General Program Synthesis Benchmark Suite

Thomas Helmuth
Lee Spector
Hampshire College & University of Massachusetts, Amherst

Qutline

Motivation
Software synthesis benchmark suite
lllustrative experiment

Conclusions

Motivation

- Demand for benchmarks in GP more generally

 General program synthesis (automatic programming) is a
long-standing goal of the field

 Few existing benchmarks for general program synthesis

* Purpose: help researchers assess the ability of a system
to automate human programming

Software

Desiderata

A program synthesis benchmark suite should require:

- Multiple data types and data structures
+ Control flow
- Large instruction sets

» Larger programs than can be found by brute force

Sources

* iJava: an interactive introductory computer science text-
book with automatically graded programming problems
[Moll]

* IntroClass: a dataset designed for benchmarking
automatic software defect repair systems [Le Goues,
Holtschulte, Smith, Brun, Devanbu, Forrest, VWeimer]

Criteria

* A range of inputs that have known correct outputs

* Present challenges typical of real programming tasks

 Agnostic with respect to programming language and

synthesis technique

29 Synthesis Benchmarks

* From iJava: Number IO, Small or Large, For Loop Index,
Compare String Lengths, Double Letters, :

Replace Space with Newline, , Even
Squares, , String Lengths Backwards, Last Index of

Zero,Vector Average, Count Odds, Mirror Image,
, Sum of Squares,Vectors Summed, X-Word Lines,

, Negative to Zero, Scrabble Score,

* From IntroClass: , Digits, Grade, Median, Smallest,
Syllables

* PushGP has solved all of these except for the ones in

. Number IO (Q 3.5.1) Given an integer and a float,
print their sum.

. Small or Large (Q 4.6.3) Given an integer n, print
“small” if n < 1000 and “large” if n > 2000 (and noth-
ing if 1000 < n < 2000).

. For Loop Index (Q 4.11.7) Given 3 integer inputs
start, end, and step, print the integers in the sequence

no = start

ni; = N;—1 + step

for each n; < end, each on their own line.

. Compare String Lengths (Q 4.11.13) Given three

strings nl, n2, and n3, return true if length(nl) <
length(n2) < length(n3), and false otherwise.

. Double Letters (P 4.1) Given a string, print the
string, doubling every letter character, and tripling ev-
ery exclamation point. All other non-alphabetic and
non-exclamation characters should be printed a single
time each.

6. Collatz Numbers (P 4.2) Given an integer, find the
number of terms in the Collatz (hailstone) sequence
starting from that integer.

7. Replace Space with Newline (P 4.3) Given a
string input, print the string, replacing spaces with
newlines. Also, return the integer count of the non-
whitespace characters. The input string will not have
tabs or newlines.

8. String Differences (P 4.4) Given 2 strings (with-
out whitespace) as input, find the indices at which the
strings have different characters, stopping at the end
of the shorter one. For each such index, print a line
containing the index as well as the character in each
string. For example, if the strings are “dealer” and
“dollars”, the program should print:

leo
2 al
4 e a

10.

11.

12.

13.

. Even Squares (Q 5.4.1) Given an integer n, print

all of the positive even perfect squares less than n on
separate lines.

Wallis Pi (P 6.4)) John Wallis gave the following
infinite product that converges to m/4:

S ExoxoxOx S8

3 3 o5 o5 7T 7T 9 9
Given an integer input n, compute an approximation
of this product out to n terms. Results are rounded to

5 decimal places.

String Lengths Backwards (Q 7.2.5) Given a vec-
tor of strings, print the length of each string in the
vector starting with the last and ending with the first.

Last Index of Zero (Q 7.7.8) Given a vector of
integers, at least one of which is 0, return the index of
the last occurrence of 0 in the vector.

Vector Average (Q 7.7.11) Given a vector of floats,
return the average of those floats. Results are rounded
to 4 decimal places.

14.

15.

16.

17.

18.

Count Odds (Q 7.7.12) Given a vector of integers,
return the number of integers that are odd, without
use of a specific even or odd instruction (but allowing
instructions such as mod and quotient).

Mirror Image (Q 7.7.15) Given two vectors of in-
tegers, return true if one vector is the reverse of the
other, and false otherwise.

Super Anagrams (P 7.3) Given strings x and y of
lowercase letters, return true if y is a super anagram of
x, which is the case if every character in z is in y. To
be true, y may contain extra characters, but must have
at least as many copies of each character as = does.

Sum of Squares (Q 8.5.4) Given integer n, return
the sum of squaring each integer in the range [1, n|.

Vectors Summed (Q 8.7.6) Given two equal-sized
vectors of integers, return a vector of integers that con-
tains the sum of the input vectors at each index.

19.

20.

21.

22.

X-Word Lines (P 8.1) Given an integer X and a
string that can contain spaces and newlines, print the
string with exactly X words per line. The last line
may have fewer than X words.

Pig Latin (P 8.2) Given a string containing lowercase
words separated by single spaces, print the string with
each word translated to pig Latin. Specifically, if a
word starts with a vowel, it should have “ay” added to
its end; otherwise, the first letter is moved to the end
of the word, followed by “ay”.

Negative To Zero (Q 9.6.8) Given a vector of inte-
gers, return the vector where all negative integers have
been replaced by 0.

