_analysis” andmake it a “subdirectory” of a folder that is easy to
find, such as your desktop. (The phrase “Create project as subdirectory of” sounds scary, but it’s not; RStudio
is simply asking: “where should I put the project folder”?)

The RStudio Project you have created is just a folder with a .Rproj file within it (and maybe a .RHistory file).
You should be able to see this .Rproj file in the Files pane of RStudio:
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Ĺ Key Point

Click on the .Rproj file to open your project
The .RProj file is what turns a regular computer folder into an “RStudio Project”.
From now on, to open your project, you should double click on this .RProj file from your computer’s
Finder/File Explorer.
On Windows, here is an example of what a .Rproj file will look like from the File Explorer:

On macOS, here is an example of what a .Rproj file will look like from Finder:

Note also that there is a header at the top right of RStudio window that tells you which Project you currently
have open. Clicking on this gives you some additional Project options. You can create a new project, close a
project and open recent projects, among other options.
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6.4 Creating Project subfolders

Data analysis projects usually have at least three sub-folders: one for data, another for scripts, and a third for
outputs, as seen below:

Let’s look at the sub-folders one by one:

• data: This contains the source (raw) data files that you will use in the analysis. These could be CSV or
Excel files, for example.

• scripts: This sub-folder is where you keep your R scripts. You can also save RMarkdown files in this
folder. (You will learn about RMarkdown files soon.)

• outputs: Here, you save the outputs of your analysis, like plots and summary tables. These outputs
should be disposable and reproducible. That is, you should be able to regenerate the outputs by running
the code in your scripts. You will understand this better soon.

Now go ahead and create these three sub-folders, “data”, “scripts” and “outputs”. within your RStudio Project
folder. You should use the “New Folder” button on the RStudio Files pane to do this:
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6.5 Adding a dataset to the “data” folder

Next, you should move the Ebola dataset you downloaded in the previous lesson to the newly-created “data”
sub-folder (you can re-download that dataset at bit.ly/ebola-data if you can’t find where you stored it).

The procedure formoving this dataset to the “data” folder is different for RStudio Cloud users and those using
a local computer. Jump to the section that is relevant for you.

6.5.1 On RStudio Cloud

If you are on RStudio Cloud, adding the dataset to your “data” folder is straightfoward. Simply navigate to the
folder within the Files pane, then click the “Upload” button:

This will bring up a dialog box where you can select the file for upload.

6.5.2 On a local computer

On a local computer, this step has to be done with your computer’s File Explorer/Finder.

• First, locate the Project folder with your computer’s File Explorer/Finder. If you’re having trouble locat-
ing this, RStudio can help: go to the “Files” tab, click on “More” (the gear icon), then click “Show Folder
in NewWindow”.
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This will bring you to the Project folder in your computer’s File Explorer/Finder.

• Now, move the Ebola dataset you downloaded in the previous lesson to the newly-created “data” sub-
folder.

Here is what moving the file might look like on macOS:

6.6 Creating a script in the “scripts” folder

Next, create and save a new R script within the “scripts” folder. You can call this “main_analysis” or something
similar. To create a new R script within a folder, first navigate to that folder in the Files pane, then click the
“New Blank File” button and select “R script” in the dropdown:
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Ĺ Side Note

Note that this is different from what you have done so far when creating a new script (before, you used
the menu option, File > New File > New Script). The old way is still valid; but this “New Blank
File” button will probably be faster for you.

Greatwork so far! NowyourProject folder shouldhave the structure shownbelow,with the “ebola_sierra_leone.csv”
dataset in the “data” folder and the “main_analysis.R” script (still empty) in the “scripts” folder:

This is a process you should go through at the start of every data analysis project: set up an RStudio Project,
create the needed sub-folders, and put your datasets and scripts in the appropriate sub-folders. It can be a bit
painful, but it will pay off in the long run.

The rest of this lesson will teach you how to conduct your analysis in the context of this folder setup. At the
end, you will have an overall flow of data and outputs that resembles the diagram below:

You should refer back to this diagram as you proceed through the sections below to help orient yourself.

6.7 Importing data from the “data” folder

We will use the code snippet below to demonstrate the flow of data through a Project. Copy and paste this
snippet into your “main_analysis.R” script (but don’t run it yet). The code replicates parts of the analysis from
the data dive lesson.

## Ebola Sierra Leone analysis
## John Sample-Name Doe
## 2024-01-01

## Load packages ----

98



6.7. IMPORTING DATA FROM THE “DATA” FOLDER CHAPTER 6. RSTUDIO PROJECTS

Figure 6.1: Figure: Data flow in an R project. Scripts in the “scripts” folder import data from “data” folder and
export data and plots to the “outputs” folder
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if(!require(pacman)) install.packages("pacman")
pacman::p_load(
tidyverse,
janitor,
inspectdf,
here # new package we will use soon

)

## Load data ----
ebola_sierra_leone <- read_csv("") # DATA PENDING! WE WILL UPDATE THIS BELOW.

## Cases by district ----
district_tab <- tabyl(ebola_sierra_leone, district)
district_tab

## Visualize categorical variables ----
categ_vars_plot<- show_plot(inspect_cat(ebola_sierra_leone))
categ_vars_plot

## Visualize numeric variables ----
num_vars_plot <- show_plot(inspect_num(ebola_sierra_leone))
num_vars_plot

First run the “Load packages” section to install and/or load any needed packages.

Then proceed to the “Load data” section, which looks like this:

## Load data ----
ebola_sierra_leone <- read_csv("") # DATA PENDING! WE WILL UPDATE THIS BELOW.

Here you want to import the Ebola dataset that you previously placed inside the Project’s “data” folder. To do
this, you need to supply the file path of that dataset as the first argument of read_csv().

Because you are using an RStudio Project, this path can be obtained very easily: place your cursor inside the
quotation marks within the read_csv() function, and press the Tab key on your keyboard. You should see a
list of the sub-folders available in your Project. Something like this:

Click on the “data” folder, then press Tab again. Since you only have one file in the “data” folder, RStudio
should automatically fill in it’s name. You should now see:

ebola_sierra_leone <- read_csv("data/ebola_sierra_leone.csv")

Wonderful! Run this line of code now to import the data.

If this is successful, you should see the data appear in the Environment tab of RStudio:
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Ĺ Key Point

Relative paths
Thepath youhaveusedhere, “data/ebola_sierra_leone.csv”, is called a relative path, because it is relative
to the root (or the base) of your Project.
Howdoes R knowwhere the root of your Project is? That’s where the .RProj file comes in. This file, which
lives in the “ebola_analysis” folder tells R “here! Here! I am in the ‘ebola_analysis’ folder so this must be
the root!”. Thus, you only need to specify path components that are deeper than this root.
RStudio Projects, and the relative paths they allow you to use, are important for reproducibility. Projects
that use relative paths can be run on anyone’s computer, and the importing and exporting code should
workwithout any hiccups. Thismeans that you can send someone anRStudio Project folder and the code
should run on their machine just as it ran on yours!
This would not be the case if you were to use an absolute path, something like “~/Desk-
top/my_data_analysis/learning_r/ebola_sierra_leone.csv”, in your script. Absolute paths give the full
address of a file, and will not usually work on someone else’s computer, where files and folders will
be arranged differently.

Ĺ RStudio Cloud

Note that if you are using RStudio Cloud, you are forced to use relative paths, because you cannot access
the general file system of the virtual computer; you can only work within specific Project folders.

6.7.1 Using here::here()

As you have now seen, RStudio Projects simplify the data import process and improve the reproducibility of
your analysis, primarily because they allow you to use relative paths.

But there is onemore step we recommendwhen using relative paths: rather than leave your path naked, wrap
it in the here() function from the {here} package.

So, in thedata import sectionof your script, changeread_csv()’s input from"data/ebola_sierra_leone.csv"
to here("data/ebola_sierra_leone.csv"):

ebola_sierra_leone <- read_csv(here("data/ebola_sierra_leone.csv"))

What is the point of wrapping the path in here()? Well, technically, this is no real point in doing this in an
R script; the importing code works fine without it. But it will be necessary when you start using RMarkdown
scripts (which you will soon be introduced to), because paths not wrapped in here() are problematic in the
RMarkdown context.

So to keep things consistent, we always recommend you use here()when pointing to paths, whether in an R
script or an RMarkdown script
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6.8 Exporting data to the “outputs” folder

Importing data is not the only benefit of RStudio Projects; data export is also streamlined when you use
Projects. Let’s look at this now.

In the “Cases by district” section of your script, you should have:

## Cases by district ----
district_tab <- tabyl(ebola_sierra_leone, district)
district_tab

Run this code now; you should get the following tabular output:

district n percent
Bo 2 0.010

Kailahun 155 0.775
Kambia 1 0.005
Kenema 34 0.170
Kono 2 0.010

Port Loko 2 0.010
Western Urban 4 0.020

Now, imagine that you want to export this table as a CSV. It would be nice if there was a specific folder des-
ignated for such exports. Well, there is! It’s the “outputs” folder you created earlier. Let’s export your table
there now. Type out the code below (but don’t run it yet):

write_csv(x = district_tab, file = "")

With the write_csv() function, you are going to “write” (or “save”) the district_tab table as a CSV file.

The x argument of write_csv() takes in the object to be saved (in this case district_tab). And the
file argument takes in the target file path. This target file path can be a simple relative path: “out-
puts/district_table.csv”. (And, as mentioned before, we should wrap the path in here().) Type this up and
run it now:

write_csv(x = district_tab, file = here("outputs/district_table.csv"))

The path “outputs/district_table.csv” tells write_csv() to save the plot as a CSV file named “districts_table”
in the “outputs” folder of the Project.

Ĺ Side Note

You can replace “district_table.csv” with any other appropriate name, for example “freq table across
districts.csv”:

write_csv(x = district_tab, file = here("outputs/freq table across districts.csv"))

Great work! Now, if you go to the Files tab and navigate to the outputs folder of your Project, you should see
this newly created file:
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You can click on the file to view it within RStudio as a raw CSV:

This should bring up an RStudio viewer window:

If you instead want to view the CSV in Microsoft Excel, you can navigate to the same file in your computer’s
Finder/File Explorer and double-click on it from there.

Ĺ Reminder

To locate your Project folder in your computer’s Finder/File Explorer, go the “Files” tab, click on the gear
icon, then click “Show Folder in NewWindow”.
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Ĺ RStudio Cloud

If you are on RStudio cloud, then you won’t be able to view the CSV in Microsoft Excel until you have
“exported” it. Use the “Export” menu option in the Files tab. If this is not immediately visible, click on
the gear icon to bring up “More” options, then scroll through to find the “Export” option.

6.8.1 Overwriting data

If you need to update the output CSV, you can simply rerun the write_csv() function with the updated data
object.

To test this, replace the “Casesbydistrict” sectionof your scriptwith the following code. It uses thearrange()
function to arrange the table in order of the number of cases, n:

## Cases by district ----
district_tab <- tabyl(ebola_sierra_leone, district)
district_tab_arranged <- arrange(district_tab, -n)
district_tab_arranged

( -nmeans “sort in descending order of the n variable”; wewill introduce you to the arrange function properly
later on.)

The output should be:

district n percent
Kailahun 155 0.775
Kenema 34 0.170

Western Urban 4 0.020
Bo 2 0.010

Kono 2 0.010
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Port Loko 2 0.010
Kambia 1 0.005

You can now overwrite the old “district_table.csv” file by re-running the write_csv function with the
district_tab object:

write_csv(x = district_tab_arranged, file = here("outputs/district_table.csv"))

Toverify that thedatasetwas actually updated, observe the “Modified” time stamp in theRStudio Files pane:

6.9 Exporting plots to the “outputs” folder

Finally, let’s look at plot exporting in the context of an RStudio Project.

In the “Visualize categorical variables” section of your script, you should have:

## Visualize categorical variables ----
categ_vars_plot<- show_plot(inspect_cat(ebola_sierra_leone))
categ_vars_plot

Running these code lines should give you this output:

confirmed

MF

Kailahun Kenema

2014−06−10

status

sex

district

date_of_sample

date_of_onset

Gray segments are missing values
Frequency of categorical levels in df::ebola_sierra_leone

Below these lines, type up the ggsave() command below (but don’t run it yet):

ggsave(filename = "", plot = categ_vars_plot)
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This command uses the ggsave() function to export the categ_vars_plot figure. The plot argument of
ggsave() takes in the object to be saved (in this case categ_vars_plot), and the filename argument takes
in the target file path for the plot.

As you saw when exporting data, this target file path is quite simple because you are working in an RStudio
Project. In this case, you have:

ggsave(filename = "outputs/categorical_plot.png", plot = categ_vars_plot)

Run this ggsave() command now. The path “outputs/categorical_plot.png” tells ggsave() to save the plot
as a PNG file named “categorical_plot” in the “outputs” folder of the Project.

To see this newly-saved plot, navigate to the Files tab. You can click on it to open it with your computer’s
default image viewer:

Also note that the the ggsave() function lets you save plots to multiple image formats. For example, you
could instead write:

ggsave(filename = "outputs/categorical_plot.pdf", plot = categ_vars_plot)

to save the plot as a PDF. Run ?ggsave to see what other formats are possible.

Now let’s export the secondplot, thenumerical summary. In the sectionof your script called “Visualizenumeric
variables”, you should have:

## Visualize numeric variables ----
num_vars_plot <- show_plot(inspect_num(ebola_sierra_leone))
num_vars_plot

Running these code lines should give you this output:

106



6.10. SHARING A PROJECT CHAPTER 6. RSTUDIO PROJECTS
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Histograms of numeric columns in df::ebola_sierra_leone

To export this plot, type up and run the following code:

ggsave(filename = "outputs/numeric_plot.png", plot = num_vars_plot)

Wonderful!

6.10 Sharing a Project

Projects are also great for sharing your analysis with collaborators.

You can zip up your Project folder and send it to a colleague through email or through a file sharing service
like Dropbox. The colleague can then unzip the folder, click on the .Rproj file to open the Project in RStudio,
and re-do and edit all your analysis steps.

This is a decent setup, but sending projects back and forth may not be ideal for long-term collaboration. So
experienced analysts use a technology called git to collaborate on projects. But this topic is a bit too advanced
for this course; we will cover it in detail in a future course. If you are impatient, you can check out this book
chapter: https://intro2r.com/github_r.html

6.11 Wrapping up

Congratulations! You now know how to set up and use RStudio Projects!

Hopefully you see the value of organizing your analysis scripts, data and outputs in this way. Projects are a
coherent way to structure your analyses, and make it easy to revisit, revise and share your work. They will be
the foundation for much of your work as a data analyst going forward.

That’s it for now. See you in the next lesson.
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Chapter 7

R Markdown

7.1 Introduction

The {rmarkdown} package enables you to generate dynamic documents by combining formatted text and re-
sults produced by R code. With RMarkdown, you can create documents in various formats such as HTML, PDF,
Word, and many others, making it a versatile tool for exporting, communicating, and sharing your analysis
results.

This document itself was created using R Markdown. While there is an entire book dedicated to R Markdown,
we will cover some of the essential concepts here.

Note that working with R Markdown requires using a lot of the graphical user interface (GUI) tools in RStu-
dio. Because of this, the written notes in this lesson will not be as detailed as in other lessons. For deeper
understanding, we recommend that you follow along with the accompanying video tutorial.

Learning objectives

• Create and knit an R Markdown document that includes code and free text
• Output documents in multiple formats, including HTML, PDF, Word, PowerPoint, and flexdashboards
• Understand basic Markdown syntax
• Use R chunk options, such as eval, echo, andmessage
• Know the syntax for inline R code
• Recognize useful packages for table formatting in R Markdown
• Understand how to use the {here} package to set the project folder as the working directory in R Mark-
down files

7.2 Project setup

To begin, open RStudio and click on the File menu. Select New Project… and then click on New Directory.
Choose a name for your project and specify the directory where you want to store it. Remember the location
for future reference. Once you have filled out these fields, click Create Project.

Next, let’s set up some folders within the project. In the Files pane, click on New Folder and name it “data”.
ClickOK. This folder will store the project’s data. Create another folder called “rmd” to store your RMarkdown
documents.

109



7.3. CREATE A NEW DOCUMENT CHAPTER 7. R MARKDOWN

7.3 Create a new document

An R Markdown document is a simple text file with the .Rmd extension.

To create a new R Markdown document in RStudio, go to the File menu, choose New file, and then select
R Markdown…. If prompted, install the necessary packages. Once RStudio has the required packages, the
following dialog box will appear:

For now, keep the default values and click OK. A file with sample content will be displayed.

Experiment with editing some of the text in the file. Notice that it consists of free text and code sections.

Save your file using Cmd/Ctrl + S, and make sure to give it the “.Rmd” extension. For example,
“ebola_analysis.Rmd”. Save it in the “rmd” folder you created earlier.

To render the document, click on the “knit” button at the top right:

This will generate an HTML output that looks like this:
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The rendered file will be stored in the same directory as your Rmd file, with the same name but ending in
“.html” instead of “.rmd”.

Ĺ Vocab

HTML stands for Hypertext Markup Language and is the standard format used for most documents on
the web.

7.4 R Markdown Header (YAML)

Let’s return to the rest of the Rmd file and examine it part by part.

The first part of the document is its header, also known as “YAML” (Yet Another Markup Language). The name
is intended to be humorous.

---
title: "Untitled"
output: html_document
date: "2022-10-09"
---

The YAML header must be located at the very beginning of the document, delimited by three dashes (---)
before and after.
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This header contains the document’s metadata, such as its title, author, date, and various options that al-
low you to configure and customize the entire document and its rendering. For example, the line output:
html_document specifies that the generated document should be in HTML format.

You can change the html_document text to experiment with other formats.

7.4.1 Word Document

If you set the output to “word_document”, and click to tknit the file, the rendered document will look like
this:

Figure 7.1: Image of the R Markdown document open in the Microsoft Word program

A “.docx” version of your document will be created in the “rmd” folder.

7.4.2 PowerPoint Document

When the output is set to “powerpoint_document”, the result will be:

7.4.3 PDF Document

If you change the output setting to “pdf_document”, you can obtain the same document in PDF format (you
may be prompted to install tinytex on your computer, see below):
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Figure 7.2: Image of the R Markdown document open in the Microsoft PowerPoint program

Ĺ Key Point

For PDF generation, you must have a working LaTeX installation on your system. If not, Yihui Xie’s
tinytex extension aims to simplify the installation of a minimal LaTeX distribution regardless of your
machine’s operating system.
To use it, first install the extension with install.packages('tinytex'), then run the following com-
mand in the console (expect a download of about 200MB): tinytex::install_tinytex(). More in-
formation is available on the tinytex website.
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7.4.4 Prettydoc

To try the “prettydoc” format, type install.packages('prettydoc') into the console and press
Enter. The output format for prettydoc is slightly different from the previous three. You need to use
prettydoc::html_pretty in the output section. When you knit a prettydoc, you should see something
like this:

Figure 7.3: Image of the R Markdown document as a prettydoc

7.4.5 Flexdashboard

You can even create a simple dashboard format. First, run install.packages('flexdashboard'). Then,
set the output to flexdashboard::flex_dashboard and knit. The result will be similar to the following:

Note that it does not yet have tabs. To create tabs in a flexdashboard, change some of your double hashtags
## to single hashtags #. This will modify the header style for those sections, and flexdashboard will render
those headers as tabs.

Many other formats are available, and we encourage you to explore them on your own!

7.5 Visual vs Source mode

Rmarkdown documents can be edited in either a “Source” mode or a “Visual” mode.

You can switch into visual mode for a given document using the toolbars. There is a pair of buttons to toggle
between the modes:
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Figure 7.4: Image of the R Markdown document as a flexdashboard

What’s the difference between these two modes?

In source mode, you see the raw markdown syntax.

Ĺ Vocab

Markdown is a simple set of conventions for adding formatting to plain text. For example, to italicize
text, you wrap it in asterisks *text here*, and to start a new header, you use the pound sign #. We will
learn these in detail below.

In visual mode, you see a Microsoft Word-like view with a toolbar for easy formatting.

This means you don’t have to remember the syntax for markdown elements. For example, if you want tomake
a section of text bold, you can simply highlight that piece of text and click on the bold button in the toolbar.

While visual mode is much easier to use, we will teach you markdown syntax here for three reasons:

1. Visual mode can sometimes be buggy, and to debug this, you’ll need to switch to source mode.

2. Understanding markdown syntax is useful outside of Rmarkdown.

3. Visual mode is not available in RStudio’s collaborative mode, which you may want to use.
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7.6 Markdown syntax

In the “Help” tab of the top RStudio menu, if you look up “Markdown Quick Reference”, you will find a wide
variety of RMD options available.

You can define titles of different levels by starting a line with one or more #:

## Level 1 title
### Level 2 Title
#### Level 3 Title

The body of the document consists of text that follows the Markdown syntax. A Markdown file is a text file
that contains lightweightmarkup to help set heading levels or format text. For example, the following text:

This is text with *italics* and **bold**.

You can define bulleted lists:

- first element
- second element

Will generate the following formatted text:

This is text with italics and bold.

You can define bulleted lists:

• first element
• second element

Note that you need spaces before and after lists, as well as keeping the listed items on separate lines. Other-
wise, they will all crunch together rather than making a list.

We see that words placed between asterisks are italicized, and lines that begin with a dash are transformed
into a bulleted list.

The Markdown syntax allows for other formatting, such as the ability to insert links or images. For example,
the following code:

[Example Link](https://example.com)

…will give the following link:

Example Link

We can also embed images. If you’re in Source mode, type:

![what you want the subtitle to say](images/picture_name.jpg), replacing “what youwant the
subtitle to say” (it can also be blank), “images” with the name of the image folder in your project, and “pic-
ture_name.jpg” with the name of the image you want to use. In Visual mode, you can open the folder that
holds your image on your computer and drag-and-drop the image from the folder onto the page you’re build-
ing. Alternatively, place the cursor where you want the image, click the button above marked with a “picture”
icon, follow the prompts, and insert your image where the cursor is. This will also create an “images” folder in
your project (if it doesn’t already exist) and put the image file into the “images” folder.

116

https://example.com


7.6. MARKDOWN SYNTAX CHAPTER 7. R MARKDOWN

When titles have been defined, clicking on the Show document outline icon on the far right of the toolbar
associated with the R Markdown file will display a table of contents automatically generated from the titles,
allowing for easy navigation within the document:

Figure 7.5: Dynamic TOC

7.6.1 Customizing the generated document

Thegenerateddocument can be customizedbymodifying options in the document’s preamble. RStudio offers
a graphical interface to change these options more easily. To access it, click on the gear icon to the right of
the Knit button and choose Output Options…

Figure 7.6: R Markdown Output Options

A dialog box will appear, allowing you to select the desired output format and various options depending on
the format:

For example, with the HTML format, the General tab allows you to specify if you want a table of contents, its
depth, the themes to apply for the document and the syntax highlighting of the R blocks, etc. The Figures tab
allows you to change the default dimensions of the generated graphics.
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Figure 7.7: R Markdown Output Options Dialog
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When you change options, RStudio will modify the preamble of your document. For instance, if you choose
to show a table of contents and change the syntax highlighting theme, your header will become something
like:

---
title: "R Markdown Review"
output:

html_document:
highlight: kate
toc: yes

---

You can also modify the options directly by editing the preamble.

Note that it is possible to specify different options depending on the format, for example:

---
title: "R Markdown Review"
output:
html_document:

highlight: kate
toc: yes

pdf_document:
fig_caption: yes
highlight: kate

---

The complete list of possible options is available on the official documentation site (which is very comprehen-
sive and well-made) and on the cheat sheet and reference guide, accessible from RStudio via the Help menu,
then Cheatsheets.

7.7 R code chunks

In addition to free text inMarkdown format, an RMarkdown document contains, as its name suggests, R code.
This is included in blocks (chunks) written the following way in Source mode:

“‘{r}
r_code <- 2+2
“‘

Which will produce the following in Visual mode:

r_code <- 2+2

As this sequence of characters is not very easy to enter, you can use the Insert menu of RStudio and choose
R[^3], or use the keyboard shortcut Command+Option+i on Mac or Ctrl+Alt+i on Windows.

Note that it is possible to use other languages in code chunks.

In RStudio blocks of R code are usually displayedwith a slightly different background color to distinguish them
from the rest of the document.
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Figure 7.8: Code block insertion menu

When your cursor is in a block, you can enter the R code you want and execute it with Command + Enter. You
can also execute all the code contained in a block by clicking on the green “play” button at the top right of the
code chunk.

7.7.1 Chunk output inline vs in condole

In RStudio, by default, the results of a block of code (text, table or graphic) are displayed directly in the docu-
ment editing window, allowing them to be easily viewed and kept for the duration of the session.

This behavior can be changed by clicking the gear icon on the toolbar and choosing Chunk Output in Console.

7.7.2 R code chunk options

It is also possible to pass options to each block of R code to modify its behavior.

Remember that a block of code looks like this:

```{r}
x <- 1:5

The options of a code block are to be placed inside the braces {r}, with a comma separating each option.

7.7.3 Block name

The first possibility is to give a name to the block. This is indicated directly after the r:

{r block_name}

It is not mandatory to name a block, but it can be useful in the event of a compilation error, to identify the
block that caused the problem. Be careful, you cannot have two blocks with the same name.
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7.7.4 Options

In addition to a name, a block can be passed a series of options in the form option=value. Here is an example
of a block with a name and options:

```{r blockName, echo = FALSE, warning = TRUE}
x <- 1:5

And an example of an unnamed block with options:

```{r echo = FALSE, warning = FALSE}
x <- 1:5

One of the useful options is the echo option. By default echo is TRUE, and the block of R code is inserted into
the generated document, like this:

x <- 1:5
print(x)

[1] 1 2 3 4 5

But if we set the echo=FALSE option, then the R code is no longer inserted into the document, and only the
result is visible:

[1] 1 2 3 4 5

Here is a list of some of the available options:

Option Values Description

echo TRUE/FALSE Show (or hide) this R code chunk in the resulting knitted document
eval TRUE/FALSE Run (or not) the code in this code chunk in the resulting knitted

document
include TRUE/FALSE Combines the options “echo and eval”; either show and run, or hide and

don’t run
message TRUE/FALSE Show (or hide) any systemmessages generated by running this code

chunk in the resulting knitted document
warning TRUE/FALSE Show (or hide) any warnings generated by running this code chunk in the

resulting knitted document

There are many other options described in particular in R Markdown reference guide{target = “_blank”} (PDF
in English).

7.7.5 Change options

It is possible to modify the options manually by editing the header of the code block, but you can also use a
small graphical interface offered by RStudio. To do this, simply click on the gear icon located to the right of
the header line of each block:

You can then modify the most common options, and click on Apply to apply them.
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Figure 7.9: Code Block Options Menu

7.7.6 Global Options

Youmay want to apply an option to all the blocks in a document. For example, one may wish by default not to
display the R code of each block in the final document.

You can set an option globally using the knitr::opts_chunk$set() function. For example, inserting
knitr::opts_chunk$set(echo = FALSE) into a code block will set the echo = FALSE option to default
for all subsequent blocks.

In general, we place all these global modifications in a special block called setup and which is the first block
of the document:

```{r, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)

7.8 Inline Code

It is also possible to write code chunks embedded in the text. If you go to Source mode and type

“The sum of a pair of 2s is ‘ r 2+2 ‘”

and then knit the RMD, the resulting document will evaluate the r code between the backticks. Note that you
have to include the “r” at the beginning of your inline code chunk to get it to recognize it as R code.

You could also pass variables around your document just like in a regular R program. For example, on one line
you could run,

“‘ {r} max_height <- max(women$height) “‘

“The maximum height in the women data set is ‘ r max_height ‘ .”

The advantages of such a system are numerous:

• a single document can show your entire analysis workflow, since the code, results and text explanations
are included

• the document can be very easily regenerated and updated, for example if the source data has been
modified.

• the variety of output formats (HTML, PDF, Word, slides, dashboards, etc.) makes it easy to present your
work to others.
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7.9 Display tables

There are a number of ways for R Markdown Documents to show data tables. To start, you can see how our
RMD displays a table with no formatting:

women

height weight
1 58 115
2 59 117
3 60 120
4 61 123
5 62 126
6 63 129
7 64 132
8 65 135
9 66 139
10 67 142
11 68 146
12 69 150
13 70 154
14 71 159
15 72 164

It looks pretty basic. Next, to follow along you’ll want to load the following packages:

pacman::p_load(flextable, gt, reactable)

Flextable is better for showing simple tables supported by many formats. GT is better for showing complex
tables in HTML documents. Reactable is better for showing very large tables in HTML by giving your audience
the option to scroll through the tables.

"This is a flextable"

[1] "This is a flextable"

flextable::flextable(women)

height weight

58 115

59 117

60 120

61 123

62 126

63 129

64 132

123
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height weight

65 135

66 139

67 142

68 146

69 150

70 154

71 159

72 164

"This is a GT table"

[1] "This is a GT table"

gt::gt(women)

height weight

58 115
59 117
60 120
61 123
62 126
63 129
64 132
65 135
66 139
67 142
68 146
69 150
70 154
71 159
72 164

"This is a reactable"

[1] "This is a reactable"

reactable::reactable(women)
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58 115

59 117

60 120

61 123

62 126

63 129

64 132

65 135

66 139

67 142

1 2 Next1–10 of 15 rows Previous

height weight

You can seemany other types of table formats people have created at https://www.rstudio.com/blog/rstudio-
table-contest-2022/
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7.10 Document Templates

We have seen here the production of “classic” documents, but R Markdown allows you to create many other
things.

The extension’s documentation site offers a gallery of the different possible outputs. You can create slides,
websites or even entire books, like this document.

7.10.1 Slides

An interesting use is the creation of slideshows for presentations in the form of slides. The principle remains
the same: we mix text in Markdown format and R code, and R Markdown transforms everything into presen-
tations in HTML or PDF format. In general, the different slides are separated at certain heading levels.

Some slide templates are included with R Markdown, including:

• ioslides and Slidy for HTML presentations
• beamer for PDF presentations via LaTeX

When you create a new document in RStudio, these templates are accessible via the Presentation entry:

Figure 7.10: Create an R Markdown presentation

Other extensions, which must be installed separately, also allow slideshows in various formats. These include
in particular:
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• xaringan for HTML presentations based on remark.js
• revealjs for HTML presentations based on reveal.js
• rmdshower for HTML slideshows based on shower

Once the extension is installed, it generally offers a starting template when creating a new document in RStu-
dio. These are accessible from the From Template entry.

Figure 7.11: Create a presentation from a template

7.10.2 Templates

There are also different templates allowing you to change the format and presentation of the generated doc-
uments. A list of these formats and their associated documentation can be accessed from the formats docu-
mentation page.

Note in particular:

• the Distill format, suitable for scientific or technical publications on the Web
• the Tufte Handouts format which allows you to produce PDF or HTML documents in a format similar to
that used by Edward Tufte for some of his publications

• rticles, package that offers LaTeX templates for several scientific journals

Finally, the rmdformats extension offers several HTML templates particularly suitable for long documents.

Again, most of the time, these document templates offer a starting template when creating a new document
in RStudio (entry From Template):
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Figure 7.12: Create a document from a template
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7.11 Resources

Below are some resources to help you learn more about R Markdown:

The book R for data science, available online, contains a chapter dedicated to R Markdown.

The extension’s official site contains very complete documentation, both for beginners and for advanced
users.

Finally, the RStudio help (Help menu then Cheatsheets) provides access to two summary documents: a syn-
thetic “cheat sheet” (RMarkdownCheat Sheet) and amore complete “reference guide” (RMarkdownReference
Guide).
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Chapter 8

Data structures

8.1 Intros

In this lesson, we’ll take a brief look at data structures in R. Understanding data structures is crucial for data
manipulation and analysis. We will start by exploring vectors, the basic data structure in R. Then, we will learn
how to combine vectors into data frames, the most common structure for organizing and analyzing data.

8.2 Learning objectives

1. You can create vectors with the c() function.

2. You can combine vectors into data frames.

3. You understand the difference between a tibble and a data frame.

8.3 Packages

Please load the packages needed for this lesson with the code below:

if(!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse)

8.4 Introducing vectors

The most basic data structures in R are vectors. Vectors are a collection of values that all share the same class
(e.g., all numeric or all character). It may be helpful to think of a vector as a column in an Excel spreadsheet.

8.5 Creating vectors

Vectors can be created using the c() function, with the components of the vector separated by commas. For
example, the code c(1, 2, 3) defines a vector with the elements 1, 2 and 3.

In your script, define the following vectors:
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age <- c(18, 25, 46)
sex <- c('M', 'F', 'F')
positive_test <- c(T, T, F)
id <- 1:3 # the colon creates a sequence of numbers

You can also check the classes of these vectors:

class(age)

[1] "numeric"

class(sex)

[1] "character"

class(positive_test)

[1] "logical"

Ď Practice

Each line of code below tries to define a vector with three elements but has a mistake. Fix the mistakes
and perform the assignment.

my_vec_1 <- (1,2,3)
my_vec_2 <- c("Obi", "Chika" "Nonso")

Ĺ Vocab

The individual values within a vector are called components or elements. So the vector c(1, 2, 3) has
three components/elements.

8.6 Manipulating vectors

Many of the functions and operations you have encountered so far in the course can be applied to vectors.

For example, we can multiply our age object by 2:

age

[1] 18 25 46

age * 2
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[1] 36 50 92

Notice that every element in the vector was multiplied by 2.

Or, below we take the square root of age:

age

[1] 18 25 46

sqrt(age)

[1] 4.242641 5.000000 6.782330

You can also can add (numeric) vectors to each other:

age + id

[1] 19 27 49

Note that the first element of age is added to the first element of id and the second element of age is added
to the second element of id and so on.

8.7 From vectors to data frames

Now that we have a handle on creating vectors, let’s move on to the most commonly used object in R: data
frames. A data frame is just a collection of vectors of the same length with some helpful metadata. We can
create one using the data.frame() function.

We previously created vector variables (id, age, sex and positive_test) for three individuals:

We can now use the data.frame() function to combine these into a single tabular structure:

data_epi <- data.frame(id, age, sex, positive_test)
data_epi

id age sex positive_test
1 1 18 M TRUE
2 2 25 F TRUE
3 3 46 F FALSE

Note that instead of creating each vector separately, you can create your data frame defining each of the
vectors inside the data.frame() function.
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data_epi_2 <- data.frame(age = c(18, 25, 46),
sex = c('M', 'F', 'F'))

data_epi_2

age sex
1 18 M
2 25 F
3 46 F

Ĺ Side Note

Most of the time you work with data in R, you will be importing it from external contexts. But it is some-
times useful to create datasets within R itself. It is in such cases that the data.frame() function will
come in handy.

To extract the vectors back out of the data frame, use the $ syntax. Run the following lines of code in your
console to observe this.

data_epi$age
is.vector(data_epi$age) # verify that this column is indeed a vector
class(data_epi$age) # check the class of the vector

Ď Practice

Combine the vectors below into adata frame,with the following columnnames: “name” for the character
vector, “number_of_children” for the numeric vector and “is_married” for the logical vector.

character_vec <- c("Bob", "Jane", "Joe")
numeric_vec <- c(1, 2, 3)
logical_vec <- c(T, F, F)

Ď Practice

Use the data.frame() function to define a data frame in R that resembles the following table:

room num_windows

dining 3
kitchen 2
bedroom 5

8.8 Tibbles

The default version of tabular data in R is called a data frame, but there is another representation of tabular
data provided by the tidyverse package. It’s called a tibble, and it is an improved version of the data frame.

You can convert from a data frame to a tibble with the as_tibble() function:
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data_epi

id age sex positive_test
1 1 18 M TRUE
2 2 25 F TRUE
3 3 46 F FALSE

tibble_epi <- as_tibble(data_epi)
tibble_epi

# A tibble: 3 x 4
id age sex positive_test

<int> <dbl> <chr> <lgl>
1 1 18 M TRUE
2 2 25 F TRUE
3 3 46 F FALSE

Notice that the tibble gives the data dimensions in the first line:

�# A tibble: 3 × 4�
id age sex positive_test

<int> <dbl> <chr> <lgl>
1 1 18 M TRUE
2 2 25 F TRUE
3 3 46 F FALSE

And also tells you the data types, at the top of each column:

## A tibble: 3 × 4
id age sex positive_test

� <int> <dbl> <chr> <lgl> �
1 1 18 M TRUE
2 2 25 F TRUE
3 3 46 F FALSE

There, “int” stands for integer, dbl” stands for double (which is a kind of numeric class), “chr” stands for char-
acter, and “lgl” for logical.

The other benefit of tibbles is they avoid flooding your console when you print a long table.

Consider the console output of the lines below, for example:

## print the infert data frame (a built in R dataset)
infert # Veryyy long print
as_tibble(infert) # more manageable print

For your most of your data analysis needs, you should prefer tibbles over regular data frames.
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8.8.1 read_csv() creates tibbles

When you import data with the read_csv() function from {readr}, you get a tibble:

ebola_tib <- read_csv("https://tinyurl.com/ebola-data-sample") # Needs internet to run
class(ebola_tib)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

But when you import data with the base read.csv() function, you get a data.frame:

ebola_df <- read.csv("https://tinyurl.com/ebola-data-sample") # Needs internet to run
class(ebola_df)

[1] "data.frame"

Try printing ebola_tib and ebola_df to your console to observe the different printing behavior of tibbles
and data frames.

This is one reason we recommend using read_csv() instead of read.csv().

8.9 Wrap-up

With your understanding of data classes and structures, you are now well-equipped to perform data manipu-
lation tasks in R. In the upcoming lessons, wewill explore the powerful data transformation capabilities of the
dplyr package, which will further enhance your data analysis skills.

Congratulations on making it this far! You have covered a lot and should be proud of yourself.

8.10 Solutions

Solution to the first r-practice block:

my_vec_1 <- c(1,2,3) # Use 'c' function to create a vector
my_vec_2 <- c("Obi", "Chika", "Nonso") # Separate each string with a comma

Solution to the second r-practice block:

df <- data.frame(name = character_vec,
number_of_children = numeric_vec,
is_married = logical_vec)

Solution to the third r-practice block:

## Solution to the third r-practice block
rooms <- data.frame(room = c("dining", "kitchen", "bedroom"),

num_windows = c(3, 2, 5))
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Chapter 9

Using ChatGPT for Data Analysis

9.1 Introduction

ChatGPT, developed by OpenAI, is a language model that can be used to assist data analysts in various tasks.
It can:

1. Explain unfamiliar code
2. Debug simple errors
3. Add code comments
4. Reformat code
5. Generate plots
6. Perform simple data wrangling
7. Translate languages
8. Translate programming languages
9. Perform a fluid find and replace operation

Let’s get started and see how it works!

9.2 Models

As at our last check, ChatGPT comes in two main versions, both available at chat.openai.com:

Model Availability Speed Task Complexity

GPT-3.5 Free Fast Simple tasks
GPT-4 Paid / Bing Slower Complex tasks

Both models have their advantages and use cases. GPT-3.5 is suitable for simple tasks and is free to use, while
GPT-4, though slower and paid, can handle more complex tasks.

Bing’s AI chat service also uses GPT-4 under the hood (last checked in September 2023), so you can go to Bing
if you want GPT-4 access without paying. The Bing interface is a bit clunky for data analysis tasks though, so if
you can afford to pay for GPT-4, we highly recommend it.
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9.3 1. Explain Unfamiliar Code

ChatGPT can explain unfamiliar code. For instance, if you encounter the following code:

trees %>%
select(Height) %>%
filter(Height > 80)

You can ask ChatGPT, “What is this code doing?” and paste in the code.

Here is ChatGPT3.5’s response:

The code you’ve provided appears to bewritten in R and is likely using the dplyr package for datamanipulation.
Here’s a step-by-step explanation of what this code does:

1. trees %>%: This part of the code uses the %>% operator, also known as the pipe operator, which is used
to chain togethermultiple datamanipulation operations in amore readable and concisemanner. It takes
the data frame or tibble trees and passes it as the first argument to the next operation.

2. select(Height) %>%: After the pipe operator, the select() function is used. It selects a subset of
columns from the data frame. In this case, it selects only the “Height” column from the trees data
frame.

3. filter(Height > 80): Following the select() operation, the filter() function is used. This func-
tion filters rows based on a specified condition. In this case, it filters the data to keep only those rows
where the “Height” column has a value greater than 80.

So, in summary, the code takes the trees data frame, selects only the “Height” column, and then filters the
rows to retain only those where the height is greater than 80. The result will be a subset of the original data
containing only rows where the tree height is above 80.

9.4 2. Debug Simple Errors

ChatGPT can assist in debugging straightforward errors. You can ask ChatGPT, “Please help me understand
why the code is not working,” then paste in both your code and the error message.

For example:

data_subset_I <-
trees %>%
select(Height) %>%
filter(Height > 80)

summary(data_subset_l)

Error message:

Error in summary(data_subset_I) : object 'data_subset_I' not found

ChatGPT3.5 response:

It seems like you have a typo in your code. In the code snippet you provided, you are creating a subset of
data and storing it in the variable data_subset_I, but then you are trying to summarize a different variable
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data_subset_l (note the lowercase “L” at the end). The variable names are not consistent, which is likely
causing the issue.

You should use the correct variable name data_subset_I when summarizing the data. Here’s the corrected
code:

data_subset_I <-
trees %>%
select(Height) %>%
filter(Height > 80)

summary(data_subset_I)

With this corrected code, it should work as expected and summarize the data_subset_I data frame, which
contains the heights of trees greater than 80.

