scipy.integrate.romberg¶
-
scipy.integrate.
romberg
(function, a, b, args=(), tol=1.48e-08, rtol=1.48e-08, show=False, divmax=10, vec_func=False)[source]¶ Romberg integration of a callable function or method.
Returns the integral of function (a function of one variable) over the interval (a, b).
If show is 1, the triangular array of the intermediate results will be printed. If vec_func is True (default is False), then function is assumed to support vector arguments.
Parameters: function : callable
Function to be integrated.
a : float
Lower limit of integration.
b : float
Upper limit of integration.
Returns: results : float
Result of the integration.
Other Parameters: args : tuple, optional
Extra arguments to pass to function. Each element of args will be passed as a single argument to func. Default is to pass no extra arguments.
tol, rtol : float, optional
The desired absolute and relative tolerances. Defaults are 1.48e-8.
show : bool, optional
Whether to print the results. Default is False.
divmax : int, optional
Maximum order of extrapolation. Default is 10.
vec_func : bool, optional
Whether func handles arrays as arguments (i.e whether it is a “vector” function). Default is False.
See also
fixed_quad
- Fixed-order Gaussian quadrature.
quad
- Adaptive quadrature using QUADPACK.
dblquad
- Double integrals.
tplquad
- Triple integrals.
romb
- Integrators for sampled data.
simps
- Integrators for sampled data.
cumtrapz
- Cumulative integration for sampled data.
ode
- ODE integrator.
odeint
- ODE integrator.
References
[R63] ‘Romberg’s method’ http://en.wikipedia.org/wiki/Romberg%27s_method Examples
Integrate a gaussian from 0 to 1 and compare to the error function.
>>> from scipy import integrate >>> from scipy.special import erf >>> gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2) >>> result = integrate.romberg(gaussian, 0, 1, show=True) Romberg integration of <function vfunc at ...> from [0, 1]
Steps StepSize Results 1 1.000000 0.385872 2 0.500000 0.412631 0.421551 4 0.250000 0.419184 0.421368 0.421356 8 0.125000 0.420810 0.421352 0.421350 0.421350 16 0.062500 0.421215 0.421350 0.421350 0.421350 0.421350 32 0.031250 0.421317 0.421350 0.421350 0.421350 0.421350 0.421350
The final result is 0.421350396475 after 33 function evaluations.
>>> print("%g %g" % (2*result, erf(1))) 0.842701 0.842701