{ "cells": [ { "cell_type": "markdown", "id": "d12cb9dc", "metadata": {}, "source": [ "Accession: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133344" ] }, { "cell_type": "code", "execution_count": 1, "id": "ca04f335-6926-4764-82ec-374d7c6f94b4", "metadata": {}, "outputs": [], "source": [ "import gzip\n", "import os\n", "import re\n", "\n", "import pandas as pd\n", "import numpy as np\n", "from anndata import AnnData\n", "from scipy.io import mmread\n", "from scipy.sparse import coo_matrix\n", "\n", "from utils import download_binary_file\n", "\n", "# Gene program lists obtained by cross-referencing the heatmap here\n", "# https://github.com/thomasmaxwellnorman/Perturbseq_GI/blob/master/GI_optimal_umap.ipynb\n", "# with Figure 2b in Norman 2019\n", "G1_CYCLE = [\n", " \"CDKN1C+CDKN1B\",\n", " \"CDKN1B+ctrl\",\n", " \"CDKN1B+CDKN1A\",\n", " \"CDKN1C+ctrl\",\n", " \"ctrl+CDKN1A\",\n", " \"CDKN1C+CDKN1A\",\n", " \"CDKN1A+ctrl\",\n", "]\n", "\n", "ERYTHROID = [\n", " \"BPGM+SAMD1\",\n", " \"ATL1+ctrl\",\n", " \"UBASH3B+ZBTB25\",\n", " \"PTPN12+PTPN9\",\n", " \"PTPN12+UBASH3A\",\n", " \"CBL+CNN1\",\n", " \"UBASH3B+CNN1\",\n", " \"CBL+UBASH3B\",\n", " \"UBASH3B+PTPN9\",\n", " \"PTPN1+ctrl\",\n", " \"CBL+PTPN9\",\n", " \"CNN1+UBASH3A\",\n", " \"CBL+PTPN12\",\n", " \"PTPN12+ZBTB25\",\n", " \"UBASH3B+PTPN12\",\n", " \"SAMD1+PTPN12\",\n", " \"SAMD1+UBASH3B\",\n", " \"UBASH3B+UBASH3A\",\n", "]\n", "\n", "PIONEER_FACTORS = [\n", " \"ZBTB10+SNAI1\",\n", " \"FOXL2+MEIS1\",\n", " \"POU3F2+CBFA2T3\",\n", " \"DUSP9+SNAI1\",\n", " \"FOXA3+FOXA1\",\n", " \"FOXA3+ctrl\",\n", " \"LYL1+IER5L\",\n", " \"FOXA1+FOXF1\",\n", " \"FOXF1+HOXB9\",\n", " \"FOXA1+HOXB9\",\n", " \"FOXA3+HOXB9\",\n", " \"FOXA3+FOXA1\",\n", " \"FOXA3+FOXL2\",\n", " \"POU3F2+FOXL2\",\n", " \"FOXF1+FOXL2\",\n", " \"FOXA1+FOXL2\",\n", " \"HOXA13+ctrl\",\n", " \"ctrl+HOXC13\",\n", " \"HOXC13+ctrl\",\n", " \"MIDN+ctrl\",\n", " \"TP73+ctrl\",\n", "]\n", "\n", "GRANULOCYTE_APOPTOSIS = [\n", " \"SPI1+ctrl\",\n", " \"ctrl+SPI1\",\n", " \"ctrl+CEBPB\",\n", " \"CEBPB+ctrl\",\n", " \"JUN+CEBPA\",\n", " \"CEBPB+CEBPA\",\n", " \"FOSB+CEBPE\",\n", " \"ZC3HAV1+CEBPA\",\n", " \"KLF1+CEBPA\",\n", " \"ctrl+CEBPA\",\n", " \"CEBPA+ctrl\",\n", " \"CEBPE+CEBPA\",\n", " \"CEBPE+SPI1\",\n", " \"CEBPE+ctrl\",\n", " \"ctrl+CEBPE\",\n", " \"CEBPE+RUNX1T1\",\n", " \"CEBPE+CEBPB\",\n", " \"FOSB+CEBPB\",\n", " \"ETS2+CEBPE\",\n", "]\n", "\n", "MEGAKARYOCYTE = [\n", " \"ctrl+ETS2\",\n", " \"MAPK1+ctrl\",\n", " \"ctrl+MAPK1\",\n", " \"ETS2+MAPK1\",\n", " \"CEBPB+MAPK1\",\n", " \"MAPK1+TGFBR2\",\n", "]\n", "\n", "PRO_GROWTH = [\n", " \"CEBPE+KLF1\",\n", " \"KLF1+MAP2K6\",\n", " \"AHR+KLF1\",\n", " \"ctrl+KLF1\",\n", " \"KLF1+ctrl\",\n", " \"KLF1+BAK1\",\n", " \"KLF1+TGFBR2\",\n", "]\n", "\n", "\n", "def download_norman_2019(output_path: str) -> None:\n", " \"\"\"\n", " Download Norman et al. 2019 data and metadata files from the hosting URLs.\n", "\n", " Args:\n", " ----\n", " output_path: Output path to store the downloaded and unzipped\n", " directories.\n", "\n", " Returns\n", " -------\n", " None. File directories are downloaded to output_path.\n", " \"\"\"\n", "\n", " file_urls = (\n", " \"https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl\"\n", " \"/GSE133344_filtered_matrix.mtx.gz\",\n", " \"https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl\"\n", " \"/GSE133344_filtered_genes.tsv.gz\",\n", " \"https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl\"\n", " \"/GSE133344_filtered_barcodes.tsv.gz\",\n", " \"https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl\"\n", " \"/GSE133344_filtered_cell_identities.csv.gz\",\n", " )\n", "\n", " for url in file_urls:\n", " output_filename = os.path.join(output_path, url.split(\"/\")[-1])\n", " download_binary_file(url, output_filename)\n", "\n", "\n", "def read_norman_2019(file_directory: str) -> coo_matrix:\n", " \"\"\"\n", " Read the expression data for Norman et al. 2019 in the given directory.\n", "\n", " Args:\n", " ----\n", " file_directory: Directory containing Norman et al. 2019 data.\n", "\n", " Returns\n", " -------\n", " A sparse matrix containing single-cell gene expression count, with rows\n", " representing genes and columns representing cells.\n", " \"\"\"\n", "\n", " with gzip.open(\n", " os.path.join(file_directory, \"GSE133344_filtered_matrix.mtx.gz\"), \"rb\"\n", " ) as f:\n", " matrix = mmread(f)\n", "\n", " return matrix" ] }, { "cell_type": "code", "execution_count": 2, "id": "21457d17-ce85-405e-af71-b98f55cd9dfc", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloaded data from https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl/GSE133344_filtered_matrix.mtx.gz at ./GSE133344_filtered_matrix.mtx.gz\n", "Downloaded data from https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl/GSE133344_filtered_genes.tsv.gz at ./GSE133344_filtered_genes.tsv.gz\n", "Downloaded data from https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl/GSE133344_filtered_barcodes.tsv.gz at ./GSE133344_filtered_barcodes.tsv.gz\n", "Downloaded data from https://ftp.ncbi.nlm.nih.gov/geo/series/GSE133nnn/GSE133344/suppl/GSE133344_filtered_cell_identities.csv.gz at ./GSE133344_filtered_cell_identities.csv.gz\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Trying to set attribute `.obs` of view, copying.\n" ] } ], "source": [ "download_path = \"./norman2019/\"\n", "\n", "download_norman_2019(download_path)\n", "\n", "matrix = read_norman_2019(download_path)\n", "\n", "# List of cell barcodes. The barcodes in this list are stored in the same order\n", "# as cells are in the count matrix.\n", "cell_barcodes = pd.read_csv(\n", " os.path.join(download_path, \"GSE133344_filtered_barcodes.tsv.gz\"),\n", " sep=\"\\t\",\n", " header=None,\n", " names=[\"cell_barcode\"],\n", ")\n", "\n", "# IDs/names of the gene features.\n", "gene_list = pd.read_csv(\n", " os.path.join(download_path, \"GSE133344_filtered_genes.tsv.gz\"),\n", " sep=\"\\t\",\n", " header=None,\n", " names=[\"gene_id\", \"gene_name\"],\n", ")\n", "\n", "# Dataframe where each row corresponds to a cell, and each column corresponds\n", "# to a gene feature.\n", "matrix = pd.DataFrame(\n", " matrix.transpose().todense(),\n", " columns=gene_list[\"gene_id\"],\n", " index=cell_barcodes[\"cell_barcode\"],\n", " dtype=\"int32\",\n", ")\n", "\n", "# Dataframe mapping cell barcodes to metadata about that cell (e.g. which CRISPR\n", "# guides were applied to that cell). Unfortunately, this list has a different\n", "# ordering from the count matrix, so we have to be careful combining the metadata\n", "# and count data.