scipy.linalg.eigvalsh_tridiagonal¶
-
scipy.linalg.
eigvalsh_tridiagonal
(d, e, select='a', select_range=None, check_finite=True, tol=0.0, lapack_driver='auto')[source]¶ Solve eigenvalue problem for a real symmetric tridiagonal matrix.
Find eigenvalues w of
a
:a v[:,i] = w[i] v[:,i] v.H v = identity
For a real symmetric matrix
a
with diagonal elements d and off-diagonal elements e.Parameters: d : ndarray, shape (ndim,)
The diagonal elements of the array.
e : ndarray, shape (ndim-1,)
The off-diagonal elements of the array.
select : {‘a’, ‘v’, ‘i’}, optional
Which eigenvalues to calculate
select calculated ‘a’ All eigenvalues ‘v’ Eigenvalues in the interval (min, max] ‘i’ Eigenvalues with indices min <= i <= max select_range : (min, max), optional
Range of selected eigenvalues
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
tol : float
The absolute tolerance to which each eigenvalue is required (only used when
lapack_driver='stebz'
). An eigenvalue (or cluster) is considered to have converged if it lies in an interval of this width. If <= 0. (default), the valueeps*|a|
is used where eps is the machine precision, and|a|
is the 1-norm of the matrixa
.lapack_driver : str
LAPACK function to use, can be ‘auto’, ‘stemr’, ‘stebz’, ‘sterf’, or ‘stev’. When ‘auto’ (default), it will use ‘stemr’ if
select='a'
and ‘stebz’ otherwise. ‘sterf’ and ‘stev’ can only be used whenselect='a'
.Returns: w : (M,) ndarray
The eigenvalues, in ascending order, each repeated according to its multiplicity.
Raises: LinAlgError
If eigenvalue computation does not converge.
See also
eigh_tridiagonal
- eigenvalues and right eiegenvectors for symmetric/Hermitian tridiagonal matrices