
BIP324 Proxy
Easy integration of v2 transport protocol for light clients

State of BIP324 adoption

• available since Bitcoin Core v26.0 (-v2transport, default-off)
• (very likely) default-on starting from Bitcoin Core v27.0
• more and more v2 peers available

• This is great, but…
… what about other clients?

• Long-term vision: every Bitcoin P2P participant runs v2 transport

🎉

Implementing BIP324 –
how hard could it be?
• Lots of new dependencies for cryptographical primitives:

ElligatorSwift, ECDH (secp256k1-ellswift), HKDF-SHA256,
ChaCha20, Poly1305, FSChaCha20, FSChaCha20Poly1305…

• Non-trivial v2 handshake phase (e.g. byte-by-byte reception loop
needed for terminator detection due to non-determinstic size of
garbage), v1 reconnection logic

• Realistically, this will still take some time to be available in
alternative implementations, especially for light clients

• Can we enable that easier by offering an external language-
independent module that talks v2 transport?

Light client – ideal scenario

Light client

Remote node 1

Remote node 2

Remote node 3

LAN
(or same machine)

Internet

Local node

• Users run their own node, light clients only connect to that node

• Ideally, everyone runs their own node, but unrealistic (due to
resource limits and increased setup effort)

p2p v1

p2p v2

p2p v2

p2p v2

……

or
RPC /
REST /
ZMQ
etc.

Light client – typical scenario

Light client

Remote node 1

Remote node 2

Remote node 3

LAN
(or same machine)

Internet

p2p v1

p2p v1

p2p v1

……

• Light clients connect directly to remote nodes

🕵 ISPs see P2P msgs in cleartext ❌

Introducing BIP324 Proxy 1/2
• Basic idea: run a local process with the sole purpose of translating

between v1 and v2 transport protocols in each direction
• proxy listens on localhost (127.0.0.1:1324) for incoming v1

connections, establishes v2 connection to remote node
• remote peer destination is found in initial v1 VERSION message

local socket
(server)

remote socket
(client)

:1324

BIP324
proxy server

Introducing BIP324 Proxy 2/2
• light clients connects to the proxy instead of the actual remote node

for every outbound connection
• important: modify the destination only on TCP level! (clients should

still have the illusion that they are directly connected to the remote)
• no configuration of the proxy needed
• (almost) no changes needed in the client, see later slides

local socket
(server)

remote socket
(client)

:1324

v2 to v1

v1 to v2

<- encode v1 <- (msgtype, payload) <- decrypt v2 <-

-> decode v1 -> (msgtype, payload) -> encrypt v2 ->

BIP324 proxy server

Light client – BIP324 proxy scenario

Light client

Remote node 1

Remote node 2

Remote node 3

LAN
(or same machine)

Internet

p2p v1

……

• Light clients connect to proxy, which transforms packets to v2

p2p v2

p2p v2

p2p v2

BIP324 Proxy
(127.0.0.1:1324)

v1 v2

🕵 ISPs see only pseudo-random byte-stream ✔

has to initiate all
outbound connections
to 127.0.0.1:1324 on the
transport layer (TCP)

BIP324 Proxy – Implementation
• written in Python3, no external dependencies, ~750 LOC

(mostly cryptographical primitives, taken from the Bitcoin Core test
framework [PR #24748]; Kudos to stratospher and sipa)

• creates and listens on a server socket on :1324
• for each incoming connection on that socket:
• create a new BIP324 proxy handler thread
• receive v1 VERSION message
• connect to remote address (contained in VERSION message)
• perform v2 handshake
• send earlier received VERSION message
• main loop: translate between v1 <-> v2 (see next slide)

• reconnect with v1 is supported, but off by default
(we want v2 connections exclusively)

BIP324 Proxy – Main loop (per thread)

„on either side, unpack/decrypt the received message to
(msgtype, payload) and forward it repacked/encrypted
with the other transport version to the opposite side“

How to take use of BIP324 Proxy

In general:
1. Start proxy: $./bip324-proxy.py
2. Redirect all Bitcoin P2P connections to :1324

Two possible redirect solutions for step 2,
each with their pros/cons:

1. user-space approach: patch the client
2. kernel-space approach: use a packet filter

Redirection – user space approach
• Patch the light client to initiate all outbound connections

(TCP client socket connect(…)syscall) to 127.0.0.1:1324
• Minimum-working patch is trivial, usually a single-line change
• Ideally, provide an option like -bip324proxy=…

(in theory, the proxy could also run on another machine)

• Pros:
• Should be independent of the used operating system
• No root privileges needed

• Cons:
• Individual adaption needed for each client

Some examples of patches on the next slides…

Light client example #1: Nakamoto
• https://github.com/cloudhead/nakamoto
• started in 2020 by Alexis Sellier (cloudhead)
• Language: Rust

• „Nakamoto is a privacy-preserving Bitcoin light-client
implementation in Rust, with a focus on low resource utilization,
modularity and security.”

