scipy.special.eval_genlaguerre

scipy.special.eval_genlaguerre(n, alpha, x, out=None) = <ufunc 'eval_genlaguerre'>

Evaluate generalized Laguerre polynomial at a point.

The generalized Laguerre polynomials can be defined via the confluent hypergeometric function \({}_1F_1\) as

\[L_n^{(\alpha)}(x) = \binom{n + \alpha}{n} {}_1F_1(-n, \alpha + 1, x).\]

When \(n\) is an integer the result is a polynomial of degree \(n\). The Laguerre polynomials are the special case where \(\alpha = 0\).

Parameters:

n : array_like

Degree of the polynomial. If not an integer the result is determined via the relation to the confluent hypergeometric function.

alpha : array_like

Parameter; must have alpha > -1

x : array_like

Points at which to evaluate the generalized Laguerre polynomial

Returns:

L : ndarray

Values of the generalized Laguerre polynomial

See also

roots_genlaguerre
roots and quadrature weights of generalized Laguerre polynomials
genlaguerre
generalized Laguerre polynomial object
hyp1f1
confluent hypergeometric function
eval_laguerre
evaluate Laguerre polynomials