9.5 3. Add Code Comments

ChatGPT can also assist in adding comments to your code. For instance, you can say, “Add comments to the
following code,” then paste in your code.

data_subset_2 <-
trees %>%
select(Height) %>%
filter(Height > 80)

summary(data_subset_2)

ChatGPT3.5 response:

Certainly! Here’s the code with comments added to explain each step:

## Select the 'Height' column from the 'trees' dataset
## and create a new dataset 'data_subset_2'
data_subset_2 <-
trees %>%
select(Height) %>%

## Filter 'data_subset_2' to retain only rows where 'Height' is greater than 80
filter(Height > 80)

## Display a summary of 'data_subset_2'
## including statistics like mean, median, and quartiles
summary(data_subset_2)

These comments provide a clear explanation of what each line of code does, making it easier to understand
the data manipulation and summary generation process.

9.6 4. Reformat Code

ChatGPT can help in reformatting code. For example, consider the following code:
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temp<- trees %>% select(Height) %>%filter(Height > 80)

You can ask ChatGPT, “Help me reformat this code nicely,” then paste in the code.

ChatGPT3.5 response:

Certainly, here’s the reformatted code:

temp <- trees %>%
select(Height) %>%
filter(Height > 80)

I’ve added line breaks and indentation to make the code more readable and visually organized.

9.7 5. Make Plots

ChatGPT can assist in creating plots with ggplot2. For instance, you might ask:

“Use ggplot2 to create a scatter plot of height against girth for the dataset shown” then paste in the head of
the data.

head(trees)

Girth Height Volume
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7

ChatGPT3.5 response:

To create a scatter plot of height against girth for the dataset you provided using ggplot2 in R, you can follow
these steps:

1. First, make sure you have the ggplot2 package installed. If you don’t have it installed, you can install it
using the following command:

install.packages("ggplot2")

2. Load the ggplot2 library:

library(ggplot2)

3. Create the scatter plot using the ggplot() function and the geom_point() function to add the points:

## Assuming you have already loaded the dataset
## If not, you can load it using data(trees)

## Create the scatter plot
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ggplot(trees, aes(x = Girth, y = Height)) +
geom_point() +
labs(x = "Girth", y = "Height") +
ggtitle("Scatter Plot of Height vs. Girth")

This code will create a scatter plot of height against girth using the trees dataset, with girth values on the
x-axis and height values on the y-axis. Adjust the labels and title as needed for your specific requirements.

You can then ask ChatGPT a follow-up question like:

• Add a best-fit line and write the equation of the line in the caption of the plot.
• Mark the mean height and mean girth on the plot.
• Center the plot title.

Here we may see the difference between GPT3.5 and 4.

ChatGPT3.5 response:

scatter_plot <- ggplot(trees, aes(x = Girth, y = Height)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "blue") +
labs(x = "Girth", y = "Height") +
ggtitle("Scatter Plot of Height vs Girth") +
theme(plot.title = element_text(hjust = 0.5))

## Calculate mean values
mean_girth <- mean(trees$Girth)
mean_height <- mean(trees$Height)

## Add mean points
scatter_plot <- scatter_plot +
geom_point(data = data.frame(Girth = mean_girth, Height = mean_height),

color = "red", size = 3) +
annotate("text", x = mean_girth, y = mean_height, label = "Mean",

color = "red", vjust = -1)

## Print the scatter plot
print(scatter_plot)

`geom_smooth()` using formula = 'y ~ x'
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Mean

70

80

8 12 16 20
Girth

H
ei

gh
t

Scatter Plot of Height vs Girth

In the ChatGPT3.5 response, the equation of the line is missing from the caption.

Here is GPT4’s response:

library(tidyverse)
library(scales)

## Calculate means
mean_girth <- mean(trees$Girth)
mean_height <- mean(trees$Height)

## Fit a linear model to calculate the equation of the line
fit <- lm(Height ~ Girth, data = trees)
slope <- coef(fit)[2]
intercept <- coef(fit)[1]
eq <- paste("y = ", round(slope, 2), "x + ", round(intercept, 2))

## Generate the plot
p <- ggplot(trees, aes(x = Girth, y = Height)) +
geom_point() +
geom_smooth(method = 'lm', se = FALSE, color = "red",

formula = y ~ x) + # Add best-fit line (linear model)
geom_vline(xintercept = mean_girth, linetype="dashed") +
geom_hline(yintercept = mean_height, linetype="dashed") +
ggtitle("Scatter plot of Height vs Girth") +
theme(plot.title = element_text(hjust = 0.5)) + # Center title
scale_x_continuous(breaks = pretty_breaks(n = 10)) +
scale_y_continuous(breaks = pretty_breaks(n = 10)) +
labs(x = "Girth",

y = "Height",
caption = eq) # Add equation to the caption
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y =  1.05 x +  62.03

With GPT-4, you get exactly what you want, including the equation in the caption at the bottom right of the
plot.

9.8 6. Simple Data Wrangling

ChatGPT can help with simple data wrangling tasks. For instance:

Consider the following dataset:

head(trees)

Girth Height Volume
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7

You might ask, “Give me dplyr code to find the mean and median girth, height, and volume.”

ChatGPT3.5 gives us this code:

## Use summarise_all to compute mean and median for each column
result <- trees %>%
summarise_all(

.funs = list(mean = mean, median = median),
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na.rm = TRUE
)

print(result)

9.9 7. Translate Language

ChatGPT can help translate text in your tutorial or documentation from one language to another, while pre-
serving the code. If you use other translators, they often translate your code as well, which is undesirable.

For example, you can ask:

“Translate the following section of a tutorial into Spanish”

dplyr is part of the core of tidyverse, so it is automatically loaded with:

library(tidyverse)

It can also be loaded individually.

library(dplyr)

ChatGPT 3.5 response:

dplyr forma parte del núcleo de tidyverse, por lo que se carga automáticamente con:

library(tidyverse)

También se puede cargar de forma individual.

library(dplyr)

You can verify the validity of this translation by translating it back into English in a different session.

9.10 8. Translate Programming Languages

ChatGPT can help translate between different programming languages. For example, you can say:

“Translate the following Stata code to R:”

recode age (18/35=1) (36/50=2), into(agegroup)

ChatGPT 3.5 response:

In R, you can achieve the same recoding of the “age” variable into an “agegroup” variable using the cut()
function. Here’s the equivalent R code:

## Assuming you have a dataframe called "data" with an "age" variable
data$agegroup <- cut(data$age, breaks = c(18, 35, 50), labels = c(1, 2),

include.lowest = TRUE)

144



9.11. 9. FLUID FIND AND REPLACE CHAPTER 9. USING CHATGPT FOR DATA ANALYSIS

In this code:

• data$age refers to the “age” variable in your dataframe.
• cut() is used to create the “agegroup” variable.
• breaks specifies the breakpoints for age groups (18, 35, and 50).
• labels assigns labels 1 and 2 to the corresponding age groups.
• include.lowest = TRUE ensures that values exactly equal to the breakpoints are included in the
specified group.

This code will create a new “agegroup” variable in your dataframe, similar to what the Stata code does.

9.11 9. Fluid Find and Replace

Lastly, ChatGPT can help you refactor your code in situations where a simple find and replace with your IDE
would be time-consuming. For example, if “Afghanistan” is written in three different ways (with a capital “A”,
in lowercase letters, and as a country code inthe title, “AF”), you could replace all instances with “Ghana”.

You can ask ChatGPT:

“Replace ‘afghanistan’ with ‘ghana’ for the code below:”

afghanistan_2000 <- population %>%
filter(country == "Afghanistan", year == 2000) %>%
pull(population)

afghanistan_2010 <- population %>%
filter(country == "Afghanistan", year == 2010) %>%
pull(population)

afghanistan_population <- data.frame(
year = c(2000, 2010),
population = c(afghanistan_2000, afghanistan_2010)

)

percent_change <-
((afghanistan_2010 - afghanistan_2000) / afghanistan_2000) * 100

ggplot(afghanistan_population,
aes(
x = factor(year),
y = population,
fill = factor(year)

)) +
geom_bar(stat = "identity") +
labs(

x = "Year",
y = "Population",
fill = "Year",
title = paste0(
"Change in Population in Afghanistan (AF) from 2000 to 2010 (",
round(percent_change, 2),
"%)"
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theme_classic()
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ChatGPT 3.5 response:

ghana_2000 <- population %>%
filter(country == "Ghana", year == 2000) %>%
pull(population)

ghana_2010 <- population %>%
filter(country == "Ghana", year == 2010) %>%
pull(population)

ghana_population <- data.frame(
year = c(2000, 2010),
population = c(ghana_2000, ghana_2010)

)

percent_change <- ((ghana_2010 - ghana_2000) / ghana_2000) * 100

ggplot(ghana_population, aes(
x = factor(year),
y = population,
fill = factor(year)

)) +
geom_bar(stat = "identity") +
labs(

x = "Year",
y = "Population",
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fill = "Year",
title = paste0("Change in Population in Ghana (GH) from 2000 to 2010 (",

round(percent_change, 2),
"%)")

) +
theme_classic()
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This refactored code now refers to “Ghana” instead of “Afghanistan”.

9.12 Limitations of ChatGPT

While ChatGPT is a powerful tool for data analysts, it has some limitations:

1. Lag in Learning: ChatGPT may struggle with newer software or libraries.
2. Hallucinations: Always verify the output of ChatGPT as it can sometimes generate outputs that are

incorrect or nonsensical.
3. Limited Input Length: ChatGPT cannot process very long prompts. To avoid this, start new conversa-

tions frequently.
4. Weak Math Skills: At the moment, ChatGPT is not ideal for complex calculations or data analysis.
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Selecting and renaming columns

10.1 Introduction

Today wewill begin our exploration of the {dplyr} package! Our first verb on the list is selectwhich allows to
keep or drop variables from your dataframe. Choosing your variables is the first step in cleaning your data.

Figure 10.1: Fig: the select() function.

Let’s go !

10.2 Learning objectives

• You can keep or drop columns from a dataframe using the dplyr::select() function from the {dplyr}
package.

• You can select a range or combination of columns using operators like the colon (:), the exclamation
mark (!), and the c() function.

• You can select columns based on patterns in their names with helper functions like starts_with(),
ends_with(), contains(), and everything().

• You can use rename() and select() to change column names.
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10.3 The Yaounde COVID-19 dataset

In this lesson, we analyse results from a COVID-19 serological survey conducted in Yaounde, Cameroon in late
2020. The survey estimated how many people had been infected with COVID-19 in the region, by testing for
IgG and IgM antibodies. The full dataset can be obtained from Zenodo, and the paper can be viewed here.

Spend some time browsing through this dataset. Each line corresponds to one patient surveyed. There are
some demographic, socio-economic and COVID-related variables. The results of the IgG and IgM antibody
tests are in the columns igg_result and igm_result.

yaounde <- read_csv(here::here("data/yaounde_data.csv"))
yaounde

# A tibble: 5 x 53
id date_surveyed age age_category age_category_3 sex highest_education
<chr> <date> <dbl> <chr> <chr> <chr> <chr>

1 BRIQU~ 2020-10-22 45 45 - 64 Adult Fema~ Secondary
2 BRIQU~ 2020-10-24 55 45 - 64 Adult Male University
3 BRIQU~ 2020-10-24 23 15 - 29 Adult Male University
4 BRIQU~ 2020-10-22 20 15 - 29 Adult Fema~ Secondary
5 BRIQU~ 2020-10-22 55 45 - 64 Adult Fema~ Primary
# i 46 more variables: occupation <chr>, weight_kg <dbl>, height_cm <dbl>,
# is_smoker <chr>, is_pregnant <chr>, is_medicated <chr>, neighborhood <chr>,
# household_with_children <chr>, breadwinner <chr>, source_of_revenue <chr>,
# has_contact_covid <chr>, igg_result <chr>, igm_result <chr>,
# symptoms <chr>, symp_fever <chr>, symp_headache <chr>, symp_cough <chr>,
# symp_rhinitis <chr>, symp_sneezing <chr>, symp_fatigue <chr>,
# symp_muscle_pain <chr>, symp_nausea_or_vomiting <chr>, ...

Figure 10.2: Left: the Yaounde survey team. Right: an antibody test being administered.
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Figure 10.3: Fig: the select() function. (Drawing adapted from Allison Horst).

10.4 Introducing select()

dplyr::select() lets us pick which columns (variables) to keep or drop.

We can select a column by name:

yaounde %>% select(age)

# A tibble: 5 x 1
age

<dbl>
1 45
2 55
3 23
4 20
5 55

Or we can select a column by position:

yaounde %>% select(3) # `age` is the 3rd column

# A tibble: 5 x 1
age

<dbl>
1 45
2 55
3 23
4 20
5 55

To selectmultiple variables, we separate them with commas:
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yaounde %>% select(age, sex, igg_result)

# A tibble: 971 x 3
age sex igg_result

<dbl> <chr> <chr>
1 45 Female Negative
2 55 Male Positive
3 23 Male Negative
4 20 Female Positive
5 55 Female Positive
6 17 Female Negative
7 13 Female Positive
8 28 Male Negative
9 30 Male Negative
10 13 Female Positive
# i 961 more rows

Ď Practice

• Select the weight and height variables in the yaounde data frame.

• Select the 16th and 22nd columns in the yaounde data frame.

For the next part of the tutorial, let’s create a smaller subset of the data, called yao.

yao <-
yaounde %>% select(age,

sex,
highest_education,
occupation,
is_smoker,
is_pregnant,
igg_result,
igm_result)

yao

# A tibble: 5 x 8
age sex highest_education occupation is_smoker is_pregnant igg_result

<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 45 Female Secondary Informal work~ Non-smok~ No Negative
2 55 Male University Salaried work~ Ex-smoker <NA> Positive
3 23 Male University Student Smoker <NA> Negative
4 20 Female Secondary Student Non-smok~ No Positive
5 55 Female Primary Trader--Farmer Non-smok~ No Positive
# i 1 more variable: igm_result <chr>
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10.4.1 Selecting column ranges with :

The : operator selects a range of consecutive variables:

yao %>% select(age:occupation) # Select all columns from `age` to `occupation`

# A tibble: 5 x 4
age sex highest_education occupation

<dbl> <chr> <chr> <chr>
1 45 Female Secondary Informal worker
2 55 Male University Salaried worker
3 23 Male University Student
4 20 Female Secondary Student
5 55 Female Primary Trader--Farmer

We can also specify a range with column numbers:

yao %>% select(1:4) # Select columns 1 to 4

# A tibble: 5 x 4
age sex highest_education occupation

<dbl> <chr> <chr> <chr>
1 45 Female Secondary Informal worker
2 55 Male University Salaried worker
3 23 Male University Student
4 20 Female Secondary Student
5 55 Female Primary Trader--Farmer

Ď Practice

• With the yaounde data frame, select the columns between symptoms and sequelae, inclusive.
(“Inclusive” means you should also include symptoms and sequelae in the selection.)

10.4.2 Excluding columns with !

The exclamation point negates a selection:

yao %>% select(!age) # Select all columns except `age`

# A tibble: 5 x 7
sex highest_education occupation is_smoker is_pregnant igg_result igm_result
<chr> <chr> <chr> <chr> <chr> <chr> <chr>

1 Fema~ Secondary Informal ~ Non-smok~ No Negative Negative
2 Male University Salaried ~ Ex-smoker <NA> Positive Negative
3 Male University Student Smoker <NA> Negative Negative
4 Fema~ Secondary Student Non-smok~ No Positive Negative
5 Fema~ Primary Trader--F~ Non-smok~ No Positive Negative

To drop a range of consecutive columns, we use, for example,!age:occupation:
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yao %>% select(!age:occupation) # Drop columns from `age` to `occupation`

# A tibble: 5 x 4
is_smoker is_pregnant igg_result igm_result
<chr> <chr> <chr> <chr>

1 Non-smoker No Negative Negative
2 Ex-smoker <NA> Positive Negative
3 Smoker <NA> Negative Negative
4 Non-smoker No Positive Negative
5 Non-smoker No Positive Negative

To drop several non-consecutive columns, place them inside !c():

yao %>% select(!c(age, sex, igg_result))

# A tibble: 5 x 5
highest_education occupation is_smoker is_pregnant igm_result
<chr> <chr> <chr> <chr> <chr>

1 Secondary Informal worker Non-smoker No Negative
2 University Salaried worker Ex-smoker <NA> Negative
3 University Student Smoker <NA> Negative
4 Secondary Student Non-smoker No Negative
5 Primary Trader--Farmer Non-smoker No Negative

Ď Practice

• From the yaounde data frame, remove all columns between highest_education and
consultation, inclusive.

10.5 Helper functions for select()

dplyr has a number of helper functions to make selecting easier by using patterns from the column names.
Let’s take a look at some of these.

10.5.1 starts_with() and ends_with()

These two helpers work exactly as their names suggest!

yao %>% select(starts_with("is_")) # Columns that start with "is"

# A tibble: 5 x 2
is_smoker is_pregnant
<chr> <chr>

1 Non-smoker No
2 Ex-smoker <NA>
3 Smoker <NA>
4 Non-smoker No
5 Non-smoker No
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yao %>% select(ends_with("_result")) # Columns that end with "result"

# A tibble: 5 x 2
igg_result igm_result
<chr> <chr>

1 Negative Negative
2 Positive Negative
3 Negative Negative
4 Positive Negative
5 Positive Negative

10.5.2 contains()

contains() helps select columns that contain a certain string:

yaounde %>% select(contains("drug")) # Columns that contain the string "drug"

# A tibble: 5 x 12
drugsource is_drug_parac is_drug_antibio is_drug_hydrocortisone
<chr> <dbl> <dbl> <dbl>

1 Self or familial 1 0 0
2 <NA> NA NA NA
3 <NA> NA NA NA
4 Self or familial 0 1 0
5 <NA> NA NA NA
# i 8 more variables: is_drug_other_anti_inflam <dbl>, is_drug_antiviral <dbl>,
# is_drug_chloro <dbl>, is_drug_tradn <dbl>, is_drug_oxygen <dbl>,
# is_drug_other <dbl>, is_drug_no_resp <dbl>, is_drug_none <dbl>

10.5.3 everything()

Another helper function, everything(), matches all variables that have not yet been selected.

## First, `is_pregnant`, then every other column.
yao %>% select(is_pregnant, everything())

# A tibble: 5 x 8
is_pregnant age sex highest_education occupation is_smoker igg_result
<chr> <dbl> <chr> <chr> <chr> <chr> <chr>

1 No 45 Female Secondary Informal work~ Non-smok~ Negative
2 <NA> 55 Male University Salaried work~ Ex-smoker Positive
3 <NA> 23 Male University Student Smoker Negative
4 No 20 Female Secondary Student Non-smok~ Positive
5 No 55 Female Primary Trader--Farmer Non-smok~ Positive
# i 1 more variable: igm_result <chr>

It is often useful for establishing the order of columns.
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Say wewanted to bring the is_pregnant column to the start of the yao data frame, we could type out all the
column names manually:

yao %>% select(is_pregnant,
age,
sex,
highest_education,
occupation,
is_smoker,
igg_result,
igm_result)

# A tibble: 5 x 8
is_pregnant age sex highest_education occupation is_smoker igg_result
<chr> <dbl> <chr> <chr> <chr> <chr> <chr>

1 No 45 Female Secondary Informal work~ Non-smok~ Negative
2 <NA> 55 Male University Salaried work~ Ex-smoker Positive
3 <NA> 23 Male University Student Smoker Negative
4 No 20 Female Secondary Student Non-smok~ Positive
5 No 55 Female Primary Trader--Farmer Non-smok~ Positive
# i 1 more variable: igm_result <chr>

But this would be painful for larger data frames, such as our original yaounde data frame. In such a case, we
can use everything():

## Bring `is_pregnant` to the front of the data frame
yaounde %>% select(is_pregnant, everything())

# A tibble: 5 x 53
is_pregnant id date_surveyed age age_category age_category_3 sex
<chr> <chr> <date> <dbl> <chr> <chr> <chr>

1 No BRIQUETERIE~ 2020-10-22 45 45 - 64 Adult Fema~
2 <NA> BRIQUETERIE~ 2020-10-24 55 45 - 64 Adult Male
3 <NA> BRIQUETERIE~ 2020-10-24 23 15 - 29 Adult Male
4 No BRIQUETERIE~ 2020-10-22 20 15 - 29 Adult Fema~
5 No BRIQUETERIE~ 2020-10-22 55 45 - 64 Adult Fema~
# i 46 more variables: highest_education <chr>, occupation <chr>,
# weight_kg <dbl>, height_cm <dbl>, is_smoker <chr>, is_medicated <chr>,
# neighborhood <chr>, household_with_children <chr>, breadwinner <chr>,
# source_of_revenue <chr>, has_contact_covid <chr>, igg_result <chr>,
# igm_result <chr>, symptoms <chr>, symp_fever <chr>, symp_headache <chr>,
# symp_cough <chr>, symp_rhinitis <chr>, symp_sneezing <chr>,
# symp_fatigue <chr>, symp_muscle_pain <chr>, ...

This helper can be combined with many others.

## Bring columns that end with "result" to the front of the data frame
yaounde %>% select(ends_with("result"), everything())
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# A tibble: 5 x 53
igg_result igm_result id date_surveyed age age_category age_category_3
<chr> <chr> <chr> <date> <dbl> <chr> <chr>

1 Negative Negative BRIQUET~ 2020-10-22 45 45 - 64 Adult
2 Positive Negative BRIQUET~ 2020-10-24 55 45 - 64 Adult
3 Negative Negative BRIQUET~ 2020-10-24 23 15 - 29 Adult
4 Positive Negative BRIQUET~ 2020-10-22 20 15 - 29 Adult
5 Positive Negative BRIQUET~ 2020-10-22 55 45 - 64 Adult
# i 46 more variables: sex <chr>, highest_education <chr>, occupation <chr>,
# weight_kg <dbl>, height_cm <dbl>, is_smoker <chr>, is_pregnant <chr>,
# is_medicated <chr>, neighborhood <chr>, household_with_children <chr>,
# breadwinner <chr>, source_of_revenue <chr>, has_contact_covid <chr>,
# symptoms <chr>, symp_fever <chr>, symp_headache <chr>, symp_cough <chr>,
# symp_rhinitis <chr>, symp_sneezing <chr>, symp_fatigue <chr>,
# symp_muscle_pain <chr>, symp_nausea_or_vomiting <chr>, ...

Ď Practice

• Select all columns in the yaounde data frame that start with “is_”.

• Move the columns that start with “is_” to the beginning of the yaounde data frame.

10.6 Change column names with rename()

dplyr::rename() is used to change column names:

## Rename `age` and `sex` to `patient_age` and `patient_sex`
yaounde %>%
rename(patient_age = age,

patient_sex = sex)

# A tibble: 5 x 53
id date_surveyed patient_age age_category age_category_3 patient_sex
<chr> <date> <dbl> <chr> <chr> <chr>

1 BRIQUETERIE~ 2020-10-22 45 45 - 64 Adult Female
2 BRIQUETERIE~ 2020-10-24 55 45 - 64 Adult Male
3 BRIQUETERIE~ 2020-10-24 23 15 - 29 Adult Male
4 BRIQUETERIE~ 2020-10-22 20 15 - 29 Adult Female
5 BRIQUETERIE~ 2020-10-22 55 45 - 64 Adult Female
# i 47 more variables: highest_education <chr>, occupation <chr>,
# weight_kg <dbl>, height_cm <dbl>, is_smoker <chr>, is_pregnant <chr>,
# is_medicated <chr>, neighborhood <chr>, household_with_children <chr>,
# breadwinner <chr>, source_of_revenue <chr>, has_contact_covid <chr>,
# igg_result <chr>, igm_result <chr>, symptoms <chr>, symp_fever <chr>,
# symp_headache <chr>, symp_cough <chr>, symp_rhinitis <chr>,
# symp_sneezing <chr>, symp_fatigue <chr>, symp_muscle_pain <chr>, ...
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Figure 10.4: Fig: the rename() function. (Drawing adapted from Allison Horst)
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¾ Watch Out

The fact that the new name comes first in the function (rename(NEWNAME = OLDNAME)) is sometimes
confusing. You should get used to this with time.

10.6.1 Rename within select()

You can also rename columns while selecting them:

## Select `age` and `sex`, and rename them to `patient_age` and `patient_sex`
yaounde %>%
select(patient_age = age,

patient_sex = sex)

# A tibble: 5 x 2
patient_age patient_sex

<dbl> <chr>
1 45 Female
2 55 Male
3 23 Male
4 20 Female
5 55 Female

10.7 Wrap up

I hope this first lesson has allowed you to see how intuitive and useful the {dplyr} verbs are! This is the first of
a series of basic data wrangling verbs: see you in the next lesson to learn more.

Figure 10.5: Fig: Basic Data Wrangling Dplyr Verbs.
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10.8 Solutions

.SOLUTION_Q_weight_height()

yaounde %>% select(weight_kg, height_cm)

.SOLUTION_Q_cols_16_22()

yaounde %>% select(16, 22)

.SOLUTION_Q_symp_to_sequel()

yaounde %>% select(symptoms:sequelae)

.SOLUTION_Q_educ_consult()

yaounde %>% select(!c(highest_education:consultation))

.SOLUTION_Q_starts_with_is()

yaounde %>% select(starts_with("is"))

.SOLUTION_Q_rearrange()

yaounde %>% select(starts_with("is_"), everything())
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Chapter 11

Filtering rows

11.1 Intro

Onward with the {dplyr} package, discovering the filter verb. Last time we saw how to select variables
(columns) and today we will see how to keep or drop data entries, rows, using filter. Dropping abnormal
data entries or keeping subsets of your data points is another essential aspect of data wrangling.

Let’s go !

11.2 Learning objectives

1. You can use dplyr::filter() to keep or drop rows from a dataframe.

2. You can filter rows by specifying conditions on numbers or strings using relational operators like greater
than (>), less than (<), equal to (==), and not equal to (!=).

3. You can filter rows by combining conditions using logical operators like the ampersand (&) and the ver-
tical bar (|).

4. You can filter rows by negating conditions using the exclamation mark (!) logical operator.

5. You can filter rows with missing values using the is.na() function.
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11.3 The Yaounde COVID-19 dataset

In this lesson, we will again use the data from the COVID-19 serological survey conducted in Yaounde,
Cameroon.

yaounde <- read_csv(here::here('data/yaounde_data.csv'))
### a smaller subset of variables
yao <- yaounde %>%
select(age, sex, weight_kg, highest_education, neighborhood,

occupation, is_smoker, is_pregnant,
igg_result, igm_result)

yao

# A tibble: 5 x 10
age sex weight_kg highest_education neighborhood occupation is_smoker

<dbl> <chr> <dbl> <chr> <chr> <chr> <chr>
1 45 Female 95 Secondary Briqueterie Informal work~ Non-smok~
2 55 Male 96 University Briqueterie Salaried work~ Ex-smoker
3 23 Male 74 University Briqueterie Student Smoker
4 20 Female 70 Secondary Briqueterie Student Non-smok~
5 55 Female 67 Primary Briqueterie Trader--Farmer Non-smok~
# i 3 more variables: is_pregnant <chr>, igg_result <chr>, igm_result <chr>

11.4 Introducing filter()

We use filter() to keep rows that satisfy a set of conditions. Let’s take a look at a simple example. If we
want to keep just the male records, we run:

yao %>% filter(sex == "Male")

# A tibble: 5 x 10
age sex weight_kg highest_education neighborhood occupation is_smoker

<dbl> <chr> <dbl> <chr> <chr> <chr> <chr>
1 55 Male 96 University Briqueterie Salaried worker Ex-smoker
2 23 Male 74 University Briqueterie Student Smoker
3 28 Male 62 Doctorate Briqueterie Student Non-smok~
4 30 Male 73 Secondary Briqueterie Trader Non-smok~
5 42 Male 71 Secondary Briqueterie Trader Ex-smoker
# i 3 more variables: is_pregnant <chr>, igg_result <chr>, igm_result <chr>

Note the use of the double equal sign == rather than the single equal sign =. The == sign tests for equality, as
demonstrated below:

### create the object `sex_vector` with three elements
sex_vector <- c("Male", "Female", "Female")
### test which elements are equal to "Male"
sex_vector == "Male"
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[1] TRUE FALSE FALSE

So the code yao %>% filter(sex == "Male") will keep all rows where the equality test sex == "Male"
evaluates to TRUE.

It is often useful to chain filter()with nrow() to get the number of rows fulfilling a condition.

### how many respondents were male?
yao %>%
filter(sex == "Male") %>%
nrow()

[1] 422

Ĺ Key Point

The double equal sign, ==, tests for equality, while the single equals sign, =, is used for specifying values
to arguments inside functions.

Ď Practice

Filter the yao data frame to respondents who were pregnant during the survey.
How many respondents were female? (Use filter() and nrow())

11.5 Relational operators

The == operator introduced above is an example of a “relational” operator, as it tests the relation between
two values. Here is a list of some of these operators:

Operator is TRUE if
A < B A is less than B
A <= B A is less than or equal to B
A > B A is greater than B
A >= B A is greater than or equal to B
A == B A is equal to B
A != B A is not equal to B
A %in% B A is an element of B

Let’s see how to use these within filter():

yao %>% filter(sex != "Male") ## keep rows where `sex` is not "Male"
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Figure 11.1: Fig: AND and OR operators visualized.

# A tibble: 5 x 10
age sex weight_kg highest_education neighborhood occupation is_smoker

<dbl> <chr> <dbl> <chr> <chr> <chr> <chr>
1 45 Female 95 Secondary Briqueterie Informal work~ Non-smok~
2 20 Female 70 Secondary Briqueterie Student Non-smok~
3 55 Female 67 Primary Briqueterie Trader--Farmer Non-smok~
4 17 Female 65 Secondary Briqueterie Student Non-smok~
5 13 Female 65 Secondary Briqueterie Student Non-smok~
# i 3 more variables: is_pregnant <chr>, igg_result <chr>, igm_result <chr>

yao %>% filter(age < 6) ## keep respondents under 6

# A tibble: 5 x 10
age sex weight_kg highest_education neighborhood occupation is_smoker

<dbl> <chr> <dbl> <chr> <chr> <chr> <chr>
1 5 Female 19 Primary Carriere Student Non-smoker
2 5 Female 26 Primary Carriere No response Non-smoker
3 5 Male 16 Primary Cité Verte Student Non-smoker
4 5 Female 21 Primary Ekoudou Student Non-smoker
5 5 Male 15 Primary Ekoudou Student Non-smoker
# i 3 more variables: is_pregnant <chr>, igg_result <chr>, igm_result <chr>

yao %>% filter(age >= 70) ## keep respondents aged at least 70

# A tibble: 5 x 10
age sex weight_kg highest_education neighborhood occupation is_smoker

<dbl> <chr> <dbl> <chr> <chr> <chr> <chr>
1 78 Male 95 Secondary Briqueterie Retired--Info~ Ex-smoker
2 79 Female 40 Primary Briqueterie Retired Non-smok~
3 78 Female 60 Primary Briqueterie Unemployed Non-smok~
4 75 Male 74 Primary Briqueterie Informal work~ Non-smok~
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5 72 Male 65 Secondary Carriere Retired Non-smok~
# i 3 more variables: is_pregnant <chr>, igg_result <chr>, igm_result <chr>

### keep respondents whose highest education is "Primary" or "Secondary"
yao %>% filter(highest_education %in% c("Primary", "Secondary"))

# A tibble: 5 x 10
age sex weight_kg highest_education neighborhood occupation is_smoker

<dbl> <chr> <dbl> <chr> <chr> <chr> <chr>
1 45 Female 95 Secondary Briqueterie Informal work~ Non-smok~
2 20 Female 70 Secondary Briqueterie Student Non-smok~
3 55 Female 67 Primary Briqueterie Trader--Farmer Non-smok~
4 17 Female 65 Secondary Briqueterie Student Non-smok~
5 13 Female 65 Secondary Briqueterie Student Non-smok~
# i 3 more variables: is_pregnant <chr>, igg_result <chr>, igm_result <chr>

Ď Practice

From yao, keep only respondents who were children (under 18).
With %in%, keep only respondents who live in the “Tsinga” or “Messa” neighborhoods.

11.6 Combining conditions with & and |

We can pass multiple conditions to a single filter() statement separated by commas:

### keep respondents who are pregnant and are ex-smokers
yao %>% filter(is_pregnant == "Yes", is_smoker == "Ex-smoker") ## only one row

# A tibble: 1 x 10
age sex weight_kg highest_education neighborhood occupation is_smoker

<dbl> <chr> <dbl> <chr> <chr> <chr> <chr>
1 25 Female 90 Secondary Carriere Home-maker Ex-smoker
# i 3 more variables: is_pregnant <chr>, igg_result <chr>, igm_result <chr>

When multiple conditions are separated by a comma, they are implicitly combined with an and (&).

It is best to replace the comma with & to make this more explicit.

### same result as before, but `&` is more explicit
yao %>% filter(is_pregnant == "Yes" & is_smoker == "Ex-smoker")

# A tibble: 1 x 10
age sex weight_kg highest_education neighborhood occupation is_smoker

<dbl> <chr> <dbl> <chr> <chr> <chr> <chr>
1 25 Female 90 Secondary Carriere Home-maker Ex-smoker
# i 3 more variables: is_pregnant <chr>, igg_result <chr>, igm_result <chr>
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Ĺ Side Note

Don’t confuse:

• the “,” in listing several conditions in filter filter(A,B) i.e. filter based on condition A and (&)
condition B

• the “,” in lists c(A,B)which is listing different components of the list (and has nothing to do with
the & operator)

If we want to combine conditions with an or, we use the vertical bar symbol, |.

### respondents who are pregnant OR who are ex-smokers
yao %>% filter(is_pregnant == "Yes" | is_smoker == "Ex-smoker")

# A tibble: 5 x 10
age sex weight_kg highest_education neighborhood occupation is_smoker

<dbl> <chr> <dbl> <chr> <chr> <chr> <chr>
1 55 Male 96 University Briqueterie Salaried worker Ex-smoker
2 42 Male 71 Secondary Briqueterie Trader Ex-smoker
3 38 Male 71 University Briqueterie Informal worker Ex-smoker
4 69 Male 108 University Briqueterie Retired Ex-smoker
5 65 Male 93 Secondary Briqueterie Retired Ex-smoker
# i 3 more variables: is_pregnant <chr>, igg_result <chr>, igm_result <chr>

Ď Practice

Filter yao to only keep men who tested IgG positive.
Filter yao to keep both children (under 18) and anyone whose highest education is primary school.

11.7 Negating conditions with !

To negate conditions, we wrap them in !().

Below, we drop respondents who are children (less than 18 years) or who weigh less than 30kg:

### drop respondents < 18 years OR < 30 kg
yao %>% filter(!(age < 18 | weight_kg < 30))

# A tibble: 5 x 10
age sex weight_kg highest_education neighborhood occupation is_smoker

<dbl> <chr> <dbl> <chr> <chr> <chr> <chr>
1 45 Female 95 Secondary Briqueterie Informal work~ Non-smok~
2 55 Male 96 University Briqueterie Salaried work~ Ex-smoker
3 23 Male 74 University Briqueterie Student Smoker
4 20 Female 70 Secondary Briqueterie Student Non-smok~
5 55 Female 67 Primary Briqueterie Trader--Farmer Non-smok~
# i 3 more variables: is_pregnant <chr>, igg_result <chr>, igm_result <chr>

The ! operator is also used to negate %in% since R does not have an operator for NOT in.
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### drop respondents whose highest education is NOT "Primary" or "Secondary"
yao %>% filter(!(highest_education %in% c("Primary", "Secondary")))

# A tibble: 5 x 10
age sex weight_kg highest_education neighborhood occupation is_smoker

<dbl> <chr> <dbl> <chr> <chr> <chr> <chr>
1 55 Male 96 University Briqueterie Salaried worker Ex-smoker
2 23 Male 74 University Briqueterie Student Smoker
3 28 Male 62 Doctorate Briqueterie Student Non-smok~
4 38 Male 71 University Briqueterie Informal worker Ex-smoker
5 54 Male 71 University Briqueterie Salaried worker Smoker
# i 3 more variables: is_pregnant <chr>, igg_result <chr>, igm_result <chr>

Ĺ Key Point

It is easier to read filter() statements as keep statements, to avoid confusion over whether we are
filtering in or filtering out!
So the code below would read: “keep respondents who are under 18 or who weigh less than 30kg”.

yao %>% filter(age < 18 | weight_kg < 30)

And when we wrap conditions in !(), we can then read filter() statements as drop statements.
So the code below would read: “drop respondents who are under 18 or who weigh less than 30kg”.

yao %>% filter(!(age < 18 | weight_kg < 30))

Ď Practice

From yao, drop respondents who live in the Tsinga or Messa neighborhoods.

11.8 NA values

The relational operators introduced so far do not work with NA.

Let’s make a data subset to illustrate this.

yao_mini <- yao %>%
select(sex, is_pregnant) %>%
slice(1,11,50,2) ## custom row order

yao_mini

# A tibble: 4 x 2
sex is_pregnant
<chr> <chr>

1 Female No
2 Female No response
3 Female Yes
4 Male <NA>
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In yao_mini, the last respondent has an NA for the is_pregnant column, because he is male.

Trying to select this row using == NAwill not work.

yao_mini %>% filter(is_pregnant == NA) ## does not work

# A tibble: 0 x 2
# i 2 variables: sex <chr>, is_pregnant <chr>

yao_mini %>% filter(is_pregnant == "NA") ## does not work

# A tibble: 0 x 2
# i 2 variables: sex <chr>, is_pregnant <chr>

This is because NA is a non-existent value. So R cannot evaluate whether it is “equal to” or “not equal to”
anything.

The special function is.na() is therefore necessary:

### keep rows where `is_pregnant` is NA
yao_mini %>% filter(is.na(is_pregnant))

# A tibble: 1 x 2
sex is_pregnant
<chr> <chr>

1 Male <NA>

This function can be negated with !:

### drop rows where `is_pregnant` is NA
yao_mini %>% filter(!is.na(is_pregnant))

# A tibble: 3 x 2
sex is_pregnant
<chr> <chr>

1 Female No
2 Female No response
3 Female Yes

Ĺ Side Note

For tibbles, RStudio will highlight NA values bright red to distinguish them from other values:
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Figure 11.2: A common error with NA

Ĺ Side Note

NA values can be identified but any other encoding such as "NA" or "NaN", which are encoded as strings,
will be imperceptible to the functions (they are strings, like any others).

Ď Practice

From the yao dataset, keep all the respondents who hadmissing records for the report of their smoking
status.

Ď Practice

For some respondents the respiration rate, in breaths per minute, was recorded in the
respiration_frequency column.
From yaounde, drop thosewith a respiration frequency under 20. Think about NAswhile doing this! You
should avoid also dropping the NA values.

11.9 Wrap up

Now you know the two essential verbs to select() columns and to filter() rows. This way you keep the
variables you are interested in by selecting your columns and you keep the data entries you judge relevant by
filtering your rows.

But what about modifying, transforming your data? We will learn about this in the next lesson. See you
there!

References

Some material in this lesson was adapted from the following sources:
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2020)
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Figure 11.3: Fig: Basic Data Wrangling: select() and filter().

• Subset rows using column values—Filter. (n.d.). Retrieved 12 January 2022, from https://dplyr.tidyverse.
org/reference/filter.html

Artwork was adapted from:

• Horst, A. (2021). R & stats illustrations by Allison Horst. https://github.com/allisonhorst/stats-
illustrations (Original work published 2018)

11.10 Solutions

.SOLUTION_Q_is_pregnant()

yao %>% filter(is_pregnant == 'Yes')

.SOLUTION_Q_female_nrow()

yao %>%
filter(sex == 'Female') %>%
nrow()

.SOLUTION_Q_under_18()

yao %>% filter(age < 18)

.SOLUTION_Q_tsinga_messa()
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yao %>%
filter(neighborhood %in% c("Tsinga", "Messa"))

.SOLUTION_Q_male_positive()

yao %>%
filter(sex == "Male" & igg_result == "Positive")

.SOLUTION_Q_child_primary()

yao %>% filter(age < 18 | highest_education == "Primary")

.SOLUTION_Q_not_tsinga_messa()

yao %>%
filter(!(neighborhood %in% c("Tsinga", "Messa")))

.SOLUTION_Q_na_smoker()

yao %>% filter(is.na(is_smoker))
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Chapter 12

Mutating columns

12.1 Intro

You now know how to keep or drop columns and rows from your dataset. Today you will learn how to modify
existing variables or create new ones, using the mutate() verb from {dplyr}. This is an essential step in most
data analysis projects.

Let’s go!

Figure 12.1: Fig: the mutate() verb.

