scipy.special.eval_jacobi

scipy.special.eval_jacobi(n, alpha, beta, x, out=None) = <ufunc 'eval_jacobi'>

Evaluate Jacobi polynomial at a point.

The Jacobi polynomials can be defined via the Gauss hypergeometric function \({}_2F_1\) as

\[P_n^{(\alpha, \beta)}(x) = \frac{(\alpha + 1)_n}{\Gamma(n + 1)} {}_2F_1(-n, 1 + \alpha + \beta + n; \alpha + 1; (1 - z)/2)\]

where \((\cdot)_n\) is the Pochhammer symbol; see poch. When \(n\) is an integer the result is a polynomial of degree \(n\).

Parameters:

n : array_like

Degree of the polynomial. If not an integer the result is determined via the relation to the Gauss hypergeometric function.

alpha : array_like

Parameter

beta : array_like

Parameter

x : array_like

Points at which to evaluate the polynomial

Returns:

P : ndarray

Values of the Jacobi polynomial

See also

roots_jacobi
roots and quadrature weights of Jacobi polynomials
jacobi
Jacobi polynomial object
hyp2f1
Gauss hypergeometric function