• Commitment to implement v2 transport soon:

Light client example #1: Nakamoto

The Patch:

Light client example #2: Neutrino
• https://github.com/lightninglabs/neutrino
• started in 2017 by Lightning Labs / Roasbeef
• First client implementation of BIP 157 / BIP 158

(„Client Side Block Filtering“ / „Compact Block Filters for Light Clients“)
• Language: Go

• „Neutrino is a Bitcoin light client written in Go and designed with
mobile Lightning Network clients in mind. It uses a new proposal for
compact block filters to minimize bandwidth and storage use on the
client side, while attempting to preserve privacy and minimize
processor load on full nodes serving light clients.”

Light client example #2: Neutrino

The Patch:

Light client example #3: bcoin
• https://github.com/bcoin-org/bcoin
• started in 2014 by Fedor Indutny and Christopher Jeffrey,

maintained now by Matthew Zipkin (pinheadmz)
• Language: JavaScript (and C/C++)
• Fastest alt client sync time after Bitcoin Core (according to

Jameson Lopp‘s benchmarks)

• „Bcoin is an alternative implementation of the Bitcoin protocol,
written in JavaScript and C/C++ for Node.js. Bcoin is well tested and
aware of all known consensus rules. It is currently used in production
as the consensus backend and wallet system for purse.io.”

Light client example #3: bcoin

The Patch:

„Light client“ example #4:
Bitcoin Core 25.1

(latest release w/o BIP324 support)

The Patch:

Live demo

Let‘s try using BIP324 Proxy with
one of the clients (using user-space

redirection approach)

Redirection – kernel space approach
• Instead of touching the client, let the operating system handle the

redirection directly on the network level
• Using a packet filter („firewall“) with modification rules

• Pros:
• Light client doesn‘t need to be modified

• Cons:
• Root privileges needed
• OS / packet filter dependent
• Potential conflict with other packet filter rules?
• Need a criteria to only apply the rule to Bitcoin P2P

connections (e.g. destination port 8333)

Redirection example using iptables
• iptables / Netfilter: Linux packet filter since version 2.4.x,

started in 1998 (!) by Rusty Russell, author of c-lightning

groupadd –-system redirect_to_bip324-proxy
iptables -t nat -A OUTPUT -p tcp --dport 8333 \
-m owner --gid-owner redirect_to_bip324-proxy \
-j DNAT --to-destination 127.0.0.1:1324

sudo –g redirect_to_bip324-proxy <light-client-binary> …

Drawbacks of BIP324 Proxy
• higher CPU usage / latency (have to talk v1+v2 in each direction,

and switch between user-space and kernel-space twice per packet)
• more file descriptors used (3 sockets + 2 streams per connection)
• client has no awareness of the proxy; if a connection is closed, was

that initiated by the remote node or the proxy? (e.g. due to a bug?)
• single point of failure: if the proxy crashes, all connections are lost
• divergence in TX/RX network statistics (v2 features a mild

bandwidth reduction due to a more efficient msgtype encoding)
• can only pass in v1 messages and nothing else (due the missing

mandatory VERSION message, we wouldn‘t know where to send
them to), already-v2 connections are rejected

Benefits of BIP324 Proxy
• Easy v2 integration of transport protocol for light clients
• Compact reference implementation of BIP324 w/o distractions,

executable version of the BIP pseudo-code
• Playground for new features on top of BIP324, e.g.:
• Traffic shapability with decoy packets (ignored by receiver)
• Bypass firewall rules by setting the EllSwift-pubkey to a fixed

prefix, to mimic other protocols (e.g. HTTP)

• Personal beneftits (to be done):
• Opportunity to learn Rust
• Opportunity to learn more about packet filters and related

technologies (pf(Sense), iptables vs. nftables, eBPF, XDP, …)

TODOs
• Complete rewrite in Rust

(the ChaCha20 implementation in Python is painfully slow)
• IPv6 support
• Automatic network detection (currently only mainnet supported)
• Add user agent postfix (e.g. „/nakamoto:0.3.0/bip324proxy/“)
• Collect TX/RX network statistics on each side, to prove „mild

bandwidth reduction“ of BIP324 empirically
• Create small dashboard (show connection summary, network

statistics, BIP324 session ids etc.)
• Investigate inbound connections support via reverse proxy
• Find a fancy name for the project (any ideas?)

Recommended reading, if you want to
implement your own TCP proxy…

Questions, comments?

Find the project at

https://github.com/theStack/bip324-proxy

