scipy.linalg.funm¶
-
scipy.linalg.
funm
(A, func, disp=True)[source]¶ Evaluate a matrix function specified by a callable.
Returns the value of matrix-valued function
f
at A. The functionf
is an extension of the scalar-valued function func to matrices.Parameters: A : (N, N) array_like
Matrix at which to evaluate the function
func : callable
Callable object that evaluates a scalar function f. Must be vectorized (eg. using vectorize).
disp : bool, optional
Print warning if error in the result is estimated large instead of returning estimated error. (Default: True)
Returns: funm : (N, N) ndarray
Value of the matrix function specified by func evaluated at A
errest : float
(if disp == False)
1-norm of the estimated error, ||err||_1 / ||A||_1
Notes
This function implements the general algorithm based on Schur decomposition (Algorithm 9.1.1. in [R125]).
If the input matrix is known to be diagonalizable, then relying on the eigendecomposition is likely to be faster. For example, if your matrix is Hermitian, you can do
>>> from scipy.linalg import eigh >>> def funm_herm(a, func, check_finite=False): ... w, v = eigh(a, check_finite=check_finite) ... ## if you further know that your matrix is positive semidefinite, ... ## you can optionally guard against precision errors by doing ... # w = np.maximum(w, 0) ... w = func(w) ... return (v * w).dot(v.conj().T)
References
[R125] (1, 2) Gene H. Golub, Charles F. van Loan, Matrix Computations 4th ed. Examples
>>> from scipy.linalg import funm >>> a = np.array([[1.0, 3.0], [1.0, 4.0]]) >>> funm(a, lambda x: x*x) array([[ 4., 15.], [ 5., 19.]]) >>> a.dot(a) array([[ 4., 15.], [ 5., 19.]])