{ "cells": [ { "cell_type": "markdown", "id": "0f8d8db0", "metadata": {}, "source": [ "Downloaded from the Single Cell Portal: https://singlecell.broadinstitute.org/single_cell/study/SCP1064/multi-modal-pooled-perturb-cite-seq-screens-in-patient-models-define-novel-mechanisms-of-cancer-immune-evasion" ] }, { "cell_type": "code", "execution_count": 1, "id": "e9234341", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/icb/yuge.ji/miniconda3/envs/py37/lib/python3.7/site-packages/scanpy/_settings.py:447: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`\n", " IPython.display.set_matplotlib_formats(*ipython_format)\n", "2022-02-08 23:14:15.755003: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", "2022-02-08 23:14:15.755029: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "scanpy==1.8.2 anndata==0.7.6 umap==0.5.2 numpy==1.20.3 scipy==1.5.3 pandas==1.3.4 scikit-learn==1.0.2 statsmodels==0.11.1 python-igraph==0.8.3 leidenalg==0.8.3 pynndescent==0.5.5\n" ] }, { "data": { "text/plain": [ "AnnData object with n_obs × n_vars = 218331 × 23712\n", " obs: 'library_preparation_protocol', 'condition', 'MOI', 'sgRNA', 'UMI_count'\n", " uns: 'protein_names'\n", " obsm: 'protein_expression'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# %load block0_load.py\n", "author_year = 'Frangieh_2021'\n", "is_counts = False\n", "var_genes = None\n", "doi = '10.1038/s41588-021-00779-1'\n", "\n", "import numpy as np\n", "import pandas as pd\n", "import scanpy as sc\n", "sc.set_figure_params(dpi=100, frameon=False)\n", "sc.logging.print_header()\n", "\n", "# verify\n", "assert(doi in pd.read_csv('../personal.csv').DOI.values)\n", "\n", "adata = sc.read(f'{author_year}_raw.h5ad')\n", "adata" ] }, { "cell_type": "code", "execution_count": 2, "id": "904d339f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | count | \n", "unique | \n", "top | \n", "freq | \n", "
|---|---|---|---|---|
| library_preparation_protocol | \n", "218331 | \n", "1 | \n", "10X 3' v3 sequencing | \n", "218331 | \n", "
| condition | \n", "218331 | \n", "3 | \n", "IFNγ | \n", "87590 | \n", "
| MOI | \n", "218331 | \n", "20 | \n", "1 | \n", "126966 | \n", "
| sgRNA | \n", "126966 | \n", "818 | \n", "IFNGR2_2 | \n", "358 | \n", "
| UMI_count | \n", "218331 | \n", "33077 | \n", "7977.0 | \n", "33 | \n", "