12.2 Learning objectives

1. You can use the mutate() function from the {dplyr} package to create new variables or modify exist-
ing variables.

2. You can create new numeric, character, factor, and boolean variables

12.3 Packages

This lesson will require the packages loaded below:
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if(!require(pacman)) install.packages("pacman")
pacman::p_load(here,

janitor,
tidyverse)

12.4 Datasets

In this lesson, we will again use the data from the COVID-19 serological survey conducted in Yaounde,
Cameroon. Below, we import the dataset yaounde and create a smaller subset called yao. Note that this
dataset is slightly different from the one used in the previous lesson.

yaounde <- read_csv(here::here('data/yaounde_data.csv'))

### a smaller subset of variables
yao <- yaounde %>% select(date_surveyed,

age,
weight_kg, height_cm,
symptoms, is_smoker)

yao

# A tibble: 10 x 6
date_surveyed age weight_kg height_cm symptoms is_smoker
<date> <dbl> <dbl> <dbl> <chr> <chr>

1 2020-10-22 45 95 169 Muscle pain Non-smok~
2 2020-10-24 55 96 185 No symptoms Ex-smoker
3 2020-10-24 23 74 180 No symptoms Smoker
4 2020-10-22 20 70 164 Rhinitis--Sneezing--Anosmi~ Non-smok~
5 2020-10-22 55 67 147 No symptoms Non-smok~
6 2020-10-25 17 65 162 Fever--Cough--Rhinitis--Na~ Non-smok~
7 2020-10-25 13 65 150 Sneezing Non-smok~
8 2020-10-24 28 62 173 Headache Non-smok~
9 2020-10-24 30 73 170 Fever--Rhinitis--Anosmia o~ Non-smok~
10 2020-10-24 13 56 153 No symptoms Non-smok~

We will also use a dataset from a cross-sectional study that aimed to determine the prevalence of sarcopenia
in the elderly population (>60 years) in in Karnataka, India. Sarcopenia is a condition that is common in elderly
people and is characterized by progressive and generalized loss of skeletal muscle mass and strength. The
data was obtained from Zenodo here, and the source publication can be found here.

Below, we import and view this dataset:

sarcopenia <- read_csv(here::here('data/sarcopenia_elderly.csv'))

sarcopenia

# A tibble: 10 x 9
number age age_group sex_male_1_female_0 marital_status height_meters
<dbl> <dbl> <chr> <dbl> <chr> <dbl>
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1 7 60.8 Sixties 0 married 1.57
2 8 72.3 Seventies 1 married 1.65
3 9 62.6 Sixties 0 married 1.59
4 12 72 Seventies 0 widow 1.47
5 13 60.1 Sixties 0 married 1.55
6 19 60.6 Sixties 0 married 1.42
7 45 60.1 Sixties 1 widower 1.68
8 46 60.2 Sixties 0 married 1.8
9 51 63 Sixties 0 married 1.6
10 56 60.4 Sixties 0 married 1.6
# i 3 more variables: weight_kg <dbl>, grip_strength_kg <dbl>,
# skeletal_muscle_index <dbl>

12.5 Introducing mutate()

Figure 12.2: The mutate() function. (Drawing adapted from Allison Horst)

We use dplyr::mutate() to create new variables or modify existing variables. The syntax is quite intuitive,
and generally looks like df %>% mutate(new_column_name = what_it_contains).

Let’s see a quick example.

The yaounde dataset currently contains a column called height_cm, which shows the height, in centimeters,
of survey respondents. Let’s create a data frame, yao_height, with just this column, for easy illustration:

yao_height <- yaounde %>% select(height_cm)
yao_height

# A tibble: 5 x 1
height_cm

<dbl>
1 169
2 185

173



12.5. INTRODUCING MUTATE() CHAPTER 12. MUTATING COLUMNS

3 180
4 164
5 147

What if youwanted to create a new variable, called height_meterswhere heights are converted tometers?
You can use mutate() for this, with the argument height_meters = height_cm/100:

yao_height %>%
mutate(height_meters = height_cm/100)

# A tibble: 5 x 2
height_cm height_meters

<dbl> <dbl>
1 169 1.69
2 185 1.85
3 180 1.8
4 164 1.64
5 147 1.47

Great. The syntax is beautifully simple, isn’t it?

Now, imagine there was a small error in the equipment used to measure respondent heights, and all heights
are 5cm too small. You therefore like to add 5cm to all heights in the dataset. To do this, rather than creating
a new variable as you did before, you canmodify the existing variablewith mutate:

yao_height %>%
mutate(height_cm = height_cm + 5)

# A tibble: 5 x 1
height_cm

<dbl>
1 174
2 190
3 185
4 169
5 152

Again, very easy to do!

Ď Practice

The sarcopenia data frame has a variable weight_kg, which contains respondents’ weights in kilo-
grams. Create a new column, called weight_grams, with respondents’ weights in grams. Store your
answer in the Q_weight_to_g object. (1 kg equals 1000 grams.)

## Complete the code with your answer:
Q_weight_to_g <-
sarcopenia %>%
_____________________
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Hopefully you now see that themutate function is quite user-friendly. In theory, we could end the lesson here,
because you now know how to use mutate() �. But of course, the devil will be in the details—the interesting
thing is not mutate() itself but what goes inside the mutate() call.

The rest of the lesson will go through a few use cases for the mutate() verb. In the process, we’ll touch on
several new functions you have not yet encountered.

12.6 Creating a Boolean variable

You can use mutate() to create a Boolean variable to categorize part of your population.

Below we create a Boolean variable, is_child which is either TRUE if the subject is a child or FALSE if the
subject is an adult (first, we select just the age variable so it’s easy to see what is being done; you will likely
not need this pre-selection for your own analyses).

yao %>%
select(age) %>%
mutate(is_child = age <= 18)

# A tibble: 5 x 2
age is_child

<dbl> <lgl>
1 45 FALSE
2 55 FALSE
3 23 FALSE
4 20 FALSE
5 55 FALSE

The code age <= 18 evaluates whether each age is less than or equal to 18. Ages that match that condition
(ages 18 and under) are TRUE and those that fail the condition are FALSE.

Such a variable is useful to, for example, count the number of children in the dataset. The code below does
this with the janitor::tabyl() function:

yao %>%
mutate(is_child = age <= 18) %>%
tabyl(is_child)

is_child n percent
FALSE 662 0.6817714
TRUE 309 0.3182286

You can observe that 31.8% (0.318…) of respondents in the dataset are children.

Let’s see one more example, since the concept of Boolean variables can be a bit confusing. The symptoms
variable reports any respiratory symptoms experienced by the patient:

yao %>%
select(symptoms)
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# A tibble: 5 x 1
symptoms
<chr>

1 Muscle pain
2 No symptoms
3 No symptoms
4 Rhinitis--Sneezing--Anosmia or ageusia
5 No symptoms

You could create a Boolean variable, called has_no_symptoms, that is set to TRUE if the respondent reported
no symptoms:

yao %>%
select(symptoms) %>%
mutate(has_no_symptoms = symptoms == "No symptoms")

# A tibble: 5 x 2
symptoms has_no_symptoms
<chr> <lgl>

1 Muscle pain FALSE
2 No symptoms TRUE
3 No symptoms TRUE
4 Rhinitis--Sneezing--Anosmia or ageusia FALSE
5 No symptoms TRUE

Similarly, you could create a Boolean variable called has_any_symptoms that is set to TRUE if the respondent
reported any symptoms. For this, you’d simply swap the symptoms == "No symptoms" code for symptoms
!= "No symptoms":

yao %>%
select(symptoms) %>%
mutate(has_any_symptoms = symptoms != "No symptoms")

# A tibble: 5 x 2
symptoms has_any_symptoms
<chr> <lgl>

1 Muscle pain TRUE
2 No symptoms FALSE
3 No symptoms FALSE
4 Rhinitis--Sneezing--Anosmia or ageusia TRUE
5 No symptoms FALSE

Still confused by the Boolean examples? That’s normal. Pause and play with the code above a little. Then try
the practice question below

Ď Practice

Women with a grip strength below 20kg are considered to have low grip strength. With a female subset
of the sarcopenia data frame, add a variable called low_grip_strength that is TRUE for womenwith
a grip strength < 20 kg and FALSE for other women.
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## Complete the code with your answer:
Q_women_low_grip_strength <-
sarcopenia %>%
filter(sex_male_1_female_0 == 0) # first we filter the dataset to only women
# mutate code here

What percentage of women surveyed have a low grip strength according to the definition above? Enter
your answer as a number without quotes (e.g. 43.3 or 12.2), to one decimal place.

Q_prop_women_low_grip_strength <- YOUR_ANSWER_HERE

12.7 Creating a numeric variable based on a formula

Now, let’s look at an example of creating a numeric variable, the body mass index (BMI), which a commonly
used health indicator. The formula for the body mass index can be written as:

𝐵𝑀𝐼 = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠)ℎ𝑒𝑖𝑔ℎ𝑡(𝑚𝑒𝑡𝑒𝑟𝑠)2
You can use mutate() to calculate BMI in the yao dataset as follows:

yao %>%
select(weight_kg, height_cm) %>%

# first obtain the height in meters
mutate(height_meters = height_cm/100) %>%

# then use the BMI formula
mutate(bmi = weight_kg / (height_meters)^2)

# A tibble: 5 x 4
weight_kg height_cm height_meters bmi

<dbl> <dbl> <dbl> <dbl>
1 95 169 1.69 33.3
2 96 185 1.85 28.0
3 74 180 1.8 22.8
4 70 164 1.64 26.0
5 67 147 1.47 31.0

Let’s save the data frame with BMIs for later. We will use it in the next section.

yao_bmi <-
yao %>%
select(weight_kg, height_cm) %>%
# first obtain the height in meters
mutate(height_meters = height_cm/100) %>%
# then use the BMI formula
mutate(bmi = weight_kg / (height_meters)^2)
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Ď Practice

Appendicular muscle mass (ASM), a useful health indicator, is the sum of muscle mass in all 4 limbs. It
can predicted with the following formula, called Lee’s equation:

𝐴𝑆𝑀(𝑘𝑔) = (0.244 × 𝑤𝑒𝑖𝑔ℎ𝑡(𝑘𝑔)) + (7.8 × ℎ𝑒𝑖𝑔ℎ𝑡(𝑚)) + (6.6 × 𝑠𝑒𝑥) − (0.098 × 𝑎𝑔𝑒) − 4.5
The sex variable in the formula assumes that men are coded as 1 and women are coded as 0 (which is
already the case for our sarcopenia dataset.) The - 4.5 at the end is a constant used for Asians.
Calculate the ASM value for all individuals in the sarcopenia dataset. This value should be in a new
column called asm

## Complete the code with your answer:
Q_asm_calculation <-
sarcopenia #_____
#________________

12.8 Changing a variable’s type

In your data analysis workflow, you often need to redefine variable types. You can do so with functions like
as.integer(), as.factor(), as.character() and as.Date() within your mutate() call. Let’s see one
example of this.

12.8.1 Integer: as.integer

as.integer() converts any numeric values to integers:

yao_bmi %>%
mutate(bmi_integer = as.integer(bmi))

# A tibble: 5 x 5
weight_kg height_cm height_meters bmi bmi_integer

<dbl> <dbl> <dbl> <dbl> <int>
1 95 169 1.69 33.3 33
2 96 185 1.85 28.0 28
3 74 180 1.8 22.8 22
4 70 164 1.64 26.0 26
5 67 147 1.47 31.0 31

Note that this truncates integers rather than rounding them up or down, as you might expect. For example
the BMI 22.8 in the third row is truncated to 22. If youwant rounded numbers, you can use the round function
from base R

Ĺ Pro Tip

Using as.integer() on a factor variable is a fast way of encoding strings into numbers. It can be essen-
tial to do so for some machine learning data processing.
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yao_bmi %>%
mutate(bmi_integer = as.integer(bmi),

bmi_rounded = round(bmi))

# A tibble: 5 x 6
weight_kg height_cm height_meters bmi bmi_integer bmi_rounded

<dbl> <dbl> <dbl> <dbl> <int> <dbl>
1 95 169 1.69 33.3 33 33
2 96 185 1.85 28.0 28 28
3 74 180 1.8 22.8 22 23
4 70 164 1.64 26.0 26 26
5 67 147 1.47 31.0 31 31

Ĺ Side Note

The base R round() function rounds “half down”. That is, the number 3.5, for example, is rounded down
to 3 by round(). This is weird. Most people expect 3.5 to be rounded up to 4, not down to 3. So most
of the time, you’ll actually want to use the round_half_up() function from janitor.

Ĺ Challenge

In future lessons, you will discover how to manipulate dates and how to convert to a date type using
as.Date().

Ď Practice

Use as_integer() to convert the ages of respondents in the sarcopenia dataset to integers (truncat-
ing them in the process). This should go in a new column called age_integer

## Complete the code with your answer:
Q_age_integer <-
sarcopenia #_____
#________________

12.9 Wrap up

As you can imagine, transforming data is an essential step in any data analysis workflow. It is often required
to clean data and to prepare it for further statistical analysis or for making plots. And as you have seen, it is
quite simple to transform data with dplyr’s mutate() function, although certain transformations are trickier
to achieve than others.

Congrats on making it through.

But your data wrangling journey isn’t over yet! In our next lessons, we will learn how to create complex data
summaries and how to create and work with data frame groups. Intrigued? See you in the next lesson.

References

Some material in this lesson was adapted from the following sources:
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Figure 12.3: Fig: Basic Data Wrangling with select(), filter(), and mutate().
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12.10 Solutions

.SOLUTION_Q_weight_to_g()

Q_weight_to_g <-
sarcopenia %>%
mutate(weight_grams = weight_kg*1000)

.SOLUTION_Q_sarcopenia_resp_id()
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Q_sarcopenia_resp_id <-
sarcopenia %>%
mutate(respondent_id = 1:n())

.SOLUTION_Q_women_low_grip_strength()

Q_women_low_grip_strength <-
sarcopenia %>%
filter(sex_male_1_female_0 == 0) %>%
mutate(low_grip_strength = grip_strength_kg < 20)

.SOLUTION_Q_prop_women_low_grip_strength()

Q_prop_women_low_grip_strength <-
sarcopenia %>%
filter(sex_male_1_female_0 == 0) %>%
mutate(low_grip_strength = grip_strength_kg < 20) %>%
tabyl(low_grip_strength) %>%
.[2,3] * 100

.SOLUTION_Q_asm_calculation()

Q_asm_calculation <-
sarcopenia %>%
mutate(asm = 0.244 * weight_kg + 7.8 * height_meters + 6.6 * sex_male_1_female_0 - 0.098 * age - 4.5)

.SOLUTION_Q_age_integer()

Q_age_integer <-
sarcopenia %>%
mutate(age_integer = as.integer(age))
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Conditional mutating

13.1 Introduction

In the last lesson, you learned the basics of data transformation using the {dplyr} function mutate().

In that lesson, we mostly looked at global transformations; that is, transformations that did the same thing
to an entire variable. In this lesson, we will look at how to conditionally manipulate certain rows based on
whether or not they meet defined criteria.

For this, we will mostly use the case_when() function, which you will likely come to see as one of the most
important functions in {dplyr} for data wrangling tasks.

Let’s get started.

Figure 13.1: Fig: the case_when() conditions.

13.2 Learning objectives

1. You can transform or create new variables based on conditions using dplyr::case_when()

2. You know how to use the TRUE condition in case_when() to match unmatched cases.

3. You can handle NA values in case_when() transformations.

4. You understand how to keep the default values of a variable in a case_when() formula
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5. You can write case_when() conditions involving multiple comparators and multiple variables.

6. You understand case_when() conditions priority order.

7. You can use dplyr::if_else() for binary conditional assignment.

13.3 Packages

This lesson will require the tidyverse suite of packages:

if(!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse)

13.4 Datasets

In this lesson,wewill again usedata fromtheCOVID-19 serological survey conducted inYaounde, Cameroon.

## Import and view the dataset
yaounde <-
read_csv(here::here('data/yaounde_data.csv')) %>%
## make every 5th age missing
mutate(age = case_when(row_number() %in% seq(5, 900, by = 5) ~ NA_real_,

TRUE ~ age)) %>%
## rename the age variable
rename(age_years = age) %>%
# drop the age category column
select(-age_category)

yaounde

# A tibble: 10 x 52
id date_surveyed age_years age_category_3 sex highest_education
<chr> <date> <dbl> <chr> <chr> <chr>

1 BRIQUETERIE_0~ 2020-10-22 45 Adult Fema~ Secondary
2 BRIQUETERIE_0~ 2020-10-24 55 Adult Male University
3 BRIQUETERIE_0~ 2020-10-24 23 Adult Male University
4 BRIQUETERIE_0~ 2020-10-22 20 Adult Fema~ Secondary
5 BRIQUETERIE_0~ 2020-10-22 NA Adult Fema~ Primary
6 BRIQUETERIE_0~ 2020-10-25 17 Child Fema~ Secondary
7 BRIQUETERIE_0~ 2020-10-25 13 Child Fema~ Secondary
8 BRIQUETERIE_0~ 2020-10-24 28 Adult Male Doctorate
9 BRIQUETERIE_0~ 2020-10-24 30 Adult Male Secondary
10 BRIQUETERIE_0~ 2020-10-24 NA Child Fema~ Secondary
# i 46 more variables: occupation <chr>, weight_kg <dbl>, height_cm <dbl>,
# is_smoker <chr>, is_pregnant <chr>, is_medicated <chr>, neighborhood <chr>,
# household_with_children <chr>, breadwinner <chr>, source_of_revenue <chr>,
# has_contact_covid <chr>, igg_result <chr>, igm_result <chr>,
# symptoms <chr>, symp_fever <chr>, symp_headache <chr>, symp_cough <chr>,
# symp_rhinitis <chr>, symp_sneezing <chr>, symp_fatigue <chr>,
# symp_muscle_pain <chr>, symp_nausea_or_vomiting <chr>, ...
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Note that in the code chunk above, we slightly modified the age column, artificially introducing some miss-
ing values, and we also dropped the age_category column. This is to help illustrate some key points in the
tutorial.

For practice questions, we will also use an outbreak linelist of 136 cases of influenza A H7N9 from a 2013
outbreak in China. This is a modified version of a dataset compiled by Kucharski et al. (2014).

## Import and view the dataset
flu_linelist <- read_csv(here::here('data/flu_h7n9_china_2013.csv'))
flu_linelist

# A tibble: 10 x 8
case_id date_of_onset date_of_hospitalisation date_of_outcome outcome gender
<dbl> <date> <date> <date> <chr> <chr>

1 1 2013-02-19 NA 2013-03-04 Death m
2 2 2013-02-27 2013-03-03 2013-03-10 Death m
3 3 2013-03-09 2013-03-19 2013-04-09 Death f
4 4 2013-03-19 2013-03-27 NA <NA> f
5 5 2013-03-19 2013-03-30 2013-05-15 Recover f
6 6 2013-03-21 2013-03-28 2013-04-26 Death f
7 7 2013-03-20 2013-03-29 2013-04-09 Death m
8 8 2013-03-07 2013-03-18 2013-03-27 Death m
9 9 2013-03-25 2013-03-25 NA <NA> m
10 10 2013-03-28 2013-04-01 2013-04-03 Death m
# i 2 more variables: age <dbl>, province <chr>

13.5 Reminder: relational operators (comparators) in R

Throughout this lesson, you will use a lot of relational operators in R. Recall that relational operators, some-
times called “comparators”, test the relation between two values, and return TRUE, FALSE or NA.

A list of the most common operators is given below:

Operator is TRUE if
A < B A is less than B
A <= B A is less than or equal to B
A > B A is greater than B
A >= B A is greater than or equal to B
A == B A is equal to B
A != B A is not equal to B
A %in% B A is an element of B

13.6 Introduction to case_when()

To get familiar with case_when(), let’s begin with a simple conditional transformation on the age_years
column of the yaounde dataset. First we subset the data frame to just the age_years column for easy illus-
tration:
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yaounde_age <-
yaounde %>%
select(age_years)

yaounde_age

# A tibble: 10 x 1
age_years

<dbl>
1 45
2 55
3 23
4 20
5 NA
6 17
7 13
8 28
9 30
10 NA

Now, using case_when(), we can make a new column, called “age_group”, that has the value “Child” if the
person is below 18, and “Adult” if the person is 18 and up:

yaounde_age %>%
mutate(age_group = case_when(age_years < 18 ~ "Child",

age_years >= 18 ~ "Adult"))

# A tibble: 10 x 2
age_years age_group

<dbl> <chr>
1 45 Adult
2 55 Adult
3 23 Adult
4 20 Adult
5 NA <NA>
6 17 Child
7 13 Child
8 28 Adult
9 30 Adult
10 NA <NA>

The case_when() syntax may seem a bit foreign, but it is quite simple: on the left-hand side (LHS) of the ~
sign (called a “tilde”), you provide the condition(s) you want to evaluate, and on the right-hand side (RHS), you
provide a value to put in if the condition is true.

So the statement case_when(age_years < 18 ~ "Child", age_years >= 18 ~ "Adult") can be
read as: “if age_years is below 18, input ‘Child’, else if age_years is greater than or equal to 18, input
‘Adult’ ”.
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Ĺ Vocab

Formulas, LHS and RHS
Each line of a case_when() call is termed a “formula” or, sometimes, a “two-sided formula”. And each
formula has a left-hand side (abbreviated LHS) and right-hand side (abbreviated RHS).
For example, the code age_years < 18 ~ "Child" is a “formula”, its LHS is age_years < 18 while
its RHS is "Child".
You are likely to come across these terms when reading the documentation for the case_when() func-
tion, and we will also refer to them in this lesson.

After creating a new variable with case_when(), it is a good idea to inspect it thoroughly to make sure it
worked as intended.

To inspect the variable, you canpipe yourdata frame into theView() function to view it in spreadsheet form:

yaounde_age %>%
mutate(age_group = case_when(age_years < 18 ~ "Child",

age_years >= 18 ~ "Adult")) %>%
View()

Thiswould openup anew tab in RStudiowhere you shouldmanually scan through the newcolumn, age_group
and the referenced column age_years to make sure your case_when() statement did what you wanted it to
do.

You could also pass the new column into the tabyl() function to ensure that the proportions “make sense”:

yaounde_age %>%
mutate(age_group = case_when(age_years < 18 ~ "Child",

age_years >= 18 ~ "Adult")) %>%
tabyl(age_group)

age_group n percent valid_percent
Adult 558 0.5746653 0.7054362
Child 233 0.2399588 0.2945638
<NA> 180 0.1853759 NA

Ď Practice

With the flu_linelist data, make a new column, called age_group, that has the value “Below 50” for
people under 50 and “50 and above” for people aged 50 and up. Use the case_when() function.

## Complete the code with your answer:
Q_age_group <-
flu_linelist %>%
mutate(age_group = ______________________________)

Out of the entire sample of individuals in the flu_linelist dataset, what percentage are confirmed to
be below 60? (Repeat the above procedure but with the 60 cutoff, then call tabyl() on the age group
variable. Use the percent column, not the valid_percent column.)
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## Enter your answer as a WHOLE number without quotes:
Q_age_group_percentage <- YOUR_ANSWER_HERE

13.7 The TRUE default argument

In a case_when() statement, you can use a literal TRUE condition to match any rows not yet matched with
provided conditions.

For example, if we only keep only the first condition from the previous example, age_years < 18, and define
the default value to beTRUE ~ "Not child" then all adults andNA values in the data setwill be labeled"Not
child" by default.

yaounde_age %>%
mutate(age_group = case_when(age_years < 18 ~ "Child",

TRUE ~ "Not child"))

# A tibble: 10 x 2
age_years age_group

<dbl> <chr>
1 45 Not child
2 55 Not child
3 23 Not child
4 20 Not child
5 NA Not child
6 17 Child
7 13 Child
8 28 Not child
9 30 Not child
10 NA Not child

This TRUE condition can be read as “for everything else…”.

So the full case_when() statement used above, age_years < 18 ~ "Child", TRUE ~ "Not child",
would then be read as: “if age is below 18, input ‘Child’ and for everyone else not yet matched, input ‘Not
child’ ”.

¾ Watch Out

It is important to use TRUE as the final condition in case_when(). If you use it as the first condition, it
will take precedence over all others, as seen here:

yaounde_age %>%
mutate(age_group = case_when(TRUE ~ "Not child",

age_years < 18 ~ "Child"))

# A tibble: 10 x 2
age_years age_group

<dbl> <chr>
1 45 Not child
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2 55 Not child
3 23 Not child
4 20 Not child
5 NA Not child
6 17 Not child
7 13 Not child
8 28 Not child
9 30 Not child
10 NA Not child

Asyou canobserve, all individuals arenowcodedwith “Not child”, because theTRUE conditionwasplaced
first, and therefore took precedence. We will explore the issue of precedence further below.

13.8 Matching NA’s with is.na()

We can match missing values manually with is.na(). Below we match NA ages with is.na() and set their
age group to “Missing age”:

yaounde_age %>%
mutate(age_group = case_when(age_years < 18 ~ "Child",

age_years >= 18 ~ "Adult",
is.na(age_years) ~ "Missing age"))

# A tibble: 10 x 2
age_years age_group

<dbl> <chr>
1 45 Adult
2 55 Adult
3 23 Adult
4 20 Adult
5 NA Missing age
6 17 Child
7 13 Child
8 28 Adult
9 30 Adult
10 NA Missing age

Ď Practice

As before, using the flu_linelist data, make a new column, called age_group, that has the value
“Below 60” for people under 60 and “60 and above” for people aged 60 and up. But this time, also set
those with missing ages to “Missing age”.

## Complete the code with your answer:
Q_age_group_nas <-
flu_linelist %>%
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Ď Practice

The gender column of the flu_linelist dataset contains the values “f”, “m” and NA:

flu_linelist %>%
tabyl(gender)

gender n percent valid_percent
f 39 0.28676471 0.2910448
m 95 0.69852941 0.7089552

<NA> 2 0.01470588 NA

Recode “f”, “m” and NA to “Female”, “Male” and “Missing gender” respectively. You should modify the
existing gender column, not create a new column.

## Complete the code with your answer:
Q_gender_recode <-
flu_linelist %>%

13.9 Keeping default values of a variable

The right-hand side (RHS) of a case_when() formula can also take in a variable from your data frame. This is
often useful when you want to change just a few values in a column.

Let’s see an example with the highest_education column, which contains the highest education level at-
tained by a respondent:

yaounde_educ <-
yaounde %>%
select(highest_education)

yaounde_educ

# A tibble: 10 x 1
highest_education
<chr>

1 Secondary
2 University
3 University
4 Secondary
5 Primary
6 Secondary
7 Secondary
8 Doctorate
9 Secondary
10 Secondary

Below, we create a new column, highest_educ_recode, wherewe recode both “University” and “Doctorate”
to the value “Post-secondary”:
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yaounde_educ %>%
mutate(

highest_educ_recode =
case_when(
highest_education %in% c("University", "Doctorate") ~ "Post-secondary"

)
)

# A tibble: 10 x 2
highest_education highest_educ_recode
<chr> <chr>

1 Secondary <NA>
2 University Post-secondary
3 University Post-secondary
4 Secondary <NA>
5 Primary <NA>
6 Secondary <NA>
7 Secondary <NA>
8 Doctorate Post-secondary
9 Secondary <NA>
10 Secondary <NA>

It worked, but now we have NAs for all other rows. To keep these other rows at their default values, we can
add the line TRUE ~ highest_education (with a variable, highest_education, on the right-hand side of
a formula):

yaounde_educ %>%
mutate(

highest_educ_recode =
case_when(
highest_education %in% c("University", "Doctorate") ~ "Post-secondary",
TRUE ~ highest_education

)
)

# A tibble: 10 x 2
highest_education highest_educ_recode
<chr> <chr>

1 Secondary Secondary
2 University Post-secondary
3 University Post-secondary
4 Secondary Secondary
5 Primary Primary
6 Secondary Secondary
7 Secondary Secondary
8 Doctorate Post-secondary
9 Secondary Secondary
10 Secondary Secondary

Now the case_when() statement reads: ‘If highest education is “University” or “Doctorate”, input “Post-
secondary”. For everyone else, input the value from highest_education’.
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Above we have been putting the recoded values in a separate column, highest_educ_recode, but for this
kind of replacement, it is more common to simply overwrite the existing column:

yaounde_educ %>%
mutate(

highest_education =
case_when(
highest_education %in% c("University", "Doctorate") ~ "Post-secondary",
TRUE ~ highest_education

)
)

# A tibble: 10 x 1
highest_education
<chr>

1 Secondary
2 Post-secondary
3 Post-secondary
4 Secondary
5 Primary
6 Secondary
7 Secondary
8 Post-secondary
9 Secondary
10 Secondary

We can read this last case_when() statement as: ‘If highest education is “University” or “Doctorate”, change
the value to “Post-secondary”. For everyone else, leave in the value from highest_education’.

Ď Practice

Using the flu_linelist data, modify the existing column outcome by replacing the value “Recover”
with “Recovery”.

## Complete the code with your answer:
Q_recode_recovery <-
flu_linelist

(We know it’s a lot of code for such a simple change. Later you will see easier ways to do this.)

Ĺ Pro Tip

Avoiding long code lines As you start to write increasingly complex case_when() statements, it will
become helpful to use line breaks to avoid long lines of code.
To assist with creating line breaks, you can use the {styler} package. Install it with
pacman::p_load(styler). Then to reformat any piece of code, highlight the code, click the
“Addins” button in RStudio, then click on “Style selection”:
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Alternatively, you could highlight the code and use the shortcut Shift + Command/Control + A to use
RStudio’s built-in code reformatter.
Sometimes {styler} does a better job at reformatting. Sometimes the built-in reformatter does a better
job.

13.10 Multiple conditions on a single variable

LHS conditions in case_when() formulas can have multiple parts. Let’s see an example of this.

But first, we will inspire ourselves fromwhat we learnt in the mutate() lesson and recreate the BMI variable.
This involves first converting the height_cm variable to meters, then calculating BMI.

yaounde_BMI <-
yaounde %>%
mutate(height_m = height_cm/100,

BMI = (weight_kg / (height_m)^2)) %>%
select(BMI)

yaounde_BMI

# A tibble: 10 x 1
BMI

<dbl>
1 33.3
2 28.0
3 22.8
4 26.0
5 31.0
6 24.8
7 28.9
8 20.7
9 25.3
10 23.9

Recall the following BMI categories:

• If the BMI is inferior to 18.5, the person is considered underweight.

• A normal BMI is greater than or equal to 18.5 and less than 25.

• An overweight BMI is greater than or equal to 25 and less than 30.
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• An obese BMI is BMI is greater than or equal to 30.

The condition BMI >= 18.5 & BMI < 25 to define Normal weight is a compound condition because it has
two comparators: >= and <.

yaounde_BMI <-
yaounde_BMI %>%
mutate(BMI_classification = case_when(

BMI < 18.5 ~'Underweight',
BMI >= 18.5 & BMI < 25 ~ 'Normal weight',
BMI >= 25 & BMI < 30 ~ 'Overweight',
BMI >= 30 ~ 'Obese'))

yaounde_BMI

# A tibble: 10 x 2
BMI BMI_classification

<dbl> <chr>
1 33.3 Obese
2 28.0 Overweight
3 22.8 Normal weight
4 26.0 Overweight
5 31.0 Obese
6 24.8 Normal weight
7 28.9 Overweight
8 20.7 Normal weight
9 25.3 Overweight
10 23.9 Normal weight

Let’s use tabyl() to have a look at our data:

yaounde_BMI %>%
tabyl(BMI_classification)

But you can see that the levels of BMI are defined in alphabetical order from Normal weight to Underweight,
instead of from lightest (Underweight) to heaviest (Obese). Remember that if youwant to have a certain order
you can make BMI_classification a factor using mutate() and define its levels.

yaounde_BMI %>%
mutate(BMI_classification = factor(

BMI_classification,
levels = c("Obese",

"Overweight",
"Normal weight",
"Underweight")

)) %>%
tabyl(BMI_classification)
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¾ Watch Out

With compound conditions, you should remember to input the variable name everytime there is a com-
parator. R learners often forget this and will try to run code that looks like this:

yaounde_BMI %>%
mutate(BMI_classification = case_when(BMI < 18.5 ~'Underweight',

BMI >= 18.5 & < 25 ~ 'Normal weight',
BMI >= 25 & < 30 ~ 'Overweight',
BMI >= 30 ~ 'Obese'))

The definitions for the “Normalweight” and “Overweight” categories aremistaken. Do you see the prob-
lem? Try to run the code to spot the error.

Ď Practice

With the flu_linelist data, make a new column, called adolescent, that has the value “Yes” for
people in the 10-19 (at least 10 and less than 20) age group, and “No” for everyone else.

## Complete the code with your answer:
Q_adolescent_grouping <-
flu_linelist %>%

13.11 Multiple conditions on multiple variables

In all examples seen so far, you have only used conditions involving a single variable at a time. But LHS condi-
tions often refer to multiple variables at once.

Let’s see a simple examplewith ageand sex in theyaoundedata frame. First, we select just these twovariables
for easy illustration:

yaounde_age_sex <-
yaounde %>%
select(age_years, sex)

yaounde_age_sex

# A tibble: 10 x 2
age_years sex

<dbl> <chr>
1 45 Female
2 55 Male
3 23 Male
4 20 Female
5 NA Female
6 17 Female
7 13 Female
8 28 Male
9 30 Male
10 NA Female

194



13.11. MULTIPLE CONDITIONS ON MULTIPLE VARIABLES CHAPTER 13. CONDITIONAL MUTATING

Now, imagine we want to recruit women and men in the 20-29 age group into two studies. For this we’d like
to create a column, called recruit, with the following schema:

• Women aged 20-29 should have the value “Recruit to female study”
• Men aged 20-29 should have the value “Recruit to male study”
• Everyone else should have the value “Do not recruit”

To do this, we run the following case_when statement:

yaounde_age_sex %>%
mutate(recruit = case_when(

sex == "Female" & age_years >= 20 & age_years <= 29 ~ "Recruit to female study",
sex == "Male" & age_years >= 20 & age_years <= 29 ~ "Recruit to male study",
TRUE ~ "Do not recruit"

))

# A tibble: 10 x 3
age_years sex recruit

<dbl> <chr> <chr>
1 45 Female Do not recruit
2 55 Male Do not recruit
3 23 Male Recruit to male study
4 20 Female Recruit to female study
5 NA Female Do not recruit
6 17 Female Do not recruit
7 13 Female Do not recruit
8 28 Male Recruit to male study
9 30 Male Do not recruit
10 NA Female Do not recruit

You could also add extra pairs of parentheses around the age criteria within each condition:

yaounde_age_sex %>%
mutate(recruit = case_when(

sex == "Female" & (age_years >= 20 & age_years <= 29) ~ "Recruit to female study",
sex == "Male" & (age_years >= 20 & age_years <= 29) ~ "Recruit to male study",
TRUE ~ "Do not recruit"

))

This extra pair of parentheses does not change the code output, but it improves coherence because the reader
can visually see that your condition is made of two parts, one for gender, sex == "Female", and another for
age, (age_years >= 20 & age_years <= 29).

Ď Practice

With the flu_linelist data, make a new column, called recruitwith the following schema:

• Individuals aged 30-59 (at least 30, younger than 60) from the Jiangsu province should have the
value “Recruit to Jiangsu study”

• Individuals aged 30-59 from the Zhejiang province should have the value “Recruit to Zhejiang
study”

• Everyone else should have the value “Do not recruit”

195



13.12. ORDER OF PRIORITY OF CONDITIONS IN CASE_WHEN() CHAPTER 13. CONDITIONAL MUTATING

## Complete the code with your answer:
Q_age_province_grouping <-
flu_linelist %>%
mutate(recruit = ______________________________)

13.12 Order of priority of conditions in case_when()

Note that the order of conditions is important, because conditions listed at the top of your case_when()
statement take priority over others.

To understand this, run the example below:

yaounde_age_sex %>%
mutate(age_group = case_when(age_years < 18 ~ "Child",

age_years < 30 ~ "Young adult",
age_years < 120 ~ "Older adult"))

# A tibble: 10 x 3
age_years sex age_group

<dbl> <chr> <chr>
1 45 Female Older adult
2 55 Male Older adult
3 23 Male Young adult
4 20 Female Young adult
5 NA Female <NA>
6 17 Female Child
7 13 Female Child
8 28 Male Young adult
9 30 Male Older adult
10 NA Female <NA>

This initially looks like a faulty case_when() statement because the age conditions overlap. For example,
the statement age_years < 120 ~ "Older adult" (which reads “if age is below 120, input ‘Older adult’ ”)
suggests that anyone between ages 0 and 120 (even a 1-year old baby!, would be coded as “Older adult”.

But as you saw, the code actually works fine! People under 18 are still coded as “Child”.

What’s going on? Essentially, the case_when() statement is interpreted as a series of branching logical steps,
starting with the first condition. So this particular statement can be read as: “If age is below 18, input ‘Child’,
and otherwise, if age is below 30, input ‘Young adult’, and otherwise, if age is below 120, input”Older adult”.

This is illustrated in the schematic below:
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This means that if you swap the order of the conditions, you will end up with a faulty case_when() state-
ment:

yaounde_age %>%
mutate(age_group = case_when(age_years < 120 ~ "Older adult",

age_years < 30 ~ "Young adult",
age_years < 18 ~ "Child"))

# A tibble: 10 x 2
age_years age_group

<dbl> <chr>
1 45 Older adult
2 55 Older adult
3 23 Older adult
4 20 Older adult
5 NA <NA>
6 17 Older adult
7 13 Older adult
8 28 Older adult
9 30 Older adult
10 NA <NA>

As you can see, everyone is codedas “Older adult”. This happensbecause thefirst conditionmatches everyone,
so there is no one left to match with the subsequent conditions. The statement can be read “If age is below
120, input ‘Older adult’, and otherwise if age is below 30….” But there is no “otherwise” because everyone has
already been matched!

This is illustrated in the diagram below:
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Althoughwe have spentmuch time explaining the importance of the order of conditions, in this specific exam-
ple, there would be a much clearer way to write this code that would not depend on the order of conditions.
Rather than leave the age groups open-ended like this:

age_years < 120 ~ "Older adult"

you should actually use closed age bounds like this:

age_years >= 30 & age_years < 120 ~ "Older adult"

which is read: “if age is greater than or equal to 30 and less than 120, input ‘Older adult’ ”.

With such closed conditions, the order of conditions no longer matters. You get the same result no matter
how you arrange the conditions:

## start with "Older adult" condition
yaounde_age %>%
mutate(age_group = case_when(

age_years >= 30 & age_years < 120 ~ "Older adult",
age_years >= 18 & age_years < 30 ~ "Young adult",
age_years >= 0 & age_years < 18 ~ "Child"

))

# A tibble: 10 x 2
age_years age_group

<dbl> <chr>
1 45 Older adult
2 55 Older adult
3 23 Young adult
4 20 Young adult
5 NA <NA>
6 17 Child
7 13 Child
8 28 Young adult
9 30 Older adult
10 NA <NA>
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## start with "Child" condition
yaounde_age %>%
mutate(age_group = case_when(

age_years >= 0 & age_years < 18 ~ "Child",
age_years >= 18 & age_years < 30 ~ "Young adult",
age_years >= 30 & age_years < 120 ~ "Older adult"

))

# A tibble: 10 x 2
age_years age_group

<dbl> <chr>
1 45 Older adult
2 55 Older adult
3 23 Young adult
4 20 Young adult
5 NA <NA>
6 17 Child
7 13 Child
8 28 Young adult
9 30 Older adult
10 NA <NA>

Nice and clean!

So why did we spend so much time explaining the importance of condition order if you can simply avoid open-
ended categories and not have to worry about condition order?

One reason is that understanding condition order should now help you seewhy it is important to put the TRUE
condition as the final line in your case_when() statement. The TRUE condition matches every row that has
not yet been matched, so if you use it first in the case_when() , it will match everyone!

The other reason is that there are certain cases where you may want to use open-ended overlapping condi-
tions, and so you will have to pay attention to the order of conditions. Let’s see one such example now: iden-
tifying COVID-like symptoms. Note that this is somewhat advanced material, likely a bit above your current
needs. We are introducing it now so you are aware and can stay vigilant with case_when() in the future.

13.12.1 Overlapping conditions within case_when()

We want to identify COVID-like symptoms in our data. Consider the symptoms columns in the yaounde data
frame, which indicates which symptoms were experienced by respondents over a 6-month period:

yaounde %>%
select(starts_with("symp_"))

# A tibble: 10 x 13
symp_fever symp_headache symp_cough symp_rhinitis symp_sneezing symp_fatigue
<chr> <chr> <chr> <chr> <chr> <chr>

1 No No No No No No
2 No No No No No No
3 No No No No No No
4 No No No Yes Yes No
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5 No No No No No No
6 Yes No Yes Yes No No
7 No No No No Yes No
8 No Yes No No No No
9 Yes No No Yes No No
10 No No No No No No
# i 7 more variables: symp_muscle_pain <chr>, symp_nausea_or_vomiting <chr>,
# symp_diarrhoea <chr>, symp_short_breath <chr>, symp_sore_throat <chr>,
# symp_anosmia_or_ageusia <chr>, symp_stomach_ache <chr>

Wewould like to use this to assess whether a person may have had COVID, partly following guidelines recom-
mended by the WHO.

• Individuals with cough are to be classed as “possible COVID cases”
• Individuals with anosmia/ageusia (loss of smell or loss of taste) are to be classed as “probable COVID
cases”.

Now, keeping these criteria in mind, consider an individual, let’s call her Osma, who has cough AND anos-
mia/ageusia? How should we classify Osma?

Shemeets the criteria for “possible COVID” (because she has cough), but she alsomeets the criteria for “prob-
able COVID” (because she has anosmia/ageusia). So which group should she be classed as, “possible COVID”
or “probable COVID”? Think about it for a minute.

