{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "authorship_tag": "ABX9TyPqOmGBDLTK5MFMA24dJ+2l", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "0nXmIzkPdGsE" }, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sb\n", "import numpy as np" ] }, { "cell_type": "code", "source": [ "# import relevant packages" ], "metadata": { "id": "dis5BHf9zTHe" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "forex = pd.read_csv('forex.csv',\n", "usecols=[1,5], names=['Date', 'UK_GBP'], \n", "skiprows=1, index_col=0, parse_dates=[0])" ], "metadata": { "id": "aGjqGXIPdHEC" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# I used informatin from a kaggle/medium article, as I was finding the advanced learning and machine learning very difficult" ], "metadata": { "id": "OKUTXYCCzZHB" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "forex" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 455 }, "id": "i3ZOWmw6dHGU", "outputId": "ddf5b691-cc90-4d94-e1f1-4fb131a6e00c" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " UK_GBP\n", "Date \n", "2000-03-01 0.6146\n", "2000-04-01 0.6109\n", "2000-05-01 0.6092\n", "2000-06-01 0.607\n", "2000-07-01 0.6104\n", "... ...\n", "2019-12-25 ND\n", "2019-12-26 0.7688\n", "2019-12-27 0.7639\n", "2019-12-30 0.761\n", "2019-12-31 0.7536\n", "\n", "[5217 rows x 1 columns]" ], "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
UK_GBP
Date
2000-03-010.6146
2000-04-010.6109
2000-05-010.6092
2000-06-010.607
2000-07-010.6104
......
2019-12-25ND
2019-12-260.7688
2019-12-270.7639
2019-12-300.761
2019-12-310.7536
\n", "

5217 rows × 1 columns

\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ] }, "metadata": {}, "execution_count": 13 } ] }, { "cell_type": "code", "source": [ "print(forex)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "hK485E4sdHID", "outputId": "9af93ec4-dd05-48ad-89ae-d723bea56430" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " UK_GBP\n", "Date \n", "2000-03-01 0.6146\n", "2000-04-01 0.6109\n", "2000-05-01 0.6092\n", "2000-06-01 0.607\n", "2000-07-01 0.6104\n", "... ...\n", "2019-12-25 ND\n", "2019-12-26 0.7688\n", "2019-12-27 0.7639\n", "2019-12-30 0.761\n", "2019-12-31 0.7536\n", "\n", "[5217 rows x 1 columns]\n" ] } ] }, { "cell_type": "code", "source": [ "forex['UK_GBP'] = pd.to_numeric(forex.UK_GBP, errors='coerce')\n", "forex.dropna(inplace=True)" ], "metadata": { "id": "BNBPeh71dHKT" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "forex" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 455 }, "id": "c1RPyemtdHMM", "outputId": "d0179c26-c4d4-46ee-96a1-163b96800781" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " UK_GBP\n", "Date \n", "2000-03-01 0.6146\n", "2000-04-01 0.6109\n", "2000-05-01 0.6092\n", "2000-06-01 0.6070\n", "2000-07-01 0.6104\n", "... ...\n", "2019-12-24 0.7719\n", "2019-12-26 0.7688\n", "2019-12-27 0.7639\n", "2019-12-30 0.7610\n", "2019-12-31 0.7536\n", "\n", "[5019 rows x 1 columns]" ], "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
UK_GBP
Date
2000-03-010.6146
2000-04-010.6109
2000-05-010.6092
2000-06-010.6070
2000-07-010.6104
......
2019-12-240.7719
2019-12-260.7688
2019-12-270.7639
2019-12-300.7610
2019-12-310.7536
\n", "

5019 rows × 1 columns

\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ] }, "metadata": {}, "execution_count": 16 } ] }, { "cell_type": "code", "source": [ "forex_m = forex.copy()\n", "forex_m['month'] = [i.month for i in forex_m.index]\n", "forex_m['year'] = [i.year for i in forex_m.index]\n", "# group by month and year, get the average\n", "forex_m = forex_m.groupby(['month', 'year']).mean()" ], "metadata": { "id": "yxfkQCcpdHOM" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "forex_m" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 455 }, "id": "1eTL7SNce5TF", "outputId": "f54f9734-281c-418d-e462-fa061412f90f" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " UK_GBP\n", "month year \n", "1 2000 0.630915\n", " 2001 0.685074\n", " 2002 0.689352\n", " 2003 0.614140\n", " 2004 0.546086\n", "... ...\n", "12 2015 0.663960\n", " 2016 0.780327\n", " 2017 0.759000\n", " 2018 0.769280\n", " 2019 0.772333\n", "\n", "[240 rows x 1 columns]" ], "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
UK_GBP
monthyear
120000.630915
20010.685074
20020.689352
20030.614140
20040.546086
.........
1220150.663960
20160.780327
20170.759000
20180.769280
20190.772333
\n", "

240 rows × 1 columns

\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ] }, "metadata": {}, "execution_count": 18 } ] }, { "cell_type": "code", "source": [ "forex_m = forex_m.unstack(level=0)" ], "metadata": { "id": "Gx9SAzJ7e5VV" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "forex_m" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 739 }, "id": "IaA5_RKJe5Zc", "outputId": "e09d677e-1525-47a3-b918-c89c67aefb8e" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " UK_GBP \\\n", "month 1 2 3 4 5 6 7 \n", "year \n", "2000 0.630915 0.638400 0.639108 0.639863 0.667595 0.663165 0.661378 \n", "2001 0.685074 0.690390 0.696638 0.694968 0.697048 0.705068 0.700833 \n", "2002 0.689352 0.686667 0.688343 0.681962 0.678443 0.667885 0.651400 \n", "2003 0.614140 0.622589 0.625791 0.626100 0.611690 0.604370 0.620283 \n", "2004 0.546086 0.538925 0.547405 0.556724 0.555065 0.546767 0.544218 \n", "2005 0.540600 0.535572 0.534068 0.531638 0.547974 0.550095 0.562930 \n", "2006 0.553435 0.561444 0.564688 0.554039 0.535770 0.545663 0.542409 \n", "2007 0.504337 0.505750 0.506364 0.500042 0.503430 0.501164 0.492600 \n", "2008 0.517925 0.520845 0.520786 0.520855 0.525000 0.517626 0.512361 \n", "2009 0.678755 0.671615 0.672759 0.663323 0.642660 0.626819 0.617400 \n", "2010 0.630143 0.647561 0.656695 0.648200 0.670985 0.661325 0.651059 \n", "2011 0.624671 0.618778 0.620682 0.614029 0.619521 0.622709 0.620078 \n", "2012 0.637789 0.631390 0.630459 0.624937 0.633959 0.638187 0.636167 \n", "2013 0.635600 0.647200 0.651990 0.645376 0.653361 0.643200 0.648557 \n", "2014 0.605755 0.602137 0.605935 0.600929 0.600376 0.595470 0.593978 \n", "2015 0.660335 0.652215 0.667152 0.661182 0.648000 0.644362 0.646695 \n", "2016 0.718548 0.720561 0.709833 0.706233 0.706110 0.720627 0.753327 \n", "2017 0.789847 0.791961 0.797642 0.781233 0.773800 0.782125 0.771764 \n", "2018 0.724853 0.728515 0.725348 0.726921 0.745155 0.752714 0.757890 \n", "2019 0.773415 0.775941 0.769443 0.774924 0.784761 0.786755 0.798314 \n", "\n", " \n", "month 8 9 10 11 12 \n", "year \n", "2000 0.671932 0.684605 0.675600 0.685923 0.671915 \n", "2001 0.692905 0.685781 0.694286 0.701740 0.691467 \n", "2002 0.660830 0.650810 0.652243 0.651314 0.642629 \n", "2003 0.625557 0.612370 0.600671 0.599368 0.583365 \n", "2004 0.548177 0.550304 0.548081 0.539531 0.529108 \n", "2005 0.553482 0.554586 0.557675 0.565660 0.563595 \n", "2006 0.532777 0.536865 0.540073 0.529133 0.523000 \n", "2007 0.500326 0.498719 0.492019 0.490700 0.501219 \n", "2008 0.541055 0.548235 0.586648 0.605785 0.625980 \n", "2009 0.619705 0.626748 0.622004 0.617917 0.632600 \n", "2010 0.644657 0.642122 0.637814 0.639106 0.644336 \n", "2011 0.613914 0.632541 0.626775 0.632240 0.636790 \n", "2012 0.633552 0.624310 0.626173 0.629014 0.624460 \n", "2013 0.642474 0.630325 0.627495 0.627471 0.623800 \n", "2014 0.603681 0.610810 0.617387 0.623574 0.627279 \n", "2015 0.647514 0.654787 0.652070 0.656517 0.663960 \n", "2016 0.752196 0.755627 0.789005 0.773390 0.780327 \n", "2017 0.776123 0.759505 0.770081 0.762714 0.759000 \n", "2018 0.767545 0.754033 0.765719 0.768805 0.769280 \n", "2019 0.808048 0.799845 0.779724 0.777790 0.772333 " ], "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
UK_GBP
month123456789101112
year
20000.6309150.6384000.6391080.6398630.6675950.6631650.6613780.6719320.6846050.6756000.6859230.671915
20010.6850740.6903900.6966380.6949680.6970480.7050680.7008330.6929050.6857810.6942860.7017400.691467
20020.6893520.6866670.6883430.6819620.6784430.6678850.6514000.6608300.6508100.6522430.6513140.642629
20030.6141400.6225890.6257910.6261000.6116900.6043700.6202830.6255570.6123700.6006710.5993680.583365
20040.5460860.5389250.5474050.5567240.5550650.5467670.5442180.5481770.5503040.5480810.5395310.529108
20050.5406000.5355720.5340680.5316380.5479740.5500950.5629300.5534820.5545860.5576750.5656600.563595
20060.5534350.5614440.5646880.5540390.5357700.5456630.5424090.5327770.5368650.5400730.5291330.523000
20070.5043370.5057500.5063640.5000420.5034300.5011640.4926000.5003260.4987190.4920190.4907000.501219
20080.5179250.5208450.5207860.5208550.5250000.5176260.5123610.5410550.5482350.5866480.6057850.625980
20090.6787550.6716150.6727590.6633230.6426600.6268190.6174000.6197050.6267480.6220040.6179170.632600
20100.6301430.6475610.6566950.6482000.6709850.6613250.6510590.6446570.6421220.6378140.6391060.644336
20110.6246710.6187780.6206820.6140290.6195210.6227090.6200780.6139140.6325410.6267750.6322400.636790
20120.6377890.6313900.6304590.6249370.6339590.6381870.6361670.6335520.6243100.6261730.6290140.624460
20130.6356000.6472000.6519900.6453760.6533610.6432000.6485570.6424740.6303250.6274950.6274710.623800
20140.6057550.6021370.6059350.6009290.6003760.5954700.5939780.6036810.6108100.6173870.6235740.627279
20150.6603350.6522150.6671520.6611820.6480000.6443620.6466950.6475140.6547870.6520700.6565170.663960
20160.7185480.7205610.7098330.7062330.7061100.7206270.7533270.7521960.7556270.7890050.7733900.780327
20170.7898470.7919610.7976420.7812330.7738000.7821250.7717640.7761230.7595050.7700810.7627140.759000
20180.7248530.7285150.7253480.7269210.7451550.7527140.7578900.7675450.7540330.7657190.7688050.769280
20190.7734150.7759410.7694430.7749240.7847610.7867550.7983140.8080480.7998450.7797240.7777900.772333
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ] }, "metadata": {}, "execution_count": 20 } ] }, { "cell_type": "code", "source": [ "fig, ax = plt.subplots(figsize=(11, 9))\n", "sb.heatmap(forex_m)\n", "plt.show() \n", "\n", "#initial heat map from our data" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 597 }, "id": "e7fydsm3e5bt", "outputId": "a6259064-f82c-4a5b-f367-ab34d09d3c16" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAJECAYAAACMxPmWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdf7Rd5X3f+fdHQvyUMSKOhSzJxkmUYDV2gKpEKU3jmLGDaVZEpl0UZwKyh1adVblGKW4j06w4y5nO0NalrWe8vKIGN6IhdqkhQU2pHUXBdamBQaYqBCmOZBKCsISSYJCwQEi63/njbNkn8r06V+jue472eb9Ye519nr33c77noh9ffffz7CdVhSRJkrprzrADkCRJUrtM+CRJkjrOhE+SJKnjTPgkSZI6zoRPkiSp40z4JEmSOu6MYQfQlv+88H0j/byZczg67BA6YQ4j/b8ZgDe/8cVhhzDQkSOj/2+/iaOjH+O55x8adggndM6CI8MOYaBXX5o77BAGOuv80f/z++Cfnx5/vb9565YM43MP/9lTrf/lMe8N3zOU7zaV0f8TVJIkSafk9PgngCRJ0kyZGP0q7UyzwidJktRxVvgkSdJ4qYlhRzDrrPBJkiR1nBU+SZI0Xias8M2YJEuTPJBke5Ink9zctF+YZHOSnc3rgqY9ST6RZFeSx5Nc3tfX6ub8nUlWtxWzJElSF7V5S/cIcEtVLQdWAmuTLAfWA1uqahmwpXkP8F5gWbOtAT4FvQQR+Cjww8AVwEePJYmSJEknq2qi9W3UtJbwVdWeqnqs2T8A7AAWA6uAjc1pG4Frm/1VwJ3V8zBwQZJFwE8Am6vq+ar6BrAZuLqtuCVJktqW5OokX23ubK6f5Pibmzul/6O583lN37GPNNd9NclPTOfzZmUMX5KLgcuAR4CFVbWnObQXWNjsLwae6btsd9M2VbskSdLJG/IYviRzgU8C76aX1zyaZFNVbe877ReAu6vqU80d0vuBi5v964G/BLwJ+N0k319VJ3y4YOuzdJPMB+4B1lXV/v5jVVVwGqyNJUmSNHOuAHZV1VNV9SrwWXp3OvsVcH6z/3rg683+KuCzVXWoqv4I2NX0d0KtJnxJ5tFL9u6qqnub5ueaW7U0r/ua9meBpX2XL2napmqf7PPWJNmaZOvnX941c19EkiR1R020vvXnJM22pi+C6dy9/CXgZ5Psplfd+wcnce13aHOWboA7gB1VdXvfoU3AsZm2q4H7+tpvbGbrrgRebG79fgF4T5IFzWSN9zRt36GqNlTViqpacfU539fCt5IkSRqsPydptg0n2cX7gF+rqiXANcC/T/Ka87Y2x/BdCdwAPJFkW9N2K3AbcHeSm4CngeuaY/fT+0K7gIPABwCq6vkkvww82pz3sap6vsW4JUlSlw1/Ld3p3L28iWaSalU9lORs4A3TvPY7tJbwVdWDQKY4fNUk5xewdoq+Pg18euaikyRJGppHgWVJ3kovWbse+JnjzvkTevnSryV5G3A28Kf07oj+RpLb6U3aWAb8f4M+0JU2JEnSeBnyc/Kq6kiSD9IbojYX+HRVPZnkY8DWqtoE3AL82yQ/R28Cx/ub4tiTSe4GttN75vHaQTN0wYRPkiRp1lXV/fSGs/W3/WLf/nZ6w+Mmu/afAv/0ZD7PhE+SJI0X19KVJElS11jhkyRJY2UU17ptmwmfJEkaL97SlSRJUtdY4ZMkSePFW7rdccU7vj74pCGae+6wIxhszrmjXwCuIzXsEAbKGVM9f3x0zJk/b9ghDFSvHh52CANNvDT0p/ef0NGXhh3BYOcuGf2/iE+H3y/zzx793y+aXZ1N+CRJkiY1/KXVZt3ol3AkSZJ0SqzwSZKk8TKGY/is8EmSJHWcFT5JkjRefA6fJEmSusYKnyRJGi+O4Zs5SZYmeSDJ9iRPJrm5ab8wyeYkO5vXBU17knwiya4kjye5vK+vzyd5IclvtxWvJElSV7V5S/cIcEtVLQdWAmuTLAfWA1uqahmwpXkP8F5gWbOtAT7V19e/AG5oMVZJkjQuJiba30ZMawlfVe2pqsea/QPADmAxsArY2Jy2Ebi22V8F3Fk9DwMXJFnUXL8FONBWrJIkSV02K2P4klwMXAY8Aiysqj3Nob3AwmZ/MfBM32W7m7Y9SJIkzZAqV9qYcUnmA/cA66pqf/+xqipg9BdDlSRJOo21mvAlmUcv2burqu5tmp87dqu2ed3XtD8LLO27fEnTdjKftybJ1iRb79xtYVCSJE2iJtrfRkybs3QD3AHsqKrb+w5tAlY3+6uB+/rab2xm664EXuy79TstVbWhqlZU1Yoblyw6xW8gSZLUDW2O4buS3szaJ5Jsa9puBW4D7k5yE/A0cF1z7H7gGmAXcBD4wLGOkvw34BJgfpLdwE1V9YUWY5ckSV01grNo29ZawldVDwKZ4vBVk5xfwNop+vrRGQxNkiRprLjShiRJGi8jOMaubSZ8kiRpvEz4WBZJkiR1jBU+SZI0Xsbwlq4VPkmSpI6zwidJksbLGD6WxQqfJElSx3W2wjfn7GFHcGITrw47gsHqyOj/C+jIwWFHMNjE4akeRzk6Xn5x2BEM9sIL84cdwkDnnnN42CGc0MGX5w07hIEy+r9dqNNgBfhvHh79/9cAQ3vIrmP4JEmS1DWdrfBJkiRNyjF8kiRJ6horfJIkabxY4ZMkSVLXWOGTJEljpcq1dCVJktQxrSV8SZYmeSDJ9iRPJrm5ab8wyeYkO5vXBU17knwiya4kjye5vGm/NMlDTR+PJ/nbbcUsSZLGwMRE+9uIabPCdwS4paqWAyuBtUmWA+uBLVW1DNjSvAd4L7Cs2dYAn2raDwI3VtVfAq4G/nWSC1qMW5IkqVNaG8NXVXuAPc3+gSQ7gMXAKuCdzWkbgS8CP9+031lVBTyc5IIki6rqD/v6/HqSfcB3Ay+0FbskSeowV9poR5KLgcuAR4CFTTIIsBdY2OwvBp7pu2x309bfzxXAmcDXWgxXkiSpU1qfpZtkPnAPsK6q9qdvocSqqiTTWpUwySLg3wOrq8YwNZckSTNjBMfYta3VCl+SefSSvbuq6t6m+bkmeTuWxO1r2p8FlvZdvqRpI8n5wH8G/klVPXyCz1uTZGuSrRuf3jPVaZIkSWOlzVm6Ae4AdlTV7X2HNgGrm/3VwH197Tc2s3VXAi9W1Z4kZwK/SW983+dO9JlVtaGqVlTVitVvWTSj30eSJHVETbS/jZg2b+leCdwAPJFkW9N2K3AbcHeSm4CngeuaY/cD1wC76M3M/UDTfh3w14HvSvL+pu39VXWsT0mSpOkbw1u6bc7SfRDIFIevmuT8AtZO0v7rwK/PbHSSJEnjw6XVJEnSeBnBW65tc2k1SZKkjrPCJ0mSxssYjuGzwidJktRxVvgkSdJ4scInSZKkrrHCJ0mSxouzdCVJktQ1na3w/db/WDr4pCGaf7SGHcJAc4cdwDTMqdH/Of7pGaP/76qDox8ibzw67AgGO+vAaP96/MbcqZ6FPzq+cRr8WpwY/R8j+84+MuwQpuVHh/XBjuGTJElS13S2widJkjQpx/BJkiSpa6zwSZKk8eIYPkmSJHWNFT5JkjReHMMnSZKkrmkt4UuyNMkDSbYneTLJzU37hUk2J9nZvC5o2pPkE0l2JXk8yeVN+1uSPJZkW9PP/9FWzJIkaQxMTLS/jZg2K3xHgFuqajmwElibZDmwHthSVcuALc17gPcCy5ptDfCppn0P8CNVdSnww8D6JG9qMW5JkqROaW0MX1XtoZesUVUHkuwAFgOrgHc2p20Evgj8fNN+Z1UV8HCSC5Isavo55iy8DS1Jkk7FCFbg2jYryVOSi4HLgEeAhX1J3F5gYbO/GHim77LdTdux28OPN8f/WVV9fRbCliRJ6oTWE74k84F7gHVVtb//WFPNG7j4ZFU9U1XvAL4PWJ1k4aBrJEmSJlXV/jZiWk34ksyjl+zdVVX3Ns3PJVnUHF8E7GvanwWW9l2+pGn7lqay9/tMsd5ykjVJtibZ+l+/uXPmvogkSeqOEZi0keTqJF9tJquun+T4v2omrG5L8odJXug7drTv2KbpfOU2Z+kGuAPYUVW39x3aBKxu9lcD9/W139jM1l0JvFhVe5IsSXJO0+cC4K8BX53sM6tqQ1WtqKoVP3besha+lSRJ0qlJMhf4JL0Jq8uB9zUTW7+lqn6uqi5tJq3+P8C9fYdfPnasqn5qOp/Z5oOXrwRuAJ5Isq1puxW4Dbg7yU3A08B1zbH7gWuAXcBB4ANN+9uAf5mkgAAfr6onWoxbkiR12fAnbVwB7KqqpwCSfJbe5NXtU5z/PuCjp/KBbc7SfZBegjaZqyY5v4C1k7RvBt4xs9FJkiS1J8kaeo+ZO2ZDVW1o9iebqPrDU/TzFuCtwO/1NZ+dZCu9R+DdVlW/NSgel1aTJEnjZRaWVmuSuw0DTxzseuBzVXW0r+0tVfVsku8Bfi/JE1X1tRN14jPtJEmSZtfAiap9rgc+099QVc82r0/Re57xZYM+0IRPkiSNl+HP0n0UWJbkrUnOpJfUfcds2ySXAAuAh/raFiQ5q9l/A705E1ON/fsWb+lKkiTNoqo6kuSDwBeAucCnq+rJJB8DtlbVseTveuCzzTyHY94G/EqSCXqFu9uqyoRPkiTpLxiBByNX1f30nlDS3/aLx73/pUmu+zLw9pP9PG/pSpIkdZwVPkmSNF6G/xy+WdfZhO83vrVi22g6OOfwsEMY6Lw5Zw47hIFel9GP8cjg5aKH7uUa/V+PR+eM/h/Q8zJ32CGc0NwpH406Oo5OjP7vl29OvDrsEAY6cPTlYYegEdPZhE+SJGlSY1jhcwyfJElSx1nhkyRJ42UWVtoYNVb4JEmSOs4KnyRJGit1GkwOmmlW+CRJkjrOCp8kSRovztKdOUmWJnkgyfYkTya5uWm/MMnmJDub1wVNe5J8IsmuJI8nufy4/s5PsjvJ/9tWzJIkSV3U5i3dI8AtVbUcWAmsTbIcWA9sqaplwJbmPcB7gWXNtgb41HH9/TLwpRbjlSRJ46Am2t9GTGsJX1XtqarHmv0DwA5gMbAK2NicthG4ttlfBdxZPQ8DFyRZBJDkLwMLgd9pK15JkjQmJqr9bcTMyqSNJBcDlwGPAAurak9zaC+9RA56yeAzfZftBhYnmQP8S+DDsxGrJElS17Q+aSPJfOAeYF1V7U++vZZjVVWSQWnw3wfur6rd/ddKkiS9JmM4aaPVhC/JPHrJ3l1VdW/T/FySRVW1p7llu69pfxZY2nf5kqbtR4AfTfL3gfnAmUleqqr1HCfJGnrj//iBC97G4vOWtPK9JEmSTidtztINcAewo6pu7zu0CVjd7K8G7utrv7GZrbsSeLEZB/i/VdWbq+pierd175ws2QOoqg1VtaKqVpjsSZKkSU1MtL+NmDYrfFcCNwBPJNnWtN0K3AbcneQm4GnguubY/cA1wC7gIPCBFmOTJEkaG60lfFX1IDDVoLurJjm/gLUD+vw14NdONTZJkjTGavRm0bbNpdUkSZI6zqXVJEnSeBnBMXZts8InSZLUcVb4JEnSeBnBlTDaZoVPkiSp46zwSZKk8VKO4ZMkSVLHWOGTJEnjZQzH8HU24Xu1jg47hBM6ehqUk184cnDYIQz0PN8cdggDveGM+cMOYaC5p0Gx/7vnnjPsEAY6UIeHHcIJZcpn4Y+OczL6vxbfOOfcYYcw0NEzzh92CBoxnU34JEmSJlM+h0+SJEldY4VPkiSNlzEcw2eFT5IkqeOs8EmSpPFyGkycnGkmfJIkabx4S1eSJEld01rCl2RpkgeSbE/yZJKbm/YLk2xOsrN5XdC0J8knkuxK8niSy/v6OppkW7NtaitmSZI0BiYm2t9GTJsVviPALVW1HFgJrE2yHFgPbKmqZcCW5j3Ae4FlzbYG+FRfXy9X1aXN9lMtxixJktQ5rSV8VbWnqh5r9g8AO4DFwCpgY3PaRuDaZn8VcGf1PAxckGRRW/FJkqQxNVHtbyNmVsbwJbkYuAx4BFhYVXuaQ3uBhc3+YuCZvst2N20AZyfZmuThJNciSZKkaWt9lm6S+cA9wLqq2p98ey3Hqqok00mD31JVzyb5HuD3kjxRVV+b5LPW0LsdzPe9/ge46LzFx58iSZLG3Rg+lqXVCl+SefSSvbuq6t6m+bljt2qb131N+7PA0r7LlzRtVNWx16eAL9KrFn6HqtpQVSuqaoXJniRJUk+bs3QD3AHsqKrb+w5tAlY3+6uB+/rab2xm664EXqyqPUkWJDmr6fMNwJXA9rbiliRJHTeGY/javKV7JXAD8ESSbU3brcBtwN1JbgKeBq5rjt0PXAPsAg4CH2ja3wb8SpIJegnqbVVlwidJkjRNrSV8VfUgkCkOXzXJ+QWsnaT9y8DbZzY6SZI0rmoEn5PXNlfakCRJ6jjX0pUkSeNlBMfYtc0KnyRJUsdZ4ZMkSePFCp8kSZK6xgqfJEkaL660IUmSpK7pbIXv9XPPHnYIJ3Re5g07hIHmTvkYxdFxoA4PO4SBnjtyYNghDPS6OWcNO4SBnj0Nfo4vTRwadggndGZG/4/8uRn9OsRLR18ZdggDHZoY/T8bh8oxfJIkSeqa0f/nniRJ0gyqMazwmfBJkqTxMoYJn7d0JUmSOs4KnyRJGi8TPpZFkiRJHWOFT5IkjRfH8M2cJEuTPJBke5Ink9zctF+YZHOSnc3rgqY9ST6RZFeSx5Nc3tfXm5P8TpIdTX8XtxW3JElS17R5S/cIcEtVLQdWAmuTLAfWA1uqahmwpXkP8F5gWbOtAT7V19edwL+oqrcBVwD7WoxbkiR12US1v42Y1hK+qtpTVY81+weAHcBiYBWwsTltI3Bts78KuLN6HgYuSLKoSRLPqKrNTV8vVdXBtuKWJEnqmlkZw9fcgr0MeARYWFV7mkN7gYXN/mLgmb7LdjdtS4AXktwLvBX4XWB9VR1tP3JJktQ1VaNXgWtb67N0k8wH7gHWVdX+/mPV+4kP+qmfAfwo8GHgrwDfA7x/5iOVJEnqplYTviTz6CV7d1XVvU3zc0kWNccX8e3xeM8CS/suX9K07Qa2VdVTVXUE+C3gciaRZE2SrUm2/slLfzLzX0iSJJ3+HMM3c5IEuAPYUVW39x3aBKxu9lcD9/W139jM1l0JvNjc+n2U3ni+727OexewfbLPrKoNVbWiqla8ef6bZ/gbSZIknZ7aHMN3JXAD8ESSbU3brcBtwN1JbgKeBq5rjt0PXAPsAg4CHwCoqqNJPgxsaZLIrwD/tsW4JUlSl41gBa5trSV8VfUgkCkOXzXJ+QWsnaKvzcA7Zi46SZKk8eHSapIkaazURLW+DZLk6iRfbRacWD/J8X+VZFuz/WGSF/qOrW4WsNiZZPXx107GpdUkSZJmUZK5wCeBd9ObnPpokk1V9a05ClX1c33n/wN6j7cjyYXAR4EV9J508pXm2m+c6DOt8EmSpPEy/Fm6VwC7mieQvAp8lt4CFFN5H/CZZv8ngM1V9XyT5G0Grh70gSZ8kiRJs2uqxSa+Q5K30Ft44vdO9tp+3tKVJEnjZaL9j0iyBljT17Shqja8hq6uBz53qiuMmfBJkiTNsCa5myrBm2qxiclcz198ismzwDuPu/aLg+Lxlq4kSRorIzBL91FgWZK3JjmTXlK36fiTklwCLAAe6mv+AvCeJAuSLADe07SdkBU+SZKkWVRVR5J8kF6iNhf4dFU9meRjwNaqOpb8XQ98tnlW8bFrn0/yy/SSRoCPVdXzgz4zfX10yoWvWzbSX2xOpnomtU7GK0cODzuEgebNmTvsEAY6WrMwoOUUvXz40LBDGOisM84cdggnVIz0H4sAvHoa/J4e/Z8inDvvrGGHMC37v/nUUP4yfOF9P976/8YLPvPASP1Fb4VPkiSNl9H/N+6McwyfJElSx1nhkyRJY2U6S591jRU+SZKkjrPCJ0mSxotj+CRJktQ1VvgkSdJYcQzfDEqyNMkDSbYneTLJzU37hUk2J9nZvC5o2pPkE0l2JXk8yeVN+48n2da3vZLk2rbiliRJ6po2b+keAW6pquXASmBtkuXAemBLVS0DtjTvAd4LLGu2NcCnAKrqgaq6tKouBd4FHAR+p8W4JUlSl03MwjZiWkv4qmpPVT3W7B8AdgCLgVXAxua0jcCxat0q4M7qeRi4IMmi47r9W8B/qaqDbcUtSZLUNbMyhi/JxcBlwCPAwqra0xzaCyxs9hcDz/Rdtrtp29PXdj1we5uxSpKkbjsNVpOcca3P0k0yH7gHWFdV+/uPNYsBT2vkZFPtezu9hYanOmdNkq1Jth46/OIpRC1JktQdrSZ8SebRS/buqqp7m+bnjt2qbV73Ne3PAkv7Ll/StB1zHfCbVTXlytpVtaGqVlTVirPmvX6mvoYkSeoSx/DNnCQB7gB2VFX/bdhNwOpmfzVwX1/7jc1s3ZXAi323fgHeB3ymrXglSZK6qs0xfFcCNwBPJNnWtN0K3AbcneQm4Gl6lTuA+4FrgF30ZuJ+4FhHzRjApcB/bTFeSZI0BsZxDF9rCV9VPQhkisNXTXJ+AWun6OuP6U3gkCRJ0klypQ1JkjRexrDC51q6kiRJHWeFT5IkjZVxHMNnhU+SJKnjrPBJkqSxMo4VPhM+SZI0VsYx4fOWriRJUsd1tsL3+jPPHXYIJ3TGnM7+6GfXWcMOYLAzMnfYIQz0ytFDww5hoFfPPGfYIQz0PedeNOwQTuicOfOGHcJAl81dMOwQBnrTxOj/nl766hiWsE5GTfWY4O6ywidJktRxlpkkSdJYcQyfJEmSOscKnyRJGis14Rg+SZIkdYwVPkmSNFYcwydJkqTOaS3hS7I0yQNJtid5MsnNTfuFSTYn2dm8Lmjak+QTSXYleTzJ5X19/fOmjx3NOeN3812SJM2IqrS+jZo2K3xHgFuqajmwElibZDmwHthSVcuALc17gPcCy5ptDfApgCR/FbgSeAfwg8BfAX6sxbglSZI6pbUxfFW1B9jT7B9IsgNYDKwC3tmcthH4IvDzTfudVVXAw0kuSLIIKOBs4EwgwDzgubbiliRJ3eYYvpYkuRi4DHgEWNgkgwB7gYXN/mLgmb7LdgOLq+oh4AF6yeMe4AtVtWMWwpYkSeqE1mfpJpkP3AOsq6r9/cPvqqqS1IDrvw94G7Ckadqc5Eer6r+1FbMkSeoun8M3w5LMo5fs3VVV9zbNzzW3amle9zXtzwJL+y5f0rT9NPBwVb1UVS8B/wX4kSk+b02SrUm2Hnjlz2f+C0mSJJ2G2pylG+AOYEdV3d53aBOwutlfDdzX135jM1t3JfBic+v3T4AfS3JGk0D+GDDpLd2q2lBVK6pqxevO/q4WvpUkSTrdVbW/jZo2b+leCdwAPJFkW9N2K3AbcHeSm4CngeuaY/cD1wC7gIPAB5r2zwHvAp6gN4Hj81X1n1qMW5IkqVPanKX7IL1ZtZO5apLzC1g7SftR4O/NbHSSJGlcOYZPkiRJneNaupIkaayMY4XPhE+SJI2VUZxU0TZv6UqSJHWcFT5JkjRWxvGWrhU+SZKkjrPCJ0mSxkqVFT5JkiR1TGcrfF9+24XDDuGEXj04d9ghDJQ5oz+N6ZVvzht2CAM99435ww5hoD+dc+awQxjopbmj/+/TuSP+W+acwxPDDmGgQ0dHv/JyePRD5Owa/f/XwzSOP57R/xNUkiRJp6SzFT5JkqTJTDiGT5IkSV1jhU+SJI0VZ+lKkiSpc6zwSZKkseJKG5IkSeqc1hK+JEuTPJBke5Ink9zctF+YZHOSnc3rgqY9ST6RZFeSx5Nc3tfXP0vy+832t9uKWZIkdV9V+9uoabPCdwS4paqWAyuBtUmWA+uBLVW1DNjSvAd4L7Cs2dYAnwJI8jeAy4FLgR8GPpzk/BbjliRJ6pTWEr6q2lNVjzX7B4AdwGJgFbCxOW0jcG2zvwq4s3oeBi5IsghYDnypqo5U1TeBx4Gr24pbkiR1W02k9W3UzMoYviQXA5cBjwALq2pPc2gvsLDZXww803fZ7qbtfwJXJzk3yRuAHweWzkLYkiRJndB6wpdkPnAPsK6q9vcfq6oCTninu6p+B7gf+DLwGeAh4OgUn7UmydYkW39979dnInxJktQxE5XWt1HTasKXZB69ZO+uqrq3aX6uuVVL87qvaX+Wv1i5W9K0UVX/tKourap3AwH+cLLPq6oNVbWiqlb87EVvmvkvJEmSdBpqc5ZugDuAHVV1e9+hTcDqZn81cF9f+43NbN2VwItVtSfJ3CTf1fT5DuAdwO+0FbckSeq2qrS+jZoTPng5yRxgZVV9+TX0fSVwA/BEkm1N263AbcDdSW4Cngaua47dD1wD7AIOAh9o2ucB/62XP7If+NmqOvIa4pEkSRrJx6a07YQJX1VNJPkkvQkXJ6WqHqR3+3UyV01yfgFrJ2l/hd5MXUmSJL0G01labUuSvwnc2yRlkiRJp61RnFTRtumM4ft7wH8EDiXZn+RAkv2DLpIkSdJoGFjhq6rXzUYgkiRJs2EUJ1W0bVqzdJMsSHJFkr9+bGs7MEmSpK5KcnWSrybZlWT9FOdcl2R7kieT/EZf+9Ek25pt03Q+b2CFL8nfAW6m91y8bfTWxX0IeNd0PkCSJGmUDHtGQpK5wCeBd9NbWezRJJuqanvfOcuAjwBXVtU3kryxr4uXq+rSk/nM6VT4bgb+CvB0Vf04vRm7L5zMh0iSJOlbrgB2VdVTVfUq8Flg1XHn/F3gk1X1DYCq2scpmE7C90rzaBSSnFVVfwD8wKl8qCRJ0rCMwNJqi4Fn+t7vbtr6fT/w/Un+e5KHk1zdd+zsZinZh5NcO53vPJ3HsuxOcgHwW8DmJN+g98DkkbZ110XDDuGE3jjn0LBDGOjcsw4PO4SBXnl1Or+Eh+vNbxr9gvh3v3TmsEMY6ODL84YdwkCvHBntX49Hp3w06uh49ejcYYcwUE68BPxIOCsTww5h7CVZA6zpa9pQVRtOooszgGXAO+kNq/tSkrdX1QvAW6rq2STfA/xekieq6muDOjuhqvrpZveXkjwAvB74/EkELEmSNDJmY5Zuk9xNleA9Cyzte7+kaeu3G3ikqg4Df5TkD+klgHYD1VsAACAASURBVI9W1bPNZzyV5Iv0htudMOGb7izdv5bkA1X1X+lN2Di+7ChJkqTpeRRYluStSc4ErgeOn237W/SqeyR5A71bvE81T045q6/9SmA7A0xnlu5HgRX0xu39O3pr2/568wGSJEmnlWGvtFFVR5J8EPgCMBf4dFU9meRjwNaq2tQce0+S7cBR4B9V1Z8n+avArySZoFe4u61/du9UpjPg5KfplQofa4L8ehIfxixJkvQaVdX9wP3Htf1i334B/7DZ+s/5MvD2k/286SR8r1ZVJSmAJOed7IdIkiSNitGfdjPzpjOG7+4kvwJckOTvAr8L/Nt2w5IkSdJMmVaFj16St5/eOL5frKrNrUYlSZLUkmGP4RuG6VT43gj838Bb6CV+vzudjpMsTfJA3xpwNzftFybZnGRn87qgab8kyUNJDiX58HF9DVxvTpIkSZMbmPBV1S/Qe+7LHcD7gZ1J/q8k3zvg0iPALVW1nN76u2uTLAfWA1uqahmwpXkP8DzwIeDj/Z30rTf3XmA58L6mH0mSpJNWlda3UTOt5/A1M0X2NtsRYAHwuST//ATX7KmqYzN7DwA76D2/bxWwsTltI3Btc86+qnoUOH55h+msNydJkqQpTOc5fDcDNwJ/BvwqvefAHE4yB9gJ/ONp9HExvUe7PAIsrKo9zaG9wMIBl0+23twPD/pMSZKkyYzjwnPTmbRxIfC/VtVfWD+3qiaS/OSgi5PMB+4B1lXV/uTbZc7+x71IkiSpHdMZw/fR45O9vmM7TnRtknn0kr27qurepvm5JIua44uAfQNCmM56c8c+b02SrUm2fv7grgHdSpKkcVSk9W3UTGsM32uRXinvDmBHVd3ed2gTsLrZXw3cN6Cr6aw3B/QWKq6qFVW14upzv+/UvoAkSeqkiWp/GzXTuaX7Wl0J3AA8kWRb03YrcBu9hznfBDwNXAeQ5CJgK3A+MJFkHbC8uQ38HevNtRi3JElSp7SW8FXVgzBlTfOqSc7fS+927WR9fcd6c5IkSa/FxAjecm1ba7d0JUmSNBravKUrSZI0ckZxUkXbrPBJkiR1nBU+SZI0VsbxwctW+CRJkjrOCp8kSRorjuGTJElS51jhkyRJY2Ucx/B1NuE7lNEuXu7k3GGHMFAODTuCwV4Z7f/NAJy197xhhzDQvBrBdYCOcySjfwvmlbnDjuDEFh0+MuwQBnplxP/sBji7Rj9dOFqj//tFs6uzCZ8kSdJkRj9ln3mj/08pSZIknRIrfJIkaaw4S1eSJEmdY4VPkiSNlYnxK/BZ4ZMkSeo6K3ySJGmsTDiGb+YkWZrkgSTbkzyZ5Oam/cIkm5PsbF4XNO2XJHkoyaEkHz6ur08n2Zfk99uKV5IkqavavKV7BLilqpYDK4G1SZYD64EtVbUM2NK8B3ge+BDw8Un6+jXg6hZjlSRJY6JmYRs1rSV8VbWnqh5r9g8AO4DFwCpgY3PaRuDa5px9VfUocHiSvr5ELyGUJEk6JROzsI2aWZm0keRi4DLgEWBhVe1pDu0FFs5GDJIkSeOq9YQvyXzgHmBdVe3vP1ZVM1r5TLImydYkWzcf3DVT3UqSpA6ZSFrfRk2rCV+SefSSvbuq6t6m+bkki5rji4B9M/V5VbWhqlZU1Yp3n/t9M9WtJEnSaa3NWboB7gB2VNXtfYc2Aaub/dXAfW3FIEmSdDwnbcysK4EbgHcl2dZs1wC3Ae9OshP4X5r3JLkoyW7gHwK/kGR3kvObY58BHgJ+oGm/qcW4JUmSOqW1By9X1YMw5ZMNr5rk/L3Akin6et8MhiZJksbYKM6ibZtLq0mSJHWcS6tJkqSxMjF6k2hbZ4VPkiSp46zwSZKksTIx5RSD7rLCJ0mS1HFW+CRJ0lgZxefktc0KnyRJUsd1tsK3YOLIsEM4oVdOg1z7dJjFdFaN/s9x/sTRYYcw0LzT4N+7p8Nzs44eHe3fNAfmzB12CAPNrdH/tXg4o//nzjdHcC3XUXI6/P0200b/V60kSZJOSWcrfJIkSZM5He4YzDQrfJIkSR1nhU+SJI2V0R8pOvOs8EmSJHWcFT5JkjRWxnGWrgmfJEkaK07amEFJliZ5IMn2JE8mublpvzDJ5iQ7m9cFTfslSR5KcijJhwf1I0mSpOlpcwzfEeCWqloOrATWJlkOrAe2VNUyYEvzHuB54EPAx6fZjyRJ0kmbmIVt1LSW8FXVnqp6rNk/AOwAFgOrgI3NaRuBa5tz9lXVo8DhafYjSZKkaZiVMXxJLgYuAx4BFlbVnubQXmDha+xHkiTppNUYTtpo/bEsSeYD9wDrqmp//7GqKqb5OJwT9SNJkqSptZrwJZlHL0m7q6rubZqfS7KoOb4I2Pca+5nsvDVJtibZ+tsvf+3Uv4AkSeocx/DNoCQB7gB2VNXtfYc2Aaub/dXAfa+xn+9QVRuqakVVrfjJc773tQcvSZLUIW2O4bsSuAF4Ism2pu1W4Dbg7iQ3AU8D1wEkuQjYCpwPTCRZBywH3jFZP1V1f4uxS5KkjhrFClzbWkv4qupBYKphkVdNcv5eYMkk556oH0mSJA3gShuSJGmsTGu2aMe0PktXkiRJw2WFT5IkjZWJMRwoZoVPkiSp46zwSZKksTKOs3St8EmSJHWcFT5JkjRWxrHC19mE7+iIP7rvDXMPDTuEgc484+iwQxjo5cOj/0v43LMPDzuEgb556MxhhzDQmXNH/9fjK0fnDjuEEzqvjvAC84YdxgmN+p/dMJ6P9NDMS3I18G+AucCvVtVtk5xzHfBL9H7Z/c+q+pmmfTXwC81p/2dVbRz0eaP/t6UkaUaMerInzZZhJ+1J5gKfBN4N7AYeTbKpqrb3nbMM+AhwZVV9I8kbm/YLgY8CK+h9la80137jRJ/pGD5JkqTZdQWwq6qeqqpXgc8Cq4475+8CnzyWyFXVvqb9J4DNVfV8c2wzcPWgD7TCJ0mSxsoIPIdvMfBM3/vdwA8fd873AyT57/Ru+/5SVX1+imsXD/pAEz5JkjRWZmPSRpI1wJq+pg1VteEkujgDWAa8E1gCfCnJ219rPCZ8kiRJM6xJ7qZK8J4Flva9X9K09dsNPFJVh4E/SvKH9BLAZ+klgf3XfnFQPI7hkyRJY6VmYRvgUWBZkrcmORO4Hth03Dm/RZPYJXkDvVu8TwFfAN6TZEGSBcB7mrYTssInSZI0i6rqSJIP0kvU5gKfrqonk3wM2FpVm/h2YrcdOAr8o6r6c4Akv0wvaQT4WFU9P+gzW0v4kiwF7gQW0kt2N1TVv2mmE/8H4GLgj4HrmunGlwD/Drgc+CdV9fGmn7OBLwFnNfF+rqo+2lbckiSp2yaG/mAWqKr7gfuPa/vFvv0C/mGzHX/tp4FPn8zntXlL9whwS1UtB1YCa5MsB9YDW6pqGbCleQ/wPPAh4OPH9XMIeFdV/RBwKXB1kpUtxi1JktQprSV8VbWnqh5r9g8AO+hNG14FHHsi9Ebg2uacfVX1KHD4uH6qql5q3s5rtuGn5pIk6bQ0MQvbqJmVSRtJLgYuAx4BFlbVnubQXnq3fAddPzfJNmAfvYcNPtJSqJIkSZ3TesKXZD5wD7Cuqvb3H2vuTw+s1lXV0aq6lN7U4yuS/GArwUqSpM4bgVm6s67VhC/JPHrJ3l1VdW/T/FySRc3xRfSqdtNSVS8ADzDFEiJJ1iTZmmTr/S9/7dSClyRJ6ojWEr4kAe4AdlTV7X2HNgGrm/3VwH0D+vnuJBc0++fQW2j4DyY7t6o2VNWKqlpxzTnfe6pfQZIkddA4juFr8zl8VwI3AE804+8AbgVuA+5OchPwNHAdQJKLgK3A+cBEknXAcmARsDHJXHoJ6t1V9dstxi1JktQprSV8VfUgMNXyxFdNcv5eemP0jvc4vQkfkiRJp2xiquykw1xaTZIkqeNcWk2SJI2VUVhpY7ZZ4ZMkSeo4K3ySJGmsjF99zwqfJElS51nhkyRJY2UUn5PXNit8kiRJHWeFT5IkjZVxnKXb2YRvx1mj/dUOnwY/+nnDDmAaDp057Aim45xhBzDQobNG/w+/0Y8QXjd3tJ/mes5p8EM89zS413bOxOj/IOfV6Meo2TX6WYckSdIMGsd02IRPkiSNldOgkDzjnLQhSZLUcVb4JEnSWBnHSRtW+CRJkjrOCp8kSRor41ffs8InSZLUea0lfEmWJnkgyfYkTya5uWm/MMnmJDub1wVN+yVJHkpyKMmHJ+lvbpL/keS324pZkiR138QsbKOmzQrfEeCWqloOrATWJlkOrAe2VNUyYEvzHuB54EPAx6fo72ZgR4vxSpIkdVJrCV9V7amqx5r9A/SStcXAKmBjc9pG4NrmnH1V9Shw+Pi+kiwB/gbwq23FK0mSxkPNwn+jZlbG8CW5GLgMeARYWFV7mkN7gYXT6OJfA/+Y0aySSpIkjbTWE74k84F7gHVVtb//WFUVAybLJPlJYF9VfaW9KCVJ0rhwDN8MSzKPXrJ3V1Xd2zQ/l2RRc3wRsG9AN1cCP5Xkj4HPAu9K8utTfN6aJFuTbP3ySztn5DtIkiSd7tqcpRvgDmBHVd3ed2gTsLrZXw3cd6J+quojVbWkqi4Grgd+r6p+dopzN1TViqpa8VfnLzvl7yBJkrpngmp9GzVtPnj5SuAG4Ikk25q2W4HbgLuT3AQ8DVwHkOQiYCtwPjCRZB2w/PjbwJIkSTo5rSV8VfUgkCkOXzXJ+XuBJQP6/CLwxVONTZIkja/Rq7+1z5U2JEmSOs61dCVJ0lgZxTF2bbPCJ0mS1HFW+CRJ0lgZxefktc0KnyRJUsdZ4ZMkSWNlFNe6bZsJnyRJGivjeEu3swnfe856ftghnNArh+YNO4SBXv/6l4cdwkCvHhr9X8IvvnT2sEMY6MjE6I/umDtn9P+InurBo6PinDMPDzuEgY5m9H8tnnHm6P9aPOvs0f9/rdk1+n9bSpIkzaBxvKU7+v+UkiRJ0imxwidJksbK6N+Un3lW+CRJkjrOCp8kSRorE+UYPkmSJHWMFT5JkjRWxq++12KFL8nSJA8k2Z7kySQ3N+0XJtmcZGfzuqBpvyTJQ0kOJfnwcX39cZInkmxLsrWtmCVJkrqozQrfEeCWqnosyeuAryTZDLwf2FJVtyVZD6wHfh54HvgQcO0U/f14Vf1Zi/FKkqQxMDGGNb7WKnxVtaeqHmv2DwA7gMXAKmBjc9pGmgSvqvZV1aOAjweXJEmaQbMyaSPJxcBlwCPAwqra0xzaCyycRhcF/E6SryRZ00qQkiRpLNQs/DdqWp+0kWQ+cA+wrqr2J99ebbKqKsl0fip/raqeTfJGYHOSP6iqL7UUsiRJUqe0WuFLMo9esndXVd3bND+XZFFzfBGwb1A/VfVs87oP+E3giik+b02SrUm23v3in8zEV5AkSR0zMQvbqGlzlm6AO4AdVXV736FNwOpmfzVw34B+zmsmfZDkPOA9wO9Pdm5VbaiqFVW14rrXv/lUv4IkSVIntHlL90rgBuCJJNuatluB24C7k9wEPA1cB5DkImArcD4wkWQdsBx4A/Cbza3gM4DfqKrPtxi3JEnqsHGcpdtawldVDwKZ4vBVk5y/F1gyybn7gR+awdAkSZLGiittSJKksTKKs2jb5lq6kiRJHWeFT5IkjZVRnEXbNhM+SZI0Vqq8pStJkqSOscInSZLGyjg+lsUKnyRJUsdZ4ZMkSWPFSRsdsvRvnTPsEE4oZ8wddggDTXzj8LBDGKgOHx12CAO9iW8OO4SB5r7x9cMOYaA5P/j2YYcw2MSI/zUyb96wIxhoztt+ZNghDFTPf33YIQx29rnDjkAjprMJnyRJ0mR88LIkSZI6x4RPkiSNlQmq9W2QJFcn+WqSXUnWT3L8/Un+NMm2Zvs7fceO9rVvms539pauJEnSLEoyF/gk8G5gN/Bokk1Vtf24U/9DVX1wki5erqpLT+YzTfgkSdJYGYGVNq4AdlXVUwBJPgusAo5P+GaMt3QlSZJm12Lgmb73u5u24/3NJI8n+VySpX3tZyfZmuThJNdO5wNN+CRJ0liZmIUtyZomKTu2rTnJMP8TcHFVvQPYDGzsO/aWqloB/Azwr5N876DOWkv4kixN8kCS7UmeTHJz035hks1JdjavC5r2S5I8lORQkg8f19cFTXb7B0l2JBn9BzVJkqSxVVUbqmpF37ah7/CzQH/FbknT1n/9n1fVoebtrwJ/ue/Ys83rU8AXgcsGxdNmhe8IcEtVLQdWAmuTLAfWA1uqahmwpXkP8DzwIeDjk/T1b4DPV9UlwA8BO1qMW5IkdVjNwn8DPAosS/LWJGcC1wN/YbZtkkV9b3+KJvdJsiDJWc3+G4ArmcbYv9YmbVTVHmBPs38gyQ5696dXAe9sTttILzP9+araB+xL8jf6+0nyeuCvA+9v+noVeLWtuCVJktpUVUeSfBD4AjAX+HRVPZnkY8DWqtoEfCjJT9EroD1PkwcBbwN+JckEvcLdbZPM7v0OszJLN8nF9MqNjwALm2QQYC+wcMDlbwX+FPh3SX4I+Apwc1WN/npVkiRp5EznOXltq6r7gfuPa/vFvv2PAB+Z5LovAye91mTrkzaSzAfuAdZV1f7+Y9WbFz3op34GcDnwqaq6DPgm374NLEmSpAFaTfiSzKOX7N1VVfc2zc8duy/dvO4b0M1uYHdVPdK8/xy9BHCyz/vWjJhPb/ujU/8CkiSpc6qq9W3UtDlLN8AdwI6qur3v0CZgdbO/GrjvRP1U1V7gmSQ/0DRdxRSDE/tnxPzvl771lOKXJEnqijbH8F0J3AA8kWRb03YrcBtwd5KbgKeB6wCSXARsBc4HJpKsA5Y3t4H/AXBXM5PlKeADLcYtSZI6bBTG8M22NmfpPghkisNXTXL+XnrPoZmsr23AipmLTpIkjatpPDalc1xpQ5IkqeNm5bEskiRJo2JiBCdVtM0KnyRJUsdZ4ZMkSWNl/Op7VvgkSZI6zwqfJEkaK+P4WBYrfJIkSR3X2QrfvBs/OOwQTmzuvGFHMFDOPHvYIQw08ee7hx3CYAcPDDuCwc57/bAjGKj2/9mwQxgoZ50z7BBOqPY9M+wQBprYdxosi3nwpWFHMNjze4YdwUizwidJkqTO6WyFT5IkaTLlc/gkSZLUNVb4JEnSWHEMnyRJkjrHCp8kSRorZYVPkiRJXdNawpdkaZIHkmxP8mSSm5v2C5NsTrKzeV3QtF+S5KEkh5J8uK+fH0iyrW/bn2RdW3FLkqRuq6rWt1HTZoXvCHBLVS0HVgJrkywH1gNbqmoZsKV5D/A88CHg4/2dVNVXq+rSqroU+MvAQeA3W4xbkiSpU1pL+KpqT1U91uwfAHYAi4FVwMbmtI3Atc05+6rqUeDwCbq9CvhaVT3dVtySJKnbJqjWt1EzK2P4klwMXAY8AiysqmNrvuwFFp5EV9cDn5nR4CRJkjqu9Vm6SeYD9wDrqmp/km8dq6pKMq00OMmZwE8BH2klUEmSNBZGcYxd21qt8CWZRy/Zu6uq7m2an0uyqDm+CNg3ze7eCzxWVc+d4PPWJNmaZOuv3v3bpxK6JElSZ7RW4UuvlHcHsKOqbu87tAlYDdzWvN43zS7fx4DbuVW1AdgAcGjHA+OXvkuSpIFGcYxd29q8pXslcAPwRJJtTdut9BK9u5PcBDwNXAeQ5CJgK3A+MNE8emV5cxv4PODdwN9rMV5JkjQGxvHBy60lfFX1IJApDl81yfl7gSVT9PVN4LtmLjpJkqTx4dJqkiRprEw4aUOSJEldY4VPkiSNlXEcw2eFT5IkqeOs8EmSpLHiGD5JkiR1jhU+SZI0VhzDJ0mSpM7pbIXvyH/81WGHcGLzToMf/dGjw45gsIz+v1nmvOmiYYcw2LnnDTuCwc48a9gRDFSvu2DYIZzYoVeGHcFgr54GMZ597rAjmIbTIcbhcQyfJEmSOuc0KDNJkiTNHMfwSZIkqXOs8EmSpLHiGD5JkiR1jhU+SZI0VhzDJ0mSpM5pLeFLsjTJA0m2J3kyyc1N+4VJNifZ2bwuaNovSfJQkkNJPnxcXz/X9PH7ST6T5Oy24pYk/f/t3X+QJGVhxvHvE+4UBBEQBXKAGDHiBQEDQUQkIv4giqDEIJaaw18YYwKomCJWKhhNJUqpUSwTg0I8EqJBREUJCDkRsVDkPOAOxR8oIggn6pGIcCLHPfmje7m5ZXZn5+6d7Xdnn09V1013z8x+d7du992efnsixpu9fuRLbUZ5hG8d8Fbbi4GDgDdJWgycCiyz/URgWbsOsAY4EXhv75NIWtRuP8D23sAWwHEj7I6IiIgYKyMb8Nm+w/aK9vbdwI3AIuBoYGl7t6XAi9v73Gn7GuD+Pk+3ANhK0gKay4ffPqruiIiIGG/r8ciX2szKpA1JewBPBa4GdrJ9R7trNbDTdI+1/RNJ7wV+DKwFLrV96ehqIyIiYpw5l2UpT9I2wKeBk23/snefm6/4tF/19hy/o4HHA78NbC3plVPc9wRJyyUtP3v5TUX6IyIiIua6kQ74JC2kGeyda/uCdvNPJe3S7t8FuHPA0zwHuNn2z2zfD1wAHNzvjrbPtH2A7QNec8CeZT6JiIiIGCvz8SXdUc7SFXAWcKPt9/fsuhBY0t5eAnxuwFP9GDhI0iPa5zyc5nzAiIiIiJiBUZ7D9wzgVcAqSde1294OvBs4T9JrgVuAYwEk7QwsB7YF1ks6GVhs+2pJ5wMraGb+XgucOcLuiIiIGGPz8Ry+kQ34bH8V0BS7D+9z/9XArlM812nAaeXqIiIiIuaPvLVaREREzCvr5+ERvry1WkRERMSYyxG+iIiImFdc4SzaUcsRvoiIiIgxlyN8ERERMa/Mx1m6OcIXERERMeZyhC8iIiLmlRrfCWPUxnbAt8VhR3SdML0F9X/pfe/dXScMpC237jphsG2277pgIGmLrhMG0qMe03XCQNp6u64TpuW19f+fXr96DrwP+gPrui4YyL9Z23VCVKb+UUdEREREQTmHLyIiIiLGTo7wRURExLySd9qIiIiIiLGTI3wRERExr+QcvoiIiIgYOxnwRURExLyyHo98GUTSEZK+K+kmSaf22X+8pJ9Juq5dXtezb4mk77fLkpl8ziMb8EnaTdLlkr4t6VuSTmq37yDpsjbyMknbt9v3kvQ1SfdJOmXSc50k6Yb2eU4eVXNERESMP9sjX6aj5uKnHwb+CFgMvFzS4j53/S/b+7XLx9rH7gCcBjwNOBA4bWIsNZ1RHuFbB7zV9mLgIOBN7SdzKrDM9hOBZe06wBrgROC9vU8iaW/g9TSf1L7AkZL2HGF3RERExCgdCNxk+4e2fwN8Ejh6ho99PnCZ7TW27wIuAwa+28TIBny277C9or19N3AjsIjmE1ra3m0p8OL2Pnfavga4f9JTPRm42va9ttcBVwDHjKo7IiIixtt6e+TLAIuAW3vWb2u3TfbHklZKOl/SbkM+diOzcg6fpD2ApwJXAzvZvqPdtRrYacDDbwCeKenRkh4BvADYbcBjIiIiIjoj6QRJy3uWE4Z8is8De9jeh+Yo3tIB95/WyC/LImkb4NPAybZ/KenBfbYtadphsO0bJb0HuBS4B7gOeGCEyRERETHGPINJFZv9MewzgTOn2P0TNj54tWu7rffxv+hZ/Rhwes9jnzXpsV8e1DPSI3ySFtIM9s61fUG7+aeSdmn37wLcOeh5bJ9le3/bhwJ3Ad+b4uM9OJo+68LLy3wSEREREWVdAzxR0uMlPQw4Driw9w4TY6XWUTSnxgF8EXiepO3byRrPa7dNa2RH+NQcyjsLuNH2+3t2XQgsAd7d/vu5GTzXY23fKWl3mvP3Dup3v97R9K+v/Pf5d1XFiIiIGKjrt1azvU7SX9AM1LYAzrb9LUnvBJbbvhA4UdJRNJNg1wDHt49dI+ldNINGgHfaXjPoY2pUV5uWdAhwJbAKWN9ufjvNeXznAbsDtwDHtvE7A8uBbdv7/wpY3L4MfCXwaJoJHW+xvWzQx69+wLeg/jc58b13d50wkLbcuuuEwbYZOFu+c80VAuqmRz2m64SBtPV2XSdMy2vr/z+9fvVNXScM9sC6rgsG8m/Wdp0wI1sderwG32sEH3erx418jLB27S2dfG5TGdmow/ZXgak+2cP73H81zevQ/Z7rmQXTIiIiYh7LW6tFRERExNip/3XFiIiIiIJmY5ZubXKELyIiImLM5QhfREREzCs5hy8iIiIixk6O8EVERMS8kiN8ERERETF2coQvIiIi5pX5d3xvhO+0MW4kndC+dVu10lhGGstI4+arvQ/SWEoaY9Tyku7MndB1wAyksYw0lpHGzVd7H6SxlDTGSGXAFxERETHmMuCLiIiIGHMZ8M3cXDhvIY1lpLGMNG6+2vsgjaWkMUYqkzYiIiIixlyO8EVERESMuQz4IiIiIsZcBnwRERERYy4DvoiIiIgxlwHfkCQ9t+uGCZK2lfSEPtv36aKnH0k7S9q5vf0YScdI+r2uu6Yj6R+6bpiOpMe3X8e9um6ZIGl3SVu2tyXp1ZI+JOmNkqp4C0dJR0001kzSoZKe1N5+hqRTJL2w665ekraR9FJJb5Z0oqQjJFXz+0TSAklvkHSJpJXtcrGkP5O0sOu+QSR1PhtW0hbt1/Bdkp4xad/fdNUVmy6zdIck6ce2d6+g41jgA8CdwELgeNvXtPtW2P79LvvajjcApwIC3gMcD9wAHAKcbvus7uoaks6YvAl4FXAOgO0TZz1qEkmftf3i9vbRNN/3LwMHA/9o++Pd1TUk3QAcaPteSe8BngB8Fng2gO3XdNkHIGktcA9wMfAJ4Iu2H+i2amOSPgAcSPM+518EDqfp/UPgWttv6zAPePBnzynASuAw4CqagwdPAV5he1WHeQBI+gTwv8BS4LZ2867AEmAH2y/rqm2CpB2m2gVcb3vX2ex5SIT0MeARwDdofiZeYfst7b4qfsfEcDLg60PShVPtAp5tLg2SxgAADORJREFUe+vZ7OkbIl0H/JHtOyQdSDNA+Wvbn5F0re2ndpyIpFXA04CtgFuAPW2vlrQ9cLnt/ToNBCTdClwBXErz/QV4L80vNGwv7SjtQb3fT0lX0fxSvVnSjsAy2/t2WwiSvm17cXv7m8Af2F7frl9fSeO1NAPQlwLHAXsDnwE+YfuKLtsmSPoWTddWwE+ARe0geiHNgG/vTgMBSSuBg9quHYFzbT+/fWXhI7YP7jgRSd+z/bvD7ptNkh6g+bmons1u1xfZflgnYS1JK23v095eAPwzsCPwcuDrNfyOieFU8VJLhZ4JvBL41aTtovnruwZb2L4DwPY3JB0GfEHSbjQ/NGpwv+17gXsl/cD2agDbd0mqpXEx8C7gCOAU27dLOq2GgV6P3q/VAts3A9j+uaT1HTVNdqukZ9v+EvAjYDfgFkmP7jZrI7Z9F/BR4KPtqQbHAu+WtKvt3brNA5pG93xfJ77366nnFBwBa9vb9wCPBbC9UtK2nVVtbI2kPwE+3fOHx28BfwLc1WnZBj8EDrf948k72j9Eu/bggNP2OuAESX8LfAnYprOq2GQZ8PX3deDefn/1S/puBz393C3pCbZ/ANAe6TuM5ohFLefIWdJC2/cDD56D1J5HVcUvL9t3AydL2h84V9JFVNLWY19Jv6T5RftwSbu03++HAVt03DbhdcA5kt4B/B9wXXsUejvgLV2G9eg9kkL7B8gZwBmSHtdN0kNcJOlKYEvgY8B5kr5O85LuVzot2+C/gUskfYXmD6VPwYMvUWq6B86i42hOI/lnSRMDvO2Ay9t9NfgAsD3wkAEfcPost/SzXNIRti+Z2GD7nZJuB/6lw67YRHlJd46StC9wj+2bJm1fCBxr+9xuyjZq2R24vf3rsHf7IuDJtv+nm7L+JAn4c+Dptl/Zdc8gkraj+Tp+reuWCZKeDPwuzR+TtwHXTBxh6ZqkZ9n+ctcdg0h6Os2Rvq+rmZT1EppBwfkVfS1fQHN0/Hrbl7XbfgtYaPu+TuMmmTjKbPsXXbdEdCkDvhmSdKTtL3TdMZ00lpHGMtJYRhrLkvTciUFqrWpvrL0v+suAb4bmwqykNJaRxjLSWEYay6rlSgvTqb2x9r7oL+fwzVwt56ZMJ41lpLGMNJaRxiENuNJCFROJam+svS+GlwHfNCTtaPvn7eobOo2ZQhrLSGMZaSwjjZttLlxpofbG2vtiSBnw9SHpRcDZwLr2WknH2r6q46yNpLGMNJaRxjLSWMxcuNJC7Y2198WwbGeZtNBcQX6v9vbTaK4w3nlXGtOYxjR2vcyFxixZsjx0qe16Y7VYZ/s7ALavBh7ZcU8/aSwjjWWksYw0joikI7tuGKT2xtr7Ynp5Sbe/x0p6y1Trtt/fQdNkaSwjjWWksYw0js47gdovHVN7Y+19MY0M+Pr7KBv/1Tp5vQZpLCONZaSxjDSOTlUziadQe2PtfTGNXIcvIiLGUu9MYkkH2v5G102T1d5Ye1/MXM7h60PSlpKWSDpKjb+S9AVJH5S0Y9d9kMZS0lhGGstIYxmSXiTpZ8AqSbdJOri2gUrtjbX3xfByhK8PSecB9wNb07y59Q3A54FDgP1sd37iahrLSGMZaSwjjWVIWklzuZjvSHoacLrtP+y6q1ftjbX3xfAy4OtD0g2295a0ALjN9s49+663vW+HeRMdaSwgjWWksYw0lqFJb/U2eb0GtTfW3hfDy6SN/n4DYHudpNsn7Xugg55+0lhGGstIYxlpLGMuzCSuvbH2vhhSBnz97SrpDJoZSRO3adcXdZe1kTSWkcYy0lhGGsuYCzOJa2+svS+GlJd0+5C0ZLr9tpfOVstU0lhGGstIYxlpjIhRyYAvIiLGiqQtgZcBd9FMKHkbcCjwA+BdE5cZ6VLtjbX3xfAy4OtD0iHA79g+p10/H9ih3f33tr/UWVwrjWWksYw0lpHGMubITOKqG2vvi03gCt7Qt7YFWAYs7llfBexP89fNJV33pTGNaUxjGqdtvKH9dwGwetK+67vumwuNtfdlGX7JhZf729b2t3vWv2/7m7a/Qj0nraaxjDSWkcYy0ljGgzOJgVpnEtfeWHtfDCmzdPvbrnfF9jE9qzvNcstU0lhGGstIYxlpLGMuzCSuvbH2vhhSBnz9fUfSC21f1LtR0pHAdztqmiyNZaSxjDSWkcYy3tZze/mkfZPXu1J7Y+19MaRM2uhD0p7ARcBVwIp28/7AwcCRtr/XVduENJaRxjLSWEYaI2JUMuCbgqSHA68Afq/d9C3gP23/uruqjaWxjDSWkcYy0rj55shM4qoba++L4WXAtxkkfc3207vumE4ay0hjGWksI40DP/Yy4C8nJpdIWgUcT3OJkbfbPqKLrl61N9beF8PLLN3Ns2XXATOQxjLSWEYay0jj9ObCTOLaG2vviyFlwLd55sLh0TSWkcYy0lhGGqc3F2YS195Ye18MKQO+iIgYN9+R9MLJGyubSVx7Y+19MaRclmXzqOuAGUhjGWksI41lpHF6bwYukvRS+swk7qxqY7U31t4XQ8oRvj4kLZli+0JJn+jZ9KpZSurXksYC0lhGGstIYxm2bwL2Aa4E9miXrwD71HLZmNoba++L4eUIX38nSXq47TMnNkjaGvgMcOvENts3dBHXSmMZaSwjjWWksRDb9wFnT3efrmc7195Ye18MJ0f4+nsO8DpJJwJIegzwZWCF7dd2GdYjjWWksYw0lpHG2ZXZzpuv9r5o5Tp8U5C0LXAxzeHso4GP2P5gt1UbS2MZaSwjjWWkcfZIWmH797vumE7tjbX3xQYZ8PUhaWL6+SOB9wPLgE9O7Ld9QRddvdJYRhrLSGMZaZxdc2GwUntj7X2xQQZ8fUj6NzZcQ2pippnb27b9mk7CeqSxjDSWkcYy0ji7JF1r+6ldd0yn9sba+2KDTNror/dk44kfbD8Dvmr75g56+kljGWksI41lpLEASUtsL+2zfSFwju2Xt5s6ne1cc2PtfTG8TNrob5ue5ZHtcgBwsaTjugzrkcYy0lhGGstIYxknSTqhd0M7k/gi4N6JbRXMdq65sfa+GFJe0h2CpB2A/6n5fIU0lpHGMtJYRho3qeUS4D9sn9HOJP5vYJntU7uta9TeWHtfDC8v6Q7B9hpJVV/hPo1lpLGMNJaRxuG0Lc+hOer421Q4k7j2xtr7YngZ8A1B0mHAXV13TCeNZaSxjDSWkcbh9MwkPpMNM4lvndhew0zi2htr74vhZcDXh6RVbDgZecIOwO3An85+0UOlsYw0lpHGMtJYzIvY0Hhh+++RtDOJgRoGK7U31t4XQ8o5fH1IetykTQZ+YfueLnr6SWMZaSwjjWWksQxJb+1ZrXUmcdWNtffF8DLgi4iIsSLptD6bdwCeD7zD9if77J9VtTfW3hfDy4AvIiLmhZpmEk+l9sba+2JquQ5fRETMC7bXsOHdQapUe2PtfTG1DPgiImJeqGkm8VRqb6y9L6aWWboRETFW5sJM4toba++L4eUcvoiIGCtzZCZx1Y2198XwMuCLiIiIGHM5hy8iIiJizGXAFxERETHmMuCLiKFIsqT39ayfIukdHSZtMknPknRwz/rHJb20y6aIiFHIgC8ihnUfcIykHbsOKeBZwMGD7hQRMddlwBcRw1oHnAm8efIOSXtI+pKklZKWSdq93f5xSWdIukrSD3uPokl6m6Rr2sf8Xb8PKOkdkpZKulLSLZKOkXS6pFWSLpG0sL3f4ZKubbefLenh7fYfSfo7SSvafXtJ2gP4M+DNkq6T9Mz2wx3arzMiYi7LgC8iNsWHgVdIetSk7R8CltreBzgXOKNn3y7AIcCRwLsBJD0PeCJwILAfsL+kQ6f4mE8Ang0cBfwHcLntpwBrgRdK2hL4OPCydvsC4I09j/95+3ZQ/wKcYvtHwEeAf7K9n+0rp+qMiJjrMuCLiKHZ/iVwDnDipF1PB/6zvf3vNAOnCZ+1vd72t4Gd2m3Pa5drgRXAXjQDwH4utn0/sArYArik3b4K2AN4EnCz7e+125cCvYPHC9p/v9nefyr9OiMi5rS800ZEbKoP0AzS/m2G97+v57Z6/v1H2//ae0dJbwJe366+oPfxttdLut8bLiK6npn9LJv4+A8MuH+/zoiIOS1H+CJik7Rvon4e8NqezVcBx7W3XwFcOflxk3wReI2kbQAkLZL0WNsfbl9m3c/27TNM+i6wh6Q92/VXAVcMeMzdwCNn+PwREXNWBnwRsTneB/TO1v1L4NWSVtIMuE6a7sG2L6V5Cfhr7Xt3ns8mDsBs/xp4NfCp9rnW05yjN53PAy+ZNGkjImLs5K3VIiIiIsZcjvBFREREjLkM+CIiIiLGXAZ8EREREWMuA76IiIiIMZcBX0RERMSYy4AvIiIiYsxlwBcREREx5jLgi4iIiBhz/w8QhlPyZTA94wAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "fig, ax = plt.subplots(figsize=(11, 9))\n", "# plot heatmap\n", "sb.heatmap(forex_m, cmap=\"Blues\", vmin= 0.5, vmax=0.8,\n", " linewidth=0.3, cbar_kws={\"shrink\": .8})\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 597 }, "id": "IXgFxLvMe5dn", "outputId": "bc0b0df7-6b1d-4a70-d6f0-4e2091ed927f" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAncAAAJECAYAAAB0JAJhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde/hcZXnv//cHREGREqqNaRINahRTD4ARo/EIVQFtg9ZSbDcGik33biykoi1iPWz96WZ7oG5+pWzTQo0WRSooqaVqGkFFAYkYQRIxEUGSJsSKChY8RO/9x6y0Y/weEpjJzHfN+8W1rlnzrNO9JiHXfd3PetaTqkKSJEntsNegA5AkSVLvmNxJkiS1iMmdJElSi5jcSZIktYjJnSRJUouY3EmSJLXIAwYdQB/5jhdJkoZbBh1AG7U2uXvH6m8OOoQJnXnUY3jDv3xj0GFM6O3HPG5KxHjm5cMd4zuOfRwnrPjKoMOY0EWLD+PEC7866DDG9cE/eAoAJ334hgFHMr73v+LJALz8768fcCTj++jJhwPwwnOvGXAk4/v00gUAHPd3awYcyfg+/qr5vOCvh/c3BFj16gVD/XcR/uvvo3rPbllJkqQWMbmTJElqEZM7SZKkFjG5kyRJahGTO0mSpBbpW3KXZHaSK5KsS3JTktOa9oOSrEqyofmc1rQnyTlJNia5IcnhXeda3Oy/IcnifsUsSZI01fWzcrcdOL2q5gELgKVJ5gFnAKurai6wuvkOcAwwt1mWAOdBJxkE3gw8HTgCePOOhFCSJEm/qG/JXVVtqarrm/W7gfXATGARsKLZbQVwXLO+CPhAdVwDHJhkBvAiYFVV3VlV3wNWAUf3K25JkqSpbI88c5dkDnAYcC0wvaq2NJu2AtOb9ZnA7V2HbWraxmuXJEnSTvqe3CXZH7gEWFZVd3Vvq6rCacIkSZJ6pq/JXZJ96CR2F1bVpU3zHU13K83ntqZ9MzC76/BZTdt47WNdb0mSNUnWfOkTF/XuRiRJkqaIfo6WDXA+sL6qzu7atBLYMeJ1MXBZV/srm1GzC4AfNN23nwJemGRaM5DihU3bL6mq5VU1v6rmH/GSE/pwV5IkScPtAX0890LgRODGJGubtjOBs4CLk5wC3AYc32y7HDgW2AjcA5wMUFV3JnkbcF2z31ur6s4+xi1JkjRl9S25q6qrgIyz+agx9i9g6TjnugC4oHfRSZIktZMzVEiSJLWIyZ0kSVKLmNxJkiS1iMmdJElSi5jcSZIktYjJnSRJUouY3EmSJLWIyZ0kSVKLpPPu4FZq7Y1JktQS4012oPuhn9OPDdQLz71m0CFM6NNLF/C8935x0GFM6Mplz2Thuz4/6DAm9IXXPZtnvXu4Y7zqtc/mme/83KDDmNAX//w5zP//rhh0GONa85fPB+Dp/+uzA45kfNe+/rkAPOfsLww4kvF97jULAXjBXw/vv4+rXr0AgGe/56oBRzK+z5/+LI54x5WDDmNCXzrzeTz3r4b37yLAZ/9s4aBDaC27ZSVJklrE5E6SJKlFTO4kSZJaxOROkiSpRUzuJEmSWsTkTpIkqUX6ltwlmZ3kiiTrktyU5LSm/aAkq5JsaD6nNe1Jck6SjUluSHJ417k+meT7ST7Rr3glSZLaoJ+Vu+3A6VU1D1gALE0yDzgDWF1Vc4HVzXeAY4C5zbIEOK/rXO8CTuxjrJIkSa3Qt+SuqrZU1fXN+t3AemAmsAhY0ey2AjiuWV8EfKA6rgEOTDKjOX41cHe/YpUkSWqLPfLMXZI5wGHAtcD0qtrSbNoKTG/WZwK3dx22qWmTJEnSLup7cpdkf+ASYFlV3dW9rToT2zoHrCRJUo/0NblLsg+dxO7Cqrq0ab5jR3dr87mtad8MzO46fFbTtjvXW5JkTZI1m676+P0LXpIkaQrq52jZAOcD66vq7K5NK4HFzfpi4LKu9lc2o2YXAD/o6r7dJVW1vKrmV9X8Wc86bvIDJEmSWuYBfTz3QjojXG9MsrZpOxM4C7g4ySnAbcDxzbbLgWOBjcA9wMk7TpTk88AhwP5JNgGnVNWn+hi7JEnSlNS35K6qrgIyzuajxti/gKXjnOvZPQxNkiSptZyhQpIkqUVM7iRJklrE5E6SJKlFTO4kSZJaxOROkiSpj5IcneTmJBuTnDHG9kcmuSLJV5LckOTYrm2vb467OcmLduV6/XwViiRJ0khLsjdwLvACOlOrXpdkZVWt69rtL4GLq+q8JPPovB5uTrN+AvAbwK8D/5rkcVX1s4muaeVOkiSpf44ANlbVLVX1E+AiYNFO+xRwQLP+K8C/NeuLgIuq6sdV9S067wI+YrILpvN6uVZq7Y1JktQS470PtzWSvBw4uqpe1Xw/EXh6Vb26a58ZwKeBacBDgN+sqi8n+Wvgmqr6h2a/84F/qaqPTnRNu2UlSdJI2e+wV/e0APSjtef+MbCkq2l5VS3fjVO8Anh/Vb0nyTOADyZ54n2Np7XJ3fP/zxcHHcKErjjtmRz1/1896DAmtPpPn8GR5wx3jJ859Rkcc961gw5jQv/yP57OS9533aDDmNAn/vhpnLDiK4MOY1wXLT4MgD+5dN0kew7O37xsHgAnffiGAUcyvve/4skALP3Y+gFHMr5zX/oEYPj/rIc5PujE+Of/fPOgw5jQO1/8+EGH0DNNIjdeMrcZmN31fVbT1u0U4OjmXFcn2Rd42C4e+0t85k6SJI2W7NXbZWLXAXOTHJzkgXQGSKzcaZ9v00zNmuQJwL7Ad5r9TkjyoCQHA3OBL012wdZW7iRJksaUPfeoX1VtT/Jq4FPA3sAFVXVTkrcCa6pqJXA68LdJ/ozOmIGTqjMo4qYkFwPrgO3A0slGyoLJnSRJUl9V1eV0Xm/S3famrvV1wMJxjn078PbduZ7JnSRJGi2Td6VOaSZ3kiRptOzBbtlB6FvqmmR2M5XGuiQ3JTmtaT8oyaokG5rPaU17kpzTTLFxQ5LDm/ZDk1zdnOOGJL/Xr5glSZKmun7WJbcDp1fVPGABsLSZRuMMYHVVzQVWN98BjqEzCmQunXfFnNe03wO8sqp+g84w4fcmObCPcUuSpDbbs6Nl97i+RVRVW6rq+mb9bmA9MJPOVBormt1WAMc164uAD1THNcCBSWZU1TeqakNznn8DtgEP71fckiRJU9keeeYuyRzgMOBaYHpVbWk2bQWmN+szgdu7DtvUtO3YlyRHAA8EvtnfiCVJUmu1/Jm7vid3SfYHLgGWVdVd6fpBq6qS7NIUIM28ax8EFlfVz/sSrCRJar8h7Ertpb7eXZJ96CR2F1bVpU3zHU2itiNh29a0jzvFRpIDgH8G3tB02Y53vSVJ1iRZ829fvKy3NyNJkjQF9HO0bIDzgfVVdXbXppXA4mZ9MXBZV/srm1GzC4AfVNWWZqqOj9F5Hu+jE12zqpZX1fyqmv/rz1zU0/uRJEktkfR2GTL97JZdCJwI3JhkbdN2JnAWcHGSU4DbgOObbZcDxwIb6YyQPblpPx54DvCrSU5q2k6qqh3nlCRJ2nUt75btW3JXVVcB46WzR42xfwFLx2j/B+AfehudJElSOzlDhSRJGi1D2JXaSyZ3kiRptLS8W7bddydJkjRirNxJkqTRYresJElSi9gtK0mSpKnCyp0kSRotLa/cmdxJkqTRsle7n7lL593BrdTaG5MkqSUGkmXt9/y39TRHuPeKNw5Vttjayt35X/r2oEOY0ClHPJJzrvrWoMOY0KnPOpj3fPaWQYcxodOf++gpEeP7rxvuv48nPe2RfPgrmwcdxrhecdhMAM79wq2DDWQCSxfOARjqv4+nP/fRAEP99/Gkpz0SgI9+dcuAIxnfy58yg0uHOD6Alz1lBp/5+ncHHcaEjjzkVwd3cbtlJUmSWqTlr0Jpd+oqSZI0YqzcSZKk0WK3rCRJUovYLStJkqSpwsqdJEkaLS3vlu3b3SWZneSKJOuS3JTktKb9oCSrkmxoPqc17UlyTpKNSW5IcnjT/qgk1ydZ25znv/crZkmSNAKS3i5Dpp+p63bg9KqaBywAliaZB5wBrK6qucDq5jvAMcDcZlkCnNe0bwGeUVWHAk8Hzkjy632MW5IkacrqW7dsVW2hk5hRVXcnWQ/MBBYBz2t2WwFcCfxF0/6B6kyZcU2SA5PMaM6zw4PwOUFJknR/2C17/yWZAxwGXAtM70rYtgLTm/WZwO1dh21q2nZ08d7QbP/fVfVveyBsSZKkKafvyV2S/YFLgGVVdVf3tqZKN+n8blV1e1U9GXgssDjJ9MmOkSRJGpPP3N13Sfahk9hdWFWXNs13JJnRbJ8BbGvaNwOzuw6f1bT9p6Zi9zXg2eNcb0mSNUnWfPZjH+rdjUiSpPbIXr1dhkw/R8sGOB9YX1Vnd21aCSxu1hcDl3W1v7IZNbsA+EFVbUkyK8l+zTmnAc8Cbh7rmlW1vKrmV9X857709/twV5IkScOtn++5WwicCNyYZG3TdiZwFnBxklOA24Djm22XA8cCG4F7gJOb9icA70lSQIB3V9WNfYxbkiS12RB2pfZSP0fLXkUnGRvLUWPsX8DSMdpXAU/ubXSSJGlkDWFXai+1++4kSZJGjNOPSZKk0dLyyp3JnSRJGi0tf+au3amrJEnSiLFyJ0mSRovdspIkSS1it6wkSZKminReL9dKrb0xSZJaYiAltP1e+nc9zRHu/dirhqoU2Npu2W9svWfQIUzocY94MLd850eDDmNCj374vtw85L/j4x/xYG7c9MNBhzGhJ83an69tHu4Ynzhz/6H+f+Zxj3gwABvuuHfAkYxv7vT9APj6luH9HQ+Z0fkd12/5jwFHMr4nzHgIMPy/41T493vz938y6DAmNPPABw7u4nbLSpIkaapobeVOkiRpLGl55c7kTpIkjZS2J3d2y0qSJLWIlTtJkjRa2l24M7mTJEmjxW7Z+yjJ7CRXJFmX5KYkpzXtByVZlWRD8zmtaU+Sc5JsTHJDksN3Ot8BSTYl+et+xSxJkjTV9fOZu+3A6VU1D1gALE0yDzgDWF1Vc4HVzXeAY4C5zbIEOG+n870N+Fwf45UkSSMgSU+XYdO35K6qtlTV9c363cB6YCawCFjR7LYCOK5ZXwR8oDquAQ5MMgMgyVOB6cCn+xWvJEkaDSZ3PZBkDnAYcC0wvaq2NJu20knaoJP43d512CZgZpK9gPcAr90TsUqSJE1lfR9QkWR/4BJgWVXd1Z3hVlUlmWx+tz8BLq+qTcOYHUuSpKml7flEXyt3Sfahk9hdWFWXNs13dHW3zgC2Ne2bgdldh89q2p4BvDrJrcC7gVcmOWuc6y1JsibJmo988IKe348kSdLuSnJ0kpubQaNnjLH9r5KsbZZvJPl+17afdW1buSvX61vlLp20+HxgfVWd3bVpJbAYOKv5vKyr/dVJLgKeDvyg6b79g65zngTMr6pf+mEAqmo5sBzgG1vvmawiKEmSRtEeLNwl2Rs4F3gBnUfOrkuysqrW7dinqv6sa/8/pfMo2w73VtWhu3PNfnbLLgROBG5MsrZpO5NOUndxklOA24Djm22XA8cCG4F7gJP7GJskSRpRe7hb9ghgY1Xd0lz7IjqDSNeNs/8rgDffnwv2LbmrqqsYPzc+aoz9C1g6yTnfD7z//sYmSZK0h4w1YPTpY+2Y5FHAwcBnupr3TbKGzivmzqqqj092QWeokCRJI6XXlbskS+i8o3eH5c2jYrvrBOCjVfWzrrZHVdXmJI8GPpPkxqr65kQnMbmTJEkjpdfJXfcz/2MYb8DoWE5gp17MqtrcfN6S5Eo6z+NNmNztkffcSZIkjajrgLlJDk7yQDoJ3C+Nek1yCDANuLqrbVqSBzXrD6MznmG8Z/X+k5U7SZI0UvbkgIqq2p7k1cCngL2BC6rqpiRvBdZU1Y5E7wTgomYMwg5PAN6X5Od0CnJndY+yHY/JnSRJGi17+B3GVXU5nbeCdLe9aafvbxnjuC8CT9rd69ktK0mS1CJW7iRJ0khp+/RjJneSJGmktD25yy8+t9cqrb0xSZJaYiBZ1sNP/khPc4Tv/P3vDVW22NrK3Te/c++gQ5jQYx6+H7d+90eDDmNCc351X2777o8HHcaEHvWrD2LT94Y7xlnTHsTNW+8ZdBgTevwjHsz6Lf8x6DDG9YQZDwHgK7fdPeBIxnfYox4KwE2bh/d3/I2Znd/xa5t/OOBIxvfEmfsDcMPtwxvjk2fvz5dvvWvQYUzoqXMO4PrbhjvGwx91wMCu3fbKXWuTO0mSpDG1O7dztKwkSVKbWLmTJEkjxW5ZSZKkFml7cme3rCRJUotYuZMkSSPFyt19lGR2kiuSrEtyU5LTmvaDkqxKsqH5nNa0J8k5STYmuSHJ4V3n+lmStc2ycrxrSpIkTSZJT5dh089u2e3A6VU1D1gALE0yDzgDWF1Vc4HVzXeAY4C5zbIEOK/rXPdW1aHN8tt9jFmSJGlK61tyV1Vbqur6Zv1uYD0wE1gErGh2WwEc16wvAj5QHdcAByaZ0a/4JEnSiEqPlyGzRwZUJJkDHAZcC0yvqi3Npq3A9GZ9JnB712GbmjaAfZOsSXJNkuOQJEm6j+yWvZ+S7A9cAiyrql+YC6U6E9vuyvxuj6qq+cDvA+9N8phxrrWkSQLXXPSB8+9v6JIkSVNOX0fLJtmHTmJ3YVVd2jTfkWRGVW1pul23Ne2bgdldh89q2qiqHZ+3JLmSThXwmztfr6qWA8sBvvmde3s6KbAkSWqHYay29VI/R8sGOB9YX1Vnd21aCSxu1hcDl3W1v7IZNbsA+EGTAE5L8qDmnA8DFgLr+hW3JEnSVNbPyt1C4ETgxiRrm7YzgbOAi5OcAtwGHN9suxw4FtgI3AOc3LQ/AXhfkp/TSUbPqiqTO0mSdJ+0vXLXt+Suqq5i/DEkR42xfwFLx2j/IvCk3kYnSZJGVrtzO6cfkyRJahOnH5MkSSPFbllJkqQWaXtyZ7esJElSi1i5kyRJI6XtlTuTO0mSNFLantzZLStJktQi6bxerpVae2OSJLXEQEpoB//ZP/c0R/jWX714qEqBre2WvWnzfww6hAn9xsyHsPbbdw86jAkd+siHcv2tdw06jAkdPucAvrb5h4MOY0JPnLk/t373R4MOY0JzfnVfvnHHPYMOY1yPm/5gADZuu3fAkYzvsb+2HwC33/njAUcyvtkHPQiAW/99eP8+znnYvgB88zvD+2f9mIfvx+bv/2TQYUxo5oEP5I67fjroMCY0/YB9BnZtu2UlSZI0ZbS2cidJkjSWtlfuTO4kSdJIaXluZ7esJElSm1i5kyRJI8VuWUmSpBZpeW7Xv27ZJLOTXJFkXZKbkpzWtB+UZFWSDc3ntKY9Sc5JsjHJDUkO7zrXI5N8Osn65nxz+hW3JEnSVNbPZ+62A6dX1TxgAbA0yTzgDGB1Vc0FVjffAY4B5jbLEuC8rnN9AHhXVT0BOALY1se4JUlSiyXp6TJs+tYtW1VbgC3N+t1J1gMzgUXA85rdVgBXAn/RtH+gOlNmXJPkwCQzgGnAA6pqVXOu4X5jrSRJGmpDmI/11B4ZLdt0ox4GXAtMbxI/gK3A9GZ9JnB712GbmrbHAd9PcmmSryR5V5K990TckiRJU03fB1Qk2R+4BFhWVXd1ly+rqpJMNr/bA4Bn00kOvw18BDgJOL8vAUuSpFbba692l+76WrlLsg+dxO7Cqrq0ab6j6W6l+dzx/NxmYHbX4bOatk3A2qq6paq2Ax8HDmcMSZYkWZNkzT/+wwW9vyFJkjTlJb1dhk0/R8uGTnVtfVWd3bVpJbC4WV8MXNbV/spm1OwC4AdN9+11wIFJHt7sdySwbqxrVtXyqppfVfN/97/9YY/vSJIkafj1s1t2IXAicGOStU3bmcBZwMVJTgFuA45vtl0OHAtsBO4BTgaoqp8leS2wukkYvwz8bR/jliRJLTaMI1x7qZ+jZa8Cxvv1jhpj/wKWjnOuVcCTexedJEkaVS3P7ZxbVpIkqU2cfkySJI2UtnfLWrmTJElqESt3kiRppLS9cmdyJ0mSRkrLczu7ZSVJktrEyp0kSRopdstKkiS1SMtzO9J5d3ArtfbGJElqiYGkWYe/9TM9zRGuf9ORQ5UutrZyd89Phju3e/ADw38MeYwPeWD44Y+HO8b9HxR+tH3QUUxs3wfAPT8d7t/xwfsM9++4b/MvlTHeP8bYG/s+YLjjg06M9/500FFMbL99Bndtu2UlSZJapOW5naNlJUmS2sTKnSRJGilt75a1cidJkkZK0ttl8uvl6CQ3J9mY5Iwxtv9VkrXN8o0k3+/atjjJhmZZvCv3Z+VOkiSpT5LsDZwLvADYBFyXZGVVrduxT1X9Wdf+fwoc1qwfBLwZmE/nLSBfbo793kTXtHInSZJGSpKeLpM4AthYVbdU1U+Ai4BFE+z/CuDDzfqLgFVVdWeT0K0Cjp7sgn1L7pLMTnJFknVJbkpyWtN+UJJVTXlxVZJpTXuSnNOULG9IcnjT/vyuUuXaJD9Kcly/4pYkSe3W627ZJEuSrOlalnRdbiZwe9f3TU3bGHHlUcDBwGd299hu/eyW3Q6cXlXXJ3konVLiKuAkYHVVndX0O58B/AVwDDC3WZ4OnAc8vaquAA6F/yxPbgQ+3ce4JUmSdllVLQeW9+BUJwAfraqf3Z+T9K1yV1Vbqur6Zv1uYD2dbHMRsKLZbQWwowq3CPhAdVwDHJhkxk6nfTnwL1V1T7/iliRJ7baHu2U3A7O7vs9q2sZyAv/VJbu7x/6nPfLMXZI5dB4OvBaYXlVbmk1bgenN+q6UHne+aUmSpN2yh0fLXgfMTXJwkgfSyWVW/nJMOQSYBlzd1fwp4IVJpjWPsb2waZtQ35O7JPsDlwDLququ7m3Vmdh2l+Zlaqp4T2KCm+ru877g73pRHZUkSbrvqmo78Go6+ct64OKquinJW5P8dteuJwAXNbnRjmPvBN5GJ0G8Dnhr0zahvr4KJck+dBK7C6vq0qb5jiQzqmpLk7Bta9onKz0eD3ysqsadLa+7z/uen9RwT+YpSZIGYk+/xLiqLgcu36ntTTt9f8s4x14AXLA71+vnaNkA5wPrq+rsrk0rgR0v4VsMXNbV/spm1OwC4Add3bfwi0ODJUmS7pM9/RLjPa2flbuFwInAjUnWNm1nAmcBFyc5BbiNTkUOOhntsXRGw94DnLzjRM0ze7OBz/YxXkmSpCmvb8ldVV0FjJfPHjXG/gUsHedct7IL73WRJEmaTNvnlnX6MUmSNFLantw5/ZgkSVKLWLmTJEkjpeWFOyt3kiRJbWLlTpIkjZS2P3NncidJkkZKy3M7u2UlSZLapLWVuwc/cPjT8odMgRj3f9Dwx7jvFPhb/OB9/B17wRh7wxjvv2GPD2C/fQYdwfCyW3aK+vcfbh90CBN62P4P4Dt3D3eMD3+oMfbCwx/6ALb+YNwpkYfCI35ln6H+f+Zh+3f+qfr+vT8bcCTjO3C/vQH45rZ7BxzJ+B7za/sB8PUt9ww4kvEdMuPBAKxa/+8DjmR8L3jCw/jQ9ZsGHcaEfv/wWbzns7cMOowJnf7cRw/s2i3P7eyWlSRJapPWVu4kSZLGslfLS3cmd5IkaaS0PLezW1aSJKlNrNxJkqSR4mhZSZKkFtmr3bld/7plk8xOckWSdUluSnJa035QklVJNjSf05r2JDknycYkNyQ5vOtc72zOsb7Zp+V/LJIkSfdNP5+52w6cXlXzgAXA0iTzgDOA1VU1F1jdfAc4BpjbLEuA8wCSPBNYCDwZeCLwNOC5fYxbkiS1WJKeLsOmb8ldVW2pquub9buB9cBMYBGwotltBXBcs74I+EB1XAMcmGQGUMC+wAOBBwH7AHf0K25JktRuSW+XYbNHRssmmQMcBlwLTK+qLc2mrcD0Zn0mcHvXYZuAmVV1NXAFsKVZPlVV6/dA2JIkSVNO35O7JPsDlwDLququ7m1VVXQqcxMd/1jgCcAsOgngkUme3adwJUlSy6XH/w2bviZ3Sfahk9hdWFWXNs13NN2tNJ/bmvbNwOyuw2c1bS8FrqmqH1bVD4F/AZ4xzvWWJFmTZM0HLvjb3t+QJEma8vZKb5dh08/RsgHOB9ZX1dldm1YCi5v1xcBlXe2vbEbNLgB+0HTffht4bpIHNMnic+k8v/dLqmp5Vc2vqvmv/MM/6sNdSZIkDbd+vuduIXAicGOStU3bmcBZwMVJTgFuA45vtl0OHAtsBO4BTm7aPwocCdxIpwv3k1X1T32MW5IktdgwjnDtpb4ld1V1FYzbEX3UGPsXsHSM9p8Bf9zb6CRJ0qhqeW7n3LKSJElt4vRjkiRppOzV8tKdyZ0kSRopLc/t7JaVJElqEyt3kiRppLR9tKyVO0mSpBaxcidJkkZKywt3pPN6uVZq7Y1JktQSA0mzfm/FV3qaI3xk8WFDlS7aLStJktQire2Wfcn7rht0CBP6xB8/jZf//fWDDmNCHz35cH7ngi8POowJXfKHT+XEC7866DAm9ME/eAp//s83DzqMCb3zxY/nXVfeMugwxvW65z0agP979a0DjWMi//0ZcwA49wu3DjSOiSxdOAdgSvxZn3PVtwYcyfhOfdbBQ/13ETp/H9/2rxsHHcaE3vibjx3YtYeqzNYHrU3uJEmSxuJoWUmSJE0ZVu4kSdJI2avdhTuTO0mSNFrslpUkSdKUYeVOkiSNlJYX7vpXuUsyO8kVSdYluSnJaU37QUlWJdnQfE5r2pPknCQbk9yQ5PCuc/3vJF9rlt/rV8ySJKn9kvR0GTb97JbdDpxeVfOABcDSJPOAM4DVVTUXWN18BzgGmNssS4DzAJK8GDgcOBR4OvDaJAf0MW5JkqQpq2/JXVVtqarrm/W7gfXATGARsKLZbQVwXLO+CPhAdVwDHJhkBjAP+FxVba+q/wBuAI7uV9ySJKnd9kpvl2GzRwZUJJkDHAZcC0yvqi3Npq3A9GZ9JnB712GbmravAkcneXCShwHPB2bvgbAlSVIL2S17PyXZH7gEWFZVd3Vvq6oCJpy8t6o+DVwOfBH4MHA18LNxrrUkyZoka779+Y/1InxJkqQppa/JXZJ96CR2F1bVpU3zHU13K83ntqZ9M79YkZvVtFFVb6+qQ6vqBYKBoN0AACAASURBVHSmhPvGWNerquVVNb+q5j/y2S/t/Q1JkqQpLz1ehk0/R8sGOB9YX1Vnd21aCSxu1hcDl3W1v7IZNbsA+EFVbUmyd5Jfbc75ZODJwKf7FbckSWq3vZKeLsNmwvfcJdkLWFBVX7wP514InAjcmGRt03YmcBZwcZJTgNuA45ttlwPHAhuBe4CTm/Z9gM83fdp3Af+tqrbfh3gkSZJab8Lkrqp+nuRcOoMhdktVXcX41cqjxti/gKVjtP+IzohZSZKk+20Ii209tSvdsquT/E6GcTiIJEnSbnK0LPwx8I/Aj5PcleTuJHdNdpAkSZL2vEnnlq2qh+6JQCRJkvaEISy29dSkyR1AM//rXGDfHW1V9bl+BSVJktQvwzjCtZcm7ZZN8irgc8CngP/ZfL6lv2FJkiS1Q5Kjk9ycZGOSM8bZ5/gk65LclORDXe0/S7K2WVbuyvV2pXJ3GvA04Jqqen6SQ4B37MrJJUmShs2eLNwl2Rs4F3gBnalVr0uysqrWde0zF3g9sLCqvpfk17pOcW9VHbo719yVARU/al5HQpIHVdXXgcfvzkUkSZJG1BHAxqq6pap+AlwELNppnz8Czq2q7wFU1Tbuh3ReLzfBDsnH6LxQeBlwJPA9YJ+qOvb+XHgPmPjGJEnSoA3k4belH1vf0xzh3Jc+Ydz7SPJy4OiqelXz/UTg6VX16q59Pk5natWFwN7AW6rqk8227cBaYDtwVlV9fLJ4dmW07I5JWt+S5ArgV4BPTnbcoL1j9TcHHcKEzjzqMSy77OuDDmNC7110CH908dcGHcaE/vb4J3Lqx4f7dzznuEP43fdfP+gwJvSPJx3OSR++YdBhjOv9r3gyAEs/tn7AkYzv3Jc+AYDT/+nmAUcyvvf8VqfT5c//eXhjfOeLOzG+8ZMbBhzJ+N529Fze8C9jTnE+NN5+zOOG+u8i/Nffx0Ho9dyrSZYAS7qallfV8t04xQPoDFx9HjAL+FySJ1XV94FHVdXmJI8GPpPkxqqaMMnZ1dGyzwLmVtXfJ3k4MBP41m4ELUmS1EpNIjdeMrcZmN31fVbT1m0TcG1V/RT4VpJv0En2rquqzc01bklyJZ1ZwyZM7nZltOybgb+g86AfdOZ6/YfJjpMkSRpGe3iGiuuAuUkOTvJA4ARg51GvH6dTtSPJw4DHAbckmZbkQV3tC4F1TGJXKncvpZMlXg9QVf+WxBcbS5KkKWmvPfikX1VtT/JqOq+S2xu4oKpuSvJWYE1VrWy2vTDJOuBnwOuq6rtJngm8L8nP6RTkzuoeZTueXUnuflJVlaQAkjzkvt2eJEnS6Kmqy4HLd2p7U9d6Aa9plu59vgg8aXevtyvJ3cVJ3gccmOSPgD8E/nZ3LyRJkjQM9mTlbhB2qXIH/CtwF533272pqlb1NSpJkqQ+2YXn5Ka0XRkN/GvA/wIeRSfJ+9ddOXGS2Umu6JpK47Sm/aAkq5JsaD6nNe2HJLk6yY+TvHanc006bYckSZJ2Ibmrqr+kMxz3fOAkYEOSdyR5zCSHbgdOr6p5wAJgaZJ5wBnA6qqaC6xuvgPcCZwKvLv7JF3TdhwDzANe0ZxHkiRpt+2V3i7DZpfe49c86Le1WbYD04CPJnnnBMdsqaodI2zvBtbTeT/eImBFs9sK4Lhmn21VdR3w051OtSvTdkiSJO2SpLfLsNmV99ydluTLwDuBLwBPqqr/ATwV+J1duUiSOXRep3ItML2qtjSbtgLTJzl8JnB71/dNTZskSZJ2sisDKg4CXlZVt3U3VtXPk7xksoOT7A9cAiyrqru6H2LsfsWKJEnSnrDXMJbbemhXnrl7886JXde2CSd6TLIPncTuwqq6tGm+I8mMZvsMYNskIezKtB07rrckyZoka770iYsmOa0kSRpFe/V4GTZ9iymdEt35wPqqOrtr00pgcbO+GLhsklPtyrQdQGdut6qaX1Xzj3jJCffvBiRJkqagXemWva8WAicCNyZZ27SdCZxF58XIpwC3AccDJHkEsAY4APh5kmXAvKYr95em7ehj3JIkqcVa3ivbv+Suqq4Cxvv5jhpj/610ulzHOtcvTdshSZJ0X4z8M3eSJEmaOvrZLStJkjR0Wl64M7mTJEmjZRhnleglu2UlSZJaxMqdJEkaKW0fUGFyJ0mSRkrLczu7ZSVJktokVa2d2rW1NyZJUksMpIb29tUbe5ojvOGoxw5VLdDKnSRJUou09pm7sz93y6BDmNBrnvNo/uaLtw46jAn9yTPncO4Xbh10GBNaunAO53/p24MOY0KnHPHIKfFnfc5V3xp0GOM69VkHAwz138elC+cADPXfx1OOeCQAb/vXjQOOZHxv/M3HAvCuK4f33/DXPe/RvH318P6GAG846rG86VMbBh3GhN76orkDu3YGUzDcY1qb3EmSJI3F99xJkiRpyrByJ0mSRkrbK3cmd5IkaaSk5S+6s1tWkiSpRazcSZKkkdL2btm+Ve6SzE5yRZJ1SW5KclrTflCSVUk2NJ/TmvZDklyd5MdJXrvTuS5Isi3J1/oVryRJGg1Jb5dh089u2e3A6VU1D1gALE0yDzgDWF1Vc4HVzXeAO4FTgXePca73A0f3MVZJkqRW6FtyV1Vbqur6Zv1uYD0wE1gErGh2WwEc1+yzraquA346xrk+Ryf5kyRJul/2Snq6DJs98sxdkjnAYcC1wPSq2tJs2gpM3xMxSJIkgc/c3W9J9gcuAZZV1V3d26qqgJ5N3ptkSZI1SdZcvfLDvTqtJEnSlNHXyl2SfegkdhdW1aVN8x1JZlTVliQzgG29ul5VLQeWA5z9uVt6ljRKkqT2GMKe1J7q52jZAOcD66vq7K5NK4HFzfpi4LJ+xSBJkrSzvUhPl2HTz27ZhcCJwJFJ1jbLscBZwAuSbAB+s/lOkkck2QS8BvjLJJuSHNBs+zBwNfD4pv2UPsYtSZI0ZfWtW7aqroJx09mjxth/KzBrnHO9ooehSZKkEdb2bllnqJAkSSPF0bKSJEmaMqzcSZKkkTKMLx7uJZM7SZI0Ulqe29ktK0mS1CZW7iRJ0kixW1aSJKlFWp7bkc70rq3U2huTJKklBpJmXXDdt3uaI/zh0x45VOliayt3b/zkhkGHMKG3HT2Xt6/eOOgwJvSGox7LO1Z/c9BhTOjMox7D2Z+7ZdBhTOg1z3k0b1013H/Wb3rBY4f6/5m3HT0XgDd9anhjfOuLOjG+7V+H98/6jb/5WICh/n/mNc95NADv+ezwxnj6cx/NWZ8Z7n8bzzhyavzbOChtH3DQ9vuTJEkaKa2t3EmSJI0lLX/ozuROkiSNlHandnbLSpIktYqVO0mSNFJ8z50kSVKLtDu162O3bJLZSa5Isi7JTUlOa9oPSrIqyYbmc1rTfkiSq5P8OMlrJzuPJEmSflk/n7nbDpxeVfOABcDSJPOAM4DVVTUXWN18B7gTOBV49y6eR5IkabclvV2GTd+Su6raUlXXN+t3A+uBmcAiYEWz2wrguGafbVV1HfDTXTyPJEnSbkvS02XY7JHRsknmAIcB1wLTq2pLs2krMP0+nkeSJEk76fuAiiT7A5cAy6rqru4Mt6oqyS7N77bzefoSrCRJar22vweur/eXZB86CdmFVXVp03xHkhnN9hnAtvt4nrH2W5JkTZI1119+0f2/AUmS1Dp7uls2ydFJbk6yMckZ4+xzfNfg0Q91tS9uBqFuSLJ4V+6vb5W7dO72fGB9VZ3dtWklsBg4q/m87D6e55dU1XJgOcAbP7lhlyqCkiRJ/ZJkb+Bc4AXAJuC6JCural3XPnOB1wMLq+p7SX6taT8IeDMwHyjgy82x35vomv2s3C0ETgSOTLK2WY6lk9S9IMkG4Deb7yR5RJJNwGuAv0yyKckBE5xHkiRpt6XHyySOADZW1S1V9RPgIjqDS7v9EXDujqStqnb0ar4IWFVVdzbbVgFHT3bBvlXuquoqxr/no8bYfyswa4x9JzqPJEnSbtnDI1xnArd3fd8EPH2nfR4HkOQLwN7AW6rqk+McO+kbQ5yhQpIk6X5IsgRY0tW0vHlUbFc9AJgLPI9OoetzSZ50X+MxuZMkSSOl18+kdT/zP4bNwOyu77Oatm6bgGur6qfAt5J8g06yt5lOwtd97JWTxdP20cCSJEm/YA+Plr0OmJvk4CQPBE6gM7i028dpkrgkD6PTTXsL8CnghUmmNdO1vrBpm5CVO0mSpD6pqu1JXk0nKdsbuKCqbkryVmBNVa3kv5K4dcDPgNdV1XcBkryNToII8NaqunOya5rcSZKkkbKnR2lW1eXA5Tu1valrvei8LeQ1Yxx7AXDB7lzP5E6SJI2UIZwOtqd85k6SJKlF0qkEtlJrb0ySpJYYSA3tn268o6c5wm89afpQ1QLtlpUkSSOl7d2yrU3u3vLpDYMOYUJveeFcll329UGHMaH3LjqEP7l03eQ7DtDfvGwer1k53L/j2b99CP/jkuH+Hc/7nXm87hM3DzqMcb3rJY8H4NSPD++f9TnHHQLAn//z8P6O73xx53d8x+pvDjiS8Z151GMAeNeVtww4kvG97nmPHur4oBPjez//rUGHMaFlzz540CG0VmuTO0mSpLGk5bOamtxJkqSR0vZuWUfLSpIktYiVO0mSNFL2anm3rJU7SZKkFulbcpdkdpIrkqxLclOS05r2g5KsSrKh+ZzWtB+S5OokP07y2q7z7JvkS0m+2pznf/YrZkmS1H5Jb5dh08/K3Xbg9KqaBywAliaZB5wBrK6qucDq5jvAncCpwLt3Os+PgSOr6inAocDRSRb0MW5JktRiJnf3UVVtqarrm/W7gfXATGARsKLZbQVwXLPPtqq6DvjpTuepqvph83WfZnH2CUmSpDHskWfukswBDgOuBaZX1ZZm01Zg+i4cv3eStcA2YFVVXdunUCVJUsulx/8Nm74nd0n2By4BllXVXd3bqjOx7aRVuKr6WVUdCswCjkjyxL4EK0mSWm+v9HYZNn1N7pLsQyexu7CqLm2a70gyo9k+g041bpdU1feBK4Cjx7nekiRrkqz58uUX3b/gJUmSpqB+jpYNcD6wvqrO7tq0EljcrC8GLpvkPA9PcmCzvh/wAmDMCSaranlVza+q+U899oT7ewuSJKmF2t4t28+XGC8ETgRubJ6XAzgTOAu4OMkpwG3A8QBJHgGsAQ4Afp5kGTAPmAGsSLI3nWT04qr6RB/jliRJLTaMI1x7qW/JXVVdBeOms0eNsf9WOs/U7ewGOoMxJEmSNAmnH5MkSSNlGLtSe8nkTpIkjZRhHOHaS84tK0mS1CJW7iRJ0kixW1aSJKlF2j5a1m5ZSZKkFrFyJ0mSRkrLC3cmd5IkabTs1fJ+2VTVoGPol9bemCRJLTGQLOvqjd/vaY7wjMceOFTZYmsrdx+6ftOgQ5jQ7x8+i4vX/tugw5jQ8Yf++pT4Hf9xyH/H3z301/noV7cMOowJvfwpM7jsxq2DDmNci570CAD+6cY7BhzJ+H7rSdMB+MhXNg84kvH93mEzAVix5vYBRzK+xfNnA/B/r751oHFM5L8/Yw7v/fy3Bh3GhJY9+2DedeUtgw5jQq973qMHdu2hysT6oLXJnSRJ0phant05WlaSJKlFrNxJkqSR4kuMJUmSWqTlg2XtlpUkSWoTK3eSJGmktLxw17/KXZLZSa5Isi7JTUlOa9oPSrIqyYbmc1rTfkiSq5P8OMlrxzjf3km+kuQT/YpZkiRpqutnt+x24PSqmgcsAJYmmQecAayuqrnA6uY7wJ3AqcC7xznfacD6PsYrSZJGQXq8DJm+JXdVtaWqrm/W76aTmM0EFgErmt1WAMc1+2yrquuAn+58riSzgBcDf9eveCVJ0mhIj/8bNntkQEWSOcBhwLXA9Kra8br+rcD0XTjFe4E/B37ej/gkSZLaou/JXZL9gUuAZVV1V/e26kxsO+H8bkleAmyrqi/3L0pJkjQqkt4uw6avyV2SfegkdhdW1aVN8x1JZjTbZwDbJjnNQuC3k9wKXAQcmeQfxrnekiRrkqz5zKUX9uQeJElSu7T8kbu+jpYNcD6wvqrO7tq0EljcrC8GLpvoPFX1+qqaVVVzgBOAz1TVfxtn3+VVNb+q5h/5sj+43/cgSZI01fTzPXcLgROBG5OsbdrOBM4CLk5yCnAbcDxAkkcAa4ADgJ8nWQbM27krV5Ik6X4ZxnJbD/Utuauqqxj/5ztqjP23ArMmOeeVwJX3NzZJkjS6hnGEay85/ZgkSVKLOP2YJEkaKcM4wrWXTO4kSdJIaXluZ7esJElSm1i5kyRJo6XlpTuTO0mSNFIcLStJkqQpI53pXVuptTcmSVJLDKSEduOmH/Y0R3jSrP2HqhRot6wkSRopQ5WJ9UFrk7uTL7px0CFM6O9PeBJ/cum6QYcxob952Txe8YG1k+84QB9+5aGc9OEbBh3GhN7/iidz6se/PugwJnTOcYdw+j/dPOgwxvWe33o8AMsuG97f8b2LDgGmRoxL/vGmAUcyvuW/+xsAQ/3v49+8bB5/dPHXBh3GhP72+Cdy4oVfHXQYE/rgHzxl0CG0VmuTO0mSpDG1vHRncidJkkaKo2UlSZJ0nyU5OsnNSTYmOWOM7Scl+U6Stc3yqq5tP+tqX7kr17NyJ0mSRsqenFs2yd7AucALgE3AdUlWVtXOD5Z+pKpePcYp7q2qQ3fnmlbuJEnSSEmPl0kcAWysqluq6ifARcCiXt7PzvqW3CWZneSKJOuS3JTktKb9oCSrkmxoPqc17YckuTrJj5O8dqdz3ZrkxqYkuaZfMUuSJPXYTOD2ru+bmrad/U6SG5J8NMnsrvZ9k6xJck2S43blgv2s3G0HTq+qecACYGmSecAZwOqqmgusbr4D3AmcCrx7nPM9v6oOrar5fYxZkiS1XY9Ld0mWNAnYjmXJbkb0T8CcqnoysApY0bXtUU3u8/vAe5M8ZrKT9S25q6otVXV9s343sJ5OprqI/wp6BXBcs8+2qroO+Gm/YpIkSeq1qlpeVfO7luVdmzcD3ZW4WU1b9/HfraofN1//Dnhq17bNzectwJXAYZPFs0eeuUsyh04w1wLTq2pLs2krMH0XTlHAp5N8+T5kw5IkSf8pPf5vEtcBc5McnOSBwAnAL4x6TTKj6+tv0ymIkWRakgc16w8DFgKTvuG776Nlk+wPXAIsq6q70jVEpaoqya7M7/asqtqc5NeAVUm+XlWf61PIkiSpxfbkaNmq2p7k1cCngL2BC6rqpiRvBdZU1Urg1CS/TeeRtjuBk5rDnwC8L8nP6RTkzhpjlO0v6Wtyl2QfOondhVV1adN8R5IZVbWlyVS3TXaerpLktiQfozPy5JeSu6aqtwTgGa96E48/6uU9uhNJkqT7pqouBy7fqe1NXeuvB14/xnFfBJ60u9fr52jZAOcD66vq7K5NK4HFzfpi4LJJzvOQJA/dsQ68EBhzUr/uPm8TO0mSNJY9/CqUPa6flbuFwInAjUl2zD5/JnAWcHGSU4DbgOMBkjwCWAMcAPw8yTJgHvAw4GNNd+4DgA9V1Sf7GLckSWqzYczIeqhvyV1VXcX4P99RY+y/lc4Ikp3dBTylh6FJkiS1ltOPSZKkkbILI1ynNJM7SZI0UvbkaNlBcG5ZSZKkFrFyJ0mSRkrLC3cmd5IkacS0PLuzW1aSJKlFrNxJkqSR4mhZSZKkFmn7aNlU1aBj6JfW3pgkSS0xkDTrW//+o57mCAc/bN+hShdbW7l7/F98atAhTOjm//0i5r5uuGdR2/Cuo3nKm1cPOowJffV/HsVT33bFoMOY0Jff+PwpEeMw/33c8K6jAfiVV3xwwJGM7wcfPhGAX/n9IY7xQ50YH/p7KwYcyfju/khn6vH9nnnmgCMZ371ffAf7HX325DsO0L2ffA37Hfn2QYcxoXs/84aBXXuoMrE+aG1yJ0mSNKaWZ3eOlpUkSWoRK3eSJGmkOFpWkiSpRdo+WtZuWUmSpBaxcidJkkZKywt3/avcJZmd5Iok65LclOS0pv2gJKuSbGg+pzXthyS5OsmPk7x2p3MdmOSjSb6eZH2SZ/QrbkmS1G5Jb5dh089u2e3A6VU1D1gALE0yDzgDWF1Vc4HVzXeAO4FTgXePca7/A3yyqg4BngKs72PckiRJU1bfkruq2lJV1zfrd9NJyGYCi4Adb9BcARzX7LOtqq4Dftp9niS/AjwHOL/Z7ydV9f1+xS1JktouPV6Gyx4ZUJFkDnAYcC0wvaq2NJu2AtMnOfxg4DvA3yf5SpK/S/KQfsUqSZI0lfU9uUuyP3AJsKyq7ureVp2JbSeb3+0BwOHAeVV1GPAf/FdXriRJ0m7xmbv7Ick+dBK7C6vq0qb5jiQzmu0zgG2TnGYTsKmqrm2+f5ROsjfW9ZYkWZNkzffXXn7/b0CSJLVOuztl+ztaNnSek1tfVd0zLK8EFjfri4HLJjpPVW0Fbk/y+KbpKGDdOPsur6r5VTX/wEOPvV/xS5IkTUX9fM/dQuBE4MYka5u2M4GzgIuTnALcBhwPkOQRwBrgAODnSZYB85qu3D8FLkzyQOAW4OQ+xi1JklpsGLtSe6lvyV1VXcX41cqjxth/KzBrnHOtBeb3LjpJkjSq2j63rNOPSZIktYjTj0mSpNHS7sKdyZ0kSRotLc/t7JaVJP2/9u48TLK6MPf49w0zSguijCgQwECUiBPCIoRdIqCIMILyIOJVMigEkkCGRbgPcq+BSBJxCQKJxoyCDAniRRZFdhyQ5QGRYViGRXBBBFkVIgQ6hGHe+0edZmraqpoe5ld9TtW8H556us45VdXfnn7o/vWp8zsnIoZJ9txFRETECiWzZSMiIiKGSGbLRkRERMTAUOvyrkNpaL+wiIiIIVHLLrQn/2th0THCG1ed0qhdgUP7tuzItsfWndDT6E0nMbL1MXVn9DR68xcY2eLwujN6Gr31VEZ2/oe6M3oavfr/MLLbyUt/YI1GLz+KkZ1OrDujq9FrPg3AyO6n1lzS3eilrf9XRnb9Qs0l3Y1e2fqZs8o+36i5pLvnzmtdgGhkj9NqLulu9JJZjHzw63Vn9DR64UGN/j7D4u91HRo1EuuDvC0bERERMUSGds9dRERERCeZLRsRERExRDJbNiIiIiIGRvbcRURExApl2N+WzZ67iIiIiCHSt8GdpPUkXSPpHkl3Szq8Wj9N0lWSflJ9XL1av5GkmyS9IOnottd5m6Tb227PSDqiX90RERERg6yfe+4WAp+0PR3YBjhU0nTgWGCu7Q2BudUywFPALOCL7S9i+z7bm9neDNgCeB64sI/dERERMcSksrem6dvgzvajtudX958F7gXWAfYC5lQPmwN8oHrME7ZvAV7s8bK7AD+z/WC/uiMiImK4qfB/TTMpx9xJWh/YHLgZWNP2o9Wmx4A1l+Gl9gPOKRoXERERMUT6PriTtCpwPnCE7Wfat7l1YdsJXd9N0quAPYFvF4+MiIiIFUbell0OkqbSGtidbfuCavXjktautq8NPDHBl3sfMN/24z0+38GS5kmat/Dx25cnPSIiImIg9XO2rIDTgXttt181/SJgZnV/JvDdCb7kR1jKW7K2Z9ve0vaWU9bcbFmTIyIiYgWgwrem6edJjLcH9gcWSBrbjXYccBJwrqQDgQeBfQEkrQXMA1YDFlWnO5lu+xlJqwDvAQ7pY29ERESsCJo4Iiuob4M72zfQ/Z9vlw6PfwxYt8trPQe8oVxdRERExHDK5cciIiJihdLE05eUlMFdRERErFCaOMO1pFxbNiIiImKIZM9dRERErFCGfMddBncRERGxghny0V3elo2IiIjoI0m7SbpP0k8lHdth+wGSnpR0e3U7qG3bTEk/qW4zxz+3k+y5i4iIiBXKZM6WlbQS8GVa5+t9GLhF0kW27xn30P9n+7Bxz50GHA9sSetyrbdWz3261+fMnruIiIhYoUzytWW3An5q++e2/wf4FrDXBFPfC1xl+6lqQHcVsNtSvz7bE3z9gTO0X1hERMSQGIqj3yQdDBzctmq27dnVtn2A3WwfVC3vD2zdvpdO0gHAZ4EngfuBI20/JOloYGXbf1897tPAqO0v9uoZ2rdl//CoS+tO6OnnJ+/O+odfXHdGT784dQYbHHlJ3Rk9PfClPdjgiIY3nrIHaxzwrbozevr1mfvxuv/173VndPXbb+4PwCof+kbNJd099+2PAzDy/q/UXNLd6Pf+GoDXfaTB3+tzWt/rkb3+reaS7ka/ewgjM/6l7oyeRi8+bCAah0U1kJu9HC/xPeAc2y9IOgSYA+z8Sl8sb8tGRERE9M+vgPXaltet1r3M9m9sv1Atfh3YYqLP7SSDu4iIiIj+uQXYUNIGkl4F7Adc1P4ASWu3Le4J3FvdvwLYVdLqklYHdq3W9TS0b8tGRERE1M32QkmH0RqUrQScYftuSZ8B5tm+CJglaU9gIfAUcED13KcknUhrgAjwGdtPLe1zZnAXERER0Ue2LwUuHbfub9vufwr4VJfnngGcsSyfL2/LRkRERAyRDO4iIiIihkjfBneS1pN0jaR7JN0t6fBq/TRJV1WX0biqOkAQSRtJuknSC9V5Xdpf68jqNe6SdI6klfvVHRERETHI+rnnbiHwSdvTgW2AQyVNB44F5treEJhbLUPrAMJZwBIn5pO0TrV+S9sb0zoYcb8+dkdEREQMrL4N7mw/ant+df9ZWtN616F1yY051cPmAB+oHvOE7VuAFzu83BRgRNIU4DXAI/3qjoiIiBhkk3LMnaT1gc2Bm4E1bT9abXoMWLPXc23/itbevF8CjwK/tX1l32IjIiIiBljfB3eSVgXOB46w/Uz7NrcubNvzGrDVMXl7ARsAvw+sIuljXR57sKR5kuY9c+dlRfojIiIiBklfB3eSptIa2J1t+4Jq9eNjZ2KuPj6xlJd5N/CA7SdtvwhcAGzX6YG2Z9ve0vaWq23yvjJfRERERMQA6eds6Dqr8wAAEnhJREFUWQGnA/faPrlt00XAzOr+TOC7S3mpXwLbSHpN9Zq7sPiyHBERERHRpp9XqNge2B9YIOn2at1xwEnAuZIOBB4E9gWQtBYwD1gNWCTpCGC67ZslnQfMpzUD9zZgdh+7IyIiIgZW3wZ3tm8A1GXzLh0e/xiwbpfXOh44vlxdRERExHDKFSoiIiIihkgGdxERERFDJIO7iIiIiCGSwV1ERETEEMngLiIiImKIZHAXERERMUQyuIuIiIgYImpd3nUoDe0XFhERMSS6nQ83lkM/r1BRq5HdTl76g2o0evlRjOz6hbozehq98hhGZvxL3Rk9jV58GCPv/WLdGT2NXnE0IzueUHdGT6PXncDIDp+uO6Or0RtOBGDkHbNqLuludP5pAIxsfljNJd2N3tb6/3kgGnf5x5pLuhudexwj7z6p7oyeRr9/LCPv+1LdGT2NXnZk3QlDK2/LRkRERAyRDO4iIiIihkgGdxERERFDJIO7iIiIiCGSwV1ERETEEMngLiIiImKI9G1wJ2k9SddIukfS3ZIOr9ZPk3SVpJ9UH1ev1m8k6SZJL0g6etxrHS7prup1juhXc0RERMSg6+eeu4XAJ21PB7YBDpU0HTgWmGt7Q2ButQzwFDALWOKkZZI2Bv4C2ArYFJgh6a197I6IiIgYWH0b3Nl+1Pb86v6zwL3AOsBewJzqYXOAD1SPecL2LcCL417q7cDNtp+3vRC4Fti7X90RERERg2xSjrmTtD6wOXAzsKbtR6tNjwFrLuXpdwHvlPQGSa8BdgfW61NqRERExEDr++XHJK0KnA8cYfsZafFl5GxbUs9rwNq+V9LngCuB54DbgZf6mBwRERExsPq6507SVFoDu7NtX1CtflzS2tX2tYEnlvY6tk+3vYXtHYGngfu7fL6DJc2TNG/hQzeV+SIiIiIiBkg/Z8sKOB241/bJbZsuAmZW92cC353Aa72p+vhmWsfbfbPT42zPtr2l7S2nrLft8uRHREREDKR+vi27PbA/sEDS7dW644CTgHMlHQg8COwLIGktYB6wGrCoOuXJdNvPAOdLegOtyRaH2v7PPnZHREREDKy+De5s3wCoy+ZdOjz+MWDdLq/1zoJpEREREUMrV6iIiIiIGCIZ3EVEREQMkQzuIiIiIoZIBncRERERQySDu4iIiIghksFdRERExBDJ4C4iIiJiiGRwFxERETFEZLvuhoEg6WDbs+vu6CWNZaSxjDQuv6b3QRpLSWOUlD13E3dw3QETkMYy0lhGGpdf0/sgjaWkMYrJ4C4iIiJiiGRwFxERETFEMribuEE4ziCNZaSxjDQuv6b3QRpLSWMUkwkVEREREUMke+4iIiIihkgGdxERERFDJIO7iIiIiCGSwV1ERETEEMngbhlJek/dDWMkrSbpLR3Wb1JHTyeS1pK0VnX/jZL2lvTHdXf1Iukf627oRdIG1b/jRnW3jJH0ZkkrV/cl6eOS/lnSX0maUncfgKQ9xxqbTNKOkt5W3d9e0tGS9qi7q52kVSXtI+lISbMk7SapMb9PJE2RdIikyyXdWd0uk/SXkqbW3bc0kmqflSppperf8ERJ24/b9n/r6oqJyWzZZSTpl7bf3ICOfYFTgCeAqcABtm+pts23/Y46+6qOQ4BjAQGfAw4A7gJ2AD5v+/T66loknTZ+FbA/cBaA7VmTHjWOpO/Y/kB1fy9a3/cfANsBn7V9Zn11LZLuAray/bykzwFvAb4D7Axg+xN19gFIGgWeAy4DzgGusP1SvVVLknQKsBUwBbgC2IVW758Bt9k+psY84OWfPUcDdwI7ATfS2lHwJ8BHbS+oMQ8ASecA/wnMAR6uVq8LzASm2f5wXW1jJE3rtgm4w/a6k9nzOxHS14HXAD+i9TPxWttHVdsa8TsmusvgrgNJF3XbBOxse5XJ7OkYIt0OvM/2o5K2ojUY+ZTtCyXdZnvzmhORtADYGhgBHgTeavsxSasD19jerNZAQNJDwLXAlbS+vwBfpPXLC9tzakp7Wfv3U9KNtH6BPiBpDWCu7U3rLQRJ99ieXt2/FfhT24uq5Tsa0ngbrcHmPsB+wMbAhcA5tq+ts22MpLtpdY0AvwLWqQbMU2kN7jauNRCQdCewTdW1BnC27fdW7xh81fZ2NSci6X7bf7Ss2yaTpJdo/VxU22pXy+vYflUtYRVJd9repLo/BfgKsAbwEeCHTfgdE9014u2SBnon8DHgv8atF62/qptgJduPAtj+kaSdgIslrUfrB0QTvGj7eeB5ST+z/RiA7aclNaVxOnAisBtwtO1HJB3fhEFdm/Z/qym2HwCw/WtJi2pqGu8hSTvbvhr4BbAe8KCkN9SbtQTbfhr4GvC16nCBfYGTJK1re71684BWo9u+r2Pf+0U05zAaAaPV/eeANwHYvlPSarVVLekpSR8Czm/7I+P3gA8BT9dattjPgV1s/3L8huqPzrq9PLi0vRA4WNLfAlcDq9ZWFROSwV1nPwSe7/TXvKT7aujp5FlJb7H9M4BqD95OtPZENOWYNkuaavtF4OVjhqrjnhrxi8r2s8ARkrYAzpZ0CQ1pa7OppGdo/VJ9taS1q+/3q4CVam4bcxBwlqQTgN8Ct1d7l18PHFVnWJv2PSRUf2ycBpwm6Q/qSfodl0i6HlgZ+DpwrqQf0npb9rpayxa7FLhc0nW0/ij6Nrz8NqN6PXES7UfrUJCvSBobzL0euKba1gSnAKsDvzO4Az4/yS2dzJO0m+3Lx1bY/oykR4B/rbErJiBvyw4oSZsCz9n+6bj1U4F9bZ9dT9kSLW8GHqn+6mtfvw7wdtvfr6esM0kC/hrY1vbH6u5ZGkmvp/XveFPdLWMkvR34I1p/OD4M3DK256Rukt5l+wd1dyyNpG1p7cH7oVoTpj5IawBwXoP+LXentdf7DttXVet+D5hq+4Va48YZ23ts+zd1t0RMlgzuJkjSDNsX193RSxrLSGMZaSwjjWVJes/YgLSpmt7Y9L7I4G7CBmF2UBrLSGMZaSwjjWU15YwHvTS9sel9kWPulkVTjiXpJY1lpLGMNJaRxmW0lDMeNGKST9Mbm94XvWVw14OkNWz/ulo8pNaYLtJYRhrLSGMZaVxug3DGg6Y3Nr0vesjgrgNJ7wfOABZW5yLa1/aNNWctIY1lpLGMNJaRxmIG4YwHTW9sel/0Yju3cTdaZ17fqLq/Na0zc9felcY0pjGNdd8GoTG33Fb0W9PO59UUC23/GMD2zcBra+7pJI1lpLGMNJaRxj6RNKPuhqVpemPT+2KxvC3b2ZskHdVt2fbJNTSNl8Yy0lhGGstIY/98Bmj66Vqa3tj0vqhkcNfZ11jyr9Hxy02QxjLSWEYay0hj/zRqRm8XTW9sel9Ucp67iIgYSu0zeiVtZftHdTeN1/TGpvdFZznmrgNJK0uaKWlPtfxvSRdLOlXSGnX3QRpLSWMZaSwjjWVIer+kJ4EFkh6WtF3TBiVNb2x6X/SWPXcdSDoXeBFYhdaFne8CvgfsAGxmu/aDStNYRhrLSGMZaSxD0p20TtHyY0lbA5+3/Wd1d7VremPT+6K3DO46kHSX7Y0lTQEetr1W27Y7bG9aY95YRxoLSGMZaSwjjWVo3OXQxi83QdMbm94XvWVCRWf/A2B7oaRHxm17qYaeTtJYRhrLSGMZaSxjEGb0Nr2x6X3RQwZ3na0r6TRaM4PG7lMtr1Nf1hLSWEYay0hjGWksYxBm9Da9sel90UPelu1A0sxe223PmayWbtJYRhrLSGMZaYyIEjK4i4iIoSJpZeDDwNO0JnscA+wI/Aw4cezUHnVqemPT+6K3DO46kLQD8Ie2z6qWzwOmVZv/3vbVtcVV0lhGGstIYxlpLGNAZvQ2urHpfbEUbsAFbpt2A+YC09uWFwBb0Pqr5fK6+9KYxjSmMY09G++qPk4BHhu37Y66+wahsel9ufW+5STGna1m+5625Z/YvtX2dTTngNI0lpHGMtJYRhrLeHlGL9DUGb1Nb2x6X/SQ2bKdvb59wfbebYtrTnJLN2ksI41lpLGMNJYxCDN6m97Y9L7oIYO7zn4saQ/bl7SvlDQDuK+mpvHSWEYay0hjGWks45i2+/PGbRu/XJemNza9L3rIhIoOJL0VuAS4EZhfrd4C2A6YYfv+utrGpLGMNJaRxjLSGBElZHDXhaRXAx8F/rhadTfwTdv/XV/VktJYRhrLSGMZaVx+AzKjt9GNTe+L3jK4Ww6SbrK9bd0dvaSxjDSWkcYy0rjUzz0X+JuxiR+SFgAH0Dqtx3G2d6ujq13TG5veF71ltuzyWbnugAlIYxlpLCONZaSxt0GY0dv0xqb3RQ8Z3C2fQdjtmcYy0lhGGstIY2+DMKO36Y1N74seMriLiIhh82NJe4xf2bAZvU1vbHpf9JBToSwf1R0wAWksI41lpLGMNPZ2JHCJpH3oMKO3tqolNb2x6X3RQ/bcdSBpZpf1UyWd07Zq/0lK6tSSxgLSWEYay0hjGbZ/CmwCXA+sX92uAzZpyqlamt7Y9L7oLXvuOjtc0qttzx5bIWkV4ELgobF1tu+qI66SxjLSWEYay0hjIbZfAM7o9Zi6Zx03vbHpfdFd9tx19m7gIEmzACS9EfgBMN/2gXWGtUljGWksI41lpHFyZdbx8mt63wop57nrQtJqwGW0dknvBXzV9qn1Vi0pjWWksYw0lpHGySNpvu131N3RS9Mbm963osrgrgNJY1O+XwucDMwFvjW23fYFdXS1S2MZaSwjjWWkcXINwsCk6Y1N71tRZXDXgaRvsPgcTWMzvlzdt+1P1BLWJo1lpLGMNJaRxskl6Tbbm9fd0UvTG5vet6LKhIrO2g8EHvsh9iRwg+0HaujpJI1lpLGMNJaRxgIkzbQ9p8P6qcBZtj9Srap11nGTG5veF71lQkVnq7bdXlvdtgQuk7RfnWFt0lhGGstIYxlpLONwSQe3r6hm9F4CPD+2rgGzjpvc2PS+6CFvyy4DSdOA7zf5+II0lpHGMtJYRhpfUcvlwH/YPq2a0XspMNf2sfXWtTS9sel90Vvell0Gtp+S1Ogzw6exjDSWkcYy0rhsqpZ309qb+Ps0cEZv0xub3he9ZXC3DCTtBDxdd0cvaSwjjWWksYw0Lpu2Gb2zWTyj96Gx9U2Y0dv0xqb3RW8Z3HUgaQGLDxQeMw14BPjzyS/6XWksI41lpLGMNBbzfhY3XlR9nEE1oxdowsCk6Y1N74secsxdB5L+YNwqA7+x/VwdPZ2ksYw0lpHGMtJYhqRPti02dUZvoxub3he9ZXAXERFDRdLxHVZPA94LnGD7Wx22T6qmNza9L3rL4C4iIlYITZrR203TG5veFy05z11ERKwQbD/F4qtqNFLTG5veFy0Z3EVExAqhSTN6u2l6Y9P7oiWzZSMiYqgMwozepjc2vS96yzF3ERExVAZkRm+jG5veF71lcBcRERExRHLMXURERMQQyeAuIiIiYohkcBcRy0SSJf1T2/LRkk6oMekVk/QuSdu1LZ8paZ86myIillcGdxGxrF4A9pa0Rt0hBbwL2G5pD4qIGCQZ3EXEsloIzAaOHL9B0vqSrpZ0p6S5kt5crT9T0mmSbpT08/a9Y5KOkXRL9Zy/6/QJJZ0gaY6k6yU9KGlvSZ+XtEDS5ZKmVo/bRdJt1fozJL26Wv8LSX8naX61bSNJ6wN/CRwp6XZJ76w+3Y6dOiMiBkUGdxHxSnwZ+Kik141b/8/AHNubAGcDp7VtWxvYAZgBnAQgaVdgQ2ArYDNgC0k7dvmcbwF2BvYE/gO4xvafAKPAHpJWBs4EPlytnwL8Vdvzf11dMulfgaNt/wL4KvAl25vZvr5bZ0TEIMngLiKWme1ngLOAWeM2bQt8s7r/77QGSWO+Y3uR7XuANat1u1a324D5wEa0BnudXGb7RWABsBJwebV+AbA+8DbgAdv3V+vnAO0DxQuqj7dWj++mU2dExMDIFSoi4pU6hdaA7BsTfPwLbffV9vGztv+t/YGSDgX+olrcvf35thdJetGLT9K5iIn9LBv7/C8t5fGdOiMiBkb23EXEK1JdQPxc4MC21TcC+1X3PwpcP/5541wBfELSqgCS1pH0Jttfrt4q3cz2IxNMug9YX9Jbq+X9gWuX8pxngddO8PUjIgZCBncRsTz+CWifNfs3wMcl3UlrcHV4ryfbvpLW27g3VdeyPI9XONiy/d/Ax4FvV6+1iNYxdb18D/jguAkVEREDLZcfi4iIiBgi2XMXERERMUQyuIuIiIgYIhncRURERAyRDO4iIiIihkgGdxERERFDJIO7iIiIiCGSwV1ERETEEMngLiIiImKI/H+jTebmcqPVTAAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [ "\n", "fig, ax = plt.subplots(figsize=(11, 9))\n", "\n", "\n", "sb.heatmap(forex_m, cmap=\"RdPu\", vmin= 0.5, vmax=0.8, square=True,\n", " linewidth=0.3, cbar_kws={\"shrink\": .8})\n", "# xticks\n", "ax.xaxis.tick_top()\n", "xticks_labels = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',\n", " 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n", "plt.xticks(np.arange(12) + .5, labels=xticks_labels)\n", "# axis labels\n", "plt.xlabel('')\n", "plt.ylabel('')\n", "# title\n", "title = 'monthly Average exchange rate\\nValue of one US $ in GBP £\\n'.upper()\n", "plt.title(title, loc='left')\n", "plt.savefig('heatmap')\n", "plt.show()\n", "\n", "#more refined heat map for exporting" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 583 }, "id": "PLndR9gydHQC", "outputId": "3d5f51fd-c9c5-4e3e-af48-de55ce00ac7b" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAI2CAYAAAD91ueZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde7zUVb3/8dcbRDTJxCwOIoomZlimZorH+mWZpnbByvBSgKZh56BpaSeyTpplUamVaRbmBfMWeaUilYOaeVIPSKgBKeQVRSnvpoLA5/fHWju/jPvy3duZPZf9fvL4PvbM+q5Za31nhvnMWt8166uIwMzMrJ761bsBZmZmDkZmZlZ3DkZmZlZ3DkZmZlZ3DkZmZlZ3DkZmZlZ3DkZmZlZ3TRGMJD0gaaWkTSrS/ywpJI0opP27pBskPSfpGUm/kTSqsH+P/JifVpR1i6RDJZ0g6fm8vSRpdeH+gpw3JG1d8fiTJF1UuP+vPEpulnRixWPGS/qbpNd1cuwXSFolaWi+Pyzff0s7ea+SdGqh/n8W2v68pP8qtPXlnPa0pD9J2q2ruiv27SXpxvw8PyFpvqSvSFqvnTratqc7OMYRub3PV2wH5v1XSDqnnWM9M9/eUNKPJD2UH/e3fH+TvP8BSR+sePyhkm5ppy03SXpK0sB2nouQtEshbWtJUZGvls/LA5Imt5Ov7T39lXx/84ryK98L783Hs7Ii353ttcOsNzRFMMruBw5uuyPpHcBaH+L5A/V64BpgU2BL4E7gfyVtVcj6T2CcCkGsTUR8JyIGRcQg4PPArW33I2K7njQ80i+LjwC+KGm73NY3AacBR0TEC+09TtIGwCeBZ4DP5LIeAWYD4yrybgzsB0wrJL+z0PZBEfH9wr5f5WPcBLgR+HVXdRf2fQq4HLgE2CIi3ggcCGwGDK+so7Bt1NnzBGxUkf9XOX0S8AlJ78/1HwjsBEyWtG5+PrYD9gE2BHYDngB2eVUNncjvh/cCAXysnSxPAt/u5PE1fV6AA4D/lrRXxf4JuW3jASLioWL5OU/xvfDHnPb9ina8s4t2mNVMMwWjX5L/s2UTgAsr8nwfuDAifhwRz0XEkxHxdeA24KRCvqeBC4AT6SURcS9wCnCupH7AGcAVEXFjJw/7JKmtJ5OOt800KoIRcBCwMCLu7ma7VgEXA8NygOy0bkkCTgdOjohzIuLJXM49EXF0RCzuTv0l2/gYcBxwjqTNSc/dkRHxPOk9sTnw8YhYGBFrImJ5RHwrImZ2s6rxpPfKBaz9fLeZBmwv6X2VO3rjeYmIucACYIdCvRuQgtQkYKSknV9rPWb10EzB6DZgQ0lvk9Sf9OFbHBZ7HfDvVHzDz6YDld8mTwE+KemtNWpve04HRPr2vDvw5S7yTwAuBS4DtpX0rpx+FbCJpPcU8o5j7V5RKblnMZ7Uk3iqRN1vJX3Tv6K7db0WEXEB8DdgHnBtRFybd30w33++CtWMJwXmi4EPSRpSsf8F4Duk906lmj8vkkYDbweWFJI/ATxPet9fR/tB1KzhNVMwgld6R3sBi4BHCvs2Jh3PsnYet4w0HPUv+dv2z0jf/HtiXj7f8nQe83/VWH6liFgNfBb4OHB0RDzXUd7cA3g/cElEPE4aimobhnmR9OEzPucdCbyLNDzUYRslfaiwb2xu94vA54ADci+p07p55Xl8rNDWy3L5L0gq9tjGVtTfWS8Q4B8V+d9Wsf+PwBspfAnJ99t7zStdXfF6VZ4zfA+wBTA9Iu4gBb5D2inn58DmkvatSK/18/IicGtu99WFfRNIw36rSa//QZIGdFFem+Mr2tHtLzNm1dKMwegQ4FBePUT3FLAGeNXJ9pz2j3bSv0f6BtyTsfKdImKjtg2YUuZBEbEg31zQacbU01kUEfPz/YuBQwofNNOAT+UT4+OA6yJieWdtjIjrCvum53YPAf5CCmZl6n4ip/3reY6Ig3JZ84D+lXUUtvd3ccybVORf1LYjB9zjSR/GpxWehydo/zWvtH/F6/WfFfsnANdHRNv75BLa6WVExArgW3krqunzAgwiDVXuAQwAkDSc9KXh4pzvGmA94MNdlNfm1Ip2uFdlddNUwSgiHiRNZNgPuLJi3z9J3xw/1c5Dx5K+3VeW9wTwI179wdIIxgNbSXpM0mOkIb5NSMcOcAvppPUY0gSDHn2rzR++E4GT9Mqsuc7qvofUI/1Ej46qB/L5mF+QXqujSRNQvpJ3/w/pC8UGr6H89UnvkfcVjvmLwDs7+KJyPrARaz8HNX1eImJ1RJwOvMQrgXQc6f/wb3Kb7yMFIwcVazrr1LsBPXA4MDgi/impsv2Tgesk/ZX0gbEO6dvkbsC7OyjvdNJ/YtWgrevmnkubl/NwSqfyrMC3ADsCfy/sOo0UKK6JiJB0Ial3tyHwm542MiLukXQd8F+SpndWd0RcI6ltMsGzpPNfTwNbk3pZtfAfpGD4nYhYI+lw4DZJl5N6y0cCV0g6FrgXGJzT5pecxLA/sBp4B7CykD6d9HwfV8wcEauUpumfUUhb00vPyxRgqqSfkYLON0nDzW12AX4t6Y35y5ZZU2iqnhFARPwtzypqb98twIdI306XAQ+SPlTf09Fspoh4ljQLb+MaNHcB6ZxM23ZYycdNIAWcuyPisbYN+DHwkTyNG9JQ5eakcwYr2innzorfkfyokzp/QOohfa6ruvOU67GkHtnDpCHQ6cBU1p5AcqBe/duhN3fShqcr8n4pn7/6DnB4RKwEiIiFpOB4Dil4fBD4KzALeBb4P1Lwur2TuoomAOfnKdHFYz4T+HQ7X3ogTe5Y61xVDZ+Xot+RhqS/TDrHdVaxzRExgzTB4eDOCsn+q6IN7Q1lm/UKhS+uZ2ZmddZ0PSMzM2s9DkZmZlZ3DkZmZlZ3DkZmZlZ3DkbWK5RWoD6p3u0ws8bU8MFI0rWSXrVkj6Qx+QeK6+T7ay2jX8jXtgz/OhXpe0ha2k65N0k6It8uvdx/zj9Q0neVLmXwoqTFkr6cf7RZLP+lijJfdfmGHpQ3vJD2QUkPFO4/kB9frPPMDuq8QNK3K9LWeg4lvUfpshPPSHpS0v9K6uh3XN2itS+9cVK+P7awfx1VXDaknTK6exmHRZI+WXj8HpLW5H3PSbpHUqfT8iUdImlJzn+n1l501sy60PDBiLSywGeKH8DZOODitvXUqFhGv4q6s9z/r4E9SSsVvD63cSLpNzpFR1WUeetrLO+fwH93cRwfrajzqC7yt0vShsBvgZ+Qfps1jPTDy/Z+54SkDST9kvSbn8mS7pX00W5U+STwTaXFccu0r9uXcQCOBS7S2gujPpr3bUha7eEcFa6LVVHnYNIKERMj4vWkRXzbvSyImbWvGYLR1aTFMN/blpD/83+EvD6dGmAZfUl7AnsDn4yIv0TEqoi4jfQDyEmquBhflcs7AzhY7Vxwrwa2AYiIS/MSNS9GxPURcVcH+b8AbEW61tD3SOumPdSN+q4l/bD1M11lzF9Yun0Zh7xm33OklScq90VEXE36oWm7wYj0nLwQETfkxyzKy1OZWUkNH4wirVDdtixLm7HAXyOi7cqUjbCM/l7A7RHxcDExIm4HlpJ6OLUq7xHSagTf7G6je+BeYLWkaZL2zV8MOjMEWEj6MI+IWFx43coIUq/vRHW9GnW3L+Og5MPAurmdlfv7Sfo4aS26jq4VtT5pzTgz66GGD0bZNOAAvbLO23jWXhj0tSyj35Wyy/1vQseXMqi8hMUZhfLmVaE8gO8CH1W+kmw7rq44js91kK9Tefmk95CCxDnA3yXN0Kuv/dPmPNJVUy8Cdu3JuaW8xM3fSVfL7Uy3L+NA+hIzg7TuXfF84KZ5/z9IF2EcFxH3VFaYzyX9ti1/3t5Tmc/MOtcUwSivOfcPYP88FLUL+do96vky+qvIS/FXGAC8XLhfdrn/f9DxpQwqL2HxhUJ5O1WhPCLi76S11Dq6PtP+FcdxTgf52nteBpAuz7Em17UoIg6NiM1IF3vblLSi9qvk4buRpC8PQ4HfSSp1uY0KXwe+RnptO9KTyzhsQBqeGy/pyML+R/P+jSNih4i4rL0KI+J80pDxo4Xn9pbuH55Z39YUwSi7kNQj+gzp2j2P5/SeLqP/EOlqqYPaEvI5hy1IC6x21/+QvvkXT5IjaVfSifMbeqG8H5AC87va2VfWQ8CIirQtgYcjYk1l5oj4K+ky3W/vqMDcm5pFOv83Buj25ImImEVaALTyOkRFPbqMQ0Q8APwe6M7ECjOromYLRh8krSpdOUT3TWCHwvZJYD9JbyzkGyhpvbaNdN7lduB7kgZJGkhaCfll0iXOuyUi/od0zaQrJG0nqb/SZaIvAs7u6OR5NcvLw0ynAf/V3fYXXAF8WNLeuc5NSb2SywAkbSvpOEmb5fvDSStEt/ucSfqYpC0KSe8AHm8vbwlfo5Njy8HyONL5pc9JGpzPCY2kk8s45GPZh64veGhmtRIRTbMBN5FOhA/M90eTThy/qZ28C0jfwEeQzm9Ubh8k9TB+TTrH8A/S5IdRhTJOIgWn5yu2N3fQvvVIM8YeJl0yYgnpGkv9Ko7hiJLH2+3ySFcEXQ48UEh7ID++eAxXdVLvR4E7gGdIvcQfAOvnfcNIE0oeIU0pf4R0Ke4NOyjrYGA+Kfg/R5oE8N5O6g5g68Lzf1HF/pk5z4hOytgH+EM+zieAP5O+aGzQweu6jHRNoNfl/XsAS0u+Rj/Lz+2aiue3w2P05s3bqzdfQsJ6Rf6R6qERcVJ9W2JmjaiZhunMzKxFuWdkZmZ1556RmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVnYORmZnVXdMGI0nP16jc1ZLmF7YRneS9SdLO3Sw/JF1UuL+OpL9L+m3PW91hXfvn+ratYpm91v5cfk1e5+7W08PXuurPfzt1fE3SAkl35ffrrjWoYzNJ10haLOlvkn4sad1O8h8r6XUlyw5JpxXuHy/ppCo0u628tv/PCyTdKek4SU37udfK/KK82osRsUNhe6DK5f8TeLuk9fP9vYBHulOApHVKZj0YuCX/7U75/TvZ/Zrb34f06PkvS9JuwEeAnSJie+CDwMNVrkPAlcDVETES2AYYBJzSycOOBUoFI2AF8AlJm7ymhnas7f/zdqT36r7AiTWqy16Dpg5GkgZJmi1pnqS7JY3J6SMkLZJ0Tv5GdH3hw7Mn9bxL0h8k3SHpOklDC7vH5W9ef5G0S8kiZwIfzrcPBi4t1LWLpFsl/VnSnyS9NacfKmmGpBuA2SXaPAh4D3A4cFBO20PSzZJ+J+keST9r+5Yo6XlJp0m6E9itBu2/WdIOhXy3SHpnV8dRaPdvC/fPlHRovv2ApG8W3gM97oV0Vk8Pyuro+e/oOPaT9Nf8HjujZE9zKPCPiFgBEBH/iIhHO3q/5t7dj7v5fv0A8FJEnJ/rWA18EfispA0knZrLukvS0ZK+AGwK3CjpxhLlrwKm5jLXkv8f35DLni1pc0lvkPRg4X27gaSHJQ3oqqKIWA5MBI5S0l/SDyTNyXUcWaj7K/n9dKekKSWOw16jpg5GwEvAxyNiJ+D9wGn5mxzASOCs/I3oaeCTJctcX68M0V2V3+Q/AQ6IiHcB57H2t8LXRcQOwH/mfWVcBhwkaT1ge+D2wr6/Au+NiB2BbwDfKezbKbfjfSXqGANcGxH3Ak9IeldO3wU4GhgFvAX4RE7fALg9It4ZEbfUoP3nAocCSNoGWC8i7ixxHGX8I78HzgaOr1KZr1VHz/+r5Ofx58C++T32ppJ1XA8Ml3SvpJ9Kel8N3q/bAXcUEyLiWeAh4AhgBLBD7pldHBFnAI8C74+I95c8jrOAT0t6Q0X6T4BpbWUDZ0TEM8B8oO3/wEeA6yLi5TIVRcR9QH/gzaQvCs9ExLuBdwOfk7SlpH1Jr9+uEfFO4Pslj8Neg7LDPY1KwHck/T9gDTAMGJL33R8R8/PtO0j/acp4Mf9nTRVIbwfeDszKca4/sKyQ/1KAiLhZ0oaSNoqIpzurICLuUjoXdTCpl1H0BmCapJFAAMVvfLMi4smSx3Ew8ON8+7J8/7fA/+X/kEi6lPTt/XJgNXBFmYJ72P5fA/8t6cvAZ4ELSh5HGVfmv3fwSnCtt46e//ZsC9wXEffn+5eSvsF3KiKez0HuvaQvY78Cvk2V36+d2AP4aUSsymWWfW9WHsezki4EvgC8WNi1G6+8nr/klaDwK+BA4EZSr/OnPakX2BvYXtIB+f4bSF9iPwicHxEv5Pb16Lise5o9GH2a9C3yXRHxsqQHgPXyvhWFfKuBng7TCVgQER0NXUUX9zsyAziV9B/6jYX0bwE3RsTH8wf+TYV9/yxTsKSNScMr75AUpA+kAH7XSXtfykMwZXWr/RHxgqRZpG+cY4EOewrtWMXavfj1Kva3vdareW3v6a7qKaWT5/+aapRflF+zm4CbJN0NTKK679eFwAHFBEkbApsDD3S3vZ34ETAPOL9E3hmkL6Ebk95HN5StRNJWpPfJctL/7aMj4rqKPB8qW55VT7MP070BWJ4D0fuBLWpQxz3Am5ROFiNpgKTtCvsPzOnvIXX5nylZ7nnANyPi7or0N/DKhIBDe9jmA4BfRsQWETEiIoYD95O+Qe+ShyL65bZ3NSTXkZ60/xfAGcCciHiqG3U9CIySNFDSRsCePWhvb9bT0fPfr4Py7wG20iszNw8sU4mkt+YeaJsdgEVU9/06G3idpPH5cf2B00g92+uAI5Un1OTgAPAc8Poyx9Am9z6mk4bO2vyJfL6N9MXzjznv88AcUs/zt2W/REl6E/Az4MyIiNz+/2g73yRpG0kbALOAw5RnBBaOy2qoKXtG+c2/gjSO/Jv8jXAu6XxFVUXEytyNPyOPaa9D+ha3IGd5SdKfScNRn+1GuUtJH8yVvk8a5vo6qSfTEwcD36tIuwL4D9J/4jOBrUnDHFf1pIKetD8i7pD0LOW+/f7rdY6IhyVNB/5C+lD/c0/a3Iv1dPT8H0T6wF2r/Ih4UdJ/AtdK+ifpNSpjEPCTHNhWAUtIw3tTqdL7NSJC0seBn0r6b1JAnQmcQOphbAPcJell4BzSe2tqPpZHu3HeCFKQO6pw/2jg/Dy0+3fgsMK+X5GGfvfoosz1Jc0nHe8q0nDf6XnfL0jD9/Pyuea/A/tHxLVKk23mSlpZOF6rIaUvCM1FaRbWORFRdvaakWZzAcdHxEfqVP+mpCGlbSNiTYn8vfI6N8L7SdKgfA5IpBP6iyPih1Wu4ybS6z+3muWaVUPTDdNJ+jzpJOzX690WKy8P89wOfK1kIOqV17mB3k+fy9/gF5CGOn9e5/aY9aqm7BmZmVlrabqekZmZtR4HIzMzqzsHIzMzq7uWC0aSuvzleiOX3xt1+Bgaow4fQ/3L7606rGstF4wosYxKg5ffG3X4GBqjDh9D/cvvrTqsC60YjMzMrMk0/NTuladc3q0G/mLOLI54916l8q77tbTk1oqvXla+/PmzOWKH8qvEDPzuQd0qv7t1DPxuWi1lxeRLu8jZs/IBBk45mL/vf27p/AAXPvAHxo8os7g4vOnqtALMU2PLLnoOF9z3Bw7dqlz5AIOnf5anDym18MMrdSy5iUO33qNU3o0uOYzHP/yLbpX/y4duZtzm/690/iG/O4IHduvez48uefyPHDLkvaXyjrj1SB7d+5xulX/R0pv5zGblj2HT6z/H/bv+rHT+S5f/kYPfXK79AFve/vmavg5DfncEpDXtrMparmdUNhD1uPxufIg3ah29cQxlA1FPdScQ9biOkoGop7oTiHqqbCDqqe4Eop7oTiDqqd54HaxrLReMzMys+TgYmZlZ3TkYmZlZ3TkYmZlZ3TkYmZlZ3XUZjCQNl3SjpIWSFkg6JqdvLGmWpMX57+CcLklnSFoi6S5JOxXKmpDzL5Y0oXaHZWZmzaRMz2gVcFxEjAJGA5MkjQImA7MjYiTp0sSTc/59gZF5mwicDf+6dO+JwK7ALsCJbQHMzMz6ti6DUUQsi4h5+fZzwCJgGDAGmJazTQP2z7fHABdGchuwkaShwIeAWRHxZEQ8RbrO/D5VPRozM2tK3TpnJGkEsCPpip1DImJZ3vUYMCTfHgY8XHjY0pzWUbqZmfVxpYORpEHAFcCxEfFscV+kNYUae10hMzNrWKWCkaQBpEB0cURcmZMfz8Nv5L/Lc/ojwPDCwzfLaR2lt1ffRElzJc39xZxZZY/FzMyaVJnZdALOBRZFxOmFXTOAthlxE4BrCunj86y60cAzeTjvOmBvSYPzxIW9c9qrRMTUiNg5Inau9VpzZmZWf+uUyLM7MA64W9L8nHYCMAWYLulw4EFgbN43E9gPWAK8ABwGEBFPSvoWMCfnOzkinqzKUZiZWVPrMhhFxC10vGT6q5Z/zuePJnVQ1nlA+esEmJlZn+AVGMzMrO4cjMzMrO4cjMzMrO4cjMzMrO4cjMzMrO4cjMzMrO4cjMzMrO6UfhbU0Bq+gWbWp3T0u0t7DdwzMjOzuiuzHFBdPbDbz2tW9ohbjwTg3h1/WrM6tvnzf3L3286oWfnvWPQFAP4y6ic1q+PtC4/mzrf+uGblv/OeYwC4bfPTalbH6IeO446tfliz8t913xdZtP2ZNSsf4G13HcX9u/6sZuVvefvnWfj22h7DqL8cxZwtT+86Yw+9+/4vcc87z6pZ+W+9s93FZawK3DMyM7O6czAyM7O6czAyM7O6czAyM7O6czAyM7O6czAyM7O6K3PZ8eGSbpS0UNICScfk9I0lzZK0OP8dnNMl6QxJSyTdJWmnQlnXSnpa0m9rd0hmZtZsyvSMVgHHRcQoYDQwSdIoYDIwOyJGArPzfYB9gZF5mwicXSjrB6RLmJuZmf1Ll8EoIpZFxLx8+zlgETAMGANMy9mmAfvn22OACyO5DdhI0tD8+NnAc9U9BDMza3bdOmckaQSwI3A7MCQiluVdjwFD8u1hwMOFhy3NaWZmZu0qHYwkDQKuAI6NiGeL+yKttlq1BU0lTZQ0V9LcSx7/Y7WKNTOzBlUqGEkaQApEF0fElTn58bbht/x3eU5/BBheePhmOa20iJgaETtHxM6HDHlvdx5qZmZNqMxsOgHnAosiorjC4QxgQr49AbimkD4+z6obDTxTGM4zMzN7lTKrdu9OmgF3t6T5Oe0EYAowXdLhwIPA2LxvJrAfsAR4ATisrSBJfwS2BQZJWgocHhHXVeNAzMyseXUZjCLiFjq+mNSe7eQPoN111iPCY25mZvYqXoHBzMzqzsHIzMzqzsHIzMzqzsHIzMzqzsHIzMzaJWkfSffkha8nt7N/87yQ9p/zwtj7FfZ9NT/uHkkf6qquMlO7zcysj5HUHzgL2Iu0rNscSTMiYmEh29eB6RFxdl5AeyYwIt8+CNgO2BT4H0nbRMTqjupzz8jMzNqzC7AkIu6LiJXAZaSFsIsC2DDffgPwaL49BrgsIlZExP2k353u0lllSj8LamgN30Az61M6+t1lze2nSVX7PPw9Pz2SdJmfNlMjYmrbHUkHAPtExBH5/jhg14g4qpBnKHA9MBjYAPhgRNwh6Uzgtoi4KOc7F/h9RFzeUXsafphuyU5nd52ph7ae9x8A3LfLz2pWx1b/93n+tnPtyn/L3M8D8NB7fl6zOja/5UiWvn9q1xl7aLMb0/+Hv+9/bs3qeNPVh/PikRfWrPz1fz6epw85v2blA2x0yWG89PnaHcN6Pxtf0+cI0vNU69dhxfGX1Kz8gaceUrOye1sOPK/1P/bBwAURcZqk3YBfSnp7Twpq+GBkZmZ1UWbR68OBfQAi4lZJ6wGblHzsWnzOyMysSfSr4lbCHGCkpC0lrUuakDCjIs9D5GXhJL0NWA/4e853kKSBkrYkXfn7/zqrzD0jM7MmoV48XRURqyQdBVwH9AfOi4gFkk4G5kbEDOA44BxJXySd3z80r0+6QNJ0YCGwCpjU2Uw6cDAyM7MORMRM0nTtYto3CrcXkq7s0N5jTwFOKVuXg5GZWZNo5fMqDkZmZk2iN4fpeluZK70Oz8s9LJS0QNIxOX1jSbMkLc5/B+d0STojLwNxl6SdcvoOkm7NZdwl6cDaHpqZmTWLMr2+VcBxETEKGA1Myks9TAZmR8RIYHa+D7AvaebESNIPqtp+KPQCMD4itiNNBfyRpI2qdiRmZi2ul2fT9aou2xQRyyJiXr79HLAIGEZa7mFazjYN2D/fHgNcGMltwEaShkbEvRGxOJfzKLAceFNVj8bMrIWpiluj6VaAlDQC2BG4HRgSEcvyrseAIfn2MODhwsOW5rRiObsA6wJ/63aLzcys5ZSewCBpEHAFcGxEPCu9ElsjIiSVWjMpr2X0S2BCRKzpZnvNzPqsfg3Zp6mOUj0jSQNIgejiiLgyJz+eA0tbgFme0ztcBkLShsDvgK/lIbyO6psoaa6kuZf945buHI+ZWcvq08N0Sl2gc4FFEXF6YdcMYEK+PQG4ppA+Ps+qGw08ExHL8nISV5HOJ3W4ciukBfwiYueI2PmgTd7TzUMyM7NmU2aYbndgHHC3pPk57QRgCjBd0uHAg8DYvG8msB/p+hUvAIfl9LHA/wPeKOnQnHZoRLSVaWZmnWjlYboug1FE3ELHvbo928kfwKR20i8CLupuA83MLGndUNSY083NzKyP8XJAZmZNopV7Dw5GZmZNok+vTWdmZlZr7hmZmTWJVu49OBiZmTWJVp7a3cqB1szMmoTSz4IaWsM30Mz6lLp1Tw7TF6v2eXh+/LChulkepjMzaxL91FDxo6oaPhi9fN7valb2gM9+GICVZ1zTRc6eW/cLY1h56lW1K//4jwPUvI6Xp82sWfkDJuwHwMuXXVu7Og7ah5VnzahZ+etO+lhNXwPonddh1RXX16x8gHU+uTerrqxdHet8Ym9Wz76hZuX33/MDNSu7r2v4YGRmZknr9os8gcHMzBqAe0ZmZk2ilXsPDkZmZk3CywGZmZnVkHtGZmZNopV7D2UuOz5c0o2SFkpaIOmYnL6xpFmSFue/g3O6JJ0haff2QxwAACAASURBVImkuyTtlNO3kDRP0vxczudre2hmZq1FVfzXaMoE2lXAcRExChgNTJI0CpgMzI6IkcDsfB9gX2Bk3iYCZ+f0ZcBuEbEDsCswWdKmVTsSMzNrWl0Go4hYFhHz8u3ngEXAMGAMMC1nmwbsn2+PAS6M5DZgI0lDI2JlRKzIeQaWqdvMzF7Rr4pbo+lWmySNAHYEbgeGRMSyvOsxYEi+PQx4uPCwpTmtbcjvrrz/exHxaI9bbmbWx6iKW6MpHYwkDQKuAI6NiGeL+yKtttrlAn4R8XBEbA9sDUyQNKS9fJImSporae4v/lC7JWLMzKwxlJpNJ2kAKRBdHBFX5uTH8/DbMklDgeU5/RFgeOHhm+W0f4mIRyX9BXgvcHllfRExFZgK8PJ5v/Oq3WZm9PHrGUkScC6wKCJOL+yaAUzItycA1xTSx+dZdaOBZ3LA2kzS+rnMwcB7gHuqdBxmZi2vlYfpyvSMdgfGAXdLmp/TTgCmANMlHQ48CIzN+2YC+wFLgBeAw3L624DTJAXpuTg1Iu6uylGYmVlT6zIYRcQtdBxI92wnfwCT2kmfBWzf3QaamVnSysN0XoHBzKxJNOKU7Gpp5WMzM7Mm4Z6RmVmTaN1BOgcjM7Om0crnjDxMZ2ZmdeeekZlZk2jdfpGDkZlZ02jlYTqlnwU1tIZvoJn1KXWLCCf0m1y1z8PvrJnSUJGt4XtGaxb/tWZl9xu5barjgb/Vro4Rb2HNvYtqV/42bwNg9d1/rlkd/d+xI2sW3Fmz8vtt906g9q/1mr/VbvWpfm95K2vuWViz8gH6vXUUa/66oHblb7td7xxDrf+/LXu464w9LX/o8K4z1VBDRY8qa/hgZGZmSSvPOGvlYzMzsybhnpGZWZPwMJ2ZmdVdK8+m8zCdmZnVnXtGZmZNopV7D2Wu9Dpc0o2SFkpaIOmYnL6xpFmSFue/g3O6JJ0haYmkuyTtVFHehpKWSjqzNodkZmbNpkygXQUcFxGjgNHAJEmjgMnA7IgYCczO9wH2BUbmbSJwdkV53wJurkLbzcz6lFa+7HiXwSgilkXEvHz7OWARMAwYA0zL2aYB++fbY4ALI7kN2EjSUABJ7wKGANdX9SjMzPqAflXcGk232iRpBLAjcDswJCKW5V2PkYIMpEBV/An0UmCYpH7AacDxr6G9ZmbWgkpPYJA0CLgCODYinpVe6ehFREjqas2k/wRmRsTS4mPNzKycPj+1W9IAUiC6OCKuzMmPF4bfhgLLc/ojQHEBp81y2m7AUZIeAE4Fxkua0kF9EyXNlTR36mXTu3lIZmatqbfPGUnaR9I9eULa5Hb2/1DS/LzdK+npwr7VhX0zuqqry56RUjfmXGBRRJxe2DUDmABMyX+vKaQfJekyYFfgmTyc9+lCmYcCO0fEqw4OICKmAlMB1iz+q1ftNjPrZZL6A2cBe5FOt8yRNCMi/rWabkR8sZD/aNJpnDYvRsQOZesrM0y3OzAOuFvS/Jx2AikITZd0OPAgMDbvmwnsBywBXgAOK9sYMzPrWC9PPNgFWBIR9wHkDsYYoKOl3Q8GTuxpZV0Go4i4hY57dXu2kz+ASV2UeQFwQdfNMzOzNr0cjNqbjLZrexklbQFsCdxQSF5P0lzSz4OmRMTVnVXmFRjMzPogSRNJvwVtMzWfIumJg4DLI2J1IW2LiHhE0lbADZLujogOL2blYGRm1iSqOZeueG6+Ax1NRmvPQVSMiEXEI/nvfZJuIp1P6jAYNeJvn8zMrB39UNW2EuYAIyVtKWldUsB51aw4SdsCg4FbC2mDJQ3MtzchzT3o9DLC7hmZmdmrRMQqSUcB1wH9gfMiYoGkk4G5EdEWmA4CLsvzBdq8Dfi5pDWkTs+U4iy89jgYmZk1id7+yWtEzCTNkC6mfaPi/kntPO5PwDu6U5eDkZlZk2jl8yqtfGxmZtYktPYwX0Nq+AaaWZ9StwXizuz3tap9Hh615pSGWujOw3RmZk1CLbxQasMHozX3L6lZ2f223DrV8dD9tatj8y1Z8/ADtSt/+AgA1jzyUO3qGLY5a+5dVLvyt3kbAGv+uqB2dWy7Hav/PKdm5fff8d2sWXhXzcoH6Ddqe9YsuLN25W/3TlbfNa9m5QP0334nVt9xW+3Kf9doVs/7v9qVv9MuNSu7r2v4YGRmZkkrn+R3MDIzaxKtHIxa+djMzKxJuGdkZtYkWnf6goORmVnTaOWhrFY+NjMzaxJdBiNJwyXdKGmhpAWSjsnpG0uaJWlx/js4p0vSGfma6XdJ2qlQVreuiW5mZq9QFf81mjI9o1XAcRExChgNTJI0CpgMzI6IkcDsfB9gX2Bk3iYCZxfKejEidsjbx6p1EGZm1ty6DEYRsSwi5uXbzwGLSJejHQNMy9mmAfvn22OACyO5DdhI0tCqt9zMrI/pV8Wt0XSrTZJGkK7WdzswJCKW5V2PAUPy7faumz4s315P0lxJt0naHzMzK83BCJA0CLgCODYini3uyxdVKrOA3xYRsTNwCPAjSW/poK6JOWjNnXrpZWWbaGZmTarU1G5JA0iB6OKIuDInPy5paEQsy8Nwy3N6h9dNL3tN9OK12dfcv8SrdpuZ0dq/Myozm07AucCiiDi9sGsGMCHfngBcU0gfn2fVjQaeyQGr29dENzOzV/RDVdsaTZme0e7AOOBuSfNz2gnAFGC6pMOBB4Gxed9MYD9gCfACcFhO7/Y10c3MrG/oMhhFxC103Dvcs538AUxqJ73b10Q3M7NXNOLEg2rxckBmZk2i8QbXqqeVA62ZmTUJ94zMzJpEK/ceHIzMzJpEKwejVj42MzNrEu4ZmZk1iUZcbbtaHIzMzJpEKw9lKf0sqKE1fAPNrE+pW/fkyn4nVu3z8BNrvtlQ3ayG7xmtWXhXzcruN2p7AFbPn1uzOvrvsDOr77i9duW/a1cA1iy4s2Z19Nvunax56P7alb/5lgCsWfLX2tWx9basue/e2pW/1TaseeTBmpUP0G/YFjV/Hdbcv6Rm5QP023Jr1ix7uOuMPS1/6HBi+bKuM/aQ3lzfq+E0VPSosoYPRmZmlvTr17rhqJWHIM3MrEm4Z2Rm1iTUwj0jByMzsybRT60bjDxMZ2ZmdeeekZlZk1ALdx/KXOl1uKQbJS2UtEDSMTl9Y0mzJC3OfwfndEk6Q9ISSXdJ2qlQ1uaSrpe0KJc3olYHZmbWavpJVdsaTZk4uwo4LiJGAaOBSZJGAZOB2RExEpid7wPsC4zM20Tg7EJZFwI/iIi3AbsAy6tyFGZm1tTKXOl1GbAs335O0iJgGDAG2CNnmwbcBHwlp1+Yr/h6m6SNJA0FBgPrRMSsXNbz1T0UM7PW1sqz6bo1ApmH1XYEbgeG5EAF8BgwJN8eBhR/Yr00p20DPC3pSkl/lvQDSf1fQ9vNzKxFlJ7AIGkQcAVwbEQ8q8KYY0SEpK7WTFoHeC8pmD0E/Ao4FDi3m202M+uT+vwKDJIGkALRxRFxZU5+PA+/kf+2nf95BBheePhmOW0pMD8i7ouIVcDVwE60Q9JESXMlzZ06/fLuHpOZWUuSqrc1mjKz6UTqvSyKiNMLu2YAE/LtCcA1hfTxeVbdaOCZPJw3B9hI0ptyvg8AC9urMyKmRsTOEbHzxLEHdPugzMysuZQZptsdGAfcLWl+TjsBmAJMl3Q48CAwNu+bCewHLAFeAA4DiIjVko4HZucAdwdwTrUOxMys1bXyMF2Z2XS30PHK5Xu2kz+ASR2UNQvYvjsNNDOzRI04vlYlLfx7XjMzaxZeDsjMrEn06WE6MzNrDP7Rq5mZWQ25Z2Rm1iRauGPkYGRm1iw8TGdmZlZDSj8LamgN30Az61Pq1j35301/ULXPw90f/XJDdbMaf5juhWdrV/brNkx///lM7erY4A3wfA3LH/SG9PelGl6RY71B8OJztSt//denv7U+hmYuvzfqaJVj6I33ap208tRuD9OZmVndNX7PyMzMgNaewOBgZGbWJFo4FnmYzszM6s/ByMysSaifqraVqk/aR9I9kpZImtzO/h9Kmp+3eyU9Xdg3QdLivE2ofGwlD9OZmTWJfr14CQlJ/YGzgL1IV+qeI2lGRPzroqgR8cVC/qOBHfPtjYETgZ1JP8+5Iz/2qY7qc8/IzMzaswuwJCLui4iVwGXAmE7yHwxcmm9/CJgVEU/mADQL2Kezyspcdny4pBslLZS0QNIxOX1jSbNyF2yWpME5XZLOyN26uyTtlNPfX+jOzZf0kqT9u6rfzMySag7TSZooaW5hm1hR3TDg4cL9pTnt1e2StgC2BG7o7mPblBmmWwUcFxHzJL2e1N2aBRwKzI6IKXkscTLwFWBfYGTedgXOBnaNiBuBHXLDNyZdlvz6EvWbmRnQr4pjWRExFZhapeIOAi6PiNU9LaDLQ4uIZRExL99+DlhEinBjgGk52zSgrZczBrgwktuAjSQNrSj2AOD3EfFCTxtuZmY19QgwvHB/s5zWnoN4ZYiuu48FunnOSNII0gmq24EhEbEs73oMGJJvl+meVTbczMy6IKlqWwlzgJGStpS0Lulze0Y7bdoWGAzcWki+Dthb0uB8CmfvnNah0sFI0iDgCuDYiFhrwbhIq62WWsAv95Le0VnDimOZU887v2wTzcysSiJiFXAU6bN6ETA9IhZIOlnSxwpZDwIui8Kq2xHxJPAtUkCbA5yc0zpUamq3pAGkQHRxRFyZkx+XNDQiluUAszynd9U9GwtcFREvd1TfWmOZLzzrVbvNzOj9hVIjYiYwsyLtGxX3T+rgsecB55Wtq8xsOgHnAosi4vTCrhlA2w+ZJgDXFNLH51l1o4FnCsN5sPb0PzMzK6mXh+l6VZme0e7AOOBuSfNz2gnAFGC6pMOBB0k9HkhRdD/SbLkXgMPaCsrnnIYDf6hC283MrEV0GYwi4hY6vpjUnu3kD2BSB2U9QBdzzc3MrH2tfD0jLwdkZtYk1MJr5rTwoZmZWbNwz8jMrEn05kKpvc3ByMysSbTylV49TGdmZnXnnpGZWZPwMJ2ZmdVdKw/TNX4wet2Gta9jgzfUtvxBNS4fYL1BtS1//dfXtnyo/TE0e/m9UUcrHENvvFet6ho+GMUTy7vO1EN645tTHf94rHZ1bPJvNS8feuEYHn+0duUP2RSo/WsdzzxRu/Lf8EbW3Le4ZuUD9NtqJGvuWdh1xp6W/9ZRrJp1Q9cZX4N19voAL196bc3KH3DwPqw89aqalb/u8R+vWdlltPLvjBo+GJmZWdLCp4w8m87MzOrPPSMzsybhCQxmZlZ3rXzOqIUPzczMmoV7RmZmTaJPT2CQNFzSjZIWSlog6ZicvrGkWZIW57+Dc7oknSFpiaS7JO1UKOv7uYxFOU8LP7VmZlXWT9XbGkyZYbpVwHERMQoYDUySNAqYDMyOiJHA7HwfYF9gZN4mAmcDSPp30lVjtwfeDrwbeF/1DsXMzJpVl8EoIpZFxLx8+zlgEelqrWOAaTnbNGD/fHsMcGEktwEbSRoKBLAesC4wEBgAPF7FYzEza2lS9bZG061zRpJGADsCtwNDImJZ3vUYMCTfHgY8XHjYUmBYRNwq6UZgGeky5mdGxKKeN93MrG/xbDpA0iDgCuDYiHi2uC8igtTz6ezxWwNvAzYjBawPSHpvB3knSporae7UaReWbaKZmTWpUj0jSQNIgejiiLgyJz8uaWhELMvDcG0Liz0CDC88fLOc9hngtoh4Ppf5e2A34I+V9UXEVGAqQDyxvNMgZ2bWV7Tyj17LzKYTcC6wKCJOL+yaAUzItycA1xTSx+dZdaOBZ/Jw3kPA+yStk4Pb+0jnn8zMrI8r0zPaHRgH3C1pfk47AZgCTJd0OPAgMDbvmwnsBywBXgAOy+mXAx8A7iYN6V0bEb+pxkGYmfUFjTjxoFq6DEYRcQtpwkF79mwnfwCT2klfDRzZ3QaamVnmCQxmZma14+WAzMyaRCtPYHAwMjNrEq18zsjDdGZmVnfuGZmZNYlWXoHBwcjMrEm08oUOWjjOmplZs1D6WVBDa/gGmlmfUrfuyd8/dm7VPg/fNOPwhupmNfww3dL3T61Z2ZvdOBGAxz/8i5rVMeR3R/DYvrUr/99+fwQAT409r2Z1DJ7+WVYcf0nNyh946iEArPzBlV3k7Ll1v/wJXv5Z7Rb8GPD5j7LyrBk1Kx9g3Ukfq/lztPKMa7rO+Frq+MKYmr8OK07+dc3KH/iNT9Ws7FJaeCyrhQ/NzMyaRcP3jMzMLGnh+QsORmZmzaKVV2DwMJ2ZmdWde0ZmZk3CP3o1M7O6a+VzRi0cZ83MrFmUuez4cEk3SlooaYGkY3L6xpJmSVqc/w7O6ZJ0hqQlku6StFOhrO9J+kveDqzdYZmZtaB+qt7WYMr0jFYBx0XEKGA0MEnSKGAyMDsiRgKz832AfYGReZsInA0g6cPATsAOwK7A8ZI2rOKxmJm1NPWr3tZoumxSRCyLiHn59nPAImAYMAaYlrNNA/bPt8cAF0ZyG7CRpKHAKODmiFgVEf8E7gL2qerRmJlZU+pWfJQ0AtgRuB0YEhHL8q7HgCH59jDg4cLDlua0O4F9JL1O0ibA+4HhPW65mVkfI1VvazSlg5GkQcAVwLER8WxxX6TVVjtdwC8irgdmAn8CLgVuBVZ3UNdESXMlzb340ZvLNtHMrKWpn6q2NZpSwUjSAFIgujgi2lZqfDwPv5H/Ls/pj7B2j2eznEZEnBIRO0TEXqSVb+9tr76ImBoRO0fEzp/e9P9195jMzKzJlJlNJ+BcYFFEnF7YNQOYkG9PAK4ppI/Ps+pGA89ExDJJ/SW9MZe5PbA9cH2VjsPMrOW18jBdmR+97g6MA+6WND+nnQBMAaZLOhx4EBib980E9gOWAC8Ah+X0AcAf85UKnwU+ExGrqnEQZmbW3LoMRhFxCx1fTGrPdvIHMKmd9JdIM+rMzKwHGnFKdrV4OSAzs2bRgBMPqqWF46yZmTUL94zMzJpEI048qBYHIzOzJtHK54xa+NDMzOy1kLSPpHvywteTO8gztrCQ9iWF9NWS5udtRld1uWdkZtYkenPlBEn9gbOAvUjLus2RNCMiFhbyjAS+CuweEU9JenOhiBcjYoey9blnZGbWJHr5R6+7AEsi4r6IWAlcRloIu+hzwFkR8RRARCynh5R+FtTQGr6BZtan1G0awUufv7Bqn4fr/3zCkaTL/LSZGhFT2+5IOgDYJyKOyPfHAbtGxFGFPFeTlnXbHegPnBQR1+Z9q4D5pMsQTYmIqztrT8MP06085fKalb3u1w4A4KWjL6pZHev95DM8f+gFNSt/0AWHAvDSUb+sWR3rnTmO5R85t2blv/m3hwPw9CHn16yOjS45jJc+f2HNyl/vZ+N56YsX16x8gPV++GlWHH9J1xl7aOCph7Dia7+qWfkAA085kBVfvax25X/3oJq+Duv98NM1K7uUKo5l5cAztcuMnVuHdO26PUjrkN4s6R0R8TSwRUQ8Imkr4AZJd0fE3zoqyMN0ZmbNonev9NrhotcFS4EZEfFyRNxP6iWNBIiItgWy7wNuIl1+qONDK9MiMzPrc+YAIyVtKWld4CDSQthFV5N6ReTr1G0D3CdpsKSBhfTdgYV0ouGH6czMLOvFX71GxCpJRwHXkc4HnRcRCySdDMyNiBl5396SFpKuT/fliHhC0r8DP5e0htTpmVKchdceByMzs2bRy2NZETGTdCWGYto3CrcD+FLeinn+BLyjO3V5mM7MzOrOPSMzs2bRl1ftljRc0o2F5R6OyekbS5olaXH+OzinbyvpVkkrJB1fUVaXS0uYmVn7WvlKr2WG6VYBx0XEKGA0MEnSKGAyMDsiRgKz832AJ4EvAKcWCyksLbEv6SJ7B+dyzMysj+syGEXEsoiYl28/BywChpGWhZiWs00D9s95lkfEHODliqLKLC1hZmYd6d3fGfWqbp0zkjSC9MOl24EhEbEs73oMGNLFw4cBDxfuLwV27U79ZmZ9WgMGkWopPZtO0iDgCuDYiHi2uC9P76vamkmSJkqaK2nuL+bMqlaxZmbWoEr1jCQNIAWiiyPiypz8uKShEbFM0lCgq9VayywtAay9ZtLKUy73QqlmZtDSP8YpM5tOwLnAoog4vbBrBjAh354AXNNFUWWWljAzs4608HS6Mj2j3YFxwN2S5ue0E4ApwHRJhwMPAmMBJP0bMBfYEFgj6VhgVEQ8297SElU9GjMza0pdBqOIuIWOr9+xZzv5HyMNwbVX1quWljAzs5JaeAKDV2AwM2sWffmckZmZWa25Z2Rm1ixaeJjOPSMzM6s794zMzJpF63aMHIzMzJqGh+nMzMxqR2lZuYbW8A00sz6lbt2TFd+u3vJoA79+QEN1sxp+mG7l6VfVrOx1v/TxVMfZv6ldHf/xUVaeVbtVj9ad9DEAXj7vdzWrY8BnP1zz5whg5RldrSj1Gur4wpiavw61fA0gvQ4rTv51zcof+I1PsfIHV3ad8TVY98ufYMW3L69Z+QO/fgAr/vtXtSv/WwfWrOwyGnAVn6rxMJ2ZmdVdw/eMzMwsa+EJDA5GZmbNooWDkYfpzMys7twzMjNrFi3cfXAwMjNrFi08na6F46yZmTWLMpcdHy7pRkkLJS2QdExO31jSLEmL89/BOX1bSbdKWiHp+IqyzpO0XNJfanM4ZmYtrF8VtwZTpkmrgOMiYhQwGpgkaRQwGZgdESOB2fk+wJPAF4BT2ynrAmCf19poM7M+qZ+qtzWYLoNRRCyLiHn59nPAImAYMAaYlrNNA/bPeZZHxBzg5XbKupkUrMzMzP6lWxMYJI0AdgRuB4ZExLK86zFgSFVbZmZma2vAHk21lB45lDQIuAI4NiKeLe6LtNpq1RbwkzRR0lxJc39x6/XVKtbMrLmpiluDKdUzkjSAFIgujoi2lRQflzQ0IpZJGgosr1ajImIqMBVg5elXedVuM7MWV2Y2nYBzgUURcXph1wxgQr49AajdkstmZtbSExjK9Ix2B8YBd0uan9NOAKYA0yUdDjwIjAWQ9G/AXGBDYI2kY4FREfGspEuBPYBNJC0FToyIc6t5QGZmLasBg0i1dBmMIuIWOh5h3LOd/I8Bm3VQ1sHdap2ZmfUJXg7IzKxJtPBqQA5GZmZNo4WH6RpwUQgzM+tr3DMyM2sW7hmZmZnVjntGZmbNooW7D0or+TS0hm+gmfUpdRsre/n8mVX7PBxw2H4NNebXwnHWzMyaRcMP06342q9qVvbAUw5MdXz78trV8fUDWHlK7cpf92sHALDy9KtqV8eXPs6Kk6bXrPyBJ40Fav9ar/jvGpb/rQNZcfKva1Y+wMBvfKrmr/PKU2tXPsC6x3+cld+9onblf/WTNX+O6qqFuw8NH4zMzCxr4V+9tnCcNTOzZuGekZlZs2jdjpGDkZlZ02jhYORhOjMzqzv3jMzMmkVfXg5I0nBJN0paKGmBpGNy+saSZklanP8OzunbSrpV0gpJx3dVjpmZlaQqbg2mzDDdKuC4iBgFjAYmSRoFTAZmR8RIYHa+D/Ak8AXg1JLlmJlZH9dlMIqIZRExL99+DlgEDAPGANNytmnA/jnP8oiYA7xcshwzMyujhXtG3TpnJGkEsCNwOzAkIpblXY8BQ3pYjpmZleEfvYKkQcAVwLER8WxxX6TVVkst4NdZOYU8EyXNlTT3F3/+n7JNNDOzJlUqGEkaQAogF0fElTn5cUlD8/6hwPIelvMqETE1InaOiJ2P2PGDZZpoZtbypOpt5erTPpLukbRE0uQO8owtTEy7pJA+IU9wWyxpQld1dTlMJ0nAucCiiDi9sGsGMAGYkv9e08NyzMysjF4cpZPUHzgL2AtYCsyRNCMiFhbyjAS+CuweEU9JenNO3xg4EdiZNGp2R37sUx3VV6ZntDswDviApPl5248UhPaStBj4YL6PpH+TtBT4EvB1SUslbdhJOWZm1nh2AZZExH0RsRK4jDRxrehzwFltQSYi2kbIPgTMiogn875ZwD6dVdZlzygibqHjeLxnO/kfAzZrJ29n5ZiZWVeq+KNXSROBiYWkqRExtXB/GPBw4f5SYNeKYrbJZf0v0B84KSKu7eCxnc6e9goMZmbNoopf53Pgmdplxs6tA4wE9iB1Qm6W9I6eFOS16czMrD2PAMML9zfLaUVLgRkR8XJE3A/cSwpOZR67FgcjM7Nm0bs/ep0DjJS0paR1gYNIE9eKrib1ipC0CWnY7j7gOmBvSYPzUnF757QOeZjOzKxZ9OKPXiNilaSjSEGkP3BeRCyQdDIwNyJm8ErQWQisBr4cEU+kpupbpIAGcHJEPNlZfQ5GZmbWroiYCcysSPtG4XaQZk5/qZ3HngecV7YuByMzs2bRwvORfc7IzMzqTqmX1dAavoFm1qfUrX+y6jezqvZ5uM5H92qoflbDD9OtOHF6zcoe+M2xALx09EU1q2O9n3yGF4+8sGblr//z8fz/9u4/yuq6zuP48zWImhIFuSELbNjGiWatZJ3jUmxtG/mrTEiLtRQHw3BbEEbBBDpZ2UlRibR021ixqNAiwcCOmewstscTyzIiG8JUlruk7sBYZGgmMt73/nG/6HWc4X4H7pd773deD8499/vjc9+f73fmMO/z+Xw/9/MBeG5Ohvdw0wU8+4nl5QsepGP+tTht1d7LV2RWx1FLzue5Wd/OLP7RN09l77zbyxc8BEct/hjPf/HOzOIf+ekP8/wNvU4ZWZk6rjgn0zqOvOIcnr/xB9nFb5mcWexUPGu3mZlZdmq+ZWRmZon8NoycjMzM6kaOk5G76czMrOrcMjIzqxc5HsDgZGRmVi9y3JdV9tYkjZK0vmRZ2TnJ8aGS1iVLyq5LJsND0lhJGyTtlTSvJM7Rkv5L0n8ncT6f3W2ZmVk9SZNnu4C5EdEIjAdmSmoE5gOtETEGaE32AXYDs4HF3eLsBd4bEW8HTgLOkDS+AvdgZtY/HN5Zuw+rB04a4AAAE49JREFUsskoIjoiYnOy/TTQTnHFvknA/m9CLgcmJ2U6I2ITsK9bnIiIZ5LdgcnLsyuYmaUlVe5VY/rUAylpNDAO2AgMi4iO5NROYFiKzw+QtAXopLg++sY+Xa2ZmeVS6mQkaRCwCmiJiD2l55JpxMu2ciLihYg4ieKqf6dIOrGP12tm1n/15246AEkDKSaiFRGxf2KpXZKGJ+eHU2ztpBIRTwHrgTN6qW+GpDZJbbc++G9pw5qZ5VqOe+lSjaYTsAxoj4glJafWAs3JdjOwpkycP5P02mT7VcCpwM97KhsRSyOiKSKaLj75feXvwszM6lqa7xlNAKYCW5PnPQALgUXASknTgR3AFABJxwNtwGCgIKkFaASGA8slDaCYBFdGxA8reTNmZrnWUINNmgopm4wi4gF672Gc2EP5nRSfCXX3M4qDH8zM7GDkNxfl+fu8ZmZWLzwdkJlZvajFkQcV4mRkZlYv8puL3E1nZmbV55aRmVm9yHHLyMnIzKxe5Hhot7vpzMys6lScVq6m1fwFmlm/UrXmyQs//UnF/h4OeOff1VQzyy0jMzOrupp/ZrTvjnsziz3wo8V5WrtW/jizOo6YcvrhuYfvZ3gPHzmdrlX3ZRf/3NMA6FqzLrs6Jp1K190Zxv/gqez7Xna/A4CB/3A6+771o+ziX3gm+/7l7sziAwz8xw/y/I0/yCz+kS2Tef6G1eULHmz8K87JLHYq/p6RmZlVX36TkbvpzMys6twyMjOrF+6mMzOzqstvLnI3nZmZVZ9bRmZm9SLH3XRplh0fJWm9pO2StkmakxwfKmmdpEeS9yHJ8bGSNkjaK2leD/EGSHpIkld5NTPrC6lyrxqTppuuC5gbEY3AeGCmpEZgPtAaEWOA1mQfYDcwG1jcS7w5QPshXbWZmeVK2WQUER0RsTnZfppiIhkBTAKWJ8WWA5OTMp0RsQnY1z2WpJHAB4BbK3L1Zmb9SY5bRn16ZiRpNDAO2AgMi4iO5NROYFiKEDcCnwJe3Zd6zcyMmkwilZJ6NJ2kQcAqoCUi9pSei+JsqwecwE/SWUBnRDyYoq4Zktoktd3aek/aSzQzszqVqmUkaSDFRLQiIvZP/LRL0vCI6JA0HOgsE2YCcLak9wNHA4MlfSciLuheMCKWAksB9t1xr2ftNjMD8vxFozSj6QQsA9ojYknJqbVAc7LdDKw5UJyIWBARIyNiNHAe8O89JSIzM+tFP39mNAGYCmyVtCU5thBYBKyUNB3YAUwBkHQ80AYMBgqSWoDG7l17ZmZm+5VNRhHxAL23DSf2UH4nMLJMzPuB+8tfnpmZvagGWzSV4hkYzMzqRY6TkeemMzOzqnPLyMysXuS4ZeRkZGZWL3KcjNxNZ2ZmVedkZGZmVeduOjOzepHjbjoVp5WraTV/gWbWr1QtI7yw9aGK/T0c8NZxNZXZar5l9Ifzv5FZ7NesuAiAP13yrczqeNXXL+S3H1qWWfzj7poOwFMfy+7n9NrbL+K5Wd/OLP7RN08F4LnLVmRXx5fP57lLv5Nd/K9ekGn8/XU88/Hl5QsepEG3NWf6fwGK/x+emfbNzOIP+uY0fj/ltsziD1n58cxip6Ect4z8zMjMzKqu5ltGZmaWyHHLyMnIzKxe5DgZuZvOzMx6JOkMSb+Q9CtJ83s4P03Sk5K2JK+LS869UHJ8bbm63DIyM6sXh7FlJGkAcAtwKvA4sEnS2ojY3q3o9yJiVg8h/hQRJ6Wtzy0jM7N6cXgX1zsF+FVEPBoRzwPfBSZldWtpVnodJWm9pO2StkmakxwfKmmdpEeS9yHJ8bGSNkjaK2let1j/K2lr0mxry+aWzMysAkYAj5XsP54c6+5cST+TdKekUSXHj5bUJuk/JU0uV1mallEXMDciGoHxwExJjcB8oDUixgCtyT7AbmA2sLiXeH8fESdFRFOKus3M7EWq2EvSjCRZ7H/NOIgLuhsYHRFvA9YBpV+Ee0Pyd/5jwI2S/vJAgdKs9NoBdCTbT0tqp5gdJwHvSYotp7hy65UR0Ql0SvpAX+7IzMzKqOAzo4hYCiw9QJEngNKWzsjkWGmM35Xs3gpcX3LuieT9UUn3A+OAX/dWWZ+eGUkanQTcCAxLEhXATmBYihAB3CfpwYPMwmZmdnhsAsZIOkHSkcB5wMtGxUkaXrJ7NtCeHB8i6ahk+zhgAtB94MPLpB5NJ2kQsApoiYg9pdNSRERISjNn0t9GxBOSXg+sk/TziPiPtNdgZtavHcbRdBHRJWkW8GNgAHBbRGyTdDXQFhFrgdmSzqb4OGc3MC35+FuAr0sqUGz0LOphFN7LpEpGkgZSTEQrImJ1cniXpOER0ZFkx84UN7e/2dYp6S6KozVekYySVtMMgBtPuZBpb3pPmss0M8u3w/yl14i4B7in27GrSrYXAAt6+NxPgbf2pa40o+kELAPaI2JJyam1QHOy3QysKRPnWEmv3r8NnAY83FPZiFgaEU0R0eREZGaWf2laRhOAqcBWSVuSYwuBRcBKSdOBHcAUAEnHA23AYKAgqQVoBI4D7kq6944Abo+Ieyt4L2Zm+Zbf2YBSjaZ7gN5/BBN7KL+T4qiL7vYAb+/T1ZmZ2Us8N52ZmVl2PDedmVm9yHHLyMnIzKxu5DcZuZvOzMyqzi0jM7N64W46MzOruhwnI3fTmZlZ1SkizZRyVVXzF2hm/UrVmieFHY9W7O9hwxveWFPNLHfTmZnVixx309V8MvrRMV/ILPaZz34GgB8edXVmdZy19yp+8vrrMov/d51XArBhZG9rGR66dzw+L/P4kP3v4dqGhZnFX1C4hkUZxgeYX7iGLzS8Yk7KivlM4VrOKy7knJnvxk3MaphXvuBBurmwmOkNl2cWf1lhSflCdlD8zMjMzKrOycjMzKqu5rvpzMws4WdGZmZWdTlORu6mMzOzqnPLyMysXuS3YZRq2fFRktZL2i5pm1Qc+ylpqKR1kh5J3ockx8dK2iBpr6R53WK9VtKdkn4uqV3SO7K5LTOzPFIFX7UlTTddFzA3IhqB8cBMSY3AfKA1IsYArck+wG5gNtDTF1NuAu6NiLEUV31tP8TrNzOzHCibjCKiIyI2J9tPU0wgI4BJwPKk2HJgclKmMyI2AftK40h6DfBuYFlS7vmIeKpC92Fmln9S5V41pk8DGCSNBsYBG4FhEdGRnNoJDCvz8ROAJ4FvSHpI0q2Sju3b5ZqZ9WP57aVLn4wkDQJWAS0Rsaf0XBRnWy03gd8RwF8DX4uIccAfealrr3tdMyS1SWr7UVdb2ks0M7M6lSoZSRpIMRGtiIjVyeFdkoYn54cDnWXCPA48HhEbk/07KSanV4iIpRHRFBFNZx7RlOYSzcxyTxX8V2vSjKYTxec87RFROkvgWqA52W4G1hwoTkTsBB6T9Obk0ERge5+v2Mysv8rxM6M03zOaAEwFtkrakhxbCCwCVkqaDuwApgBIOh5oAwYDBUktQGPStXcpsELSkcCjwEWVvBkzM6tPZZNRRDxA74+7JvZQficwspdYWwD3u5mZHYwabNFUimdgMDOrF/nNRZ6bzszMqs8tIzOzupHfppGTkZlZvcjxMyN305mZWdW5ZWRmVi/y2zByMjIzqx/5zUYqTitX02r+As2sX6laRojf7qrY30MdN6ymMlvNt4ymaHZmsVfGVwA4V5dmVseq+Cof1KzM4t8dNwMwveHyzOpYVljCrIZ55QsepJsLxaWvLtJlmdXxjfgycxquyCz+TYUb+GTD3MziA3yt8CWuauhxbuGKuLqwiJYMf0YANxZuYGGG93BNYVHmP6OqyvEAhppPRmZmlshvLvJoOjMzqz63jMzM6oW76czMrPrym4zcTWdmZlXnlpGZWb3Ib8Mo1UqvoyStl7Rd0jZJc5LjQyWtk/RI8j4kOT5W0gZJeyXNK4nzZklbSl57koX3zMysn0vTTdcFzI2IRmA8MFNSIzAfaI2IMUBrsg+wG5gNLC4NEhG/iIiTIuIk4GTgWeCuytyGmVk/kONlx8smo4joiIjNyfbTQDswApgELE+KLQcmJ2U6I2ITsO8AYScCv46IHYdw7WZm/Ut/TkalJI0GxgEbgWER0ZGc2gkM60Oo84A7+lK3mZnlV+pkJGkQsApoiYg9peeiOMFdqjmTJB0JnA18vw/XaWZmOZYqGUkaSDERrYiI1cnhXZKGJ+eHA50p6zwT2BwRuw5Q3wxJbZLaHuXhlGHNzPJNUsVetSbNaDoBy4D2iFhScmot0JxsNwNrUtb5Ucp00UXE0ohoioimN3JiyrBmZlav0nzPaAIwFdgqaUtybCGwCFgpaTqwA5gCIOl4oA0YDBSS4duNEbFH0rHAqcAllb0NM7N+oAZbNJVSNhlFxAP0/lWriT2U3wmM7CXWH4HX9eUCzcxsv/wmI08HZGZmVefpgMzM6kV+G0ZORmZmdSPHz4zcTWdmZlXnlpGZWb1wy8jMzPobSWdI+oWkX0ma38P5aZKeLFmN4eKSc83Jqg6PSGru/tnu3DIyM7NXkDQAuIXid0MfBzZJWhsR27sV/V5EzOr22aHAZ4EmilPFPZh89ve91lecVq6m1fwFmlm/Ur2+sueeqdzfw6MHHfA+JL0D+FxEnJ7sLwCIiGtLykwDmnpIRh8F3hMRlyT7Xwfuj4heZ99xy8jMrF6USSB9IWkGMKPk0NKIWFqyPwJ4rGT/ceBvegh1rqR3A78ELouIx3r57IgDXU/NJ6O7Gj6bWewPFT4PwPcbrsqsjo8UrmZ1hvdwTnIPd2ZYx4cLn+crDZ/OLP7swhcBWNSwMLM65heu4XMNCzKL/7nCtcxr+FRm8QEWF67n2gx/RgsK13Blw5WZxQe4rnAdl2f4c1pSuD7z+HmRJJ6lZQse2N3AHRGxV9IlFNe2e+/BBPIABjMz68kTwKiS/ZHJsRdFxO8iYm+yeyvFVbxTfbY7JyMzM+vJJmCMpBOSdejOo7haw4v2LyOUOJviSuAAPwZOkzRE0hDgtORYr2q+m87MzA6/iOiSNItiEhkA3BYR2yRdDbRFxFpgtqSzgS5gNzAt+exuSV+gmNAAro6I3Qeqz8nIzMx6FBH3APd0O3ZVyfYCoMeHsRFxG3Bb2rrcTWdmZlXnZGRmZlWXZtnxUZLWS9ouaZukOcnxoZLWJVM9rEseUiFprKQNkvZKmtct1mVJjIcl3SHp6Gxuy8zM6kmallEXMDciGoHxwExJjcB8oDUixgCtyT4UH2LNBhaXBpE0IjneFBEnUnwgdl5F7sLMzOpa2WQUER0RsTnZfpri0L0RwCSKX3AieZ+clOmMiE3Avh7CHQG8StIRwDHA/x3yHZiZWd3r0zMjSaOBccBGYFhEdCSndgLDDvTZiHiCYmvpN0AH8IeIuK+P12tmZjmUOhlJGgSsAloiYk/puSjOtnrACfySZ0qTgBOAPweOlXRBL2VnSGqT1HZfPJj2Es3MrE6lSkaSBlJMRCsiYnVyeNf+b98m751lwrwP+J+IeDIi9gGrgXf2VDAilkZEU0Q0naaTeypiZmY5kmY0nYBlQHtELCk5tRbYv2BSM7CmTKjfAOMlHZPEnMhLU0eYmVk/lmYGhgnAVGCrpC3JsYXAImClpOnADmAKgKTjgTZgMFCQ1AI0RsRGSXcCmymO0HuIQ58x1szMcqBsMoqIB+h9MamJPZTfSXGG1p5ifZbi6n9mZmYv8gwMZmZWdU5GZmZWdU5GZmZWdU5GZmZWdU5GZmZWdU5GZmZWdU5GZmZWdSpOK1fTav4Czaxf6e17l3YI0szAUFWzGuaVL3SQbi4Ul1z6ZMPczOr4WuFLXN7wqcziLylcD8A/Zfhz+ufCYi5US2bxvxU3AnB+cd3GTKyImzhLMzOL/8O4hfdnGB/gnozruCdu4eKGyzOLD3BrYQkzMqxjaWEJl2b4f+GrhcXlC9lBcTedmZlVnZORmZlVnZORmZlVnZORmZlVnZORmZlVnZORmZlVXZqVXkdJWi9pu6RtUnH8raShktZJeiR5H5IcHytpg6S9kuZ1izVH0sNJnOzGCpuZWV1J0zLqAuZGRCMwHpgpqRGYD7RGxBigNdkH2A3MBl42IF/SicAngFOAtwNnSXpTRe7CzMzqWtlkFBEdEbE52X4aaAdGAJOA5Umx5cDkpExnRGwC9nUL9RZgY0Q8GxFdwE+AcypyF2ZmVtf69MxI0mhgHLARGBYRHcmpncCwMh9/GHiXpNdJOgZ4PzCqT1drZma5lHo6IEmDgFVAS0TskV6anikiQtIB55CLiHZJ1wH3AX8EtgAvHNRVm5lZrqRqGUkaSDERrYiI1cnhXZKGJ+eHA53l4kTEsog4OSLeDfwe+GUv9c2Q1CapbVv8LM0lmplZHUszmk7AMqA9IpaUnFoLNCfbzcCaFLFen7z/BcXnRbf3VC4ilkZEU0Q0/ZXeVi6smZnVuTTddBOAqcBWSVuSYwuBRcBKSdOBHcAUAEnHA23AYKCQDOFujIg9wCpJr6M4uGFmRDxV0bsxM7O6VDYZRcQD9L5+x8Qeyu8ERvYS6119ujozM+sXPAODmZlVnZORmZlVnZORmZlVnZORmZlVnZORmZlVnZORmZlVnZORmZlVnSIOOKVcLaj5CzSzfqW3713aIUg9UWoV+RdvZpZz7qYzM7OqczIyM7OqczIyM7OqczIyM7OqczIyM7OqczIyM7Oq+3+sod06ZrP4aAAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "source": [], "metadata": { "id": "e-ubfePydHSL" }, "execution_count": null, "outputs": [] } ] }