scipy.special.eval_gegenbauer

scipy.special.eval_gegenbauer(n, alpha, x, out=None) = <ufunc 'eval_gegenbauer'>

Evaluate Gegenbauer polynomial at a point.

The Gegenbauer polynomials can be defined via the Gauss hypergeometric function \({}_2F_1\) as

\[C_n^{(\alpha)} = \frac{(2\alpha)_n}{\Gamma(n + 1)} {}_2F_1(-n, 2\alpha + n; \alpha + 1/2; (1 - z)/2).\]

When \(n\) is an integer the result is a polynomial of degree \(n\).

Parameters:

n : array_like

Degree of the polynomial. If not an integer, the result is determined via the relation to the Gauss hypergeometric function.

alpha : array_like

Parameter

x : array_like

Points at which to evaluate the Gegenbauer polynomial

Returns:

C : ndarray

Values of the Gegenbauer polynomial

See also

roots_gegenbauer
roots and quadrature weights of Gegenbauer polynomials
gegenbauer
Gegenbauer polynomial object
hyp2f1
Gauss hypergeometric function