Hopefully you guessed that she should be classed as a “probable COVID case”. “Probable” is more likely than
“Possible”; and the anosmia/ageusia symptom is more significant than the cough symptom. One might say
that the criterion for “probable COVID” has a higher specificity or a higher precedence than the criterion for
“possible COVID”.

Therefore, when constructing a case_when() statement, the “probable COVID” condition should also take
higher precedence—it should come first in the conditions provided to case_when(). Let’s see this now.

First we select the relevant variables, for easy illustration. We also identify and slice() specific rows that
are useful for the demonstration:

yaounde_symptoms_slice <-
yaounde %>%
select(symp_cough, symp_anosmia_or_ageusia) %>%
# slice of specific rows useful for demo
# Once you find the right code, you would remove this slice
slice(32, 711, 625, 651 )

yaounde_symptoms_slice

# A tibble: 4 x 2
symp_cough symp_anosmia_or_ageusia
<chr> <chr>

1 No No
2 Yes No
3 No Yes
4 Yes Yes

Now, the correct case_when() statement, which has the “Probable COVID” condition first:
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yaounde_symptoms_slice %>%
mutate(covid_status = case_when(

symp_anosmia_or_ageusia == "Yes" ~ "Probable COVID",
symp_cough == "Yes" ~ "Possible COVID"
))

# A tibble: 4 x 3
symp_cough symp_anosmia_or_ageusia covid_status
<chr> <chr> <chr>

1 No No <NA>
2 Yes No Possible COVID
3 No Yes Probable COVID
4 Yes Yes Probable COVID

This case_when() statement can be read in simple terms as ‘If the person has anosmia/ageusia, input “Prob-
able COVID”, and otherwise, if the person has cough, input “Possible COVID” ’.

Now, spend some time looking through the output data frame, especially the last three individuals. The indi-
vidual in row 2 meets the criterion for “Possible COVID” because they have cough (symp_cough == “Yes”),
and the individual in row 3 meets the criterion for “Probable COVID” because they have anosmia/ageusia
(symp_anosmia_or_ageusia == "Yes").

The individual in row 4 is Osma, who both meets the criteria for “possible COVID” and for “probable COVID”.
And because we arranged our case_when() conditions in the right order, she is coded correctly as “probable
COVID”. Great!

But notice what happens if we swap the order of the conditions:

yaounde_symptoms_slice %>%
mutate(covid_status = case_when(

symp_cough == "Yes" ~ "Possible COVID",
symp_anosmia_or_ageusia == "Yes" ~ "Probable COVID"
))

# A tibble: 4 x 3
symp_cough symp_anosmia_or_ageusia covid_status
<chr> <chr> <chr>

1 No No <NA>
2 Yes No Possible COVID
3 No Yes Probable COVID
4 Yes Yes Possible COVID

Oh no! Osma in row 4 is now misclassed as “Possible COVID” even though she has the more significant anos-
mia/ageusia symptom. This is because the first condition symp_cough == "Yes" matched her first, and so
the second condition was not able to match her!

So now you see why you sometimes need to think deeply about the order of your case_when() conditions.
It is a minor point, but it can bite you at unexpected times. Even experienced analysts tend to make mistakes
that can be traced to improper arrangement of case_when() statements.
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Ĺ Challenge

In reality, there is still another solution to avoid misclassifying the person with cough and anos-
mia/ageusia. That is to add symp_anosmia_or_ageusia != "Yes" (not equal to “Yes”) to the con-
ditions for “Possible COVID”. Can you think of why this works?

yaounde_symptoms_slice %>%
mutate(covid_status = case_when(

symp_cough == "Yes" & symp_anosmia_or_ageusia != "Yes" ~ "Possible COVID",
symp_anosmia_or_ageusia == "Yes" ~ "Probable COVID"))

# A tibble: 4 x 3
symp_cough symp_anosmia_or_ageusia covid_status
<chr> <chr> <chr>

1 No No <NA>
2 Yes No Possible COVID
3 No Yes Probable COVID
4 Yes Yes Probable COVID

Ď Practice

With the flu_linelist dataset, create a new column called follow_up_priority that implements
the following schema:

• Women should be considered “High priority”
• All children (under 18 years) of any gender should be considered “Highest priority”.
• Everyone else should have the value “No priority”

## Complete the code with your answer:
Q_priority_groups <-
flu_linelist %>%
mutate(follow_up_priority = ________________
)

13.13 Binary conditions: dplyr::if_else()

There is another {dplyr} verb similar to case_when() for when we want to apply a binary condition to a vari-
able: if_else(). A binary condition is either TRUE or FALSE.

if_else() has a similar application as case_when() : if the condition is true, then one operation is ap-
plied, if the condition is false, the alternative is applied. The syntax is: if_else(CONDITION, IF_TRUE,
IF_FALSE). As you can see, this only allows for a binary condition (not multiple cases, such as handled by
case_when()).

If we take one of the first examples about recoding the highest_education variable, we can write it either
with case_when() or with if_else().

Here is the version we already explored:
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Figure 13.2: Fig: the if_else() conditions.

yaounde_educ %>%
mutate(

highest_education =
case_when(
highest_education %in% c("University", "Doctorate") ~ "Post-secondary",
TRUE ~ highest_education

)
)

# A tibble: 10 x 1
highest_education
<chr>

1 Secondary
2 Post-secondary
3 Post-secondary
4 Secondary
5 Primary
6 Secondary
7 Secondary
8 Post-secondary
9 Secondary
10 Secondary

And this is how we would write it using if_else():

yaounde_educ %>%
mutate(highest_education =

if_else(
highest_education %in% c("University", "Doctorate"),
# if TRUE then we recode
"Post-secondary",
# if FALSE then we keep default value
highest_education
))
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# A tibble: 10 x 1
highest_education
<chr>

1 Secondary
2 Post-secondary
3 Post-secondary
4 Secondary
5 Primary
6 Secondary
7 Secondary
8 Post-secondary
9 Secondary
10 Secondary

As you can see, we get the same output, whether we use if_else() or case_when().

Ď Practice

With the flu_linelist data, make a new column, called age_group, that has the value “Below 50” for
people under 50 and “50 and above” for people aged 50 and up. Use the if_else() function.
This is exactly the same question as your first practice question, but this time you need to use
if_else().

## Complete the code with your answer:
Q_age_group_if_else <-
flu_linelist %>%
mutate(age_group = if_else(______________________________))

13.14 Wrap up

Changing or constructing your variables based on conditions on other variables is one of the most repeated
data wrangling tasks. To the point it deserved its very own lesson !

I hope now that you will feel comfortable using case_when() and if_else()within mutate() and that you
are excited to learn more complex {dplyr} operations such as grouping variables and summarizing them.

See you next time!
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Figure 13.3: Fig: the if_else() and the ‘case_when()‘ conditions.

13.15 Solutions

.SOLUTION_Q_age_group()

Q_age_group <-
flu_linelist %>%
mutate(age_group = case_when(age < 50 ~ "Below 50",

age >= 50 ~ "50 and above"))

.SOLUTION_Q_age_group_percentage()

Here is one way (not the only way) to get it:

Q_age_group_percentage <-
flu_linelist %>%

mutate(age_group_percentage = case_when(age < 60 ~ "Below 60",
age >= 60 ~ "60 and above")) %>%

tabyl(age_group_percentage) %>%
filter(age_group_percentage == "Below 60") %>%
pull(percent) * 100

.SOLUTION_Q_age_group_nas()

Q_age_group_nas <-
flu_linelist %>%
mutate(age_group = case_when(age < 60 ~ "Below 60",
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age >= 60 ~ "60 and above",
is.na(age) ~ "Missing age"))

.SOLUTION_Q_gender_recode()

Q_gender_recode <-
flu_linelist %>%

mutate(gender = case_when(gender == "f" ~ "Female",
gender == "m" ~ "Male",
is.na(gender) ~ "Missing gender"))

.SOLUTION_Q_recode_recovery()

Q_recode_recovery <-
flu_linelist %>%
mutate(outcome = case_when(outcome == "Recover" ~ "Recovery",

TRUE ~ outcome))

.SOLUTION_Q_adolescent_grouping()

Q_adolescent_grouping <-
flu_linelist %>%

mutate(adolescent = case_when(
age >= 10 & age < 20 ~ "Yes",
TRUE ~ "No"))

.SOLUTION_Q_age_province_grouping()

Q_age_province_grouping <-
flu_linelist %>%

mutate(recruit = case_when(
province == "Jiangsu" & (age >= 30 & age < 60) ~ "Recruit to Jiangsu study",
province == "Zhejiang" & (age >= 30 & age < 60) ~ "Recruit to Zhejiang study",
TRUE ~ "Do not recruit"

))

.SOLUTION_Q_priority_groups()
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Q_priority_groups <-
flu_linelist %>%

mutate(follow_up_priority = case_when(
age < 18 ~ "Highest priority",
gender == "f" ~ "High priority",
TRUE ~ "No priority"

))

.SOLUTION_Q_age_group_if_else()

Q_age_group_if_else <-
flu_linelist %>%
mutate(age_group = if_else(age < 50, "Below 50", "50 and above"))
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Chapter 14

Grouping and summarizing data

14.1 Introduction

You currently know how to keep your data entries of interest, how keep relevant variables and how to modify
them or create new ones.

Now, we will take your data wrangling skills one step further by understanding how to easily extract summary
statistics, through the verb summarize(), such as calculating the mean of a variable.

Moreover, we will begin exploring a crucial verb, group_by(), capable of grouping your variables together to
perform grouped operations on your data set.

Let’s go !

14.2 Learning objectives

1. You can use dplyr::summarize() to extract summary statistics from datasets.

2. You can use dplyr::group_by() to group data by one ormore variables before performing operations
on them.

3. You understand why and how to ungroup grouped data frames.

4. You can use dplyr::n() together with group_by()-summarize() to count rows per group.

5. You can use sum() together with group_by()-summarize() to count rows that meet a condition.

6. You can use dplyr::count() as a handy function to count rows per group.

14.3 The Yaounde COVID-19 dataset

In this lesson,wewill again usedata fromtheCOVID-19 serological survey conducted inYaounde, Cameroon.
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yaounde <- read_csv(here::here('data/yaounde_data.csv'))

## A smaller subset of variables
yao <- yaounde %>% select(
age, age_category_3, sex, weight_kg, height_cm,
neighborhood, is_smoker, is_pregnant, occupation,
treatment_combinations, symptoms, n_days_miss_work, n_bedridden_days,
highest_education, igg_result)

yao

# A tibble: 971 x 15
age age_category_3 sex weight_kg height_cm neighborhood is_smoker

<dbl> <chr> <chr> <dbl> <dbl> <chr> <chr>
1 45 Adult Female 95 169 Briqueterie Non-smoker
2 55 Adult Male 96 185 Briqueterie Ex-smoker
3 23 Adult Male 74 180 Briqueterie Smoker
4 20 Adult Female 70 164 Briqueterie Non-smoker
5 55 Adult Female 67 147 Briqueterie Non-smoker
6 17 Child Female 65 162 Briqueterie Non-smoker
7 13 Child Female 65 150 Briqueterie Non-smoker
8 28 Adult Male 62 173 Briqueterie Non-smoker
9 30 Adult Male 73 170 Briqueterie Non-smoker
10 13 Child Female 56 153 Briqueterie Non-smoker
# i 961 more rows
# i 8 more variables: is_pregnant <chr>, occupation <chr>,
# treatment_combinations <chr>, symptoms <chr>, n_days_miss_work <dbl>,
# n_bedridden_days <dbl>, highest_education <chr>, igg_result <chr>

See the first lesson in this chapter for more information about this dataset.

14.4 What are summary statistics?

A summary statistic is a single value (such as a mean or median) that describes a sequence of values (typically
a column in your dataset).
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Summary statistics can describe the center, spread or range of a variable, or the counts and positions of values
within that variable. Some common summary statistics are shown in the diagram below:

Computing summary statistics is a very common operation in most data analysis workflows, so it will be im-
portant to become fluent in extracting them from your datasets. And for this task, there is no better tool than
the {dplyr} function summarize()! So let’s see how to use this powerful function.
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14.5 Introducing dplyr::summarize()

To get started, it is best to first consider how to get simple summary statistics without using summarize(),
then we will consider why you should actually use summarize().

Imagine you were asked to find the mean age of respondents in the yao data frame. Howmight you do this in
base R?

First, recall that the dollar sign function, $, allows you to extract a data frame column to a vector:

yao$age # extract the `age` column from `yao`

To obtain the mean, you simply pass this yao$age vector into the mean() function:

mean(yao$age)

[1] 29.01751

And that’s it! You now have a simple summary statistic. Extremely easy, right?

So why dowe need summarize() to get summary statistics if the process is already so simple without it?We’ll
come back to thewhy question soon. First let’s see how to obtain summary statistics with summarize().

Going back to the previous example, the correct syntax to get the mean age with summarize()would be:

yao %>%
summarize(mean_age = mean(age))

# A tibble: 1 x 1
mean_age

<dbl>
1 29.0

The anatomyof this syntax is shownbelow. You simply need to input nameof the new column (e.g. mean_age),
the summary function (e.g. mean()), and the column to summarize (e.g. age).

Figure 14.1: Fig. Basic syntax for the summarize() function.
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You can also compute multiple summary statistics in a single summarize() statement. For example, if you
wanted both the mean and the median age, you could run:

yao %>%
summarize(mean_age = mean(age),

median_age = median(age))

# A tibble: 1 x 2
mean_age median_age

<dbl> <dbl>
1 29.0 26

Nice!

Now, you should be wondering why summarize() puts the summary statistics into a data frame, with each
statistic in a different column.

The main benefit of this data frame structure is to make it easy to produce grouped summaries (and creating
such grouped summaries will be the primary benefit of using summarize()).

Wewill look at thesegrouped summaries in thenext section. For now, attempt thepractice questions below.

Ď Practice

Use summarize() and the relevant summary functions to obtain the mean, median and standard devi-
ation of respondent weights from the weight_kg variable of the yao data frame.
Your output should be a data frame with three columns named as shown below:

mean_weight_kg median_weight_kg sd_weight_kg

Q_weight_summary <-
yao %>%
____________________________

Ď Practice

Use summarize() and the relevant summary functions to obtain the minimum and maximum respon-
dent heights from the height_cm variable of the yao data frame.
Your output should be a data frame with two columns named as shown below:

min_height_cm max_height_cm
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Q_height_summary <-
yao %>%
____________________________

.CHECK_Q_height_summary()

.HINT_Q_height_summary()

14.6 Grouped summaries with dplyr::group_by()

As its name suggests, dplyr::group_by() lets you group a data frame by the values in a variable (e.g. male
vs female sex). You can then perform operations that are split according to these groups.

What effect does group_by() have on a data frame? Let’s try to group the yao data frame by sex and observe
the effect:

yao %>%
group_by(sex)

# A tibble: 971 x 15
# Groups: sex [2]

age age_category_3 sex weight_kg height_cm neighborhood is_smoker
<dbl> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 45 Adult Female 95 169 Briqueterie Non-smoker
2 55 Adult Male 96 185 Briqueterie Ex-smoker
3 23 Adult Male 74 180 Briqueterie Smoker
4 20 Adult Female 70 164 Briqueterie Non-smoker
5 55 Adult Female 67 147 Briqueterie Non-smoker
6 17 Child Female 65 162 Briqueterie Non-smoker
7 13 Child Female 65 150 Briqueterie Non-smoker
8 28 Adult Male 62 173 Briqueterie Non-smoker
9 30 Adult Male 73 170 Briqueterie Non-smoker
10 13 Child Female 56 153 Briqueterie Non-smoker
# i 961 more rows
# i 8 more variables: is_pregnant <chr>, occupation <chr>,
# treatment_combinations <chr>, symptoms <chr>, n_days_miss_work <dbl>,
# n_bedridden_days <dbl>, highest_education <chr>, igg_result <chr>

Hmm. Apparently nothing happened. The one thing youmight notice is a new section in the header that tells
you the grouped-by variable—sex—and the number of groups—2:

# A tibble: 971 × 10
�# Groups: sex [2]�

Apart from this header however, the data frame appears unchanged.

But watch what happens when we chain the group_by()with the summarize() call we used in the previous
section:
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yao %>%
group_by(sex) %>%
summarize(mean_age = mean(age))

# A tibble: 2 x 2
sex mean_age
<chr> <dbl>

1 Female 29.5
2 Male 28.4

You get a different summary statistic for each group! The statistics for women are in one row and those for
men are in another. (From this output data frame, you can tell that, for example, the mean age for female
respondents is 29.5, while that for male respondents is 28.4)

As was mentioned earlier, this kind of grouped summary is the primary reason the summarize() function is
so useful!

Let’s see another example of a simple group_by() + summarize() operation.

Suppose you were asked to obtain the maximum and minimum weights for individuals in different neighbor-
hoods in the yao data frame. First you would group_by() the neighbourhood variable, then call the max()
and min() functions inside summarize():

yao %>%
group_by(neighborhood) %>%
summarize(max_weight = max(weight_kg),

min_weight = min(weight_kg))

# A tibble: 9 x 3
neighborhood max_weight min_weight
<chr> <dbl> <dbl>

1 Briqueterie 128 20
2 Carriere 129 14
3 Cité Verte 118 16
4 Ekoudou 135 15
5 Messa 96 19
6 Mokolo 162 16
7 Nkomkana 161 15
8 Tsinga 105 15
9 Tsinga Oliga 100 17

Great! With just a few code lines you are able to extract quite a lot of information.

Let’s see one more example for good measure. The variable n_days_miss_work tells us the number of days
that respondents missed work due to COVID-like symptoms. Individuals who reported no COVID-like symp-
toms have an NA for this variable:
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yao %>%
select(n_days_miss_work)

# A tibble: 971 x 1
n_days_miss_work

<dbl>
1 0
2 NA
3 NA
4 7
5 NA
6 7
7 0
8 0
9 0
10 NA
# i 961 more rows

To count the total number of work days missed for each sex group, you could try to run the sum() function on
the n_days_miss_work variable:

yao %>%
group_by(sex) %>%
summarise(total_days_missed = sum(n_days_miss_work))

# A tibble: 2 x 2
sex total_days_missed
<chr> <dbl>

1 Female NA
2 Male NA

Hmmm. This gives you NA results because some rows in the n_days_miss_work column have NAs in them,
and R cannot find the sum of values containing an NA. To solve this, the argument na.rm = TRUE is needed:

yao %>%
group_by(sex) %>%
summarise(total_days_missed = sum(n_days_miss_work, na.rm = TRUE))

# A tibble: 2 x 2
sex total_days_missed
<chr> <dbl>

1 Female 256
2 Male 272

The output tells us that across all women in the sample, 256 work days were missed due to COVID-like symp-
toms, and across all men, 272 days.
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So hopefully now you see why summarize() is so powerful. In combination with group_by(), it lets you
obtain highly informative grouped summaries of your datasets with very few lines of code.

Producing such summaries is a very important part of most data analysis workflows, so this skill is likely to
come in handy soon!

Ĺ Vocab

summarize() produces “Pivot Tables”
The summary data frames created by summarize() are often called Pivot Tables in the context of
spreadsheet software like Microsoft Excel.

Ď Practice

Use group_by() and summarize() to obtain the mean weight (kg) by smoking status in the yao data
frame. Name the average weight column weight_mean
The output data frame should look like this:

is_smoker weight_mean

Ex-smoker
Non-smoker
Smoker
NA

Q_weight_by_smoking_status <-
yao %>%
________________________
________________________

Ď Practice

Use group_by(), summarize(), and the relevant summary functions to obtain the minimum and maxi-
mum heights for each sex in the yao data frame.
Your output should be a data frame with three columns named as shown below:

sex min_height_cm max_height_cm

Female
Male

Q_min_max_height_by_sex <-
yao %>%
________________________
________________________

Ď Practice

Use group_by(), summarize(), and the sum() function to calculate the total number of bedridden
days (from the n_bedridden_days variable) reported by respondents of each sex.
Your output should be a data frame with two columns named as shown below:
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sex total_bedridden_days

Female
Male

Q_sum_bedridden_days <-
yao %>%
________________________
________________________

14.7 Grouping by multiple variables (nested grouping)

It is possible to group a data frame by more than one variable. This is sometimes called “nested” grouping.

Let’s see an example. Suppose you want to know the mean age of men and women in each neighbourhood
(rather than the mean age of all women), you could put both sex and neighborhood in the group_by()
statement:

yao %>%
group_by(sex, neighborhood) %>%
summarize(mean_age = mean(age))

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.

# A tibble: 18 x 3
# Groups: sex [2]

sex neighborhood mean_age
<chr> <chr> <dbl>

1 Female Briqueterie 31.6
2 Female Carriere 28.2
3 Female Cité Verte 31.8
4 Female Ekoudou 29.3
5 Female Messa 30.2
6 Female Mokolo 28.0
7 Female Nkomkana 33.0
8 Female Tsinga 30.6
9 Female Tsinga Oliga 24.3
10 Male Briqueterie 33.7
11 Male Carriere 30.0
12 Male Cité Verte 27.0
13 Male Ekoudou 25.2
14 Male Messa 23.9
15 Male Mokolo 30.5
16 Male Nkomkana 29.8
17 Male Tsinga 28.8
18 Male Tsinga Oliga 24.3
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From this output data frame you can tell that, for example, women from Briqueterie have a mean age of 31.6
years, while men from Briqueterie have a mean age of 33.7 years.

The order of the columns listed in group_by() is interchangeable. So if you run group_by(neighborhood,
sex) instead of group_by(sex, neighborhood), you’ll get the same result, although it will be ordered
differently:

yao %>%
group_by(neighborhood, sex) %>%
summarize(mean_age = mean(age))

`summarise()` has grouped output by 'neighborhood'. You can override using the
`.groups` argument.

# A tibble: 18 x 3
# Groups: neighborhood [9]

neighborhood sex mean_age
<chr> <chr> <dbl>

1 Briqueterie Female 31.6
2 Briqueterie Male 33.7
3 Carriere Female 28.2
4 Carriere Male 30.0
5 Cité Verte Female 31.8
6 Cité Verte Male 27.0
7 Ekoudou Female 29.3
8 Ekoudou Male 25.2
9 Messa Female 30.2
10 Messa Male 23.9
11 Mokolo Female 28.0
12 Mokolo Male 30.5
13 Nkomkana Female 33.0
14 Nkomkana Male 29.8
15 Tsinga Female 30.6
16 Tsinga Male 28.8
17 Tsinga Oliga Female 24.3
18 Tsinga Oliga Male 24.3

Now the column order is different: neighborhood is the first column, and sex is the second. And the row
order is also different: rows are first ordered by neighborhood, then ordered by sex within each neighbor-
hood.

But the actual summary statistics are the same. For example, you can again see that women from Briqueterie
have a mean age of 31.6 years, while men from Briqueterie have a mean age of 33.7 years.

Ď Practice

Using the yao data frame, group your data by gender (sex) and treatments
(treatment_combinations) using group_by. Then, using summarize() and the relevant sum-
mary function, calculate the mean weight (weight_kg) for each group.
Your output should be a data frame with three columns named as shown below:
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sex treatment_combinations mean_weight_kg

Q_weight_by_sex_treatments <-
yao %>%
____________________________

Using the yao data frame, group your data by age category (age_category_3), gender (sex), and IgG
results (igg_result) using group_by. Then, using summarize() and the relevant summary function,
calculate the mean number of bedridden days (n_bedridden_days) for each group.
Your output should be a data frame with four columns named as shown below:

age_category_3 sex igg_result mean_n_bedridden_days

Q_bedridden_by_age_sex_iggresult <-
yao %>%
____________________________

14.8 Ungrouping with dplyr::ungroup() (why and how)

When you group_by() more than one variable before using summarize(), the output data frame is still
grouped. This persistent grouping can have unwanted downstream effects, so you will sometimes need to
use dplyr::ungroup() to ungroup the data before doing further analysis.

To understandwhy you should ungroup() data, first consider the following example, wherewe group by only
one variable before summarizing:

yao %>%
group_by(sex) %>%
summarize(mean_age = mean(age))

# A tibble: 2 x 2
sex mean_age
<chr> <dbl>

1 Female 29.5
2 Male 28.4

Thedata comesout like a normal data frame; it is not grouped. You can tell this because there is no information
about groups in the header.

But now consider when you group by two variables before summarizing:

yao %>%
group_by(sex, neighborhood) %>%
summarize(mean_age = mean(age))
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`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.

# A tibble: 18 x 3
# Groups: sex [2]

sex neighborhood mean_age
<chr> <chr> <dbl>

1 Female Briqueterie 31.6
2 Female Carriere 28.2
3 Female Cité Verte 31.8
4 Female Ekoudou 29.3
5 Female Messa 30.2
6 Female Mokolo 28.0
7 Female Nkomkana 33.0
8 Female Tsinga 30.6
9 Female Tsinga Oliga 24.3
10 Male Briqueterie 33.7
11 Male Carriere 30.0
12 Male Cité Verte 27.0
13 Male Ekoudou 25.2
14 Male Messa 23.9
15 Male Mokolo 30.5
16 Male Nkomkana 29.8
17 Male Tsinga 28.8
18 Male Tsinga Oliga 24.3

Now the header tells you that the data is still grouped by the first variable in group_by(), sex:

# A tibble: 18 × 3
�# Groups: sex [2]�

What is the implication of this persistent grouping in the data frame? Itmeans that the data framemay exhibit
what seems like weird behavior when you try to apply some {dplyr} functions on it.

For example, if you try to select() a single variable, perhaps the mean_age variable, you should normally be
able to just use select(mean_age):

yao %>%
group_by(sex, neighborhood) %>%
summarize(mean_age = mean(age)) %>%
select(mean_age) # doesn't work as expected

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.
Adding missing grouping variables: `sex`

# A tibble: 18 x 2
# Groups: sex [2]

sex mean_age
<chr> <dbl>

1 Female 31.6
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2 Female 28.2
3 Female 31.8
4 Female 29.3
5 Female 30.2
6 Female 28.0
7 Female 33.0
8 Female 30.6
9 Female 24.3
10 Male 33.7
11 Male 30.0
12 Male 27.0
13 Male 25.2
14 Male 23.9
15 Male 30.5
16 Male 29.8
17 Male 28.8
18 Male 24.3

But as you can see, the grouped-by variable, sex, is still selected, even though we only asked for mean_age in
the select() statement.

This is one of the many examples of unique behaviors of grouped data frames. Other dplyr verbs like
filter(), mutate() and arrange() also act in special ways on grouped data. We will address this in detail
in a future lesson.

So you now know why you should ungroup data when you no longer need it grouped. Let’s now see how to
ungroup data. It’s quite simple: just add the ungroup() function to your pipe chain. For example:

yao %>%
group_by(sex, neighborhood) %>%
summarize(mean_age = mean(age)) %>%
ungroup()

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.

# A tibble: 18 x 3
sex neighborhood mean_age
<chr> <chr> <dbl>

1 Female Briqueterie 31.6
2 Female Carriere 28.2
3 Female Cité Verte 31.8
4 Female Ekoudou 29.3
5 Female Messa 30.2
6 Female Mokolo 28.0
7 Female Nkomkana 33.0
8 Female Tsinga 30.6
9 Female Tsinga Oliga 24.3
10 Male Briqueterie 33.7
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11 Male Carriere 30.0
12 Male Cité Verte 27.0
13 Male Ekoudou 25.2
14 Male Messa 23.9
15 Male Mokolo 30.5
16 Male Nkomkana 29.8
17 Male Tsinga 28.8
18 Male Tsinga Oliga 24.3

Now that the data frame is ungrouped, it will behave like a normal data frame again. For example, you can
select() any column(s) you want; you won’t have some unwanted columns tagging along:

yao %>%
group_by(sex, neighborhood) %>%
summarize(mean_age = mean(age)) %>%
ungroup() %>%
select(mean_age)

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.

# A tibble: 18 x 1
mean_age

<dbl>
1 31.6
2 28.2
3 31.8
4 29.3
5 30.2
6 28.0
7 33.0
8 30.6
9 24.3
10 33.7
11 30.0
12 27.0
13 25.2
14 23.9
15 30.5
16 29.8
17 28.8
18 24.3

14.9 Counting rows

You can do a lot of data science by just counting and occasionally dividing. - HadleyWickham, Chief
Scientist at RStudio
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A common data summarization task is counting how many observations (rows) there are for each group. You
can achieve this with the special n() function from {dplyr}, which is specifically designed to be used within
summarise().

For example, if you want to count how many individuals are in each neighborhood group, you would run:

yao %>%
group_by(neighborhood) %>%
summarize(count = n())

# A tibble: 9 x 2
neighborhood count
<chr> <int>

1 Briqueterie 106
2 Carriere 236
3 Cité Verte 72
4 Ekoudou 190
5 Messa 48
6 Mokolo 96
7 Nkomkana 75
8 Tsinga 81
9 Tsinga Oliga 67

As you can see, the n() function does not require any arguments. It just “knows its job” in the data frame!

Of course, you can include other summary statistics in the same summarize() call. For example, below we
also calculate the mean age per neighborhood.

yao %>%
group_by(neighborhood) %>%
summarize(count = n(),

mean_age = mean(age))

# A tibble: 9 x 3
neighborhood count mean_age
<chr> <int> <dbl>

1 Briqueterie 106 32.5
2 Carriere 236 28.9
3 Cité Verte 72 29.9
4 Ekoudou 190 27.6
5 Messa 48 27.3
6 Mokolo 96 29.1
7 Nkomkana 75 31.7
8 Tsinga 81 29.7
9 Tsinga Oliga 67 24.3
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Ď Practice

Group your yao data frame by the respondents’ occupation (occupation) and use summarize() to
create columns that show:

• how many individuals there are with each occupation (think of the n() function)
• the mean number of work days missed (n_days_miss_work) by those in that occupation

Your output should be a data frame with three columns named as shown below:

occupation count mean_n_days_miss_work

Q_occupation_summary <-
yao %>%
____________________________

14.9.1 Counting rows that meet a condition

Rather than counting all rows as above, it is sometimes more useful to count just the rows that meet specific
conditions. This can be done easily by placing the required conditions within the sum() function.

For example, to count the number of people under 18 in each neighborhood, you place the condition age <
18 inside sum():

yao %>%
group_by(neighborhood) %>%
summarize(count_under_18 = sum(age < 18))

# A tibble: 9 x 2
neighborhood count_under_18
<chr> <int>

1 Briqueterie 28
2 Carriere 58
3 Cité Verte 19
4 Ekoudou 66
5 Messa 18
6 Mokolo 32
7 Nkomkana 22
8 Tsinga 23
9 Tsinga Oliga 25

Similarly, to count thenumberofpeoplewithdoctoratedegrees in eachneighborhood, youplace the condition
highest_education == "Doctorate" inside sum():

yao %>%
group_by(neighborhood) %>%
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summarize(count_with_doctorates = sum(highest_education == "Doctorate"))

# A tibble: 9 x 2
neighborhood count_with_doctorates
<chr> <int>

1 Briqueterie 2
2 Carriere 1
3 Cité Verte 1
4 Ekoudou 1
5 Messa 2
6 Mokolo 0
7 Nkomkana 4
8 Tsinga 3
9 Tsinga Oliga 3

Ĺ Challenge

Under the hood: counting with conditions
Why are you able to use sum()which is meant to add numbers, on a condition like highest_education
== "Doctorate"?
Using sum() on a condition works because the condition evaluates to the Boolean values TRUE and
FALSE. And these Boolean values are treated as numbers (where TRUE equals 1 and FALSE equals 0),
and numbers can, of course, be summed.
The code below demonstrates what is going on under the hood in a step-by-step way. Run through it
and see if you can follow.

demo_of_condition_sums <- yao %>%
select(highest_education) %>%
mutate(with_doctorate = highest_education == "Doctorate") %>%
mutate(numeric_with_doctorate = as.numeric(with_doctorate))

demo_of_condition_sums

# A tibble: 971 x 3
highest_education with_doctorate numeric_with_doctorate
<chr> <lgl> <dbl>

1 Secondary FALSE 0
2 University FALSE 0
3 University FALSE 0
4 Secondary FALSE 0
5 Primary FALSE 0
6 Secondary FALSE 0
7 Secondary FALSE 0
8 Doctorate TRUE 1
9 Secondary FALSE 0
10 Secondary FALSE 0
# i 961 more rows

The numeric values can then be added to produce a count of rows fulfilling the condition
highest_education == "Doctorate":

225



14.9. COUNTING ROWS CHAPTER 14. GROUPING AND SUMMARIZING DATA

demo_of_condition_sums %>%
summarize(count_with_doctorate = sum(numeric_with_doctorate))

# A tibble: 1 x 1
count_with_doctorate

<dbl>
1 17

For a final illustration of counting with conditions, consider the treatment_combinations variable, which
lists the treatments received by people with COVID-like symptoms. People who received no treatments have
an NA value:

yao %>%
select(treatment_combinations)

# A tibble: 971 x 1
treatment_combinations
<chr>

1 Paracetamol
2 <NA>
3 <NA>
4 Antibiotics
5 <NA>
6 Paracetamol--Antibiotics
7 Traditional meds.
8 Paracetamol
9 Paracetamol--Traditional meds.
10 <NA>
# i 961 more rows

If you want to count the number of people who received no treatment, you would sum up those whomeet the
is.na(treatment_combinations) condition:

yao %>%
group_by(neighborhood) %>%
summarize(unknown_treatments = sum(is.na(treatment_combinations)))

# A tibble: 9 x 2
neighborhood unknown_treatments
<chr> <int>

1 Briqueterie 82
2 Carriere 192
3 Cité Verte 46
4 Ekoudou 133
5 Messa 35
6 Mokolo 65
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7 Nkomkana 53
8 Tsinga 56
9 Tsinga Oliga 47

These are the people with NA values for the treatment_combinations column.

To count the people who did receive some treatment, you can simply negate the is.na() function with !:

yao %>%
group_by(neighborhood) %>%
summarize(known_treatments = sum(!is.na(treatment_combinations)))

# A tibble: 9 x 2
neighborhood known_treatments
<chr> <int>

1 Briqueterie 24
2 Carriere 44
3 Cité Verte 26
4 Ekoudou 57
5 Messa 13
6 Mokolo 31
7 Nkomkana 22
8 Tsinga 25
9 Tsinga Oliga 20

PLEASE SKIP THE PRACTICE QUESTION ON CHECKING SYMPTOMS FOR ADULTS. WE DECIDED TO REMOVE
IT.

14.9.2 dplyr::count()

The dplyr::count() function wraps a bunch of things into one beautiful friendly line of code to help you
find counts of observations by group.

Let’s use dplyr::count() on our occupation variable:

yao %>%
count(occupation)

# A tibble: 28 x 2
occupation n
<chr> <int>

1 Farmer 5
2 Farmer--Other 1
3 Home-maker 65
4 Home-maker--Farmer 2
5 Home-maker--Informal worker 3
6 Home-maker--Informal worker--Farmer 1
7 Home-maker--Trader 3
8 Informal worker 189
9 Informal worker--Other 2
10 Informal worker--Trader 4
# i 18 more rows
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Note that this is the same output as:

yao %>%
group_by(occupation) %>%
summarize(n = n())

# A tibble: 28 x 2
occupation n
<chr> <int>

1 Farmer 5
2 Farmer--Other 1
3 Home-maker 65
4 Home-maker--Farmer 2
5 Home-maker--Informal worker 3
6 Home-maker--Informal worker--Farmer 1
7 Home-maker--Trader 3
8 Informal worker 189
9 Informal worker--Other 2
10 Informal worker--Trader 4
# i 18 more rows

You can also apply dplyr::count() in a nested fashion:

yao %>%
count(sex, occupation)

# A tibble: 40 x 3
sex occupation n
<chr> <chr> <int>

1 Female Farmer 3
2 Female Home-maker 65
3 Female Home-maker--Farmer 2
4 Female Home-maker--Informal worker 3
5 Female Home-maker--Informal worker--Farmer 1
6 Female Home-maker--Trader 3
7 Female Informal worker 77
8 Female Informal worker--Trader 1
9 Female No response 8
10 Female Other 6
# i 30 more rows

Ď Practice

The count() verb gives you key information about your dataset in a very quickmanner. Let’s look at our
IgG results stratified by age category and sex in one line of code.
Using the yao data frame, count the different combinations of gender (sex), age categories
(age_category_3) and IgG results (igg_result).
Your output should be a data frame with four columns named as shown below:
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sex age_category_3 igg_result n

Q_count_iggresults_stratified_by_sex_agecategories <-
yao %>%
____________________________

Using the yao data frame, count the different combinations of age categories (age_category_3) and
number of bedridden days (n_bedridden_days).
Your output should be a data frame with three columns named as shown below:

age_category_3 n_bedridden_days n

Q_count_bedridden_age_categories <-
yao %>%
____________________________

The downside of count() is that it can only give you a single summary statistic in the data frame. When you
use summarize() and n() you can include multiple summary statistics. For example:

yao %>%
group_by(sex, neighborhood) %>%
summarize(count = n(),

median_age = median(age))

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.

# A tibble: 18 x 4
# Groups: sex [2]

sex neighborhood count median_age
<chr> <chr> <int> <dbl>

1 Female Briqueterie 61 28
2 Female Carriere 140 25.5
3 Female Cité Verte 44 28
4 Female Ekoudou 110 26.5
5 Female Messa 26 27.5
6 Female Mokolo 53 23
7 Female Nkomkana 43 28
8 Female Tsinga 42 29
9 Female Tsinga Oliga 30 23.5
10 Male Briqueterie 45 28
11 Male Carriere 96 27
12 Male Cité Verte 28 22.5
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13 Male Ekoudou 80 21.5
14 Male Messa 22 24.5
15 Male Mokolo 43 32
16 Male Nkomkana 32 27
17 Male Tsinga 39 27
18 Male Tsinga Oliga 37 21

But count() can only yield counts:

yao %>%
group_by(sex, neighborhood) %>%
count()

# A tibble: 18 x 3
# Groups: sex, neighborhood [18]

sex neighborhood n
<chr> <chr> <int>

1 Female Briqueterie 61
2 Female Carriere 140
3 Female Cité Verte 44
4 Female Ekoudou 110
5 Female Messa 26
6 Female Mokolo 53
7 Female Nkomkana 43
8 Female Tsinga 42
9 Female Tsinga Oliga 30
10 Male Briqueterie 45
11 Male Carriere 96
12 Male Cité Verte 28
13 Male Ekoudou 80
14 Male Messa 22
15 Male Mokolo 43
16 Male Nkomkana 32
17 Male Tsinga 39
18 Male Tsinga Oliga 37

14.10 Including missing combinations in summaries

When you use group_by() and summarize() on multiple variables, you obtain a summary statistic for every
unique combination of the grouped variables. For instance, consider the code and output below, which counts
the number of individuals in each age-sex group:

yao %>%
group_by(sex, age_category_3) %>%
summarise(number_of_individuals = n())

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.
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# A tibble: 6 x 3
# Groups: sex [2]
sex age_category_3 number_of_individuals
<chr> <chr> <int>

1 Female Adult 368
2 Female Child 155
3 Female Senior 26
4 Male Adult 267
5 Male Child 136
6 Male Senior 19

In the output data frame, there is one row for each combination of sex and age group (Female—Adult,
Female—Child and so on).

But what happens if one of these combinations is not present in the data?

Let’s create an artificial example to observe this. With the code below, we artificially drop all male children
from the yao data frame:

yao_no_male_children <-
yao %>%
filter(!(sex == "Male" & age_category_3 == "Child"))

Now if you run the same group_by() and summarize() call on yao_no_male_children, you’ll notice the
missing combination:

yao_no_male_children %>%
group_by(sex, age_category_3) %>%
summarise(number_of_individuals = n())

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.

# A tibble: 5 x 3
# Groups: sex [2]
sex age_category_3 number_of_individuals
<chr> <chr> <int>

1 Female Adult 368
2 Female Child 155
3 Female Senior 26
4 Male Adult 267
5 Male Senior 19

Indeed, there is no row for male children.

But sometimes it is useful to include suchmissing combinations in the output data frame, with an NA or 0 value
for the summary statistic.

To do this, you can run the following code instead:

yao_no_male_children %>%
# convert variables to factors
mutate(sex = as.factor(sex),
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age_category_3 = as.factor(age_category_3)) %>%
# Note the the .drop = FALSE argument
group_by(sex, age_category_3, .drop = FALSE) %>%
summarise(number_of_individuals = n())

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.

# A tibble: 6 x 3
# Groups: sex [2]
sex age_category_3 number_of_individuals
<fct> <fct> <int>

1 Female Adult 368
2 Female Child 155
3 Female Senior 26
4 Male Adult 267
5 Male Child 0
6 Male Senior 19

What does the code do?

• First it converts the grouping variables to factors with as.factor() (inside a mutate() call)

• Then it uses the argument .drop = FALSE in the group_by() function to avoid dropping the missing
combinations.

Now you have a clear 0 count for the number of male children!

Let’s see one more example, this time without artificially modifying our data.

The code below calculates the average age by sex and education group:

yao %>%
group_by(sex, highest_education) %>%
summarise(mean_age = mean(age))

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.

# A tibble: 13 x 3
# Groups: sex [2]

sex highest_education mean_age
<chr> <chr> <dbl>

1 Female Doctorate 28
2 Female No formal instruction 45.6
3 Female No response 35
4 Female Primary 26.8
5 Female Secondary 28.8
6 Female University 31.5
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7 Male Doctorate 42.2
8 Male No formal instruction 37.9
9 Male No response 22
10 Male Other 5.5
11 Male Primary 22.9
12 Male Secondary 29.4
13 Male University 31.9

Notice that in the output data frame, there are 7 rows for men but only 6 rows for women, because nowoman
answered “Other” to the question on highest education level.

If you nonetheless want to include the “Female—Other” row in the output data frame, you would run:

yao %>%
mutate(sex = as.factor(sex),

highest_education = as.factor(highest_education)) %>%
group_by(sex, highest_education, .drop = FALSE) %>%
summarise(mean_age = mean(age))

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.

# A tibble: 14 x 3
# Groups: sex [2]

sex highest_education mean_age
<fct> <fct> <dbl>

1 Female Doctorate 28
2 Female No formal instruction 45.6
3 Female No response 35
4 Female Other NaN
5 Female Primary 26.8
6 Female Secondary 28.8
7 Female University 31.5
8 Male Doctorate 42.2
9 Male No formal instruction 37.9
10 Male No response 22
11 Male Other 5.5
12 Male Primary 22.9
13 Male Secondary 29.4
14 Male University 31.9

Ď Practice

Using theyaodata frame, let’s calculate themedian agewhengrouping by neighborhood, age_category,
and gender
Note, we want all possible combinations of these three variables (not just those present in our data).
Pay attention to two data wrangling imperatives!

• convert your grouping variables to factors beforehand using mutate()
• calculate your statistic, the median, while removing any NA values.
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Your output should be a data frame with four columns named as shown below:

neighborhood age_category_3 sex median_age

Q_median_age_by_neighborhood_agecategory_sex <-
yao %>%
____________________________

Ĺ Side Note

Why include missing combinations?
Above, we mentioned that including missing combinations is often useful in the data analysis workflow.
Let’s see one use case: plottingwith {ggplot}. If you have not yet learned {ggplot}, that is okay, just focus
on the plot outputs.
To make a dodged bar chart with the age-sex counts of yao_no_male_children, you could run:

yao_no_male_children %>%
group_by(sex, age_category_3) %>%
summarise(number_of_individuals = n()) %>%
ungroup() %>%

# pass the output to ggplot
ggplot() +
geom_col(aes(x = sex, y = number_of_individuals, fill = age_category_3),

position = "dodge")

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.
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Not very elegant! Ideally there should be an empty space indicating 0 for the number of male children.
If you instead implement the procedure to includemissing combinations, you get amore natural dodged
bar plot, with an empty space for male children:

yao_no_male_children %>%
mutate(sex = as.factor(sex),

age_category_3 = as.factor(age_category_3)) %>%
group_by(sex, age_category_3, .drop = FALSE) %>%
summarise(number_of_individuals = n()) %>%
ungroup() %>%

# pass the output to ggplot
ggplot() +
geom_col(aes(x = sex, y = number_of_individuals, fill = age_category_3),

position = "dodge")

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.
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Much better!
By the way, this output can be improved slightly by setting the factor levels for age to their proper as-
cending order: first “Child”, then “Adult” then “Senior”:
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yao_no_male_children %>%
mutate(sex = as.factor(sex),

age_category_3 = factor(age_category_3,
levels = c("Child",

"Adult",
"Senior"))) %>%

group_by(sex, age_category_3, .drop = FALSE) %>%
summarise(number_of_individuals = n()) %>%
ungroup() %>%

# pass the output to ggplot
ggplot() +
geom_col(aes(x = sex, y = number_of_individuals, fill = age_category_3),

position = "dodge")

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.
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14.11 Wrap up

You have now seen how to obtain quick summary statistics from your data, either for exploratory data or for
further data presentation or plotting.

Additionally, you have discovered one of the marvels of {dplyr}, the possibility to group your data using
group_by().

group_by() combined with summarize() is a one of the most common grouping manipulations.
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Figure 14.2: Fig: summarize() and its use combined with group_by().

However, you can also combine group_by()with many of the other {dplyr} verbs: this is what we will cover in
our next lesson. See you soon !

Thank you to Alice Osmaston and Saifeldin Shehata for their comments and review.
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Q_weight_summary <-
yao %>%

summarize(mean_weight_kg = mean(weight_kg),
median_weight_kg = median(weight_kg),
sd_weight_kg = sd(weight_kg))

.SOLUTION_Q_height_summary()

Q_height_summary <-
yao %>%

summarize(min_height_cm = min(height_cm),
max_height_cm = max(height_cm))

.SOLUTION_Q_weight_by_smoking_status()

Q_weight_by_smoking_status <-
yao %>%
group_by(is_smoker) %>%
summarise(weight_mean = mean(weight_kg))

.SOLUTION_Q_min_max_height_by_sex()

Q_min_max_height_by_sex <-
yao %>%
group_by(sex) %>%
summarise(min_height_cm = min(height_cm),

max_height_cm = max(height_cm))

.SOLUTION_Q_sum_bedridden_days()

Q_sum_bedridden_days <-
yao %>%
group_by(sex) %>%
summarise(total_bedridden_days = sum(n_bedridden_days, na.rm = T))
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.SOLUTION_Q_weight_by_sex_treatments()

Q_weight_by_sex_treatments <-
yao %>%
group_by(sex, treatment_combinations) %>%
summarise(mean_weight_kg = mean(weight_kg, na.rm = T))

.SOLUTION_Q_bedridden_by_age_sex_iggresult()

Q_bedridden_by_age_sex_iggresult <-
yao %>%
group_by(age_category_3, sex, igg_result) %>%
summarise(mean_n_bedridden_days = mean(n_bedridden_days, na.rm = T))

.SOLUTION_Q_occupation_summary()

Q_occupation_summary <-
yao %>%
group_by(occupation) %>%
summarise(count = n(),

mean_n_days_miss_work = mean(n_days_miss_work, na.rm=TRUE))

.SOLUTION_Q_count_iggresults_stratified_by_sex_agecategories()

Q_count_iggresults_stratified_by_sex_agecategories <-
yao %>%
count(sex, age_category_3, igg_result)

.SOLUTION_Q_count_bedridden_age_categories()

Q_count_bedridden_age_categories <-
yao %>%
count(age_category_3, n_bedridden_days)
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.SOLUTION_Q_median_age_by_neighborhood_agecategory_sex()

Q_median_age_by_neighborhood_agecategory_sex <-
yao %>%
mutate(neighborhood = as.factor(neighborhood),

age_category_3 = as.factor(age_category_3),
sex = as.factor(sex)) %>%

group_by(neighborhood, age_category_3, sex, .drop=FALSE) %>%
summarize(median_age = median(age, na.rm=TRUE))

240



Chapter 15

Grouped filter, mutate and arrange

15.1 Introduction

Data wrangling often involves applying the same operations separately to different groups within the
data. This pattern, sometimes called “split-apply-combine”, is easily accomplished in {dplyr} by chaining the
group_by() verb with other wrangling verbs like filter(), mutate(), and arrange() (all of which you
have seen before!).

In this lesson, you’ll become confident with these kinds of grouped manipulations.

Let’s get started.

15.2 Learning objectives

1. You can use group_by() with arrange(), filter(), and mutate() to conduct grouped operations
on a data frame.

15.3 Packages

This lesson will require the {tidyverse} suite of packages and the {here} package:

if(!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, here)

15.4 Datasets

In this lesson, we will again use data from the COVID-19 serological survey conducted in Yaounde,
Cameroon. Below, we import the data, create a small data frame subset, yao and an even smaller sub-
set, yao_sex_weight.

yao <-
read_csv(here::here('data/yaounde_data.csv')) %>%
select(sex, age, age_category, weight_kg, occupation, igg_result, igm_result)
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yao

# A tibble: 5 x 7
sex age age_category weight_kg occupation igg_result igm_result
<chr> <dbl> <chr> <dbl> <chr> <chr> <chr>

1 Female 45 45 - 64 95 Informal worker Negative Negative
2 Male 55 45 - 64 96 Salaried worker Positive Negative
3 Male 23 15 - 29 74 Student Negative Negative
4 Female 20 15 - 29 70 Student Positive Negative
5 Female 55 45 - 64 67 Trader--Farmer Positive Negative

yao_sex_weight <-
yao %>%
select(sex, weight_kg)

yao_sex_weight

# A tibble: 5 x 2
sex weight_kg
<chr> <dbl>

1 Female 95
2 Male 96
3 Male 74
4 Female 70
5 Female 67

For practice questions, we will also use the sarcopenia data set that you have seen previously:

sarcopenia <- read_csv(here::here('data/sarcopenia_elderly.csv'))

sarcopenia

# A tibble: 5 x 9
number age age_group sex_male_1_female_0 marital_status height_meters
<dbl> <dbl> <chr> <dbl> <chr> <dbl>

1 7 60.8 Sixties 0 married 1.57
2 8 72.3 Seventies 1 married 1.65
3 9 62.6 Sixties 0 married 1.59
4 12 72 Seventies 0 widow 1.47
5 13 60.1 Sixties 0 married 1.55
# i 3 more variables: weight_kg <dbl>, grip_strength_kg <dbl>,
# skeletal_muscle_index <dbl>
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15.5 Arranging by group

The arrange() function orders the rows of a data frame by the values of selected columns. This function
is only sensitive to groupings when we set its argument .by_group to TRUE. To illustrate this, consider the
yao_sex_weight data frame:

yao_sex_weight

# A tibble: 5 x 2
sex weight_kg
<chr> <dbl>

1 Female 95
2 Male 96
3 Male 74
4 Female 70
5 Female 67

We can arrange this data frame by weight like so:

yao_sex_weight %>%
arrange(weight_kg)

# A tibble: 5 x 2
sex weight_kg
<chr> <dbl>

1 Female 14
2 Male 15
3 Male 15
4 Male 15
5 Female 15

As expected, lower weights have been brought to the top of the data frame.

If we first group the data, we might expect a different output:

yao_sex_weight %>%
group_by(sex) %>%
arrange(weight_kg)

# A tibble: 5 x 2
# Groups: sex [2]
sex weight_kg
<chr> <dbl>

1 Female 14
2 Male 15
3 Male 15
4 Male 15
5 Female 15
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But as you see, the arrangement is still the same.

Only when we set the .by_group argument to TRUE do we get something different:

yao_sex_weight %>%
group_by(sex) %>%
arrange(weight_kg, .by_group = TRUE)

# A tibble: 5 x 2
# Groups: sex [1]
sex weight_kg
<chr> <dbl>

1 Female 14
2 Female 15
3 Female 16
4 Female 16
5 Female 18

Now, the data is first sorted by sex (all women first), and then by weight.

arrange() can group automatically

In reality we do not need group_by() to arrange by group; we can simply put multiple variables in the
arrange() function for the same effect.

So this simple arrange() statement:

yao_sex_weight %>%
arrange(sex, weight_kg)

# A tibble: 5 x 2
sex weight_kg
<chr> <dbl>

1 Female 14
2 Female 15
3 Female 16
4 Female 16
5 Female 18

is equivalent to the more complex group_by(), arrange() statement used before:

yao_sex_weight %>%
group_by(sex) %>%
arrange(weight_kg, .by_group = TRUE)

The code arrange(sex, weight_kg) tells R to arrange the rows first by sex, and then by weight.

Obviously, this syntax, with just arrange(), and no group_by() is simpler, so you can stick to it.

desc() for descending order

Recall that to arrange in descending order, we can wrap the target variable in desc(). So, for example, to sort
by sex and weight, but with the heaviest people on top, we can run:
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yao_sex_weight %>%
arrange(sex, desc(weight_kg))

# A tibble: 5 x 2
sex weight_kg
<chr> <dbl>

1 Female 162
2 Female 161
3 Female 158
4 Female 135
5 Female 129

Ď Practice

With an arrange() call, sort the sarcopenia data first by sex and then by grip strength. (If done cor-
rectly, the first row should be of awomanwith a grip strength of 1.3 kg). Tomake the arrangement clear,
you should first select() the sex and grip strength variables.

## Complete the code with your answer:
Q_grip_strength_arranged <-
sarcopenia %>%
select(______________________________) %>%
arrange(______________________________)

Ď Practice

The sarcopenia dataset contains a column, age_group, which stores age groups as a string (the age
groups are “Sixties”, “Seventies” and “Eighties”). Convert this variable to a factor with the levels in the
right order (first “Sixties” then “Seventies” and so on). (Hint: Look back on the case_when() lesson if
you do not see how to relevel a factor.)
Then, with a nested arrange() call, arrange the data first by the newly-created age_group factor vari-
able (younger individuals first) and then by height_meters, with shorter individuals first.

## Complete the code with your answer:
Q_age_group_height <-
sarcopenia

15.6 Filtering by group

The filter() function keeps or drops rows based on a condition. If filter() is applied to grouped data,
the filtering operation is carried out separately for each group.

To illustrate this, consider again the yao_sex_weight data frame:

yao_sex_weight

# A tibble: 5 x 2
sex weight_kg
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<chr> <dbl>
1 Female 95
2 Male 96
3 Male 74
4 Female 70
5 Female 67

If we want to filter the data for the heaviest person, we could run:

yao_sex_weight %>%
filter(weight_kg == max(weight_kg))

# A tibble: 1 x 2
sex weight_kg
<chr> <dbl>

1 Female 162

But if we want to get heaviest person per sex group (the heaviest man and the heaviest woman), we can use
group_by(sex) then filter():

yao_sex_weight %>%
group_by(sex) %>%
filter(weight_kg == max(weight_kg))

# A tibble: 2 x 2
# Groups: sex [2]
sex weight_kg
<chr> <dbl>

1 Male 128
2 Female 162

Great! The code above can be translated as “For each sex group, keep the row with the maximum weight_kg
value”.

Filtering with nested groupings

filter()will work fine with any number of nested groupings.

For example, if wewant to see the heaviestman and heaviest woman per age groupwe could run the following
on the yao data frame:

yao %>%
group_by(sex, age_category) %>%
filter(weight_kg == max(weight_kg))

# A tibble: 10 x 7
# Groups: sex, age_category [10]

sex age age_category weight_kg occupation igg_result igm_result
<chr> <dbl> <chr> <dbl> <chr> <chr> <chr>
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1 Male 69 65 + 108 Retired Positive Negative
2 Male 37 30 - 44 128 Informal worker Negative Negative
3 Male 26 15 - 29 91 Trader Positive Negative
4 Female 19 15 - 29 109 Student Negative Negative
5 Female 64 45 - 64 158 Retired Negative Negative
6 Female 32 30 - 44 162 Informal worker Positive Negative
7 Male 46 45 - 64 122 Informal worker Negative Negative
8 Female 8 5 - 14 161 Student Negative Positive
9 Female 68 65 + 109 Retired Negative Negative
10 Male 6 5 - 14 99 No response Negative Negative

This code groups by sex and age category, and then finds the heaviest person in each sub-category.

(Why do we have 10 rows in the output? Well, 2 sex groups x 5 groups age groups = 10 unique groupings.)

The output is a bit scattered though, so we can chain this with the arrange() function, to arrange by sex and
age group.

yao %>%
group_by(sex, age_category) %>%
filter(weight_kg == max(weight_kg)) %>%
arrange(sex, age_category)

# A tibble: 10 x 7
# Groups: sex, age_category [10]

sex age age_category weight_kg occupation igg_result igm_result
<chr> <dbl> <chr> <dbl> <chr> <chr> <chr>

1 Female 19 15 - 29 109 Student Negative Negative
2 Female 32 30 - 44 162 Informal worker Positive Negative
3 Female 64 45 - 64 158 Retired Negative Negative
4 Female 8 5 - 14 161 Student Negative Positive
5 Female 68 65 + 109 Retired Negative Negative
6 Male 26 15 - 29 91 Trader Positive Negative
7 Male 37 30 - 44 128 Informal worker Negative Negative
8 Male 46 45 - 64 122 Informal worker Negative Negative
9 Male 6 5 - 14 99 No response Negative Negative
10 Male 69 65 + 108 Retired Positive Negative

Now the data is easier to read. All women come first, then men. But we see notice a weird arrangement of
the age groups! Those aged 5 to 14 should come first in the arrangement. Of course, we’ve learned how to fix
this—the factor() function, and its levels argument:

yao %>%
mutate(age_category = factor(

age_category,
levels = c("5 - 14", "15 - 29", "30 - 44", "45 - 64", "65 +")

)) %>%
group_by(sex, age_category) %>%
filter(weight_kg == max(weight_kg)) %>%
arrange(sex, age_category)
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# A tibble: 10 x 7
# Groups: sex, age_category [10]

sex age age_category weight_kg occupation igg_result igm_result
<chr> <dbl> <fct> <dbl> <chr> <chr> <chr>

1 Female 8 5 - 14 161 Student Negative Positive
2 Female 19 15 - 29 109 Student Negative Negative
3 Female 32 30 - 44 162 Informal worker Positive Negative
4 Female 64 45 - 64 158 Retired Negative Negative
5 Female 68 65 + 109 Retired Negative Negative
6 Male 6 5 - 14 99 No response Negative Negative
7 Male 26 15 - 29 91 Trader Positive Negative
8 Male 37 30 - 44 128 Informal worker Negative Negative
9 Male 46 45 - 64 122 Informal worker Negative Negative
10 Male 69 65 + 108 Retired Positive Negative

Now we have a nice and well-arranged output!

Ď Practice

Group thesarcopeniadata frameby agegroup and sex, thenfilter for the highest skeletalmuscle index
in each (nested) group.

## Complete the code with your answer:
Q_max_skeletal_muscle_index <-
sarcopenia

15.7 Mutating by group

mutate() is used tomodify columns or to create newones. With grouped data, mutate() operates over each
group independently.

Let’s first consider a regular mutate() call, not a grouped one. Imagine that you wanted to add a column that
ranks respondents by weight. This can be done with the rank() function inside a mutate() call:

yao_sex_weight %>%
mutate(weight_rank = rank(weight_kg))

# A tibble: 5 x 3
sex weight_kg weight_rank
<chr> <dbl> <dbl>

1 Female 95 901
2 Male 96 908
3 Male 74 640.
4 Female 70 564.
5 Female 67 502.

The output shows that the first row is the 901st lightest individual. But it would be more intuitive to rank in
descending order with the heaviest person first. We can do this with the desc() function:
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yao_sex_weight %>%
mutate(weight_rank = rank(desc(weight_kg)))

# A tibble: 5 x 3
sex weight_kg weight_rank
<chr> <dbl> <dbl>

1 Female 95 71
2 Male 96 64
3 Male 74 332.
4 Female 70 408.
5 Female 67 470.

The output shows that the person in the first row is the 71st heaviest individual.

Now, let’s try towrite a grouped mutate() call. Imaginewewant to add this weight rank column per sex group
in the data frame. That is, we want to know each person’s weight rank in their sex category. In this case, we
can chain group_by(sex)with mutate():

yao_sex_weight %>%
group_by(sex) %>%
mutate(weight_rank = rank(desc(weight_kg)))

# A tibble: 5 x 3
# Groups: sex [2]
sex weight_kg weight_rank
<chr> <dbl> <dbl>

1 Female 95 53.5
2 Male 96 13.5
3 Male 74 148
4 Female 70 220.
5 Female 67 250.

Nowwe see that the person in the first row is the 53rd heaviestwoman. (The .5 indicates that this rank is a tie
with someone else in the data.)

We could also arrange the data to make things clearer:

yao_sex_weight %>%
group_by(sex) %>%
mutate(weight_rank = rank(desc(weight_kg))) %>%
arrange(sex, weight_rank)

# A tibble: 5 x 3
# Groups: sex [1]
sex weight_kg weight_rank
<chr> <dbl> <dbl>

1 Female 162 1

249



15.7. MUTATING BY GROUP CHAPTER 15. GROUPED FILTER, MUTATE AND ARRANGE

2 Female 161 2
3 Female 158 3
4 Female 135 4
5 Female 129 5

Mutating with nested groupings

Of course, as with the other verbs we have seen, mutate() also works with nested groups.

For example, below we create the nested grouping of age and sex with the yao data frame, then add a rank
column with mutate():

yao %>%
group_by(sex, age_category) %>%
mutate(weight_rank = rank(desc(weight_kg)))

# A tibble: 5 x 8
# Groups: sex, age_category [4]
sex age age_category weight_kg occupation igg_result igm_result
<chr> <dbl> <chr> <dbl> <chr> <chr> <chr>

1 Female 45 45 - 64 95 Informal worker Negative Negative
2 Male 55 45 - 64 96 Salaried worker Positive Negative
3 Male 23 15 - 29 74 Student Negative Negative
4 Female 20 15 - 29 70 Student Positive Negative
5 Female 55 45 - 64 67 Trader--Farmer Positive Negative
# i 1 more variable: weight_rank <dbl>

The output shows that the person in the first row is 20th heaviestwoman in the 45 to 64 age group.

Ď Practice

With the sarcopenia data, group by age_group, then in a new variable called grip_strength_rank,
compute the per-age-group rank of each individual’s grip strength. (To compute the rank, use mutate()
and the rank() function with its default ties method.)

## Complete the code with your answer:
Q_rank_grip_strength <-
sarcopenia

¾ Watch Out

Remember to ungroup data before further analysis
As has been mentioned before, it is important ungroup your data before doing further analysis.
Consider this last example, where we computed the weight rank of individuals per age and sex group:

yao %>%
group_by(sex, age_category) %>%
mutate(weight_rank = rank(desc(weight_kg)))

# A tibble: 5 x 8
# Groups: sex, age_category [4]
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sex age age_category weight_kg occupation igg_result igm_result
<chr> <dbl> <chr> <dbl> <chr> <chr> <chr>

1 Female 45 45 - 64 95 Informal worker Negative Negative
2 Male 55 45 - 64 96 Salaried worker Positive Negative
3 Male 23 15 - 29 74 Student Negative Negative
4 Female 20 15 - 29 70 Student Positive Negative
5 Female 55 45 - 64 67 Trader--Farmer Positive Negative
# i 1 more variable: weight_rank <dbl>

If, in the process of analysis, you stored this output as a new data frame:

yao_modified <-
yao %>%
group_by(sex, age_category) %>%
mutate(weight_rank = rank(desc(weight_kg)))

And then, later on, you picked up the data frame and tried some other analysis, for example, filtering to
get the oldest person in the data:

yao_modified %>%
filter(age == max(age))

# A tibble: 5 x 8
# Groups: sex, age_category [5]
sex age age_category weight_kg occupation igg_result igm_result
<chr> <dbl> <chr> <dbl> <chr> <chr> <chr>

1 Male 65 45 - 64 93 Retired Negative Negative
2 Male 78 65 + 95 Retired--Informal w~ Positive Negative
3 Male 14 5 - 14 44 Student Negative Negative
4 Female 44 30 - 44 67 Home-maker Positive Negative
5 Female 79 65 + 40 Retired Negative Negative
# i 1 more variable: weight_rank <dbl>

You might be confused by the output! Why are there 55 rows of “oldest people”?
This would be because you forgot to ungroup the data before storing it for further analysis. Let’s do this
properly now

yao_modified <-
yao %>%
group_by(sex, age_category) %>%
mutate(weight_rank = rank(desc(weight_kg))) %>%
ungroup()

Now we can correctly obtain the oldest person/people in the data set:

yao_modified %>%
filter(age == max(age))

# A tibble: 2 x 8
sex age age_category weight_kg occupation igg_result igm_result
<chr> <dbl> <chr> <dbl> <chr> <chr> <chr>
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1 Female 79 65 + 40 Retired Negative Negative
2 Female 79 65 + 81 Home-maker Negative Negative
# i 1 more variable: weight_rank <dbl>

15.8 Wrap up

group_by() is a marvelous tool for arranging, mutating, filtering based on the groups within a single or mul-
tiple variables.

Figure 15.1: Fig: filter() and its use combined with group_by().

There are numerous ways of combining these verbs to manipulate your data. We invite you to take some time
and to try these verbs out in different combinations!

See you next time!
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15.9 Solutions

.SOLUTION_Q_grip_strength_arranged()

Q_grip_strength_arranged <-
sarcopenia %>%
select(sex_male_1_female_0, grip_strength_kg) %>%
arrange(sex_male_1_female_0, grip_strength_kg)

.SOLUTION_Q_age_group_height()

Q_age_group_height <-
sarcopenia %>%
mutate(age_group = factor(age_group, levels = c("Sixties",

"Seventies",
"Eighties"))) %>%

arrange(age_group, height_meters)

.SOLUTION_Q_max_skeletal_muscle_index()

Q_max_skeletal_muscle_index <-
sarcopenia %>%
group_by(age_group,sex_male_1_female_0) %>%
filter(skeletal_muscle_index == max(skeletal_muscle_index))
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.SOLUTION_Q_rank_grip_strength()

Q_rank_grip_strength <-
sarcopenia %>%
group_by(age_group) %>%
mutate(grip_strength_rank = rank(grip_strength_kg))
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Chapter 16

Pivoting data

16.1 Intro

Pivoting or reshaping is a data manipulation technique that involves re-orienting the rows and columns of a
dataset. This is sometimes required to make data easier to analyze, or to make data easier to understand.

In this lesson, we will cover how to effectively pivot data using pivot_longer() and pivot_wider() from
the tidyr package.

16.2 Learning Objectives

• You will understand what wide data format is, and what long data format is.

• You will know how to pivot long data to wide data using pivot_long()

• You will know how to pivot wide data to long data using pivot_wider()

• You will understand why the long data format is easier for plotting and wrangling in R.

16.3 Packages

## Load packages
if(!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, outbreaks, janitor, rio, here, knitr)

16.4 What do wide and long mean?

The terms wide and long are best understood in the context of example datasets. Let’s take a look at some
now.

Imagine that you have three patients from whom you collect blood pressure data on three days.

You can record the data in a wide format like this:

Or you could record the data in a long format as so :

Take a minute to study the two datasets to make sure you understand the relationship between them.
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Figure 16.1: Fig: wide dataset for a timeseries of patients.

Figure 16.2: Fig: long dataset for a timeseries of patients.

In the wide dataset, each observational unit (each patient) occupies only one row. And each measurement.
(blood pressure day 1, blood pressure day 2…) is in a separate column.

In the long dataset, on the other hand, each observational unit (each patient) occupiesmultiple rows, with one
row for each measurement.

Here is another example with mock data, in which the observational units are countries:

The examples above are both time-series datasets, because the measurements are repeated across time (day
1, day 2 and so on). But the concepts of long and wide are relevant to other kinds of data too, not just time
series data.

Consider the example below, showing the number of patients in different units of three hospitals:

In the wide dataset, again, each observational unit (each hospital) occupies only one row, with the repeated
measurements for that unit (number of patients in different rooms) spread across two columns.

In the long dataset, each observational unit is spread over multiple lines.

Ĺ Vocab

The “observational units”, sometimes called “statistical units” of a dataset are the primary entities or
items described by the columns in that dataset.
In the first example, the observational/statistical units were patients; in the second example, countries,
and in the third example, hospitals.
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Figure 16.3: Fig: long dataset where the unique observation unit is a country.

Figure 16.4: Fig: the equivalent wide dataset

Figure 16.5: Fig: wide dataset, where each hospital is an observational unit
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Figure 16.6: Fig: the equivalent long dataset

Ď Practice

Consider the mock dataset created below:

temperatures <-
data.frame(

country = c("Sweden", "Denmark", "Norway"),
avgtemp.1994 = 1:3,
avgtemp.1995 = 3:5,
avgtemp.1996 = 5:7)

temperatures

country avgtemp.1994 avgtemp.1995 avgtemp.1996
1 Sweden 1 3 5
2 Denmark 2 4 6
3 Norway 3 5 7

Is this data in a wide or long format?

## Enter the string "wide" or the string "long"
## Assign your answer to the object Q_data_type
Q_data_type <- "_____"
## Then run the provided CHECK function

16.5 When should you use wide vs long data?

The truth is: it really depends on what you want to do! The wide format is great for displaying data because
it’s easy to visually compare values this way. Long data is best for some data analysis tasks, like grouping and
plotting.

It will therefore be essential for you to know how to switch from one format to the other easily. Switching
from the wide to the long format, or the other way around, is called pivoting.
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16.6 Pivoting wide to long

Topractice pivoting fromawide to a long format, we’ll consider data fromGapminder on thenumber of infant
deaths in specific countries over several years.

Ĺ Side Note

Gapminder is a good source of rich, health-relevant datasets. You are encouraged to peruse their collec-
tions.

Below, we read in and view this data on infant deaths:

infant_deaths_wide <- read_csv(here("data/gapminder_infant_deaths.csv"))
infant_deaths_wide

# A tibble: 5 x 7
country x2010 x2011 x2012 x2013 x2014 x2015
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Afghanistan 74600 72000 69500 67100 64800 62700
2 Angola 79100 76400 73700 71200 69000 67200
3 Albania 420 384 354 331 313 301
4 United Arab Emirates 683 687 686 681 672 658
5 Argentina 9550 9230 8860 8480 8100 7720

We observe that each observational unit (each country) occupies only one row, with the repeated measure-
ments spread out across multiple columns. Hence this dataset is in a wide format.

To convert to a long format, we can use a convenient function pivot_longer. Within pivot_longer we
define, using the cols argument, which columns we want to pivot:

infant_deaths_wide %>%
pivot_longer(cols = x2010:x2015)

# A tibble: 5 x 3
country name value
<chr> <chr> <dbl>

1 Afghanistan x2010 74600
2 Afghanistan x2011 72000
3 Afghanistan x2012 69500
4 Afghanistan x2013 67100
5 Afghanistan x2014 64800

Very easy!

We can observe that the resulting long format dataset has each country occupying 5 rows (one per year be-
tween 2010 and 2015). The years are indicated in the variable names, and all the death count values occupy a
single variable, values.

A useful way to think about this transformation is that the infant deaths values used to be in matrix format (2
dimensions; 2D), but they are now in a vector format (1 dimension; 1D).

This long dataset will be much more handy for many data analysis procedures.

259

https://www.gapminder.org
https://www.gapminder.org


16.6. PIVOTING WIDE TO LONG CHAPTER 16. PIVOTING DATA

As a good data analyst, you may find the default names of the variables, names and values, to be unsatisfac-
tory; they do not adequately describe what the variables contain. Not to worry; you can give custom column
names, using the arguments names_to and values_to:

infant_deaths_wide %>%
pivot_longer(cols = x2010:x2015,

names_to = "year",
values_to = "deaths_count")

# A tibble: 5 x 3
country year deaths_count
<chr> <chr> <dbl>

1 Afghanistan x2010 74600
2 Afghanistan x2011 72000
3 Afghanistan x2012 69500
4 Afghanistan x2013 67100
5 Afghanistan x2014 64800

Ĺ Side Note

Notice that the long format is more informative than the original wide format. Why? Because of the
informative column name “deaths_count”. In the wide format, unless the CSV is named something like
count_infant_deaths, or someone tells you “these are the counts of infant deaths per country and
per year”, you have no idea what the numbers in the cells represent.

You may also want to remove the x in front of each year. This can be achieved with the convenient
parse_number() function from the {readr} package (part of the tidyverse), which extracts numbers from
strings:

infant_deaths_wide %>%
pivot_longer(cols = x2010:x2015,

names_to = "year",
values_to = "deaths_count") %>%

mutate(year = parse_number(year))

# A tibble: 5 x 3
country year deaths_count
<chr> <dbl> <dbl>

1 Afghanistan 2010 74600
2 Afghanistan 2011 72000
3 Afghanistan 2012 69500
4 Afghanistan 2013 67100
5 Afghanistan 2014 64800

Great! Now we have a clean, long dataset.

For later use, let’s now store this data:

infant_deaths_long <-
infant_deaths_wide %>%
pivot_longer(cols = x2010:x2015,
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names_to = "year",
values_to = "deaths_count")

Ď Practice

For this practice question, you will use the euro_births_wide dataset from Eurostat. It shows the
annual number of births in 50 European countries:

euro_births_wide <-
read_csv(here("data/euro_births_wide.csv"))

head(euro_births_wide)

# A tibble: 5 x 8
country x2015 x2016 x2017 x2018 x2019 x2020 x2021
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Belgium 122274 121896 119690 118319 117695 114350 118349
2 Bulgaria 65950 64984 63955 62197 61538 59086 58678
3 Czechia 110764 112663 114405 114036 112231 110200 111793
4 Denmark 58205 61614 61397 61476 61167 60937 63473
5 Germany 737575 792141 784901 787523 778090 773144 795492

The data is in awide format. Convert it to a long format data frame that has the following column names:
“country”, “year” and “births_count”

Q_euro_births_long <-
euro_births_wide %>% # complete the code with your answer

16.7 Pivoting long to wide

Now you know how to pivot from wide to long with pivot_longer(). How about going the other way, from
long to wide? For this, you can use the fittingly-named pivot_wider() function.

But beforewe consider how to use this function tomanipulate long data, let’s first considerwhere you’re likely
to run into long data.

While wide data tends to come from external sources (as we have seen above), long data on the other hand,
is likely to be created by you while data wrangling, especially in the course of group_by()-summarize()
manipulations.

Let’s see an example of this now.

Wewill use a dataset of patient records from an Ebola outbreak in Sierra Leone in 2014. Belowwe extract this
data from the {outbreaks} package and perform some simplifying manipulations on it.

ebola <-
outbreaks::ebola_sierraleone_2014 %>%
as_tibble() %>%
mutate(year = lubridate::year(date_of_onset)) %>% # extract the year from the date
select(patient_id = id, district, year_of_onset = year) # select and rename

ebola
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# A tibble: 5 x 3
patient_id district year_of_onset

<int> <fct> <dbl>
1 1 Kailahun 2014
2 2 Kailahun 2014
3 3 Kailahun 2014
4 4 Kailahun 2014
5 5 Kailahun 2014

Each row corresponds to one patient, andwe have each patient’s id number, their district and the year inwhich
they contracted Ebola.

Now, consider the following grouped summary of the ebola dataset, which counts the number of patients
recorded in each district in each year:

cases_per_district_per_year <-
ebola %>%
group_by(district) %>%
count(year_of_onset) %>%
ungroup()

cases_per_district_per_year

# A tibble: 5 x 3
district year_of_onset n
<fct> <dbl> <int>

1 Bo 2014 397
2 Bo 2015 209
3 Bombali 2014 1070
4 Bombali 2015 120
5 Bonthe 2014 7

The output of this grouped operation is a quintessentially “long” dataset! Each observational unit (each dis-
trict) occupies multiple rows (two rows per district, to be exact), with one row for each measurement (each
year).

So, as you now see, long data often can arrive as an output of grouped summaries, among other data manip-
ulations.

Now, let’s see how to convert such long data into a wide format with pivot_wider().

The code is quite straightforward:

cases_per_district_per_year %>%
pivot_wider(values_from = n,

names_from = year_of_onset)

# A tibble: 5 x 3
district `2014` `2015`
<fct> <int> <int>

1 Bo 397 209
2 Bombali 1070 120

262



16.8. WHY IS LONG DATA BETTER FOR ANALYSIS? CHAPTER 16. PIVOTING DATA

3 Bonthe 7 77
4 Kailahun 535 35
5 Kambia 127 294

As you can see, pivot_wider() has two important arguments: values_from and names_from. The
values_from argument defines which values will become the core of the wide data format (in other words:
which 1D vector will become a 2D matrix). In our case, these values were in the n variable. And names_from
identifies which variable to use to define column names in the wide format. In our case, this was the
year_of_onset variable.

Ĺ Side Note

You might also want to have the years be your primary observational/statistical unit, with each year
occupying one row. This can be carried out similarly to the above example, but the district variable
will be provided as an argument to names_from, instead of year_of_onset.

cases_per_district_per_year %>%
pivot_wider(values_from = n,

names_from = district)

# A tibble: 2 x 15
year_of_onset Bo Bombali Bonthe Kailahun Kambia Kenema Koinadugu Kono

<dbl> <int> <int> <int> <int> <int> <int> <int> <int>
1 2014 397 1070 7 535 127 641 142 328
2 2015 209 120 77 35 294 139 15 223
# i 6 more variables: Moyamba <int>, `Port Loko` <int>, Pujehun <int>,
# Tonkolili <int>, `Western Rural` <int>, `Western Urban` <int>

Here the unique observation units (our rows) are now the years (2014, 2015).

Ď Practice

The population dataset from the tidyr package shows the populations of 219 countries over time.
Pivot this data into a wide format. Your answer should have 20 columns and 219 rows.

Q_population_widen <-
tidyr::population

16.8 Why is long data better for analysis?

Above we mentioned that long data is best for a majority of data analysis tasks. Now we can justify why. In
the sections below, we will go through a few common operations that you will need to do with long data, in
each case you will observe that similar manipulations on wide data would be quite tricky.

16.8.1 Filtering grouped data

First, let’s talk about filtering grouped data, which is very easy to do on long data, but difficult on wide data.

263



16.8. WHY IS LONG DATA BETTER FOR ANALYSIS? CHAPTER 16. PIVOTING DATA

Here is an example with the infant deaths dataset. Imagine that we want to answer the following question:
For each country, which year had the highest number of child deaths?

This is how we would do so with the long format of the data :

infant_deaths_long %>%
group_by(country) %>%
filter(deaths_count == max(deaths_count))

# A tibble: 5 x 3
# Groups: country [5]
country year deaths_count
<chr> <chr> <dbl>

1 Afghanistan x2010 74600
2 Angola x2010 79100
3 Albania x2010 420
4 United Arab Emirates x2011 687
5 Argentina x2010 9550

Easy right? We can easily see, for example, that Afghanistan had its highest infant death count in 2010, and
the United Arab Emirates had its highest death count in 2011.

If you wanted to do the same thing with wide data, it would bemuchmore difficult. You could try an approach
like this with rowwise():

infant_deaths_wide %>%
rowwise() %>%
mutate(max_count = max(x2010, x2011, x2012, x2013, x2014, x2015))

# A tibble: 5 x 8
# Rowwise:
country x2010 x2011 x2012 x2013 x2014 x2015 max_count
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Afghanistan 74600 72000 69500 67100 64800 62700 74600
2 Angola 79100 76400 73700 71200 69000 67200 79100
3 Albania 420 384 354 331 313 301 420
4 United Arab Emirates 683 687 686 681 672 658 687
5 Argentina 9550 9230 8860 8480 8100 7720 9550

This almost works—we have, for each country, we have the maximum number of child deaths reported—but
we still don’t know which year is attached to that value in max_count. We would have to take that value and
index it back to its respective year column somehow… what a hassle! There are solutions to find this but all
are very painful. Why make your life complicated when you can just pivot to long format and use the beauty
of group_by() and filter()?
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Ĺ Side Note

Herewe used a special {dplyr} function: rowwise(). rowwise() allows further operations to be applied
per-row . It is equivalent to creating one group for each row (group_by(row_number())).
Without rowwise() you would get this :

infant_deaths_wide %>%
mutate(max_count = max(x2010, x2011, x2012, x2013, x2014, x2015))

# A tibble: 5 x 8
country x2010 x2011 x2012 x2013 x2014 x2015 max_count
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Afghanistan 74600 72000 69500 67100 64800 62700 1170000
2 Angola 79100 76400 73700 71200 69000 67200 1170000
3 Albania 420 384 354 331 313 301 1170000
4 United Arab Emirates 683 687 686 681 672 658 1170000
5 Argentina 9550 9230 8860 8480 8100 7720 1170000

…the maximum count over ALL rows in the dataset.

Ď Practice

For this practice question, you will perform a grouped filter on the long format population dataset
from the tidyr package. Use group_by() and filter() to obtain a dataset that shows the maximum
population recorded for each country, and the year in which that maximum population was recorded.

Q_population_max <-
population

16.8.2 Summarizing grouped data

Grouped summaries are also difficult to perform on wide data. For example, considering again the
infant_deaths_long dataset, if you want to ask: For each country, what was the mean number of infant
deaths and the standard deviation (variation) in deaths ?

With long data it is simple:

infant_deaths_long %>%
group_by(country) %>%
summarize(mean_deaths = mean(deaths_count),

sd_deaths = sd(deaths_count))

# A tibble: 5 x 3
country mean_deaths sd_deaths
<chr> <dbl> <dbl>

1 Afghanistan 68450 4466.
2 Albania 350. 45.2
3 Algeria 21033. 484.
4 Angola 72767. 4513.
5 Antigua and Barbuda 10.7 0.816
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With wide data, on the other hand, finding the mean is less intuitive…

infant_deaths_wide %>%
rowwise() %>%
mutate(mean_deaths = sum(x2010, x2011, x2012,

x2013, x2014, x2015, na.rm = T)/6)

# A tibble: 5 x 8
# Rowwise:
country x2010 x2011 x2012 x2013 x2014 x2015 mean_deaths
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Afghanistan 74600 72000 69500 67100 64800 62700 68450
2 Angola 79100 76400 73700 71200 69000 67200 72767.
3 Albania 420 384 354 331 313 301 350.
4 United Arab Emirates 683 687 686 681 672 658 678.
5 Argentina 9550 9230 8860 8480 8100 7720 8657.

And finding the standard deviation would be very difficult. (We can’t think of any way to achieve this, actu-
ally.)

Ď Practice

For this practice question, youwill againworkwith the long format population dataset from the tidyr
package.
Use group_by() and summarize() to obtain, for each country, the maximum reported population,
the minimum reported population, and the mean reported population across the years available in
the data. Your data should have four columns, “country”, “max_population”, “min_population” and
“mean_population”.

