scipy.linalg.clarkson_woodruff_transform¶
-
scipy.linalg.
clarkson_woodruff_transform
(input_matrix, sketch_size, seed=None)[source]¶ ” Find low-rank matrix approximation via the Clarkson-Woodruff Transform.
Given an input_matrix
A
of size(n, d)
, compute a matrixA'
of size (sketch_size, d) which holds:\[||Ax|| = (1 \pm \epsilon)||A'x||\]with high probability.
The error is related to the number of rows of the sketch and it is bounded
\[poly(r(\epsilon^{-1}))\]Parameters: input_matrix: array_like
Input matrix, of shape
(n, d)
.sketch_size: int
Number of rows for the sketch.
seed : None or int or
numpy.random.RandomState
instance, optionalThis parameter defines the
RandomState
object to use for drawing random variates. If None (ornp.random
), the globalnp.random
state is used. If integer, it is used to seed the localRandomState
instance. Default is None.Returns: A’ : array_like
Sketch of the input matrix
A
, of size(sketch_size, d)
.Notes
This is an implementation of the Clarkson-Woodruff Transform (CountSketch).
A'
can be computed in principle inO(nnz(A))
(withnnz
meaning the number of nonzero entries), however we don’t take advantage of sparse matrices in this implementation.References
[R119] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input sparsity time. In STOC, 2013. Examples
Given a big dense matrix
A
:>>> from scipy import linalg >>> n_rows, n_columns, sketch_n_rows = (2000, 100, 100) >>> threshold = 0.1 >>> tmp = np.random.normal(0, 0.1, n_rows*n_columns) >>> A = np.reshape(tmp, (n_rows, n_columns)) >>> sketch = linalg.clarkson_woodruff_transform(A, sketch_n_rows) >>> sketch.shape (100, 100) >>> normA = linalg.norm(A) >>> norm_sketch = linalg.norm(sketch)
Now with high probability, the condition
abs(normA-normSketch) < threshold
holds.