scipy.stats.normaltest¶
-
scipy.stats.
normaltest
(a, axis=0, nan_policy='propagate')[source]¶ Test whether a sample differs from a normal distribution.
This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D’Agostino and Pearson’s [R642], [R643] test that combines skew and kurtosis to produce an omnibus test of normality.
Parameters: a : array_like
The array containing the sample to be tested.
axis : int or None, optional
Axis along which to compute test. Default is 0. If None, compute over the whole array a.
nan_policy : {‘propagate’, ‘raise’, ‘omit’}, optional
Defines how to handle when input contains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values. Default is ‘propagate’.
Returns: statistic : float or array
s^2 + k^2
, wheres
is the z-score returned byskewtest
andk
is the z-score returned bykurtosistest
.pvalue : float or array
A 2-sided chi squared probability for the hypothesis test.
References
[R642] (1, 2) D’Agostino, R. B. (1971), “An omnibus test of normality for moderate and large sample size”, Biometrika, 58, 341-348 [R643] (1, 2) D’Agostino, R. and Pearson, E. S. (1973), “Tests for departure from normality”, Biometrika, 60, 613-622 Examples
>>> from scipy import stats >>> pts = 1000 >>> np.random.seed(28041990) >>> a = np.random.normal(0, 1, size=pts) >>> b = np.random.normal(2, 1, size=pts) >>> x = np.concatenate((a, b)) >>> k2, p = stats.normaltest(x) >>> alpha = 1e-3 >>> print("p = {:g}".format(p)) p = 3.27207e-11 >>> if p < alpha: # null hypothesis: x comes from a normal distribution ... print("The null hypothesis can be rejected") ... else: ... print("The null hypothesis cannot be rejected") The null hypothesis can be rejected