Q_population_summaries <-
population

16.8.3 Plotting

Finally, one of the data analysis tasks that is MOST hindered by wide formats is plotting. Youmay not yet have
any prior knowledge of {ggplot} and how to plot so we will see the figures without going in depth with the
code. What you need to remember is: many plots with with ggplot are also only possible with long-format
data

Consider again the infant_deaths data infant_deaths_long. Wewill plot the number of deaths for Belgium
per year:

infant_deaths_long %>%
filter(country == "Belgium") %>%
ggplot() +
geom_col(aes(x = year, y = deaths_count))
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The plotting works because we can give the variable year for the x-axis. In the long format, year is a variable
variable of its own. In the wide format, each there would be no such variable to pass to the x axis.

Another plot that would not be possible without a long format:

infant_deaths_long %>%
head(30) %>%
ggplot(aes(x = year, y = deaths_count, group = country, color = country)) +
geom_line() +
geom_point()
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Once again, the reason is the same, we need to tell the plot what to use as an x-axis and a y-axis and it is
necessary to have these variables in their own columns (as organized in the long format).

16.9 Pivoting can be hard

We have mostly looked at very simple examples of pivoting here, but in the wild, pivoting can be very difficult
to do accurately. This is because the data you are working with may not have all the information necessary for
a successful pivot, or the data may contain errors that prevent you from pivoting correctly.

When you run into such cases, we recommend looking at the official documentation of pivoting from the
tidyr team, as it is quite rich in examples. You could also post your questions about pivoting on forums like
Stack Overflow.

16.10 Wrap up

You have now explored different datasets and how they are either in a long or wide format. In the end, it’s
just about how you present the information. Sometimes one format will be more convenient, and other times
another could be best. Now, you are no longer limited by the format of your data: don’t like it? change it !

16.11 Solutions

.SOLUTION_Q_data_type()

"Wide"

268

https://tidyr.tidyverse.org/articles/pivot.html


16.11. SOLUTIONS CHAPTER 16. PIVOTING DATA

.SOLUTION_Q_euro_births_long()

euro_births_wide %>%
pivot_longer(2:8,

names_to = "year",
values_to = "births_count")

.SOLUTION_Q_population_widen()

tidyr::population %>%
pivot_wider(names_from = year,

values_from = population)

.SOLUTION_Q_population_max()

tidyr::population %>%
group_by(country) %>%
filter(population == max(population)) %>%
ungroup()

.SOLUTION_Q_population_summaries()

population %>%
group_by(country) %>%
summarise(max_population = max(population),

min_population = min(population),
mean_population = mean(population))
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Advanced pivoting

17.1 Intro

You know basic pivoting operations from long format datasets to wide format datasets and vice versa. How-
ever, as is often the case, basic manipulations are sometimes not enough for the wrangling you need to do.
Let’s now see the next level. Let’s go !

17.2 Learning Objectives

1. Master complex pivoting from wide to long and long to wide

2. Know how to use separators as a pivoting tool

17.3 Packages

## Load packages
if(!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, outbreaks, janitor, rio, here, knitr)

17.4 Datasets

We will introduce these datasets as we go along but here is an overview:

• Survey data from India on howmuch money patients spent on tuberculosis treatment

• Biomarker data from an enteropathogen study in Zambia

• A diet survey from Vietnam

17.5 Wide to long

Sometimes you have multiple kinds of wide data in the same table. Consider this artificial example of heights
and weights for children over two years:
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child_stats <-
tibble::tribble(

~child, ~year1_height, ~year2_height, ~year1_weight, ~year2_weight,
"A", "80cm", "85cm", "5kg", "10kg",
"B", "85cm", "90cm", "7kg", "12kg",
"C", "90cm", "100cm", "6kg", "14kg"

)

child_stats

# A tibble: 3 x 5
child year1_height year2_height year1_weight year2_weight
<chr> <chr> <chr> <chr> <chr>

1 A 80cm 85cm 5kg 10kg
2 B 85cm 90cm 7kg 12kg
3 C 90cm 100cm 6kg 14kg

If you pivot all the measurement columns, you’ll get overly long data:

child_stats %>%
pivot_longer(2:5)

# A tibble: 5 x 3
child name value
<chr> <chr> <chr>

1 A year1_height 80cm
2 A year2_height 85cm
3 A year1_weight 5kg
4 A year2_weight 10kg
5 B year1_height 85cm

This is not what you (usually) want, because now you have two different kinds of data in the same column—
weight and height.

To get the right shape, you’ll need to use the names_sep argument and the “.value” identifier:

child_stats %>%
pivot_longer(2:5,

names_sep = "_",
names_to = c("period", ".value"))

# A tibble: 5 x 4
child period height weight
<chr> <chr> <chr> <chr>

1 A year1 80cm 5kg
2 A year2 85cm 10kg
3 B year1 85cm 7kg
4 B year2 90cm 12kg
5 C year1 90cm 6kg
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Now we have one row for each child-period, an appropriately long format!

What the code above is doingmay not be clear, but you should already be able to answer the practice question
below by pattern matching with our example. After the practice question, we will explain the names_sep
argument and the “.value” identifier in more depth.

Ď Practice

Consider this other artificial data set:

adult_stats <-
tibble::tribble(

~adult, ~year1_BMI, ~year2_BMI, ~year1_HIV, ~year2_HIV,
"A", 25, 30, "Positive", "Positive",
"B", 34, 28, "Negative", "Positive",
"C", 19, 17, "Negative", "Negative"

)

adult_stats

# A tibble: 3 x 5
adult year1_BMI year2_BMI year1_HIV year2_HIV
<chr> <dbl> <dbl> <chr> <chr>

1 A 25 30 Positive Positive
2 B 34 28 Negative Positive
3 C 19 17 Negative Negative

Pivot the data into a long format to get the following structure:

adult year BMI HIV

Q_adult_long <-
adult_stats %>%
pivot_longer(_________)

Ĺ Side Note

The child_stats example above has numbers stored as characters […]
As you saw in the previous lesson, you can easily extract the numbers from the output long data frame
in our example using the parse_number() function from readr:
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child_stats_long <-
child_stats %>%
pivot_longer(2:5,

names_sep = "_",
names_to = c("period", ".value"))

child_stats_long

# A tibble: 5 x 4
child period height weight
<chr> <chr> <chr> <chr>

1 A year1 80cm 5kg
2 A year2 85cm 10kg
3 B year1 85cm 7kg
4 B year2 90cm 12kg
5 C year1 90cm 6kg

child_stats_long %>%
mutate(height = parse_number(height),

weight = parse_number(weight))

# A tibble: 5 x 4
child period height weight
<chr> <chr> <dbl> <dbl>

1 A year1 80 5
2 A year2 85 10
3 B year1 85 7
4 B year2 90 12
5 C year1 90 6

17.5.1 Understanding names_sep and “.value”

Now let’s break down the pivot_longer() call we saw above a bit more:

child_stats

# A tibble: 3 x 5
child year1_height year2_height year1_weight year2_weight
<chr> <chr> <chr> <chr> <chr>

1 A 80cm 85cm 5kg 10kg
2 B 85cm 90cm 7kg 12kg
3 C 90cm 100cm 6kg 14kg

child_stats %>%
pivot_longer(2:5,

names_sep = "_",
names_to = c("period", ".value"))
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# A tibble: 5 x 4
child period height weight
<chr> <chr> <chr> <chr>

1 A year1 80cm 5kg
2 A year2 85cm 10kg
3 B year1 85cm 7kg
4 B year2 90cm 12kg
5 C year1 90cm 6kg

Notice that the column names in the original child_stats data frame (year1_height, year2_height and
so on) are made of three parts:

• the period being referenced: e.g. “year1”

• an underscore separator, “_”;

• and the type of value recorded “height” or “weight”

We can make a table with these parts:

column_name period separator “.value”

year1_height year1 _ height
year2_height year2 _ height
year1_weight year1 _ weight
year2_weight year2 _ weight

Based on that table, it should now be easier to understand the names_sep and names_to arguments that we
supplied to pivot_longer():

17.5.1.1 names_sep = "_":

This is the separator between the period indicator (year) and the values (year and weight) recorded.

If we have a different separator, this argument would change. For example, if the separator were an empty
space, ” “, you would have names_sep = " ", as seen in the example below:

child_stats_space_sep <-
tibble::tribble(

~child, ~`yr1 height`, ~`yr2 height`, ~`yr1 weight`, ~`yr2 weight`,
"A", "80cm", "85cm", "5kg", "10kg",
"B", "85cm", "90cm", "7kg", "12kg",
"C", "90cm", "100cm", "6kg", "14kg"

)

child_stats_space_sep %>%
pivot_longer(2:5,

names_sep = " ",
names_to = c("period", ".value"))
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# A tibble: 5 x 4
child period height weight
<chr> <chr> <chr> <chr>

1 A yr1 80cm 5kg
2 A yr2 85cm 10kg
3 B yr1 85cm 7kg
4 B yr2 90cm 12kg
5 C yr1 90cm 6kg

17.5.1.2 names_to = c("period", ".value")

Next, the names_to argument indicates how thedata should be reshaped. Wepassed a vector of two character
strings , “period” and the “.value” to this argument. Let’s consider each in turn:

The “period” string indicated that we want to move the data from each year (or period) into a separate row
Note that there is nothing special about theword “period” used here; we could change this to any other string.
So instead of “period”, you could have written “time” or “year_of_measurement” or anything else:

child_stats %>%
pivot_longer(2:5,

names_sep = "_",
names_to = c("year_of_measurement", ".value"))

# A tibble: 5 x 4
child year_of_measurement height weight
<chr> <chr> <chr> <chr>

1 A year1 80cm 5kg
2 A year2 85cm 10kg
3 B year1 85cm 7kg
4 B year2 90cm 12kg
5 C year1 90cm 6kg

Now, the “.value” placeholder is a special indicator, that tells pivot_longer() to make a separate column
for every distinct value that appears after the separator. In our example, these distinct values are “height” and
“weight”.

The “.value” string cannot be arbitrarily replaced. For example, this won’t work:

child_stats %>%
pivot_longer(2:5,

names_sep = "_",
names_to = c("period", "values"))

# A tibble: 5 x 4
child period values value
<chr> <chr> <chr> <chr>

1 A year1 height 80cm
2 A year2 height 85cm
3 A year1 weight 5kg
4 A year2 weight 10kg
5 B year1 height 85cm
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To restate the point, the “.value” placeholder is tells pivot_longer() that we want to separate out the
“height” and “weight” values into separate columns, because there are the two value types that occur after
the “_” separator in the column names.

This means that if you had a wide dataset with three types of values, you would get separated-out columns,
one for each value type. For example, consider themock dataset belowwhich shows children’s records, at two
time points, for the following variables:

• age in months,
• body fat %
• bmi

child_stats_three_values <-
tibble::tribble(
~child, ~t1_age, ~t2_age, ~t1_fat, ~t2_fat, ~t1_bmi, ~t2_bmi,

"a", "5mths", "8mths", "13%", "15%", 14, 15,
"b", "7mths", "9mths", "15%", "17%", 16, 18

)
child_stats_three_values

# A tibble: 2 x 7
child t1_age t2_age t1_fat t2_fat t1_bmi t2_bmi
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl>

1 a 5mths 8mths 13% 15% 14 15
2 b 7mths 9mths 15% 17% 16 18

Here, in the column names there are three value types occurring after the “_” separator: age, fat and bmi;
the “.value” string tells pivot_longer() to make a new column for each value type:

child_stats_three_values %>%
pivot_longer(2:7,

names_sep = "_",
names_to = c("time", ".value")
)

# A tibble: 4 x 5
child time age fat bmi
<chr> <chr> <chr> <chr> <dbl>

1 a t1 5mths 13% 14
2 a t2 8mths 15% 15
3 b t1 7mths 15% 16
4 b t2 9mths 17% 18

Ď Practice

A pediatrician records the following information for a set of children over two years:

• head circumference;
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• neck circumference; and
• hip circumference

all in centimeters.
The output table resembles the below:

growth_stats <-
tibble::tribble(

~child,~yr1_head,~yr2_head,~yr1_neck,~yr2_neck,~yr1_hip,~yr2_hip,
"a", 45, 48, 23, 24, 51, 52,
"b", 48, 50, 24, 26, 52, 52,
"c", 50, 52, 24, 27, 53, 54

)

growth_stats

# A tibble: 3 x 7
child yr1_head yr2_head yr1_neck yr2_neck yr1_hip yr2_hip
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 a 45 48 23 24 51 52
2 b 48 50 24 26 52 52
3 c 50 52 24 27 53 54

Pivot the data into a long format to get the following structure:

child year head neck hip

Q_growth_stats_long <-
growth_stats %>%
pivot_longer(_________)

17.5.2 Value type before the separator

In all the example we have used so far, the column names were constructed such that value type came after
the separator (Recall our table:

column_name period separator “.value”

year1_height year1 _ height
year2_height year2 _ height
year1_weight year1 _ weight
year2_weight year2 _ weight

)

But of course, the column names could be constructed differently, with the value types coming before the
separator, as in this example:
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child_stats2 <-
tibble::tribble(

~child, ~height_year1, ~height_year2, ~weight_year1, ~weight_year2,
"A", "80cm", "85cm", "5kg", "10kg",
"B", "85cm", "90cm", "7kg", "12kg",
"C", "90cm", "100cm", "6kg", "14kg"

)

child_stats2

# A tibble: 3 x 5
child height_year1 height_year2 weight_year1 weight_year2
<chr> <chr> <chr> <chr> <chr>

1 A 80cm 85cm 5kg 10kg
2 B 85cm 90cm 7kg 12kg
3 C 90cm 100cm 6kg 14kg

Here, the value types (height and weight) come before the “_” separator.

How can our pivot_longer() command accommodate this? Simple! Just swap the order of the vector given
to the names_to argument:

So instead of names_to = c("time", ".value"), you would have names_to = c(".value",
"time"):

child_stats2 %>%
pivot_longer(2:5,

names_sep = "_",
names_to = c(".value", "time"))

# A tibble: 5 x 4
child time height weight
<chr> <chr> <chr> <chr>

1 A year1 80cm 5kg
2 A year2 85cm 10kg
3 B year1 85cm 7kg
4 B year2 90cm 12kg
5 C year1 90cm 6kg

And that’s it!

Ď Practice

Consider the following data set from Zambia about enteropathogens and their biomarkers.

enteropathogens_zambia_wide<- read_csv(here("data/enteropathogens_zambia_wide.csv"))

enteropathogens_zambia_wide

# A tibble: 5 x 7
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ID LPS_1 LPS_2 LBP_1 LBP_2 IFABP_1 IFABP_2
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1002 222. 390. 38414. 6840. 1294. 610.
2 1003 181. NA 26888. NA 22.5 NA
3 1004 257. 221. 49183. 5426. 0 0
4 1005 NA 369. NA 1938. 0 1010.
5 1006 275. NA 61758. NA 0 NA

This data frame has the following columns:

• LPS_1 and LPS_2: lipopolysaccharide levels, measured by Pyrochrome LAL, in EU/mL

• LBP_1 and LBP_2: LPS binding protein levels, in pg/mL

• IFABP_1 and IFAPB_2: intestinal-type fatty acid binding protein levels, in pg/mL

Pivot the dataset so that it resembles the following structure

ID sample_count LPS LBP IFABP

enteropathogens_zambia_wide %>%
pivot_longer(____________)

17.5.3 A non-time-series example

So far we have been using person-period (time series) datasets to illustrate the idea of complex pivots with
multiple value types.

But as we have mentioned, not all reshape-requiring datasets are time series data. Let’s see a quick non-time-
series example […]

You might measure the height (cm) and weight (kg) of a series of parental couples in a table like this:

family_stats <-
tibble::tribble(
~couple, ~father_height, ~father_weight, ~mother_height, ~mother_weight,

"a", 180, 80, 160, 70,
"b", 185, 90, 150, 76,
"c", 182, 93, 143, 78

)
family_stats

# A tibble: 3 x 5
couple father_height father_weight mother_height mother_weight
<chr> <dbl> <dbl> <dbl> <dbl>

1 a 180 80 160 70
2 b 185 90 150 76
3 c 182 93 143 78
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Here we have two different types of values (weight and height) for each person in the couple.

To pivot this to one-row per person, we’ll again need the names_sep and names_to arguments:

family_stats %>%
pivot_longer(2:5,

names_sep = "_",
names_to = c("person", ".value"))

# A tibble: 5 x 4
couple person height weight
<chr> <chr> <dbl> <dbl>

1 a father 180 80
2 a mother 160 70
3 b father 185 90
4 b mother 150 76
5 c father 182 93

The separator is an underscore, “_”, so we used names_sep = "_" and because the value types come after
the separator, the “.value” identifier was placed second in the names_to argument.

17.5.4 Escaping the dot separator

A special example may crop up when you try to pivot a dataset where the separator is a period.

child_stats_dot_sep <-
tibble::tribble(

~child, ~year1.height, ~year2.height, ~year1.weight, ~year2.weight,
"A", "80cm", "85cm", "5kg", "10kg",
"B", "85cm", "90cm", "7kg", "12kg",
"C", "90cm", "100cm", "6kg", "14kg"

)

child_stats_dot_sep %>%
pivot_longer(2:5,

names_to = c("period", ".value"),
names_sep = "\\.")

# A tibble: 5 x 4
child period height weight
<chr> <chr> <chr> <chr>

1 A year1 80cm 5kg
2 A year2 85cm 10kg
3 B year1 85cm 7kg
4 B year2 90cm 12kg
5 C year1 90cm 6kg

There we used the string “\.” to indicate a dot “.” because the “.” is a special character in R, and sometimes
needs to be escaped
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Ď Practice

Consider again the adult_stats data you saw above. Now the column names have been changed slightly.

adult_stats_dot_sep <-
tibble::tribble(

~adult, ~`BMI.year1`, ~`BMI.year2`, ~`HIV.year1`, ~`HIV.year2`,
"A", 25, 30, "Positive", "Positive",
"B", 34, 28, "Negative", "Positive",
"C", 19, 17, "Negative", "Negative"

)

adult_stats_dot_sep

# A tibble: 3 x 5
adult BMI.year1 BMI.year2 HIV.year1 HIV.year2
<chr> <dbl> <dbl> <chr> <chr>

1 A 25 30 Positive Positive
2 B 34 28 Negative Positive
3 C 19 17 Negative Negative

Again, pivot the data into a long format to get the following structure:

adult year BMI HIV

Q_adult2_long <-
adult_stats_dot_sep %>%
pivot_longer(_________)

17.5.5 What to do when you don’t have a neat separator ?

Sometimes you do not have a neat separator.

Consider this survey data from India that looked at how much money patients spent on tuberculosis treat-
ment:

tb_visits <- read_csv(here("data/india_tb_pathways_and_costs_data.csv")) %>%
clean_names() %>%
select(id, first_visit_location, first_visit_cost, second_visit_location, second_visit_cost, third_visit_location, third_visit_cost)

tb_visits

# A tibble: 5 x 7
id first_visit_location first_visit_cost second_visit_location

<dbl> <chr> <dbl> <chr>
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1 100202 GH 0 <NA>
2 100396 Pvt. docto 1500 Pvt. clini
3 100590 Pvt. docto 2000 Pvt. docto
4 100687 Pvt. hospi 20000 Pvt. hospi
5 100784 Pvt. docto 1000 GH
# i 3 more variables: second_visit_cost <dbl>, third_visit_location <chr>,
# third_visit_cost <dbl>

It does not have a neat separator between the time indicators (first, second, third) and the value type (cost,
location). That is, rather than something like “firstvisit_location”, we have instead “first_visit_location”, so the
underscore is used for two purposes. For this reason, if you try our usual pivot strategy, youwill get an error:

tb_visits %>%
pivot_longer(2:7,

names_to = c("visit_count", ".value"),
names_sep = "_")

Error in `pivot_longer_spec()`:
! Can't combine `first_visit_location` <character> and `first_visit_cost` <double>.
Run `rlang::last_error()` to see where the error occurred.

Themost direct way to reshape this dataset successfully would be to use special “regex” (stringmanipulation),
but you likely have not learned this yet!

So for now, the solutionwe recommend is tomanually rename your columns to insert a clear separator, “__”:

tb_visits_renamed <-
tb_visits %>%
rename(first__visit_location = first_visit_location,

first__visit_cost = first_visit_cost,
second__visit_location = second_visit_location,
second__visit_cost= second_visit_cost,
third__visit_location = third_visit_location,
third__visit_cost = third_visit_cost)

tb_visits_renamed

# A tibble: 5 x 7
id first__visit_location first__visit_cost second__visit_location

<dbl> <chr> <dbl> <chr>
1 100202 GH 0 <NA>
2 100396 Pvt. docto 1500 Pvt. clini
3 100590 Pvt. docto 2000 Pvt. docto
4 100687 Pvt. hospi 20000 Pvt. hospi
5 100784 Pvt. docto 1000 GH
# i 3 more variables: second__visit_cost <dbl>, third__visit_location <chr>,
# third__visit_cost <dbl>

Now we can try the pivot:
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tb_visits_long <-
tb_visits_renamed %>%
pivot_longer(2:7,

names_to = c("visit_count", ".value"),
names_sep = "__")

tb_visits_long

# A tibble: 5 x 4
id visit_count visit_location visit_cost

<dbl> <chr> <chr> <dbl>
1 100202 first GH 0
2 100202 second <NA> 0
3 100202 third <NA> 0
4 100396 first Pvt. docto 1500
5 100396 second Pvt. clini 1000

Now let’s polish the data frame:

tb_visits_long %>%
# remove nonexistent entries
filter(!visit_location == "") %>%
# give significant naming to the visit_count values
mutate(visit_count = case_when(visit_count == "first" ~ 1,

visit_count == "second" ~ 2,
visit_count == "third" ~ 3)) %>%

# ensure visit_cost is numerical
mutate(visit_cost = as.numeric(visit_cost))

# A tibble: 5 x 4
id visit_count visit_location visit_cost

<dbl> <dbl> <chr> <dbl>
1 100202 1 GH 0
2 100396 1 Pvt. docto 1500
3 100396 2 Pvt. clini 1000
4 100396 3 Pvt. hospi 2500
5 100590 1 Pvt. docto 2000

Above, we first remove the entries where we do not have the visit location information (i.e. we filter out the
rows where the visit location variable is set to "" ). We then convert to numeric values the visit count vari-
able, where the strings "first" to "third" are converted to numerical entries 1 to 3. Finally, we ensure the
variable of visit cost is numeric using mutate() and the helper function as.numeric().

Ď Practice

We will use a survey data about diet from Vietnam. Women in Hanoi were interviewed about their food
shopping, and this was used to create nutrition profiles for each women. Here we will use a subset of
this data for 61 households who came for 2 visits, recording:

• enerc_kcal_w_1: the consumed energy from ingredient/food (Kcal) during the first visit (with
_2 for the second visit)
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• dry_w_1: the consumed dry from ingredient/food (g) during the first visit (with _2 for the second
visit)

• water_w_1: the consumed water from ingredient/food (g) during the first visit (with _2 for the
second visit)

• fat_w_1: the consumedLipid from ingredient/food (g) during thefirst visit (with_2 for the second
visit)

diet_diversity_vietnam_wide <- read_csv(here("data/diet_diversity_vietnam_wide.csv"))

diet_diversity_vietnam_wide

# A tibble: 5 x 9
household_id enerc_kcal_w_1 enerc_kcal_w_2 dry_w_1 dry_w_2 water_w_1 water_w_2

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 348 2268. 1386. 548. 281. 4219. 1997.
2 354 2775. 1240. 600. 284. 2376. 3145.
3 53 3104. 2075. 646. 451. 2808. 2305.
4 18 2802. 2146. 620. 807. 3457. 1903.
5 211 1298. 1191. 269. 288. 2584. 2269.
# i 2 more variables: fat_w_1 <dbl>, fat_w_2 <dbl>

You should first distinguish if we have a neat operator or not. Based on this, rename your columns if
necessary. Then bring the different visit records (1 and 2) into a sole column for energy, fat weight,
water weight and dry weight. In other words, pivot the dataset into long format of this form:

household_id visit enerc_kcal_w dry_w water_w fat_w

Q_diet_diversity_vietnam_long <-
diet_diversity_vietnam_wide %>%
pivot_longer(_________)

17.6 Long to wide

We just saw how to do some complex operations wide to long, which we saw in the previous lesson is essential
for plotting and wrangling. Let’s see the opposite transformation.

It could be useful to put long to wide to do different transformations, filters, and processing NAs. In this
format, your measurements / collected data become the columns of the data set.

Let’s take the Zambia enteropathogen data, and this time, let’s take the original ! Indeed, what you were
handling before was a dataset prepared for you, in a wide format. The original dataset is long and we will
now see the data preparation I did beforehand, behind the scenes. You’re almost becoming the teacher of this
lesson ;)
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enteropathogens_zambia_long <- read_csv(here("data/enteropathogens_zambia_long.csv"))
enteropathogens_zambia_long

# A tibble: 5 x 5
ID group LPS LBP IFABP

<dbl> <dbl> <dbl> <dbl> <dbl>
1 1002 1 222. 38414. 1294.
2 1002 2 390. 6840. 610.
3 1003 1 181. 26888. 22.5
4 1004 2 221. 5426. 0
5 1004 1 257. 49183. 0

This is how we convert it from long to wide:

enteropathogens_zambia_wide <-
enteropathogens_zambia_long %>%
pivot_wider(

names_from = group,
values_from = c(LPS, LBP, IFABP)

)

enteropathogens_zambia_wide

# A tibble: 5 x 7
ID LPS_1 LPS_2 LBP_1 LBP_2 IFABP_1 IFABP_2

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1002 222. 390. 38414. 6840. 1294. 610.
2 1003 181. NA 26888. NA 22.5 NA
3 1004 257. 221. 49183. 5426. 0 0
4 1005 NA 369. NA 1938. 0 1010.
5 1006 275. NA 61758. NA 0 NA

You can see that the values of the variable group (1 or 2) are added to the values’ names (LPS, LBP, IFABP) to
create the new columns representing different group data: for example, LPS_1 and LPS_2.

We are considering this “advanced” pivoting becausewe are pivotingwider several variables at the same time,
but as you can see, the syntax is quite simple—the same arguments are used as we did with the simpler pivots
in the previous lesson—names_from and values_from.

Let’s see another example, using the diet survey data from Vietnam that you manipulated previously:

diet_diversity_vietnam_long <- read_csv(here("data/diet_diversity_vietnam_long.csv"))
diet_diversity_vietnam_long

# A tibble: 5 x 6
visit_number household_id enerc_kcal_w dry_w water_w fat_w

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
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1 1 348 2268. 548. 4219. 78.4
2 1 354 2775. 600. 2376. 115.
3 1 53 3104. 646. 2808. 127.
4 1 18 2802. 620. 3457. 87.4
5 1 211 1298. 269. 2584. 47.8

Here we will use the visit_number variable to create new variable for energy, water, fat and dry content of
foods recorded at different visits:

diet_diversity_vietnam_wide <-
diet_diversity_vietnam_long %>%
pivot_wider(

names_from = visit_number,
values_from = c(enerc_kcal_w, dry_w, water_w, fat_w)

)

diet_diversity_vietnam_wide

# A tibble: 5 x 9
household_id enerc_kcal_w_1 enerc_kcal_w_2 dry_w_1 dry_w_2 water_w_1 water_w_2

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 348 2268. 1386. 548. 281. 4219. 1997.
2 354 2775. 1240. 600. 284. 2376. 3145.
3 53 3104. 2075. 646. 451. 2808. 2305.
4 18 2802. 2146. 620. 807. 3457. 1903.
5 211 1298. 1191. 269. 288. 2584. 2269.
# i 2 more variables: fat_w_1 <dbl>, fat_w_2 <dbl>

You can see that the values of the variable visit_number (1 or 2) are added to the values’ names
(energy_kcal_w, dry_w, fat_w, water_w) to create the new columns representing different group data:
for example, water_w_1 and water_w_2. We have pivoted to wide format all of these variables at the same
time. Now each weight measure per visit is represented as a single variable (i.e. column) in the dataset.

With this format, it is easy to sum together the energy intake per household for example:

diet_diversity_vietnam_wide %>%
select(household_id, enerc_kcal_w_1, enerc_kcal_w_2) %>%
mutate(total_energy_kcal = enerc_kcal_w_1 + enerc_kcal_w_2) %>%
arrange(household_id)

# A tibble: 5 x 4
household_id enerc_kcal_w_1 enerc_kcal_w_2 total_energy_kcal

<dbl> <dbl> <dbl> <dbl>
1 14 1040. 1663. 2704.
2 17 2100. 1286. 3386.
3 18 2802. 2146. 4948.
4 22 3187. 1582. 4769.
5 24 2359. 2026. 4385.

However, you could get something similar in the long format:
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diet_diversity_vietnam_long %>%
group_by(household_id) %>%
summarize(total_energy = sum(enerc_kcal_w))

# A tibble: 5 x 2
household_id total_energy

<dbl> <dbl>
1 14 2704.
2 17 3386.
3 18 4948.
4 22 4769.
5 24 4385.

Ď Practice

Take tb_visits_long dataset that we manipulated above and pivot it back to a wide format.

Q_tb_visit_wide <-
tb_visits_long %>%
pivot_wider(_________)

17.7 Wrap up

You data wrangling skills have just been enhanced with advanced pivoting. This skill will often prove essential
when handling real world data. I have no doubt you will soon put it into practice. It is also essential, as we
have seen, for plotting. So I hope pivoting will be of use not only for your wrangling, but also for your plotting
tasks.

17.8 Solutions

.SOLUTION_Q_adult_long()

adult_stats %>%
pivot_longer(cols = 2:5,

names_sep = "_",
names_to = c("year", ".value"))

.SOLUTION_Q_growth_stats_long()
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growth_stats %>%
pivot_longer(cols = 2:7,

names_to = c("year", ".value"),
names_sep = "_")

.SOLUTION_Q_adult2_long()

adult_stats_dot_sep %>%
pivot_longer(cols = 2:5,

names_sep = "\.",
names_to = c(".value", "year"))

.SOLUTION_Q_diet_diversity_vietnam_long()

diet_diversity_vietnam_wide%>%
rename(
enerc_kcal_w__1 = enerc_kcal_w_1,
enerc_kcal_w__2 = enerc_kcal_w_2,
dry_w__1 = dry_w_1,
dry_w__2 = dry_w_2,
water_w__1 = water_w_1,
water_w__2 = water_w_2,
fat_w__1 = fat_w_1,
fat_w__2 = fat_w_2

) %>%
pivot_longer(2:9, names_sep = "__", names_to = c(".value", "visit"))

.SOLUTION_Q_tb_visit_wide()

tb_visits_long %>%
pivot_wider(names_from = visit_count,

values_from = c(visit_location, visit_cost))
)
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.SOLUTION_Q_adult_long()

adult_stats %>%
pivot_longer(cols = 2:5,

names_sep = "_",
names_to = c("year", ".value"))

.SOLUTION_Q_growth_stats_long()

growth_stats %>%
pivot_longer(cols = 2:7,

names_to = c("year", ".value"),
names_sep = "_")

.SOLUTION_Q_adult2_long()

adult_stats_dot_sep %>%
pivot_longer(cols = 2:5,

names_sep = "\.",
names_to = c(".value", "year"))

.SOLUTION_Q_diet_diversity_vietnam_long()

diet_diversity_vietnam_wide%>%
rename(
enerc_kcal_w__1 = enerc_kcal_w_1,
enerc_kcal_w__2 = enerc_kcal_w_2,
dry_w__1 = dry_w_1,
dry_w__2 = dry_w_2,
water_w__1 = water_w_1,
water_w__2 = water_w_2,
fat_w__1 = fat_w_1,
fat_w__2 = fat_w_2

) %>%
pivot_longer(2:9, names_sep = "__", names_to = c(".value", "visit"))
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.SOLUTION_Q_tb_visit_wide()

tb_visits_long %>%
pivot_wider(names_from = visit_count,

values_from = c(visit_location, visit_cost))
)
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Chapter 18

Intro to ggplot2

18.1 Introduction

Welcome to The GRAPH Courses’ Data Visualization course!

We will focus on learning how to use the {ggplot2} package to produce high quality visualizations in R.

Figure 18.1: {ggplot2} is one of the core packages of the {tidyverse} metapackage. It is the most popular R
package for data visualization.

Let’s dive in!

18.2 Learning objectives

By the end of this lesson you should be able to:

1. Recall and explain how the {ggplot2} package for data visualization is based on a theoretical framework
called the grammar of graphics.

2. Name and describe the 3 essential components required for building a graph: data, aesthetics, and
geometries.
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3. Write code to build a complete ggplot graphic by correctly supplying the 3 essential layers to the
ggplot() function.

4. Create different types of plots such as scatter plots, line graphs, and bar graphs.

5. Add or modify visual elements of a plot such as color and size.

6. Distinguish between between aesthetic mappings and fixed aesthetics, and how to apply them.

Figure 18.2: Illustration by Allison Horst

18.3 Packages

The {tidyverse} meta package includes {ggplot2}, so we don’t need to add it separately. The {here} package
will help us correctly reference file paths.

## Load packages
pacman::p_load(tidyverse,

here)

18.4 Measles outbreaks in Niger

In this lesson, we will explore patterns of measles outbreaks in Niger.
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Measles is a highly infectious virus spread by airborne respiratory droplets.

[Slide presentation about geography]

Since it is transmitted through direct contact, population density is an important driver of measles dynam-
ics.

18.4.1 The nigerm dataset

We will be creating plots with a dataset of weekly reported measles cases at the region level in Niger.

These data were collected by the Ministry of Health of Niger, from 1 Jan 1995 to 31 Dec 2005.

To get started, let’s first load the (preprocessed) data set:

## Import data frame to RStudio Environment
load(here("data/clean/nigerm_cases_rgn.RData"))

Take a moment to browse through the data:

## Print Niger measles (nigerm) data frame
nigerm
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1995 1 Agadez 0
1995 1 Diffa 0
1995 1 Dosso 4
1995 1 Maradi 64
1995 1 Niamey 22
1995 1 Tahoua 16
1995 1 Tillaberi 1
1995 1 Zinder 3
1995 2 Agadez 0
1995 2 Diffa 0

1 2 3 4 5 ... 458 Next1–10 of 4576 rows Previous

year week region cases

The nigerm data frame has 4 variables (or columns):

1. year: Calendar year (ranges from 1995 to 2005)

2. week: Week of the year (ranges from 1 to 52)
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3. region: Region in which the cases were recorded (see figure below)

4. cases: Number of measles cases reported

Figure 18.3: Administrative divisions of Niger: Districts and Regions

Several papers have investigated these trends, linkingmeasles to human activity,migration, and seasonality.

These studies are much more complex than what we will do there, but let’s see if we can find any patterns
even with basic exploratory data visualization.

We can get some information about patterns in this data by inspecting summary statistics given by the
summary() function:

summary(nigerm)

year week region cases
Min. :1995 Min. : 1.00 Agadez : 572 Min. : 0.0
1st Qu.:1997 1st Qu.:13.75 Diffa : 572 1st Qu.: 1.0
Median :2000 Median :26.50 Dosso : 572 Median : 16.0
Mean :2000 Mean :26.50 Maradi : 572 Mean : 100.3
3rd Qu.:2003 3rd Qu.:39.25 Niamey : 572 3rd Qu.: 86.0
Max. :2005 Max. :52.00 Tahoua : 572 Max. :1887.0

(Other):1144

295



18.4. MEASLES OUTBREAKS IN NIGER CHAPTER 18. INTRO TO GGPLOT2

Figure 18.4: Research articles that have used this dataset, and analyzed it in R!

This gives us values for the maximum, minimum, and quartiles of each numeric variable, and the number of
observations (rows) for each region. This is summary useful, but it omits a large amount information contained
in the dataset.

Keep in mind that summary statistics can be highly misleading, and a simple plot can reveal a lot more.

The easiest and clearest way to analyze patterns from this dataset is to visualize it!

The best way to do this in R is with {ggplot2}. So let’s see how that works.

18.4.2 The layered Grammar of Graphics

The gg in ggplot is short for “grammar of graphics”, which is the data visualization philosophy that {ggplot2}
is based on.

The grammar of graphics is a theoretical framework which deconstructs the process of producing a graph.

Think of how we construct and form sentences in written and spoken languages by combining different ele-
ments, like nouns, verbs, articles, subjects, objects, etc. We can’t just combine these elements in any arbitrary
order; we must do so following a set of rules known as a linguistic grammar.

Similarly, the grammar of graphics (GG) defines a set of rules for constructing graphics by combining different
types of elements, known as layers.

The three layers at the bottom of this figure - data, aesthetics, and geometries - are required for building any
plot.

Let’s define what they mean:

1. data: the dataset containing the variables of interest.
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Figure 18.5: The grammar of graphics framework dissects a graph into individual components, which belong
to these seven distinct layers. We take these different layers and combine them together to build
a plot.

2. aesthetics: things we can see that visually communicate information in our data.
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3. geometry: the geometric shape used to represent data in a plot: points, lines, bars, etc.

You might be wondering why we wrote data, geom, and aes in a computer code type font. You’ll see very
shortly that we use these terms in R code to represent GG layers.

Ĺ Challenge

The terms and syntax used for ggplot functions, arguments, and layers can be hard to keep up with at
first, but as you gain experience using these terms to make plots in R, you will become fluent in no time.
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18.5 Working through the essential layers

In this section, we will work towards a first plot with {ggplot2}. It will be a scatter plot using data from
nigerm.

For easier plotting in this lesson, we will use a smaller subsets of the nigerm data frame at a time.

First let’s create one called nigerm96, which only contains measles case data for the year 1996. Running the
code below will create nigerm96 and add it to your RStudio Environment:

## Create nigerm96 data frame
nigerm96 <- nigerm %>%
filter(year == 1996) %>% # filter to only include rows from 1996
select(-year) # remove the year column

Ĺ Reminder

The select() and filter() functions are part of the {dplyr} package for data manipulation, which is a
core package of the {tidyverse}. These topics are covered in the DataWrangling course. See The GRAPH
Courses website for more.

Let’s look at our new dataframe, nigerm96:

## Print nigerm96
nigerm96

299

https://thegraphcourses.org/


18.5. WORKING THROUGH THE ESSENTIAL LAYERS CHAPTER 18. INTRO TO GGPLOT2

1 Agadez 120
1 Diffa 75
1 Dosso 98
1 Maradi 123
1 Niamey 0

1 2 3 4 5 ... 84 Next1–5 of 416 rows Previous

week region cases

18.5.1 Building a ggplot() in steps

Time to start building a ggplot in increments! We’ll do this by starting with a blank canvas and then adding
one layer at a time.
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Step 0: Call the ggplot() function

## Call the `ggplot()` function
ggplot()

As you can see, this gives us nothing but a blank canvas. But not to worry, we’re about to add some more
elements.

Step 1: Provide data

The first input we need to supply the ggplot() function is the data layer (i.e., a data frame), by filling in the
data argument (data = DF_NAME):

## Data layer
ggplot(data = nigerm96) # what data to use
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This gives us blank plot again, since we’ve only supplied one out of the three inputs required for a complete
graphic. Next we need to assign variables to aesthetic mappings.

Step 2: Define the variables

What should we plot on our axes? Let’s say we want to make an epidemic time series plot. To do that, we plot
time (inweeks) on the x-axis, and disease incidence (number of reported cases) on the y-axis. In ggplot-speak,
we are mapping the variable cases to the x aesthetic, and week to the y aesthetic.

Let’s tell ggplot() which variables to to plot on the aesthetics layer with a mapping argument, using this
syntax: mapping = aes(x = VAR1, y = VAR2).

## Aesthetics layer: x and y position
ggplot(data = nigerm96, # what data to use

mapping = aes( # supply a mapping in the form of an 'aesthetic'
x = week, # which variable to map onto the x-axis
y = cases)) # which variable to map onto the y-axis
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There’s still no data plotted, but the axis scales, titles, and labels are present. The x-axis marks weeks of the
year from 1 to 52, and the y-axis shows that the number of weekly reported cases per region ranges from 0 to
around 2000.

The plot is still lacking the required geometry layer.

Ĺ Key Point

aes() stands for aesthetics - things we can see. Variables are always inside the aes() function, which
in return is inside a ggplot(). Take a moment to observe the double closing brackets )) - the first one
belongs to aes(), the second one to ggplot().

Step 3: Specify which type of plot to create

Finally, we add a geometry layer using a geom_* function. This determines which geometric objects - or visual
markers - should be used to map the data.

Since we are looking at the relationship of two numerical variables, it makes sense to use a scatter plot. The
geometric objects used to represent data on scatter plots are points, and the geom_* function for scatter
plots is conveniently named geom_point(). We’ll add this function as new layer using a + sign:

## Geometries layer: points
ggplot(data = nigerm96, # what data to use

mapping = aes( # define mapping
x = week, # which variable to map onto the x-axis
y = cases)) + # which variable to map onto the y-axis

geom_point() # add a geom of type `point` (for scatter plot)
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Points have been added, and this is now a complete scatter plot! There are 8 points per week, representing
each of the 8 regions (but at this point we cannot tell which point is from which region).

Ĺ Reminder

The aesthetic function is nested inside the ggplot() function, so be sure to close the brackets for both
functions before adding the + sign for the geom_* function, or your code will not run correctly.

