scipy.special.chebyt

scipy.special.chebyt(n, monic=False)[source]

Chebyshev polynomial of the first kind.

Defined to be the solution of

\[(1 - x^2)\frac{d^2}{dx^2}T_n - x\frac{d}{dx}T_n + n^2T_n = 0;\]

\(T_n\) is a polynomial of degree \(n\).

Parameters:

n : int

Degree of the polynomial.

monic : bool, optional

If True, scale the leading coefficient to be 1. Default is False.

Returns:

T : orthopoly1d

Chebyshev polynomial of the first kind.

See also

chebyu
Chebyshev polynomial of the second kind.

Notes

The polynomials \(T_n\) are orthogonal over \([-1, 1]\) with weight function \((1 - x^2)^{-1/2}\).