\n", "cell_identities = pd.read_csv(\n", " os.path.join(download_path, \"GSE133344_filtered_cell_identities.csv.gz\")\n", ").set_index(\"cell_barcode\")\n", "\n", "# This merge call reorders our metadata dataframe to match the ordering in the\n", "# count matrix. Some cells in `cell_barcodes` do not have metadata associated with\n", "# them, and their metadata values will be filled in as NaN.\n", "aligned_metadata = pd.merge(\n", " cell_barcodes,\n", " cell_identities,\n", " left_on=\"cell_barcode\",\n", " right_index=True,\n", " how=\"left\",\n", ").set_index(\"cell_barcode\")\n", "\n", "adata = AnnData(matrix)\n", "adata.obs = aligned_metadata\n", "\n", "# Filter out any cells that don't have metadata values.\n", "rows_without_nans = [\n", " index for index, row in adata.obs.iterrows() if not row.isnull().any()\n", "]\n", "adata = adata[rows_without_nans, :]\n", "\n", "# Remove these as suggested by the authors. See lines referring to\n", "# NegCtrl1_NegCtrl0 in GI_generate_populations.ipynb in the Norman 2019 paper's\n", "# Github repo https://github.com/thomasmaxwellnorman/Perturbseq_GI/\n", "adata = adata[adata.obs[\"guide_identity\"] != \"NegCtrl1_NegCtrl0__NegCtrl1_NegCtrl0\"]\n", "\n", "# We create a new metadata column with cleaner representations of CRISPR guide\n", "# identities. The original format is <Guide1>_<Guide2>__<Guide1>_<Guide2>_<number>\n", "adata.obs[\"guide_merged\"] = adata.obs[\"guide_identity\"]\n", "\n", "control_regex = re.compile(r\"NegCtrl(.*)_NegCtrl(.*)+NegCtrl(.*)_NegCtrl(.*)\")\n", "for i in adata.obs[\"guide_merged\"].unique():\n", " if control_regex.match(i):\n", " # For any cells that only had control guides, we don't care about the\n", " # specific IDs of the guides. Here we relabel them just as \"ctrl\".\n", " adata.obs[\"guide_merged\"].replace(i, \"ctrl\", inplace=True)\n", " else:\n", " # Otherwise, we reformat the guide label to be <Guide1>+<Guide2>. If Guide1\n", " # or Guide2 was a control, we replace it with \"ctrl\".\n", " split = i.split(\"__\")[0]\n", " split = split.split(\"_\")\n", " for j, string in enumerate(split):\n", " if \"NegCtrl\" in split[j]:\n", " split[j] = \"ctrl\"\n", " adata.obs[\"guide_merged\"].replace(i, f\"{split[0]}+{split[1]}\", inplace=True)\n", "\n", "guides_to_programs = {}\n", "guides_to_programs.update(dict.fromkeys(G1_CYCLE, \"G1 cell cycle arrest\"))\n", "guides_to_programs.update(dict.fromkeys(ERYTHROID, \"Erythroid\"))\n", "guides_to_programs.update(dict.fromkeys(PIONEER_FACTORS, \"Pioneer factors\"))\n", "guides_to_programs.update(\n", " dict.fromkeys(GRANULOCYTE_APOPTOSIS, \"Granulocyte/apoptosis\")\n", ")\n", "guides_to_programs.update(dict.fromkeys(PRO_GROWTH, \"Pro-growth\"))\n", "guides_to_programs.update(dict.fromkeys(MEGAKARYOCYTE, \"Megakaryocyte\"))\n", "guides_to_programs.update(dict.fromkeys([\"ctrl\"], \"Ctrl\"))\n", "\n", "adata.obs[\"gene_program\"] = [guides_to_programs[x] if x in guides_to_programs else \"N/A\" for x in adata.obs[\"guide_merged\"]]\n", "adata.obs[\"good_coverage\"] = adata.obs[\"good_coverage\"].astype(bool)" ] }, { "cell_type": "code", "execution_count": 5, "id": "72c5c54f", "metadata": {}, "outputs": [], "source": [ "adata.write('Norman_2019_raw.h5ad')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" } }, "nbformat": 4, "nbformat_minor": 5 }