It’s your turn to practice plotting with ggplot()! For practice exercises in this lesson, you will be using a
different subset of nigerm called nigerm04, which contains only data from the year 2004:
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1 Agadez 11
1 Diffa 0
1 Dosso 7
1 Maradi 134
1 Niamey 60

1 2 3 4 5 ... 84 Next1–5 of 416 rows Previous

week region cases

Plotting with a different set of data will also allow you to explore if the patterns we see for 1996 is also true
for 2004.
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Ď Practice

Using the nigerm04 data frame, write ggplot code that will create a scatter plot displaying the rela-
tionship between cases on the y-axis and week on the x-axis.

18.6 Modifying the layers

Generally speaking, the grammar of graphics allows for a high degree of customization of plots and also a
consistent framework for easily updating and modifying them.

We can tinker with our existing code to switch up the data, aesthetics, and geometry inputs supplied to
ggplot(), and create variations of the original plot. In fact, you’ve already done this by changing the dataset
from nigerm96 to nigerm04 in the practice question.

Similarly, the aesthetics and geometry inputs can also be changed to create different visualizations. In the
next few sections wewill take the scatter plot we built in the previous section, andmake incremental changes
to modify different elements of the original code.

18.6.1 Changing aesthetic mappings

We created a scatter plot of cases vs week for nigerm96with this code:

ggplot(data = nigerm96,
mapping = aes(x = week,

y = cases)) +
geom_point()
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If we copy the same code and change just one thing - by replacing the x variable week (numerical) with region
(categorical) - we get what’s called a strip plot:
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ggplot(data = nigerm96,
mapping = aes(x = region, # change which variable to map on the x-axis

y = cases)) +
geom_point()
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While the y-axis values of the points are the same as before, their x-axis mappings have changed significantly.
They are now mapped to 8 separate positions along the x-axis, each corresponding to a discrete category of
the region variable.

18.6.2 Changing geom_* functions

Similarly, we can modify the geometry layer to create a different type of plot, while still using the same aes-
thetic mappings.

Let’s copy andpaste theoriginal scatter plot codeonce again, but this timewewill replace thegeom_* function
instead of the x aesthetic. If we change geom_point() to geom_col(), we get a bar plot (sometimes called
a column chart):

ggplot(data = nigerm96,
mapping = aes(x = week,

y = cases)) +
geom_col() # declare that we want a bar plot

307



18.6. MODIFYING THE LAYERS CHAPTER 18. INTRO TO GGPLOT2

Figure 18.6: {ggplot2} has a variety of different geom_* functions and geometric objects which you can use to
visualize your data. Here are some examples of different types of geoms that can be used with
ggplot().
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Again, the rest of the code is still the same - we just changed the key word of the geom_* function. However,
the plot is significantly different that either the scatter plot or the strip plot.

Notice that the y-axis has been rescaled. The height of each bar represents the cumulative number of weekly
cases, i.e, the total number of cases reported from all eight regions that week, rather than showing 8 separate
data points for each region.
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¾ Caution

Not all plot types are interchangeable. Using a geom_* function that is not compatible with the vari-
ables you defined in aes() will give you an error. For example, let’s replace geom_point() with
geom_histogram() instead:

ggplot(data = nigerm96,
mapping = aes(x = week,

y = cases)) +
geom_histogram()

This is because a histogram shows the distribution of one numerical variable. ggplot() can’t map two
variables to both the x and y-axis positions with a histogram, so it throws an error.

Ď Practice

Use the nigerm04 data frame to create a bar plot of weekly cases with the geom_col() function. Map
cases on the y-axis and week on the x-axis.

18.6.3 Additional aesthetic mappings inside aes()

So far, we have only mapped variables to the x and y aesthetic attributes. We can also map variables to other
aesthetics like color, size, or shape.

Figure 18.7: Common aesthetic attributes used in ggplot graphics.

Let’s return to our original scatter plot (cases vs week):

ggplot(data = nigerm96,
mapping = aes(x = week,

y = cases)) +
geom_point()
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There are other aesthetics we can add, like color or size.

Ĺ Pro Tip

To see the full list of aesthetics that can be usedwith a particular geom_* function look it up the function
documentation. You can do this by pressing F1 on a function, e.g., geom_point() to open the Help tab,
and scroll down to the “Aesthetics” section. If F1 is hard to summon on your keyboard, type and run
?geom_point in your Console tab.

Let’s add color to our scatter plot. We can map the categorical variable region to the color aesthetic. We
can do this by modifying the original code to add a new argument inside mapping = aes(). Let’s see what
happens when we add color = region inside aes():
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ggplot(data = nigerm96,
mapping = aes(x = week,

y = cases,
color = region)) + # use a different color for each region

geom_point()

0

500

1000

1500

0 10 20 30 40 50
week

ca
se
s

region
Agadez

Diffa

Dosso

Maradi

Niamey

Tahoua

Tillaberi

Zinder

Nowwe have a colorful scatter plot! Each point is colored according to the region it belongs to. This allows us
to better distinguish between regions.

Note that ggplot() automatically provides a color legend on the left.

Ĺ Side Note

The colors are from {ggplot2}’s default rainbow color palette. In later lessons we will learn how to cus-
tomize color scales and palettes, including making figures colorblind-friendly.

By examining the color patterns in the plot, you canmake out the classic bell-shaped epidemic curves showing
a rise and fall in measles incidence in each region.

Zinder had the largest number of cases and the steepest epidemic curve, followed by Maradi and Niamey.

While the colorful plot provides more insight into measles patterns at the regional level than the scatter plot
with no color mapping, this graph still looks busy and is not the most intuitive to read. A different plot type
could help with this.

Next we will try a bar plot, then a line graph.

Let’s try the same color = region aesthetic mapping with geom_col() instead:

ggplot(data = nigerm96,
mapping = aes(x = week,

y = cases,
color = region)) + # use a different outline color for each region
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geom_col()
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This givesus a stackedbarplot, where thebars aredivided into smaller sections. This showsus theproportional
contribution of individual regions (i.e., the height or length of each subsection represents how much each
region contributes to the total number of cases that week).

The stacked bar plot here is outlined by color. This is because the color aesthetic in {ggplot2} generally
refers to the border around a shape. This did not apply to the default shapes in our scatter plot created with
geom_point() because they are solid dots (not hollow), but you can see that it does apply to the bars in a bar
chart created geom_col(). However, the grey filling is not very pretty.

We might want to color the inside of the bars instead. This is done by mapping our variable to the fill aes-
thetic. We can copy the code above and simply change color to fill inside aes():

ggplot(data = nigerm96,
mapping = aes(x = week,

y = cases,
fill = region)) + # use a different fill color for each region

geom_col()
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Voila! The inside of the bars are now filled with colors.

Now practice using the color aesthetic mapping with a new plot type: line graphs. Line graphs are generally
considered one of the best plot types for time series data.

Ď Practice

Use the nigerm04 data frame to create a line graph of weekly cases, colored by region. Map cases
on the y-axis, week on the x-axis, and region to color. The geom_* function for a line graph is called
geom_line().

18.6.4 Fixed aesthetics outside aes()

It is very important to understand the difference between aesthetic mappings and fixed aesthetics. The
main aesthetics in ggplot are: x, y, color, fill, and size, and any of these could be either a mapping or a
fixed value. This depends on whether they appear inside or outside the aes() function.

When we apply an aesthetic to modify the geometric objects according to a variable (e.g., the color of points
changes according to the region variable), that’s an aesthetic mapping. This must always be defined inside
mapping = aes(), like we just did in previous examples.

But if you want to apply a visual modification to all the geometric objects evenly (e.g., manually change
the color of all points to be one color), that’s a fixed aesthetic. We must set fixed aesthetics to a constant
value outside mapping = aes() and directly inside the geom_* function - e.g., geom_point(color =
"COLOR_NAME").

Here let’s change the color of all the points in our scatter plot to blue:

ggplot(data = nigerm96,
mapping = aes(x = week,

y = cases)) +
geom_point(color = "blue") # use the same color for all points
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This colors each point with the same R color (“blue”). In this plot, the color aesthetic does not represent any
values from the data frame. Note that the color names in R are character strings, so it needs to go inside
quotation marks.

Ĺ Side Note

If you’re curious, run colors() in your console to see all possible choice of colors in R! Tofindout exactly
how many options that is, try running colors() %>% length().

Now let’s add a fixed aesthetic called size. The default line width used by geom_line() is 0.5 mm, which
looks like this:

ggplot(data = nigerm96,
mapping = aes(x = week,

y = cases,
color = region)) +

geom_line()
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To make all of the lines in our figure a little thicker, let’s fix this aesthetic at 1 mm. We do this by adding size
= 1 inside the geom_line() function:

ggplot(data = nigerm96,
mapping = aes(x = week,

y = cases,
color = region)) +

geom_line(size = 1)

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.
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All the lines in the plot have been made thicker, and the line width is set to a constant value of 1 mm. Note
that here the value of size is numeric, so it should not be in quotation marks.

¾ Watch Out

Remember that fixed aesthetics are manually set to constant value (as opposed to a variable from the
data), and goes directly in the geom_* function, not inside aes(). If you try to put a fixed aesthetic
in aes(), you might get a weird result. For example, let’s try moving the size = 1 aesthetic from
geom_line() to aes() to see how it can go wrong:

ggplot(data = nigerm96,
mapping = aes(x = week,

y = cases,
color = region,
size = 1)) + # INCORRECT placement

geom_line()
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aes() is a mapping function that modifies plots based on variables from the data. Since there is no
variable called “1” in the nigerm96 data frame, aes() cannot process or map this aesthetic correctly.

Practice using fill as a fixed aesthetic for a bar plot.

Ď Practice

Use the nigerm04 data frame to create a bar graph of weekly cases, and fill all bars with the same color.
Map cases on the y-axis, week on the x-axis, and fix the color aesthetic of the bars to the R color
“hotpink”.

18.7 Additional GG layers

In this lesson, we kept things simple and only worked with the three required layers. As you start to delve
deeper into plotting with {ggplot2}, you’ll start to encounter the other layers more frequently.

Soon you’ll be able to create more complex plots, like this one:
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Weekly reported at region level (1995−2005)
Seasonal patterns of measles incidence in Niger

Source: doi:10.5061/dryad.1jwstqjrd

Ĺ Recap

To build a complete ggplot, you must first supply a data frame using the data argument of ggplot(),
and define variables and map them to aesthetics inside aes() using the mapping argument of
ggplot(). Then start a new layerwith a+ sign and specify the typeof plot youwant using an appropriate
geom_* function. You can copy this code template and adapt it to create different ggplot graphics:

ggplot(data = DF_NAME,
mapping = aes(AES1 = VAR1,

AES2 = VAR2,
AES3 = VAR3,
...)) +

geom_FUCNTION()

18.8 Learning outcomes

1. You can recall and explain how the {ggplot2} package for data visualization is based on a theoretical
framework called the grammar of graphics.

2. You cannameanddescribe the3essential layers for building agraph: data, aesthetics, andgeometries.

3. You can write code to build a complete ggplot graphic by correctly supplying the 3 essential layers to
the ggplot() function.

4. You can create different types of plots such as scatter plots, line graphs, and bar graphs.

5. You can add or modify aesthetics of a plot such as the color, and size.
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18.9 Solutions

.SOLUTION_nigerm04_scatter()

ggplot(data = nigerm04,
mapping = aes(x = week,

y = cases)) +
geom_point()

.SOLUTION_nigerm04_bar()

ggplot(data = nigerm04,
mapping = aes(x = week,

y = cases)) +
geom_col()

.SOLUTION_nigerm04_line()
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ggplot(data = nigerm04,
mapping = aes(x = week,

y = cases,
color = region)) +

geom_line()

.SOLUTION_nigerm04_pinkbar()

ggplot(data = nigerm04,
mapping = aes(x = week,

y = cases)) +
geom_col(fill = "hotpink")
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Chapter 19

Scatter plots and smoothing lines

19.1 Introduction

Scatter plots - which are sometimes called bivariate plots - allow you to visualize the relationship between
two numerical variables.

They are among the most commonly used plots because they can provide an immediate way to see how one
numerical variable varies against another.

Scatter plots can also display multiple relationships by mapping additional variable to aesthetic properties,
such as color of the points.

Trends and relationships in a scatter plot can be made clearer by adding a smoothing line over the points.

We will use ggplot to do all that and more. Let’s get started!

19.2 Learning Objectives

1. You can visualize relationships between numerical variables using scatter plotswith geom_point().
2. You can use color as an aesthetic argument to map variables from the dataset onto individual points.
3. You can change the size, shape, color, fill, and opacity of geometric objects by setting fixed aesthetics.
4. You can add a trend line to a scatter plot with geom_smooth().

19.3 Childhood diarrheal diseases in Mali

Wewill be using data collected for a prospective observational study of acute diarrhea in children aged 0-59
months. The study was conducted in Mali and in early 2020.

The full dataset can be obtained from Dryad, and the paper can be viewed here.

Ĺ Vocab

Aprospective studywatches for outcomes, suchas thedevelopmentof adisease, during the studyperiod
and relates this to other factors such as suspected risk or protection factors.

Spend some time browsing through this dataset. Each row corresponds to one patient surveyed. There are
demographic, physiological, clinical, socioeconomic, and geographic variables.
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1 2020-01-16 M 5 61.2 11.3 1 0 0 0
2 2020-01-17 F 12 70.6 13.2 1 1 1 0
3 2020-01-17 M 11 71.1 13.5 1 1 0 0
4 2020-01-17 M 9 68.5 12.6 1 0 0 0
5 2020-01-21 F 16 78.7 14.2 1 1 0 0
6 2020-01-21 M 6 67.7 14.5 1 0 0 0
7 2020-01-22 M 5 64.7 14.1 1 0 0 0
8 2020-01-22 M 46 98.1 14.4 0 1 0 0
9 2020-01-17 M 4 61.2 13.1 1 0 1 0
10 2020-01-21 M 25 85.7 15 0 1 1 0

1 2 3 4 5 ... 15 Next1–10 of 150 rows Previous

n admit_date sex age_months height_cm muac_cm breastfeed… vomit fever bloody_stool

We will begin by visualizing the relationship between the following two numerical variables:

1. age_months: the patient’s age in months on the horizontal x-axis and
2. viral_load: the patient’s viral load on the vertical y-axis
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19.4 Scatter plots via geom_point()

We will explore relationships between some numerical variables in the malidd data frame.

We will now examine at and run the code that will create the desired scatter plot, while keeping in mind the
GG framework. Let’s take a look at the code and break it down piece-by-piece.

Remember that we specify the first two GG layers as arguments (i.e., inputs) within the ggplot() function:

1. We provide the malidd data frame with the data argument, by inputting data = malidd.
2. We define the variables to be plotted in the aesthetics function of the mapping argument, by inputting

mapping = aes(x = age_months, y = viral_load). Specifically, the variable age_months is
mapped to the x aesthetic, while the variable viral_load is mapped to the y aesthetic.

We then add the geom_*() function on a new layer with a + sign. The geometric objects (i.e., shapes) needed
for a scatter plot are points, so we add geom_point().

After running the following lines of code, you’ll produce the scatter plot below:

## Simple scatter plot of viral load vs age
ggplot(data = malidd,

mapping = aes(x = age_months,
y = viral_load)) +

geom_point()
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This suggests that viral load generally decreaseswith age.

Ď Practice

• Using the malidd data frame, create a scatter plot showing the relationship between age and
height (height_cm).
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19.5 Aesthetic modifications

An aesthetic is a visual property of the geometric objects (geoms) in your plot. Aesthetics include things like
the size, the shape, or the color of your points. You can display a point in different ways by changing the values
of its aesthetic properties.

Remember, there are twomethods for changing the aesthetic properties of your geoms (in this case, points).

1. You can convey information about your data by mapping the variables in your dataset to aesthetics in
your plot. For this method, you use aes() in the mapping argument to associate the name of the aes-
thetic with a variable to display.

2. You can also set the aesthetic properties of your geoms manually. Here the aesthetic doesn’t convey
information about a variable, but only changes the appearance of the plot. To change an aesthetic man-
ually, you set the aesthetic by name as an argument of your geom_*() function; i.e. it goes outside of
aes().

19.5.1 Mapping data to aesthetics

In addition to mapping variables to the x and y axes like with did above, variables can be mapped to the color,
shape, size, opacity, and other visual characteristics of geoms. This allows groups of observations to be super-
imposed in a single graph.

Tomap a variable to an aesthetic, associate the nameof the aesthetic to the nameof the variable insideaes().
This way, we can visualize a third variable to our simple two dimensional scatter plot by mapping it to a new
aesthetic.

For example, let’s map height_cm to the colors of our points, to show us how height varies with age and viral
load:

ggplot(data = malidd,
mapping = aes(x = age_months,

y = viral_load)) +
geom_point(mapping = aes(color = height_cm))
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We see that {ggplot2} has automatically assigned the values of our variable to an aesthetic, a process known
as scaling. {ggplot2} will also add a legend that explains which levels correspond to which values.

Here the points are colored by different shades of the same blue hue, with darker colors representing lower
values.

This shows us that height increases with age, as expected.

Instead of a continuous variable like height_cm, we can also map a binary variable like breastfeeding, to
show us the which children are breastfed and which ones are not:

ggplot(data = malidd,
mapping = aes(x = age_months,

y = viral_load)) +
geom_point(mapping = aes(color = breastfeeding))
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We get the same gradual color scaling like with did with height. This communicates a continuum of values,
rather than the two distinct values in our variable - 0 or 1.

This is because of the data class of the breastfeeding variable in malidd:

class(malidd$breastfeeding)

[1] "numeric"

But even though binary variables are numerical, they represent two discrete possibilities. So the continuous
color scaling in the plot above is not ideal.

In cases like this, we add the function factor() around the breastfeeding variable to tell ggplot() to
treat the variable as a factor. Let’s see what happens when we do that:

ggplot(data = malidd,
mapping = aes(x = age_months,

y = viral_load)) +
geom_point(mapping = aes(color = factor(breastfeeding)))

326



19.5. AESTHETIC MODIFICATIONS CHAPTER 19. SCATTER PLOTS AND SMOOTHING LINES

0.2

0.4

0.6

0.8

0 10 20 30 40 50
age_months

vi
ra
l_
lo
ad factor(breastfeeding)

0

1

When the variable is treated like a factor, the colors chosen are clearly distinguishable. With factors, {gg-
plot2} will automatically assign a unique level of the aesthetic (here a unique color) to each unique value of
the variable. (this is what happened with the region variable of the nigerm dataframe that we use in the last
lesson)

This plot reveals a clear relationship between age and breastfeeding, as we might expect. Children are likely
to stop breastfeeding around 20 months of age. In this study, no child at or above 25 months was being
breastfed.

Adding colors to the scatter plot allowedus to visualize a third variable in addition to the relationshipbetween
age and viral load. The third variable could be either discrete or continuous.

Ď Practice

• Using the malidd data frame, create a scatter plot showing the relationship between age and viral
load, and map a third variable, freqrespi, to color:

• Create the same age vs. height scatterplot again, but this time, map the binary variable fever to
the color of the points. Keep in mind that fever should be treated as a factor.

## Type and view your answer:
age_height_fever <- "YOUR ANSWER HERE"
age_height_fever

19.5.2 Setting fixed aesthetics

Aesthetic arguments set to a fixed value will be static, and the visual effect is not data-dependent. To add
a fixed aesthetic, we add as a direct argument of the geom_*() function; i.e., it goes outside of mapping =
aes().

Let’s look at some of the aesthetic arguments we can place directly within geom_point() to make visual
changes to the points in our scatter plot:
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• color - point color or point outline color

• size - point size

• alpha - point opacity

• shape - point shape

• fill - point fill color (only applies if the point has an outline)

To use these options to create a more attractive scatter plot, you’ll need to pick a value for each argument
that makes sense for that aesthetic, as shown in the examples below.

19.5.2.1 Changing color, size and alpha

Let’s change the color of the points to a fixed value by setting the color argument directly within
geom_point(). The color we choose must be a character string that R recognizes as a color. Here we will set
the point colors to steel blue:

## Modify original scatter plot by setting `color = "steelblue"`
ggplot(data = malidd,

mapping = aes(x = age_months,
y = viral_load)) +

geom_point(color = "steelblue") # set color
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In addition to changing the default color, now we will modify the size aesthetic of the points by assigning it
to a fixed number (in millimeters). The default size is 1 mm, so let’s chose a larger value:

## Set size to 2 mm by ading `size = 2`
ggplot(data = malidd,

mapping = aes(x = age_months,
y = viral_load)) +
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geom_point(color = "steelblue", # set color
size = 2) # set size (mm)
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The alpha aesthetic controls the level of opacity of geoms. alpha is also numerical, and ranges from 0 (com-
pletely transparent) to the default of 1 (completely opaque). Let’s make our points more transparent by re-
ducing the opacity:

## Set opacity to 75% by adding `alpha = 0.75`
ggplot(data = malidd,

mapping = aes(x = age_months,
y = viral_load)) +

geom_point(color = "steelblue", # set color
size = 2, # set size (mm)
alpha = 0.75) # set level of opacity
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Now we can see where multiple points overlap. This is a useful parameter for scatter plots where there is
overplotting.

Remember, changing the color, size, or opacity of our points here is not conveying any information in the data
- they are design choices we make to create prettier plots.

Ď Practice

• Create a scatter plot with the same variables as the previous example, but change the color of the
points to cornflowerblue, increase the size of points to 3 mm and set the opacity to 60%.

19.5.2.2 Changing shape and fill

We can change the appearance of points in a scatter plot with the shape aesthetic.

To change the shapeof yourgeoms to afixed value, setshape equal to a number corresponding to your desired
shape.

{ggplot2} will accept the following numbers:
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Notice that some of the shapes are

filled in with red. This indicates that objects 21-24 are sensitive to both color and fill, but the others are
only sensitive to color.

First let’s modify our original scatterplot by changing the shapes to a something that can be filled in:

## Set shape to fillable circles by adding `shape = 21`

ggplot(data = malidd,
mapping = aes(x = age_months,

y = viral_load)) +
geom_point(shape = 21) # set shapes to display
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Fillable shapes can have different colors for the outline and interior. Changing the color aesthetic will only
change the outline of our points:
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## Set outline color of the shapes by adding `color = cyan4`

ggplot(data = malidd,
mapping = aes(x = age_months,

y = viral_load)) +
geom_point(shape = 21, # set shapes to display

color = "cyan4") # set outline color
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Now let’s fill in the points:

## Set interior color of the shapes by adding `fill = "seagreen"`

ggplot(data = malidd,
mapping = aes(x = age_months,

y = viral_load)) +
geom_point(shape = 21, # set shapes to display

color = "cyan4", # set outline color
fill = "seagreen") # set fill color
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We can improve the readability by increasing size and reducing opcaity with size and alpha, like we did be-
fore:

ggplot(data = malidd,
mapping = aes(x = age_months,

y = viral_load)) +
geom_point(shape = 21, # set shapes to display

color = "cyan4", # set outline color
fill = "seagreen", # set fill color
size = 2, # set size (mm)
alpha = 0.75) # set level of opacity
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19.6 Adding a trend line

It can be hard to view relationships or trends with just points alone. Often we want to add a smoothing line in
order to seewhat the trends look like. This can be especially helpful when trying to understand regressions.

To get a better idea of the relationship between these to variables, we can add a trend line (also known as a
best fit line or a smoothing line).

To do this, we add the function geom_smooth() to our scatter plot:

ggplot(data = malidd,
mapping = aes(x = age_months,

y = viral_load)) +
geom_point() +
geom_smooth()

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
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The smoothing line comes after our points an another geometric layer added onto our plot.

The default smoothing function used in this scatter plot is “loess”which stands for for locallyweighted scatter
plot smoothing. Loess smoothing is a process used by many statistical softwares. In {ggplot2} this generally
should be done when you have less than 1000 points, otherwise it can be time consuming.

Many other smoothing functions can also be used in geom_smooth().

Let’s request a linear regression method. This time we will use a generalized linear model by setting the
method argument inside geom_smooth():

## Change to a linear smoothing function with `method = "glm"`
ggplot(data = malidd,

mapping = aes(x = age_months,
y = viral_load)) +

geom_point() +
geom_smooth(method = "glm")

`geom_smooth()` using formula = 'y ~ x'
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By default, 95% confidence limits for these lines are displayed.

You can suppress the confidence bands by including the argument se = FALSE inside geom_smooth():

## Remove confidence interval bands by adding `se = FALSE`
ggplot(data = malidd,

mapping = aes(x = age_months,
y = viral_load)) +

geom_point() +
geom_smooth(method = "glm",

se = FALSE)

`geom_smooth()` using formula = 'y ~ x'
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In addition to changing themethod, let’s add the color argument inside geom_smooth() to change the color
of the line.

## Change the color of the trend line by adding `color = "darkred"`
ggplot(data = malidd,

mapping = aes(x = age_months,
y = viral_load)) +

geom_point() +
geom_smooth(method = "glm",

se = FALSE,
color = "darkred")

`geom_smooth()` using formula = 'y ~ x'
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This linear regression concurs with what we initially observed in the first scatter plot. A negative relationship
exists between age_months and viral_load: as age increases, viral load tends to decrease.

Let’s add a third variable from the malidd dataset calledvomit. This which is a binary variable that records
whether or not the patient vomited. We will add the vomit variable to the plot by mapping it to the color
aesthetic. We will again change the smoothing method to generalized additive model (“gam”) and make some
aesthetic modifications to the line in the geom_smooth() layer.

ggplot(data = malidd,
mapping = aes(x = age_months,

y = viral_load)) +
geom_point(mapping = aes(color = factor(vomit))) +
geom_smooth(method = "gam",

size = 1.5,
color = "darkgray")

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.

`geom_smooth()` using formula = 'y ~ s(x, bs = "cs")'
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Observe the distribution of blue points (children who vomited) compared to red points (children who did not
vomit). The blue points mostly occur above the trend line. This shows that higher viral loads were not only as-
sociated with younger children, but that children with higher viral loads were more likely to exhibit symptoms
of vomiting.

Ď Practice

• Create a scatter plot with the age_months and height_cm variables. Set the color of the points
to “steelblue”, the size to 2.5mm, the opacity to 80%. Then add trend line with the smoothing
method “lm” (linear model). To make the trend line stand out, set its color to “indianred3”.

• Recreate the plot you made in the previous question, but this time adapt the code to change the
shapeof thepoints to tilted rectangles (number23), andadd thebody temperature variable (temp)
bymapping it to fill color of the points.

## Type and view your answer:
age_height_3 <- "YOUR ANSWER HERE"
age_height_3

19.7 Summary

Scatter plots display the relationship between two numerical variables.

With medium to large datasets, you may need to play around with the different modifications to scatter plots
we saw such as adding trend lines, changing the color, size, shape, fill, or opacity of the points. This tweaking
is often a fun part of data visualization, since you’ll have the chance to see different relationships emerge as
you tinker with your plots.
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19.8 Solutions

.SOLUTION_age_height()

ggplot(data = malidd,
mapping = aes(x = age_months,

y = height_cm)) +
geom_point()

.SOLUTION_age_height_respi()

ggplot(data = malidd,
mapping = aes(x = age_months,

y = viral_load)) +
geom_point(mapping = aes(color = freqrespi))

.SOLUTION_age_viral_respi()

ggplot(data = malidd,
mapping = aes(x = age_months,

y = viral_load)) +
geom_point(mapping = aes(color = freqrespi))

.SOLUTION_age_height_fever()

ggplot(data = malidd,
mapping = aes(x = age_months,

y = height_cm)) +
geom_point(mapping = aes(color = factor(fever)))

.SOLUTION_age_viral_blue()
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ggplot(data = malidd,
mapping = aes(x = age_months,

y = viral_load)) +
geom_point(color = "cornflowerblue",

size = 3,
alpha = 0.6)

.SOLUTION_age_height_2()

ggplot(data = malidd,
mapping = aes(x = age_months,

y = height_cm)) +
geom_point(color = "steelblue",

size = 2.5,
alpha = 0.8) +

geom_smooth(method = "lm", color = "indianred3")

.SOLUTION_age_height_3()

ggplot(data = malidd,
mapping = aes(x = age_months, y = height_cm)) +

geom_point(color = "steelblue",
size = 2.5,
alpha = 0.8,
shape = 23,
mapping = aes(fill = temp)) +

geom_smooth(method = "lm", color = "indianred3")
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Chapter 20

Lines, scales, and labels

20.1 Learning Objectives

1. You can create line graphs to visualize relationships between two numerical variables with
geom_line().

2. You can add points to a line graph with geom_point().
3. You can use aesthetics like color, size, color, and linetype to modify line graphs.
4. You canmanipulate axis scales for continuousdatawithscale_*_continuous() and scale_*_log10().
5. You can add labels to a plot such as a title, subtitle, or captionwith the labs() function.
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20.2 Introduction

Line graphs are used to show relationships between two numerical variables, just like scatterplots. They
are especially useful when the variable on the x-axis, also called the explanatory variable, is of a sequential
nature. In other words, there is an inherent ordering to the variable.

Themost common examples of line graphs have some notion of time on the x-axis: hours, days, weeks, years,
etc. Since time is sequential, we connect consecutive observations of the variable on the y-axis with a line.
Line graphs that have some notion of time on the x-axis are also called time series plots.

20.3 Packages

## Load packages
pacman::p_load(tidyverse,

gapminder,
here)

20.4 The gapminder data frame

In February 2006, a Swedish physician and data advocate named Hans Rosling gave a famous TED talk titled
“The best stats you’ve ever seen” where he presented global economic, health, and development data com-
plied by the Gapminder Foundation.

Figure 20.1: Interactive data visualization tools with up-to-date data are available on the Gapminder’s website.

We can access a clean subset of this data with the R package {gapminder}, which we just loaded.

## Load gapminder data frame from the gapminder package
data(gapminder, package="gapminder")

## Print dataframe
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gapminder

# A tibble: 10 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Afghanistan Asia 1952 28.8 8425333 779.
2 Afghanistan Asia 1957 30.3 9240934 821.
3 Afghanistan Asia 1962 32.0 10267083 853.
4 Afghanistan Asia 1967 34.0 11537966 836.
5 Afghanistan Asia 1972 36.1 13079460 740.
6 Afghanistan Asia 1977 38.4 14880372 786.
7 Afghanistan Asia 1982 39.9 12881816 978.
8 Afghanistan Asia 1987 40.8 13867957 852.
9 Afghanistan Asia 1992 41.7 16317921 649.
10 Afghanistan Asia 1997 41.8 22227415 635.

Each row in this table corresponds to a country-year combination. For each row, we have 6 columns:

1) country: Country name

2) continent: Geographic region of the world

3) year: Calendar year

4) lifeExp: Average number of years a newborn child would live if currentmortality patternswere to stay
the same

5) pop: Total population

6) gdpPercap: Gross domestic product per person (inflation-adjusted US dollars)

The str() function can tell us more about these variables.

## Data structure
str(gapminder)

tibble [1,704 x 6] (S3: tbl_df/tbl/data.frame)
$ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
$ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
$ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
$ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
$ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ...
$ gdpPercap: num [1:1704] 779 821 853 836 740 ...

This version of the gapminder dataset contains information for 142 countries, divided in to 5 continents.
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## Data summary
summary(gapminder)

country continent year lifeExp
Afghanistan: 12 Africa :624 Min. :1952 Min. :23.60
Albania : 12 Americas:300 1st Qu.:1966 1st Qu.:48.20
Algeria : 12 Asia :396 Median :1980 Median :60.71
Angola : 12 Europe :360 Mean :1980 Mean :59.47
Argentina : 12 Oceania : 24 3rd Qu.:1993 3rd Qu.:70.85
Australia : 12 Max. :2007 Max. :82.60
(Other) :1632

pop gdpPercap
Min. :6.001e+04 Min. : 241.2
1st Qu.:2.794e+06 1st Qu.: 1202.1
Median :7.024e+06 Median : 3531.8
Mean :2.960e+07 Mean : 7215.3
3rd Qu.:1.959e+07 3rd Qu.: 9325.5
Max. :1.319e+09 Max. :113523.1

Data are recorded every 5 years from 1952 to 2007 (a total of 12 years).

Let’s say we want to visualize the relationship between time (year) and life expectancy (lifeExp).

For now let’s just focus on one country - United States. First, we need to create a new data frame with only
the data from this country.

## Select US cases
gap_US <- dplyr::filter(gapminder,

country == "United States")
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gap_US

# A tibble: 10 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 United States Americas 1952 68.4 157553000 13990.
2 United States Americas 1957 69.5 171984000 14847.
3 United States Americas 1962 70.2 186538000 16173.
4 United States Americas 1967 70.8 198712000 19530.
5 United States Americas 1972 71.3 209896000 21806.
6 United States Americas 1977 73.4 220239000 24073.
7 United States Americas 1982 74.6 232187835 25010.
8 United States Americas 1987 75.0 242803533 29884.
9 United States Americas 1992 76.1 256894189 32004.
10 United States Americas 1997 76.8 272911760 35767.

Ĺ Reminder

The code above is a covered in our course onDataWrangling using the {dplyr} package. Datawrangling is
the process of transforming and modifying existing data with the intent of making it more appropriate
for analysis purposes. For example, this code segments used the filter() function to create a new
data frame (gap_US) by choosing only a subset of rows of original gapminder data frame (only those
that have “United States” in the country column).

20.5 Line graphs via geom_line()

Nowwe’re ready to feed the gap_US data frame to ggplot(), mapping time in years on the horizontal x axis
and life expectancy on the vertical y axis.

We can visualize this time series data by using geom_line() to create a line graph, instead of using
geom_point() like we used previously to create scatterplots:

## Simple line graph
ggplot(data = gap_US,

mapping = aes(x = year,
y = lifeExp)) +

geom_line()
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Much as with the ggplot() code that created the scatterplot of age and viral load with geom_point(), let’s
break down this code piece-by-piece in terms of the grammar of graphics:

Within the ggplot() function call, we specify two of the components of the grammar of graphics as argu-
ments:

1. The data to be the gap_US data frame by setting data = gap_US.
2. The aesthetic mapping by setting mapping = aes(x = year, y = lifeExp). Specifically, the vari-

able yearmaps to the x position aesthetic, while the variable lifeExpmaps to the y position aesthetic.

After telling R which data and aesthetic mappings we wanted to plot we then added the third essential
component, the geometric object using the + sign, In this case, the geometric object was set to lines using
geom_line().

Ď Practice

Create a time series plot of the GPD per capita (gdpPercap) recorded in the gap_US data frame by using
geom_line() to create a line graph.

20.5.1 Fixed aesthetics in geom_line()

The color, line width and line type of the line graph can be customized making use of color, size and
linetype arguments, respectively.

We’ve changed the color and size of geoms in previous lessons.

Here we will add these as fixed aesthetics:

## enhanced line graph with color and size as fixed aesthetics
ggplot(data = gap_US,

mapping = aes(x = year,
y = lifeExp)) +
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geom_line(color = "thistle",
size = 1.5)

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.
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In this lesson we introduce a new fixed aesthetic that is specific to line graphs: linetype (or lty for short).
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Line type can be specified using a name or with an integer. Valid line types can be set using a human readable
character string: "blank", "solid", "dashed", "dotted", "dotdash", "longdash", and "twodash" are all
understood by linetype or lty.

## Enhanced line graph with color, size, and line type as fixed aesthetics
ggplot(data = gap_US,

mapping = aes(x = year,
y = lifeExp)) +

geom_line(color = "thistle3",
size = 1.5,
linetype = "twodash")
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In these line graphs, it can be hard to tell where exactly there data points are. In the next plot, we’ll add points
to make this clearer.

20.6 Combining compatible geoms

As long as the geoms are compatible, we can layer themon top of one another to further customize a graph.

For example, we can add points to our line graph using the + sign to add a second geom layer with
geom_point():

## Simple line graph with points
ggplot(data = gap_US,

mapping = aes(x = year,
y = lifeExp)) +

geom_line() +
geom_point()
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We can create a more attractive plot by customizing the size and color of our geoms.

## Line graph with points and fixed aesthetics
ggplot(data = gap_US,

mapping = aes(x = year,
y = lifeExp)) +

geom_line(size = 1.5,
color = "lightgrey") +

geom_point(size = 3,
color = "steelblue")
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Ď Practice

Buildingon the codeabove, visualize the relationshipbetween timeandGPDper capita fromthegap_US
data frame.
Use both points and lines to represent the data.
Change the line type of the line and the color of the points to any valid values of your choice.

20.7 Mapping data to multiple lines

In the previous section, we only looked at data from one country, but what if wewant to plot data for multiple
countries and compare?

First let’s add two more countries to our data subset:

## Create data subset for visualizing multiple categories
gap_mini <- filter(gapminder,

country %in% c("United States",
"Australia",
"Germany"))

gap_mini

# A tibble: 10 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Australia Oceania 1952 69.1 8691212 10040.
2 Australia Oceania 1957 70.3 9712569 10950.
3 Australia Oceania 1962 70.9 10794968 12217.
4 Australia Oceania 1967 71.1 11872264 14526.
5 Australia Oceania 1972 71.9 13177000 16789.
6 Australia Oceania 1977 73.5 14074100 18334.
7 Australia Oceania 1982 74.7 15184200 19477.
8 Australia Oceania 1987 76.3 16257249 21889.
9 Australia Oceania 1992 77.6 17481977 23425.
10 Australia Oceania 1997 78.8 18565243 26998.

If we simply enter it using the same code and change the data layer, the lines are not automatically separated
by country:

## Line graph with no grouping aesthetic
ggplot(data = gap_mini,

mapping = aes(y = lifeExp,
x = year)) +

geom_line() +
geom_point()
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This is not a very helpful plot for comparing trends between groups.

To tell ggplot() tomap the data fromeach country separately, we can the group argument as an as aesthetic
mapping:

## Line graph with grouping by a categorical variable
ggplot(data = gap_mini,

mapping = aes(y = lifeExp,
x = year,
group = country)) +

geom_line() +
geom_point()
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Now that the data is grouped by country, we have 3 separate lines - one for each level of the country vari-
able.

We can also apply fixed aesthetics to the geometric layers.

## Applying fixed aesthetics to multiple lines
ggplot(data = gap_mini,

mapping = aes(y = lifeExp,
x = year,
group = country)) +

geom_line(linetype="longdash", # set line type
color="tomato", # set line color
size=1) + # set line size

geom_point(size = 2) # set point size
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In the graphs above, line types, colors and sizes are the same for the three groups.

This doesn’t tell us which is which though. We should add an aesthetic mapping that can help us identify which
line belongs to which country, like color or line type.

## Map country to color
ggplot(data = gap_mini,

mapping = aes(y = lifeExp, x = year,
group = country,
color = country)) +

geom_line(size = 1) +
geom_point(size = 2)
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Aesthetic mappings specified within ggplot() function call are passed down to subsequent layers.

Instead of grouping by country, we can also group by continent:

## Map continent to color, line type, and shape
ggplot(data = gap_mini,

mapping = aes(x = year,
y = lifeExp,
color = continent,
lty = continent,
shape = continent)) +

geom_line(size = 1) +
geom_point(size = 2)
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When given multiple mappings and geoms, {ggplot2} can discern which mappings apply to which geoms.

Here color was inherited by both points and lines, but lty was ignored by geom_point() and shape was
ignored by geom_line(), since they don’t apply.

Ĺ Challenge

Challenge
Mappings can either go in the ggplot() function or in geom_*() layer.
For example, aesthetic mappings can go in geom_line() and will only be applied to that layer:

ggplot(data = gap_mini,
mapping = aes(x = year,

y = lifeExp)) +
geom_line(size = 1, mapping = aes(color = continent)) +
geom_point(mapping = aes(shape = country,

size = pop))
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Try adding mapping = aes() in geom_point() and map continent to any valid aesthetic!

Ď Practice

Using the gap_mini data frame, create a population growth chart with these aesthetic mappings:
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Next, add a layer of points to the previous plot, and add the required aesthetic mappings to produce a
plot that looks like this:
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Don’t worry about any fixed aesthetics, just make sure the mapping of data variables is the same.

20.8 Modifying continuous x & y scales

{ggplot2} automatically scales variables to an aesthetic mapping according to type of variable it’s given.

## Automatic scaling for x, y, and color
ggplot(data = gap_mini,

mapping = aes(x = year,
y = lifeExp,
color = country)) +

geom_line(size = 1)
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In some cases thewemightwant to transform the axis scaling for better visualization. We can customize these
scales with the scale_*() family of functions.

scale_x_continuous() and scale_y_continuous() are the default scale functions for continuous x and
y aesthetics.
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20.8.1 Scale breaks

Let’s create a new subset of countries from gapminder, and this timewewill plot changes in GDP over time.

## Data subset to include India, China, and Thailand
gap_mini2 <- filter(gapminder,

country %in% c("India",
"China",
"Thailand"))

gap_mini2

# A tibble: 10 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 China Asia 1952 44 556263527 400.
2 China Asia 1957 50.5 637408000 576.
3 China Asia 1962 44.5 665770000 488.
4 China Asia 1967 58.4 754550000 613.
5 China Asia 1972 63.1 862030000 677.
6 China Asia 1977 64.0 943455000 741.
7 China Asia 1982 65.5 1000281000 962.
8 China Asia 1987 67.3 1084035000 1379.
9 China Asia 1992 68.7 1164970000 1656.
10 China Asia 1997 70.4 1230075000 2289.

Here we will change the y-axis mapping from lifeExp to gdpPercap:

ggplot(data = gap_mini2,
mapping = aes(x = year,

y = gdpPercap,
group = country,
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color = country)) +
geom_line(size = 0.75)
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The x-axis labels for year in don’t match up with the dataset.

gap_mini2$year %>% unique()

[1] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007

We can specify exactly where to label the axis by providing a numeric vector.

## You can manually enter scale breaks (don't do this)
c(1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, 2002, 2007)

[1] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007

## It's better to create the vector with seq()
seq(from = 1952, to = 2007, by = 5)

[1] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007

Use scale_x_continuous to make the axis breaks match up with the dataset:

## Customize x-axis breaks with `scale_x_continuous(breaks = VECTOR)`
ggplot(data = gap_mini2,

mapping = aes(x = year,
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y = gdpPercap,
color = country)) +

geom_line(size = 1) +
scale_x_continuous(breaks = seq(from = 1952, to = 2007, by = 5)) +
geom_point()
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Store scale break values as an R object for easier reference:

## Store numeric vector to a named object
gap_years <- seq(from = 1952, to = 2007, by = 5)

## Replace seq() code with named vector
ggplot(data = gap_mini2,

mapping = aes(x = year,
y = gdpPercap,
color = country)) +

geom_line(size = 1) +
scale_x_continuous(breaks = gap_years)
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Ď Practice

We can customize scale breaks on a continuous y-axis values with scale_y_continuous().
Copy the code from the last example, and add scale_y_continuous() to add the following y-axis
breaks:
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20.8.2 Logarithmic scaling

In the last two mini sets, I chose three countries that had similar range of GDP or life expectancy for good
scaling and readability so that we can make out these changes.
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But if we add a country to the group that significantly differs, default scaling is not so great.

We’ll look at an example plot where you may want to rescale the axes from linear to a log scale.

Let’s add New Zealand to the previous set of countries and create gap_mini3:

## Data subset to include India, China, Thailand, and New Zealand
gap_mini3 <- filter(gapminder,

country %in% c("India",
"China",
"Thailand",
"New Zealand"))

gap_mini3

# A tibble: 10 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 China Asia 1952 44 556263527 400.
2 China Asia 1957 50.5 637408000 576.
3 China Asia 1962 44.5 665770000 488.
4 China Asia 1967 58.4 754550000 613.
5 China Asia 1972 63.1 862030000 677.
6 China Asia 1977 64.0 943455000 741.
7 China Asia 1982 65.5 1000281000 962.
8 China Asia 1987 67.3 1084035000 1379.
9 China Asia 1992 68.7 1164970000 1656.
10 China Asia 1997 70.4 1230075000 2289.

Now we will recreate the plot of GDP over time with the new data subset:

ggplot(data = gap_mini3,
mapping = aes(x = year,

y = gdpPercap,
color = country)) +

geom_line(size = 0.75) +
scale_x_continuous(breaks = gap_years)
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The curves for India and China show an exponential increase in GDP per capita. However, the y-axes values
for these two countries are much lower than that of New Zealand, so the lines are a bit squashed together.
This makes the data hard to read. Additionally, the large empty area in the middle is not a great use of plot
space.

We can address this by log-transforming the y-axis using scale_y_log10(), which log-scales the y -axis (as
the name suggests). We will add this function as a new layer after a + sign, as usual:

## Add scale_y_log10()
ggplot(data = gap_mini3,

mapping = aes(x = year,
y = gdpPercap,
color = country)) +

geom_line(size = 1) +
scale_x_continuous(breaks = gap_years) +
scale_y_log10()
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Now the y-axis values are rescaled, and the scale break labels tell us that it is nonlinear.

We can add a layer of points to make this clearer:

ggplot(data = gap_mini3,
mapping = aes(x = year,

y = gdpPercap,
color = country)) +

geom_line(size = 1) +
scale_x_continuous(breaks = gap_years) +
scale_y_log10() +
geom_point()
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Ď Practice

First subset gapminder to only the rows containing data for Uganda:
Now, use gap_Uganda to create a time series plot of population (pop) over time (year). Transform the
y axis to a log scale, edit the scale breaks to gap_years, change the line color to forestgreen and the
size to 1mm.

Next, we can change the text of the axis labels to bemore descriptive, as well as add titles, subtitles, and other
informative text to the plot.

20.9 Labeling with labs()

You can add labels to a plot with the labs() function. Arguments we can specify with the labs() function
include:

• title: Change or add a title
• subtitle: Add subtitle below the title
• x: Rename x-axis
• y: Rename y-axis
• caption: Add caption below the graph

Let’s start with this plot and start adding labels to it:

## Time series plot of life expectancy in the United States
ggplot(data = gap_US,

mapping = aes(x = year,
y = lifeExp)) +

geom_line(size = 1.5,
color = "lightgrey") +

geom_point(size = 3,
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color = "steelblue") +
scale_x_continuous(breaks = gap_years)
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We add the labs() to our code using a + sign.

First wewill add the x and y arguments to labs(), and change the axis titles from the default (variable name)
to something more informative.

## Rename axis titles
ggplot(data = gap_US,

mapping = aes(x = year,
y = lifeExp)) +

geom_line(size = 1.5,
color = "lightgrey") +

geom_point(size = 3,
color = "steelblue") +

scale_x_continuous(breaks = gap_years) +
labs(x = "Year",

y = "Life Expectancy (years)")
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Next we supply a character string to the title argument to add large text above the plot.

## Add main title: "Lifespan increases over time"
ggplot(data = gap_US,

mapping = aes(x = year,
y = lifeExp)) +

geom_line(size = 1.5,
color = "lightgrey") +

geom_point(size = 3,
color = "steelblue") +

scale_x_continuous(breaks = gap_years) +
labs(x = "Year",

y = "Life Expectancy (years)",
title = "Lifespan increases over time")
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Lifespan increases over time

The subtitle argument adds smaller text below the main title.

## Add subtitle with location and time frame
ggplot(data = gap_US,

mapping = aes(x = year,
y = lifeExp)) +

geom_line(size = 1.5,
color = "lightgrey") +

geom_point(size = 3,
color = "steelblue") +

scale_x_continuous(breaks = gap_years) +
labs(x = "Year",

y = "Life Expectancy (years)",
title = "Life expectancy changes over time",
subtitle = "United States (1952-2007)")

370



20.9. LABELING WITH LABS() CHAPTER 20. LINES, SCALES, AND LABELS

68

70

72

74

76

78

1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007
Year

Li
fe

 E
xp

ec
ta

nc
y 

(y
ea

rs
)

United States (1952−2007)
Life expectancy changes over time

Finally, we can supply the caption argument to add small text to the bottom-right corner below the plot.

## Add caption with data source: "Source: www.gapminder.org/data"
ggplot(data = gap_US,

mapping = aes(x = year,
y = lifeExp)) +

geom_line(size = 1.5,
color = "lightgrey") +

geom_point(size = 3,
color = "steelblue") +

scale_x_continuous(breaks = gap_years) +
labs(x = "Year",

y = "Life Expectancy (years)",
title = "Life expectancy changes over time",
subtitle = "United States (1952-2007)",
caption = "Source: http://www.gapminder.org/data/")
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Source: http://www.gapminder.org/data/

Ĺ Challenge

When you use an aesthetic mapping (e.g., color, size), {ggplot2} automatically scales the given aesthetic
to match the data and adds a legend.
Here is an updated version of the gap_mini3 plot we made before. We are changing the of points and
lines by setting aes(color = country) in ggplot(). Then the size of points is scaled to the pop
variable. See that labs() is used to change the title, subtitle, and axis labels.

ggplot(data = gap_mini2,
mapping = aes(x = year,

y = gdpPercap,
color = country)) +

geom_line(size = 1) +
geom_point(mapping = aes(size = pop),

alpha = 0.5) +
geom_point() +
scale_x_continuous(breaks = gap_years) +
scale_y_log10() +
labs(x = "Year",

y = "Income per person",
title = "GDP per capita in selected Asian economies, 1952-2007",
subtitle = "Income is measured in US dollars and is adjusted for inflation.")
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The default title of a legend or key is the name of the data variable it corresponds to. Here the color
lengend is titled country, and the size legend is titled pop.
We can also edit these in labs() by setting AES_NAME = "CUSTOM_TITLE".

ggplot(data = gap_mini2,
mapping = aes(x = year,

y = gdpPercap,
color = country)) +

geom_line(size = 1) +
geom_point(mapping = aes(size = pop),

alpha = 0.5) +
geom_point() +
scale_x_continuous(breaks = gap_years) +
scale_y_log10() +
labs(x = "Year",

y = "Income per person",
title = "GDP per capita in selected Asian economies, 1952-2007",
subtitle = "Income is measured in US dollars and is adjusted for inflation.",
color = "Country",
size = "Population")
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The same syntax can be used to edit legend titles for other aesthetic mappings. A commonmistake is to
use the variable name instead of the aesthetic name in labs(), so watch out for that!

Ď Practice

Create a time series plot comparing the trends in life expectancy from 1952-2007 for three countries in
the gapminder data frame.
First, subset the data to three countries of your choice:
Use my_gap_mini to create a plot with the following attributes:

• Add points to the line graph

• Color the lines and points by country

• Increase the width of lines to 1mm and the size of points to 2mm

• Make the lines 50% transparent

• Change the x-axis scale breaks to match years in dataset

Finally, add the following labels to your plot:

• Title: “Health & wealth of nations”

• Axis titles: “Longevity” and “Year”

• Capitalize legend title

(Note: subtitle requirement has been removed.)
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20.10 Preview: Themes

In the next lesson, you will learn how to use theme functions.

## Use theme_minimal()
ggplot(data = gap_mini2,

mapping = aes(x = year,
y = gdpPercap,
color = country)) +

geom_line(size = 1, alpha = 0.5) +
geom_point(size = 2) +
scale_x_continuous(breaks = gap_years) +
scale_y_log10() +
labs(x = "Year",

y = "Income per person",
title = "GDP per capita in selected Asian economies, 1952-2007",
subtitle = "Income is measured in US dollars and is adjusted for inflation.",
caption = "Source: www.gapminder.org/data") +

theme_minimal()
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Source: www.gapminder.org/data

20.11 Wrap up

Line graphs, just like scatterplots, display the relationship between two numerical variables. When one of the
two variables represents time, a line graph can be a more effective method of displaying relationship. There-
fore, it is preferred to use line graphs over scatterplots when the variable on the x-axis (i.e., the explanatory
variable) has an inherent ordering, such as some notion of time, like the year variable of gapminder.

We can change scale breaks and transform scales to make plots easier to read, and label them to add more
information.

Hope you found this lesson helpful!
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20.12 Solutions

.SOLUTION_q1()

ggplot(gap_US,
mapping = aes(x = year,

y = gdpPercap)) +
geom_line()

.SOLUTION_q2()

ggplot(gap_US,
mapping = aes(x = year,

y = gdpPercap)) +
geom_line(lty = "dotdash") +
geom_point(color = "aquamarine")

.SOLUTION_q3()

ggplot(gap_mini,
aes(x = year,

y = pop,
color = country,
linetype = country)) +

geom_line()

.SOLUTION_q4()

ggplot(gap_mini,
aes(x = year,

y = pop,
color = country,
shape = continent,
lty = country)) +

geom_line() +
geom_point()
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.SOLUTION_q5()

ggplot(data = gap_mini2,
mapping = aes(x = year,

y = gdpPercap,
color = country)) +

geom_line(linewidth = 1) +
scale_x_continuous(breaks = gap_years) +
scale_y_continuous(breaks = seq(from = 1000, to = 7000, by = 1000))

.SOLUTION_q6()

ggplot(data = gap_Uganda, mapping = aes(x = year, y = pop)) +
geom_line(linewidth = 1, color = "forestgreen")+
scale_x_continuous(breaks = gap_years) +
scale_y_log10()

.SOLUTION_q7()

ggplot(data = my_gap_mini,
mapping = aes(y = lifeExp,

x = year,
color = country)) +

geom_line(linewidth = 1, alpha = 0.5) +
geom_point(size = 2) +
scale_x_continuous(breaks = gap_years)

.SOLUTION_q8()

ggplot(data = my_gap_mini,
mapping = aes(y = lifeExp,

x = year,
color = country)) +

geom_line(linewidth = 1, alpha = 0.5) +
geom_point(size = 2) +
scale_x_continuous(breaks = gap_years) +
labs(x = "Year",

y = "Longevity",
title = "Health & wealth of nations",
color = "Color")
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Histograms with {ggplot2}

21.1 Histograms with {ggplot2}

21.2 Learning Objectives

By the end of this lesson, you will be able to:

1. Plot a histogram to visualize the distribution of continuous variables using geom_histogram().
2. Adjust the number or size of bins on a histogram by with the bins or binwidth arguments.
3. Shift and align bins on a histogram with the boundary argument.
4. Set bin boundaries to a sequence of values with the breaks argument.

21.3 Introduction

A histogram is a plot that visualizes the distribution of a numerical value as follows:

1. We first cut up the x-axis into a series of bins, where each bin represents a range of values.

2. For each bin, we count the number of observations that fall in the range corresponding to that bin.

3. Then for each bin, we draw a bar whose height marks the corresponding count.

21.4 Packages

pacman::p_load(tidyverse,
here)

21.5 Childhood diarrheal diseases in Mali

We will visualize distributions of numerical variables in the malidd data frame, which we’ve seen in previous
lessons.
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## Import data from CSV
malidd <- read_csv(here::here("data/clean/malidd.csv"))

Ĺ Recap

These data were collected as part of an observational study of acute diarrhea in children aged 0-59
months. The studywas conducted inMali and in early 2020. Thedataset recordsdemographic and clinical
information for 150 patients.

## View first few rows of the data frame
head(malidd)
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1 2020-01-16 M 5 61.2 11.3 1 0 0 0
2 2020-01-17 F 12 70.6 13.2 1 1 1 0
3 2020-01-17 M 11 71.1 13.5 1 1 0 0
4 2020-01-17 M 9 68.5 12.6 1 0 0 0
5 2020-01-21 F 16 78.7 14.2 1 1 0 0
6 2020-01-21 M 6 67.7 14.5 1 0 0 0

n admit_date sex age_months height_cm muac_cm breastfeed… vomit fever bloody_stool

The dataframe has 21 variables, many of which are continuous, like height_cm, viral_load, and
freqrespi.
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21.6 Basic histograms with geom_histogram()

Now let’s use {ggplot2} to plot thedistributionof childrens’ heights, which is recorded in theheigh_cm column
of malidd.

The geom_*() function used for histograms is geom_histogram()

## Simple histogram showing the distribution of height_cm
ggplot(data = malidd,

mapping = aes(x = height_cm)) +
geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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Ĺ Side Note

If we don’t adjust the bins in geom_histogram(), we get a warning message. You can ignore this warn-
ing message for now, and will learn how to customize bins in the next section.

In the previous histogram, it’s hard to where the boundaries for each bin start and end since everything is one
big amorphous blob. So let’s add borders around the bins:

## Set border color to "white"
ggplot(data = malidd ,

mapping = aes(x = height_cm)) +
geom_histogram(color = "white")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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We now have an easier time associating ranges of cases to each of the bins.

We can also vary the color of the bars by setting the fill argument:

## Set fill color to "steelblue"
ggplot(data = malidd ,

mapping = aes(x = height_cm)) +
geom_histogram(color = "white",

fill = "steelblue")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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Now that we can see the bars more clearly, let’s unpack the resulting histogram. Some questions we might
want to answer are:

1. What are the smallest and largest values?
2. What is the “center” or “most typical” value?
3. How do the values spread out?
4. What are frequent and infrequent values?

We can see that heights range from 50 to 105cm. The center is around 70cm, most patients fall in the 60-80cm
range, with very few below 55cm or above 90cm. Observe that the histogram has a bell shape, meaning that
the variable has a normal distribution (more or less).

Ď Practice

• Plot a histogram showing the distribution of age (age_months) in malidd. Make the borders and
fill of the bars “seagreen”, and reduce opacity to 40%.

• Building on your code for the previous plot, modify the axis titles to “Age (months)” and “Number
of children”, respectively.

21.7 Adjusting bins in a histogram

Figure 21.1: Histograms plotting the same variable with different bin settings.

After running code in previous examples, we got a histogram as well as a warning message about bins and bin
width. The warning message is telling us that the histogram was constructed using bins = 30 for 30 equally
spaced bins.

## Warning message tells us to change the default of 30 bins
ggplot(data = malidd ,

mapping = aes(x = height_cm)) +
geom_histogram(color = "white",

fill = "steelblue")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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Unless you override this default number of bins with a number you specify, R will keep giving this message.

Wecan change thenumberofbins toanother valueusingoneof these threearguments togeom_histogram():

1. Set the number of bins with bins

2. Set the width of the bins with binwidth

3. Set bin boundaries breaks

21.7.1 Set the number of bins with bins

Using the first method, we have the power to specify how many bins we would like to cut the x-axis up in by
setting bins = INTEGER:

## Try different numbers of bins

ggplot(data = malidd ,
mapping = aes(x = height_cm)) +

geom_histogram(bins = 5,
color = "white",
fill = "steelblue")
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ggplot(data = malidd ,
mapping = aes(x = height_cm)) +

geom_histogram(bins = 20,
color = "white",
fill = "steelblue")
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ggplot(data = malidd ,
mapping = aes(x = height_cm)) +

geom_histogram(bins = 50,
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color = "white",
fill = "steelblue")
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Ď Practice

Make a histogram of frequency of respiration (freqrespi), which is measured in breaths per minute.
Set the interior color to “indianred3”, and border color to “lightgray”.
Notice that with the default of 30 bins, there are some intervals for which no bar is plotted (i.e., there
were no observations in that range).
Low the number of bins until there are no empty intervals. You should choose the highest value of bins
for which there are no empty spaces.

21.7.2 Set the width of bins with binwidth

Using the second method, instead of specifying the number of bins, we specify the width of the bins by using
the binwidth argument in geom_histogram().

## Try different bin widths
ggplot(data = malidd,

mapping = aes(x = height_cm)) +
geom_histogram(color = "white",

fill = "steelblue",
binwidth = 3)
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Looking at the range of the variable can help us choose an appropriate bin width.

range(malidd$height_cm)

[1] 50.3 103.4

ggplot(data = malidd,
mapping = aes(x = height_cm)) +

geom_histogram(color = "white",
fill = "steelblue",
binwidth = 5)
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We can use the boundary argument to align the bins to the x-axis intervals.

## Set `boundary` equal to the low end of the variable
ggplot(data = malidd,

mapping = aes(x = height_cm)) +
geom_histogram(color = "white",

fill = "steelblue",
binwidth = 5,
boundary = 50)
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Ď Practice

Create the same freqrespi histogram from the last practice question, but this time set the binwidth to
to a value that results in 18 bins. Then align the bars to the x axis breaks by adjusting the bin boundaries.

21.7.3 Modify bin boundaries with breaks

Set breaks equal to a numeric vector in geom_histogram():

## Supply a vector that covers the range of values in height_cm
ggplot(data = malidd,

mapping = aes(x = height_cm)) +
geom_histogram(color = "white",

fill = "steelblue",
breaks = seq(50, 105, 5))
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Ď Practice

Plot the freqrespi histogram with bin breaks that range from the lowest value of freqrespi to the
highest, with intervals of 4.
Next, adjust the x-axis scale breaks by adding a scale_*() function. Set the range to 24-60, with an
intervals of 8.

21.8 Summary

Histograms, unlike scatterplots and linegraphs, present informationononly a singlenumerical variable. Specif-
ically, they are visualizations of the distribution of the numerical variable in question.
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21.9 Solutions

.SOLUTION_q1()

ggplot(data = malidd,
mapping = aes(x = age_months)) +

geom_histogram(fill = "seagreen",
color = "seagreen",
alpha = 0.4)`

.SOLUTION_q2()

ggplot(data = .malidd,
mapping = aes(x = age_months)) +

geom_histogram(fill = "seagreen",
color = "seagreen",
alpha = 0.4) +

labs(x = "Age (months)",
y = "Number of children")

.SOLUTION_q3()

ggplot(data = malidd,
mapping = aes(x = freqrespi)) +

geom_histogram(fill = "indianred3",
color = "lightgray",
bins = 20)

.SOLUTION_q4()

ggplot(data = malidd,
mapping = aes(x = freqrespi)) +

geom_histogram(binwidth = 2,
fill = "indianred3",
color = "lightgray",
boundary = 24)
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.SOLUTION_q5()

ggplot(data = malidd,
mapping = aes(x = freqrespi)) +

geom_histogram(fill = "indianred3",
color = "lightgray",
binwidth = 4) +

scale_x_continuous(breaks = seq(24, 60, 8))
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Boxplots with {ggplot2}

22.1 Boxplots with {ggplot2}

22.1.1 Learning Objectives

By the end of this lesson, you will be able to:

1. Plot a boxplot to visualize the distribution of continuous data using geom_boxplot().
2. Reorder side-by-side boxplots with the reorder() function.
3. Add a layer of data points on a bloxplot using geom_jitter().

22.1.2 Introduction

22.1.2.1 Anatomy of a boxplot

A boxplot allows us to visualize the distribution of numeric variables.

It consists of two parts:
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1. Box— Extends from the first to the third quartile (Q1 to Q3) with a line in the middle that represents
themedian. The range of values between Q1 and Q3 is also known as an Interquartile range (IQR).

2. Whiskers — Lines extending from both ends of the box indicate variability outside Q1 and Q3. The
minimum/maximumwhisker values are calculated as𝑄1−1.5×𝐼𝑄𝑅 to𝑄3+1.5×𝐼𝑄𝑅 . Everything
outside is represented as an outlier using dots or other markers.

This is side-by-side boxplot. It lets us compare the distribution of a numerical variable split by the values of
another variable.

Herewe are looking at the variation in GDP per capita –which is a continuous variable – split by differentworld
regions – a categorical variable.

22.1.2.2 Potential pitfalls

Boxplots summarize the data into five numbers, so we might miss important characteristics of the data.

If the amount of data you are workingwith is not too large, adding individual data points canmake the graphic
more insightful.
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22.1.3 Load packages

pacman::p_load(tidyverse,
gapminder,
here)

22.1.4 The gapminder dataset

For this lesson, we will be visualizing global health and economic data from the gapminder data frame, which
we’ve encountered in previous lessons.

## View first few rows of the data
head(gapminder)
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Afghanistan Asia 1952 28.801 8425333 779.4453145
Afghanistan Asia 1957 30.332 9240934 820.8530296
Afghanistan Asia 1962 31.997 10267083 853.10071
Afghanistan Asia 1967 34.02 11537966 836.1971382
Afghanistan Asia 1972 36.088 13079460 739.9811058
Afghanistan Asia 1977 38.438 14880372 786.11336

country continent year lifeExp pop gdpPercap
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Ĺ Recap

Gapminder is a country-year dataset with information on 142 countries, divided in to 5 “continents” or
world regions.

## Data summary
summary(gapminder)

country continent year lifeExp
Afghanistan: 12 Africa :624 Min. :1952 Min. :23.60
Albania : 12 Americas:300 1st Qu.:1966 1st Qu.:48.20
Algeria : 12 Asia :396 Median :1980 Median :60.71
Angola : 12 Europe :360 Mean :1980 Mean :59.47
Argentina : 12 Oceania : 24 3rd Qu.:1993 3rd Qu.:70.85
Australia : 12 Max. :2007 Max. :82.60
(Other) :1632

pop gdpPercap
Min. :6.001e+04 Min. : 241.2
1st Qu.:2.794e+06 1st Qu.: 1202.1
Median :7.024e+06 Median : 3531.8
Mean :2.960e+07 Mean : 7215.3
3rd Qu.:1.959e+07 3rd Qu.: 9325.5
Max. :1.319e+09 Max. :113523.1

Data are recorded every 5 years from 1952 to 2007 (a total of 12 years).

22.1.5 Basic boxplots with geom_boxplot()

The function for creating boxplots in {ggplot2} is geom_boxplot().
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We’re going to make a base boxplot and then then add more aesthetics and layers.

Let’s startwith a simple boxplot bymapping one numeric variable from gapminder, life expectancy (lifeExp)
to the x position.

## Simple boxplot of lifeExp
ggplot(data = gapminder,

mapping = aes(x = lifeExp)) +
geom_boxplot()
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To create a side-by-side boxplot (which is what we usually want), we need to add a categorical variable to the
y position aesthetic.

Let’s compare life expectancy distributions between continents - i.e., split lifeExp by the continent vari-
able.

## Side-by-side boxplot of lifeExp by continent
ggplot(gapminder,

aes(x = lifeExp,
y = continent)) +

geom_boxplot()
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The result is a basic boxplot of lifeExp for multiple continents.

## Side-by-side boxplot of lifeExp by continent (vertical)
ggplot(data = gapminder,

mapping = aes(x = continent,
y = lifeExp)) +

geom_boxplot()
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Let us color in the boxes. We can map the continent variable to fill so that each box is colored according
to which continent it represents.

## Fill each continent with a different color
ggplot(gapminder,

aes(x = continent,
y = lifeExp,
fill = continent)) +

geom_boxplot()
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Ĺ Reminder

{ggplot2} allows you to color by specifying a variable. We can use fill argument inside the aes() func-
tion to specify which variable is mapped to fill color.

We can also add the color and alpha aesthetics to change outline color and transparency.

## Change outline color and increase transparency
ggplot(gapminder,

aes(x = continent,
y = lifeExp,
fill = continent,
color = continent)) +

geom_boxplot(alpha = 0.6)
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Ď Practice

• Using the gapminder data frame create a boxplot comparing the distribution of GDP per capita
(gdpPercap) across continents. Map the fill color of the boxes to continent, and set the line
width to 1.

• Building on your code from the last question, add a scale_*() function that transforms the y-axis
to a logarithmic scale.

22.1.6 Reordering boxes with reorder()

The values of the continent variable are ordered alphabetically by default. If you look at the x-axis, it starts
with Africa and goes alphabetically to Oceania.

It might be more useful to order them according to life expectancy, the y-axis variable.

We can change the levels of a factor in R using the reorder() function. If we reorder the levels of the
continent variable, the boxplots will be plotted on the x-axis in that order.

reorder() treats its first argument as a categorical variable , and reorders its levels based on the values of a
second numeric variable.

To reorder the levels of thecontinent variablebasedonlifeExp, wewill use the syntaxreorder(CATEGORIAL_VAR,
NUMERIC_VAR). Like this: reorder(continent, lifeExp).

Here we will edit the x argument and tell ggplot() to reorder the variable.

ggplot(gapminder,
aes(x = reorder(continent, lifeExp),

y = lifeExp,
fill = continent,
color = continent)) +
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Figure 22.1: Reorder boxplots by life expectancy instead of alphabetical order.

geom_boxplot(alpha = 0.6)
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We can clearly see that there are notable differences in median life expectancy between continents. How-
ever, there is a lot of overlap between the range of values from each continent. For example, the median life
expectancy for the continent of Africa is lower than that of Europe, but several African countries have life
expectancy values higher than than the majority of European countries.
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22.1.6.1 Reordering by function

The default method reorders factor based on themean of the numeric variable.

We can add a third argument to choose a different method, like themedian ormaximum.

## Arrange boxplots by median life expectancy
ggplot(gapminder,

aes(x = reorder(continent, lifeExp, median),
y = lifeExp,
fill = continent,
color = continent)) +

geom_boxplot(alpha = 0.6)
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## Arrange boxplots by max life expectancy
ggplot(gapminder,

aes(x = reorder(continent, lifeExp, max),
y = lifeExp,
fill = continent,
color = continent)) +

geom_boxplot(alpha = 0.6)
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The boxplots are arranged in increasing order.

To sort boxes in boxplot in descending order, we add negation to lifeExpwithin the reorder() function.

## Arrange boxplots by descending median life expectancy
ggplot(gapminder,

aes(x = reorder(continent, -lifeExp, median),
y = lifeExp,
fill = continent,
color = continent)) +

geom_boxplot(alpha = 0.6)
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Ď Practice

Create the boxplot showing the distribution of GDP per capita for each continent, like you did in practice
question 2. Retain the fill, line width, and scale from that plot.
Now, reorder the boxes bymean gdpPercap, in descending order.
Building on the code from the previous question, add labels to your plot.

• Set themain title to “Variation in GDP per capita across continents (1952-2007)”

• Change the x-axis title to “Continent”, and

• Change the y-axis title to “Income per person (USD)”.

22.1.7 Adding data points with geom_jitter()

Boxplots give us a very high-level summary of the distribution of a numeric variable for several groups. The
problem is that summarizing also means losing information.

If we consider our lifeExp boxplot, it is easy to conclude that Oceania has a higher value than the others.
However, we cannot see the underlying distribution of data points in each group or their number of observa-
tions.

## Basic lifeExp boxplot from earlier
ggplot(gapminder,

aes(x = reorder(continent, lifeExp),
y = lifeExp,
fill = continent,
color = continent)) +

geom_boxplot(alpha = 0.6)
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Let’s see what happens when the boxplot is improved using additional elements.
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One way to display the distribution of individual data points is to plot an additional layer of points on top of
the boxplot.

We could do this by simply adding the geom_point() function.

ggplot(gapminder,
aes(x = reorder(continent, lifeExp),

y = lifeExp,
fill = continent)) +

geom_boxplot()+
geom_point()
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However, geom_point() as has plotted all the data points on a vertical line. That’s not very useful since all
the points with same life expectancy value directly overlap and are plotted on top of each other.

One solution for this is to randomly “jitter” data points horizontally. ggplot allows you to do that with the
geom_jitter() function.

ggplot(gapminder,
aes(x = reorder(continent, lifeExp),

y = lifeExp,
fill = continent)) +

geom_boxplot() +
geom_jitter()
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You can also control the amount of jittering with width argument and specify opacity of points with alpha.

ggplot(gapminder,
aes(x = reorder(continent, lifeExp),

y = lifeExp,
fill = continent)) +

geom_boxplot() +
geom_jitter(width = 0.25,

alpha = 0.5)
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Here some new patterns appear clearly. Oceania has a small sample size compared to the other groups. This
is definitely something you want to find out before saying that Oceania has higher life expectancy than the
others.

Ĺ Recap

Boxplots have the limitation that they summarize thedata intofivenumbers: the1st quartile, themedian
(the 2nd quartile), the 3rd quartile, and the upper and lower whiskers. By doing this, we might miss
important characteristics of the data. One way to avoid this is by showing the data with points.

Ď Practice

• Create the boxplot showing the distribution of GDP per capita for each continent, like you did in
practice question 3. Then add a layer of jittered points.

• Adapt your answer to question 4 tomake the points 45% transparent and change the width of the
jitter to 0.3mm.

Ĺ Challenge

Adding mean markers to a boxplot
You may want to visualize the mean (average) value of the distributions on a boxplot.
We can do this by adding a statistics layer using the stat_summary() function.

## Add a marker to show the mean
ggplot(gapminder,

aes(x = reorder(continent, lifeExp),
y = lifeExp,
fill = continent,
color = continent)) +

geom_boxplot(alpha = 0.6) +
stat_summary(fun = "mean",

geom = "point",
size = 3,
shape = 23,
fill = "white")
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22.1.8 Wrap up

Side-by-side boxplots provide us with a way to compare the distribution of a continuous variable across multi-
ple values of another variable. One can see where the median falls across the different groups by comparing
the solid lines in the center of the boxes.

To study the spread of a continuous variable within one of the boxes, look at both the length of the box and
also how far the whiskers extend from either end of the box. Outliers are even more easily identified when
looking at a boxplot than when looking at a histogram as they are marked with distinct points.

22.1.9 Learning Outcomes

1. You can plot a boxplot to visualize the distribution of continuous data using geom_boxplot().
2. You can reorder side-by-side boxplots with the reorder() function.
3. You can add a layer of individual data points on a bloxplot using geom_jitter().

References

Some material in this lesson was adapted from the following sources:

• Ismay, Chester, and Albert Y. Kim. 2022. A ModernDive into R and the Tidyverse. https://moderndive.
com/.
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22.2 Solutions

.SOLUTION_q1()

ggplot(data = gapminder,
mapping = aes(x = continent, y = gdpPercap, fill = continent)) +
geom_boxplot(linewidth = 1)

.SOLUTION_q2()

ggplot(data = gapminder,
mapping = aes(x = continent, y = gdpPercap, fill = continent)) +
geom_boxplot(linewidth = 1) +
scale_y_log10()

.SOLUTION_q3()

ggplot(data = gapminder,
mapping = aes(
x = reorder(continent, -gdpPercap),
y = gdpPercap,
fill = continent)) +
geom_boxplot(linewidth = 1) +
scale_y_log10()

.SOLUTION_q4()

ggplot(data = gapminder,
mapping = aes(
x = reorder(continent, -gdpPercap),
y = gdpPercap,
fill = continent)) +
geom_boxplot(linewidth = 1) +
scale_y_log10() +
labs(title = "Variation in GDP per capita across continents (1952-2007)",

x = "Continent",
y = "Income per person (USD)")

.SOLUTION_q5()

ggplot(data = gapminder,
mapping = aes(
x = reorder(continent, -gdpPercap),
y = gdpPercap,
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fill = continent)) +
geom_boxplot(linewidth = 1) +
scale_y_log10() +
labs(title = "Variation in GDP per capita across continents (1952-2007)",

x = "Continent",
y = "Income per person (USD)") +

geom_jitter()

.SOLUTION_q6()

ggplot(data = gapminder,
mapping = aes(
x = reorder(continent, -gdpPercap),
y = gdpPercap,
fill = continent)) +
geom_boxplot(linewidth = 1) +
scale_y_log10() +
labs(title = "Variation in GDP per capita across continents (1952-2007)",

x = "Continent",
y = "Income per person (USD)") +

geom_jitter(width = 0.3, alpha = 0.55)

411


	Introduction
	Contributors
	Partners & Funders

	Setting up R and RStudio
	Introduction
	Working locally vs. on the cloud
	RStudio on the cloud
	Set up on Windows
	Download and install R
	Download, install & run RStudio

	Set up on macOS
	Download and install R
	Download, install & run RStudio

	Wrap up

	Setting up R and RStudio
	Introduction
	Working locally vs. on the cloud
	RStudio on the cloud
	Set up on Windows
	Download and install R
	Download, install & run RStudio

	Set up on macOS
	Download and install R
	Download, install & run RStudio

	Wrap up

	Using RStudio
	Learning objectives
	Introduction
	The RStudio panes
	Source/Editor
	Console
	Environment
	History
	Files
	Plots
	Packages
	Viewer
	Help

	RStudio options
	Command palette
	Wrapping up
	Further resources
	References

	Coding basics
	Introduction
	Comments
	R s a calculator
	Formatting code
	Objects in R
	Create an object
	What is an object?
	Datasets are objects too
	Rename an object
	Overwrite an object
	Working with objects
	Some errors with objects
	Naming objects

	Functions
	Basic function syntax
	Nesting functions

	Packages
	A first example: the {tableone} package
	Full signifiers
	pacman::p_load()

	Wrapping up
	Answers

	Data dive: Ebola in Sierra Leone
	Introduction
	Script setup
	Header
	Packages

	Importing data into R
	Intro to reproducibility
	Quick data exploration
	vis_dat()
	inspect_cat() and inspect_num()

	Analyzing a single numeric variable
	Extract a column vector with $
	Basic operations on a numeric variable
	Visualizing a numeric variable

	Analyzing a single categorical variable
	Frequency tables
	Visualizing a categorical variable

	Answering questions about the outbreak
	Haven't had enough?
	Wrapping up

	RStudio projects
	Learning objectives
	Introduction
	Creating a new RStudio Project
	On RStudio Cloud
	On a local computer

	Creating Project subfolders
	Adding a dataset to the ``data'' folder
	On RStudio Cloud
	On a local computer

	Creating a script in the ``scripts'' folder
	Importing data from the ``data'' folder
	Using here::here()

	Exporting data to the ``outputs'' folder
	Overwriting data

	Exporting plots to the ``outputs'' folder
	Sharing a Project
	Wrapping up

	R Markdown
	Introduction
	Project setup
	Create a new document
	R Markdown Header (YAML)
	Word Document
	PowerPoint Document
	PDF Document
	Prettydoc
	Flexdashboard

	Visual vs Source mode
	Markdown syntax
	Customizing the generated document

	R code chunks
	Chunk output inline vs in condole
	R code chunk options
	Block name
	Options
	Change options
	Global Options

	Inline Code
	Display tables
	Document Templates
	Slides
	Templates

	Resources

	Data structures
	Intros
	Learning objectives
	Packages
	Introducing vectors
	Creating vectors
	Manipulating vectors
	From vectors to data frames
	Tibbles
	read_csv() creates tibbles

	Wrap-up
	Solutions

	Using ChatGPT for Data Analysis
	Introduction
	Models
	1. Explain Unfamiliar Code
	2. Debug Simple Errors
	3. Add Code Comments
	4. Reformat Code
	5. Make Plots
	6. Simple Data Wrangling
	7. Translate Language
	8. Translate Programming Languages
	9. Fluid Find and Replace
	Limitations of ChatGPT

	Selecting and renaming columns
	Introduction
	Learning objectives
	The Yaounde COVID-19 dataset
	Introducing select()
	Selecting column ranges with :
	Excluding columns with !

	Helper functions for select()
	starts_with() and ends_with()
	contains()
	everything()

	Change column names with rename()
	Rename within select()

	Wrap up
	Solutions

	Filtering rows
	Intro
	Learning objectives
	The Yaounde COVID-19 dataset
	Introducing filter()
	Relational operators
	Combining conditions with & and |
	Negating conditions with !
	NA values
	Wrap up
	Solutions

	Mutating columns
	Intro
	Learning objectives
	Packages
	Datasets
	Introducing mutate()
	Creating a Boolean variable
	Creating a numeric variable based on a formula
	Changing a variable's type
	Integer: as.integer

	Wrap up
	Solutions

	Conditional mutating
	Introduction
	Learning objectives
	Packages
	Datasets
	Reminder: relational operators (comparators) in R
	Introduction to case_when()
	The TRUE default argument
	Matching NA's with is.na()
	Keeping default values of a variable
	Multiple conditions on a single variable
	Multiple conditions on multiple variables
	Order of priority of conditions in case_when()
	Overlapping conditions within case_when()

	Binary conditions: dplyr::if_else()
	Wrap up
	Solutions

	Grouping and summarizing data
	Introduction
	Learning objectives
	The Yaounde COVID-19 dataset
	What are summary statistics?
	Introducing dplyr::summarize()
	Grouped summaries with dplyr::group_by()
	Grouping by multiple variables (nested grouping)
	Ungrouping with dplyr::ungroup() (why and how)
	Counting rows
	Counting rows that meet a condition
	dplyr::count()

	Including missing combinations in summaries
	Wrap up
	Solutions

	Grouped filter, mutate and arrange
	Introduction
	Learning objectives
	Packages
	Datasets
	Arranging by group
	arrange() can group automatically

	Filtering by group
	Filtering with nested groupings

	Mutating by group
	Mutating with nested groupings

	Wrap up
	Solutions

	Pivoting data
	Intro
	Learning Objectives
	Packages
	What do wide and long mean?
	When should you use wide vs long data?
	Pivoting wide to long
	Pivoting long to wide
	Why is long data better for analysis?
	Filtering grouped data
	Summarizing grouped data
	Plotting

	Pivoting can be hard
	Wrap up
	Solutions

	Advanced pivoting
	Intro
	Learning Objectives
	Packages
	Datasets
	Wide to long
	Understanding names_sep and ``.value''
	Value type before the separator
	A non-time-series example
	Escaping the dot separator
	What to do when you don't have a neat separator ?

	Long to wide
	Wrap up
	Solutions

	Intro to ggplot2
	Introduction
	Learning objectives
	Packages
	Measles outbreaks in Niger
	The nigerm dataset
	The layered Grammar of Graphics

	Working through the essential layers
	Building a ggplot() in steps

	Modifying the layers
	Changing aesthetic mappings
	Changing geom_* functions
	Additional aesthetic mappings inside aes()
	Fixed aesthetics outside aes()

	Additional GG layers
	Learning outcomes
	Solutions

	Scatter plots and smoothing lines
	Introduction
	Learning Objectives
	Childhood diarrheal diseases in Mali
	Scatter plots via geom_point()
	Aesthetic modifications
	Mapping data to aesthetics
	Setting fixed aesthetics

	Adding a trend line
	Summary
	Solutions

	Lines, scales, and labels
	Learning Objectives
	Introduction
	Packages
	The gapminder data frame
	Line graphs via geom_line()
	Fixed aesthetics in geom_line()

	Combining compatible geoms
	Mapping data to multiple lines
	Modifying continuous x & y scales
	Scale breaks
	Logarithmic scaling

	Labeling with labs()
	Preview: Themes
	Wrap up
	Solutions

	Histograms with {ggplot2}
	Histograms with {ggplot2}
	Learning Objectives
	Introduction
	Packages
	Childhood diarrheal diseases in Mali
	Basic histograms with geom_histogram()
	Adjusting bins in a histogram
	Set the number of bins with bins
	Set the width of bins with binwidth
	Modify bin boundaries with breaks

	Summary
	Solutions

	Boxplots with {ggplot2}
	Boxplots with {ggplot2}
	Learning Objectives
	Introduction
	Load packages
	The gapminder dataset
	Basic boxplots with geom_boxplot()
	Reordering boxes with reorder()
	Adding data points with geom_jitter()
	Wrap up
	Learning Outcomes

	Solutions