Scrabble Score (P 10.1) Given a string of visible
ASCII characters, return the Scrabble score for that
string. Each letter has a corresponding value according
to normal Scrabble rules, and non-letter characters are
worth zero.

23. Word Stats (P 10.5) Given a file, print the number
of words containing n characters for n from 1 to the
length of the longest word, in the format:

words of length 1: 12
words of length 2: 3
words of length 3: O
words of length 4: b5

At the end of the output, print a line that gives the
number of sentences and line that gives the average
sentence length using the form:

number of sentences: 4

average sentence length: 7.452423455
A word is any string of consecutive non-whitespace
characters (including sentence terminators). Every file
will contain at least one sentence terminator (period,
exclamation point, or question mark). The average
sentence length is the number of words in the file di-
vided by the number of sentence terminator characters.

24.

29.

26.

Checksum Given a string, convert each character in
the string into its integer ASCII value, sum them,
take the sum modulo 64, add the integer value of the
space character, and then convert that integer back
into its corresponding character (the checksum charac-
ter). The program must print Check sum is X, where
X is replaced by the correct checksum character.

Digits Given an integer, print that integer’s digits
each on their own line starting with the least signifi-
cant digit. A negative integer should have the negative
sign printed before the most significant digit.

Grade Given 5 integers, the first four represent the
lower numeric thresholds for achieving an A, B, C, and
D, and will be distinct and in descending order. The
fifth represents the student’s numeric grade. The pro-
gram must print Student has a X grade., where X

is A, B, C, D, or F depending on the thresholds and
the numeric grade.

27. Median Given 3 integers, print their median.
28. Smallest Given 4 integers, print the smallest of them.

29. Syllables Given a string containing symbols, spaces,
digits, and lowercase letters, count the number of oc-
currences of vowels (a, e, i, 0, u, y) in the string and
print that number as X in The number of syllables
is X.

Using the Suite

Seek success (passing all tests in training set)
Seek generalization (passing all tests in test set)
Seek high rates of success

Use program evaluation limits

Be reasonable about language feature and synthesis
technique differences; it will not be possible to make
comparisons that are "fair" in all ways

Name Inputs Outputs Train Test
Number 10 integer in [—100, 100], float in [—100.0, 100.0] printed float 25 1000
Small Or Large integer in [—10000, 10000] printed string 100 1000
For Loop Index integers start and end in [—500, 500|, step in [1,10] printed integers 100 1000
Compare String Lengths 3 strings of length [0, 49] boolean 100 1000
Double Letters string of length [0, 20] printed string 100 1000
Collatz Numbers integer in [1, 10000] integer 200 2000
Replace Space with string of length [0, 20| printed string, 100 1000
Newline integer
String Differences 2 strings of length [0, 10] printed string 200 2000
Even Squares integer in [1,9999] printed string 100 1000
Wallis Pi integer in (1, 200] float 150 50
String Lengths vector of length [0, 50] of strings of length [0, 50] printed string 100 1000
Backwards
Last Index of Zero vector of integers of length [1,50] with each integer integer 150 1000
in [—50, 50]
Vector Average vector of floats of length [1,50] with each float in float 100 1000
[—1000.0, 1000.0]
Count Odds vector of integers of length [0, 50] with each integer integer 200 2000
in [—1000, 1000]
Mirror Image 2 vectors of integers of length [0, 50] with each boolean 100 1000
integer in [—1000, 1000]
Super Anagrams 2 strings of length [0, 20] boolean 200 2000
Sum of Squares integer in [1, 100] integer 50 50
Vectors Summed 2 vectors of integers of length [0, 50] with each vector of 150 1500
integer in [—1000, 1000] integers
X-Word Lines integer in [1, 10|, string of length [0, 100] printed string 150 2000
Pig Latin string of length [0, 50] printed string 200 1000
Negative To Zero vector of integers of length [0, 50] with each integer vector of 200 2000
in [—1000, 1000] integers
Scrabble Score string of length [0, 20] integer 200 1000
Word Stats file containing [1, 100] chars printed string 100 1000
Checksum string of length [0, 50] printed string 100 1000
Digits integer in [—9999999999, 9999999999 printed integers 100 1000
Grade 5 integers in [0, 100] printed string 200 2000
Median 3 integers in [—100, 100] printed integer 100 1000
Smallest 4 integers in [—100, 100] printed integer 100 1000
Syllables string of length [0, 20] printed string 100 1000

Push

Designed for program evolution
Data flows via stacks, not syntax

One stack per type:
integer, float, boolean, string, code, exec, vector, ...

Rich data and control structures

Minimal syntax:
program — instruction | literal | (program™)

Uniform variation, meta-evolution

Plush

marucion [

Close?
Silence? 1 0 0 1 0

5 ., &
0
: g § £
- g & %
= Gt G e -
E o, 5 Lot o%
-SEDEEERRERY

Problem # 5 £ & 2 %2 8 88 £ & & Terminals (besides inputs)

Number 10 50 X X X integer ERC, float ERC

Small Or Large 103 x x X X X “small”, “large”, integer ERC

For Loop Index 74 x x X X

Compare String 98 x x b X boolean ERC

Lengths

Double Letters 132 x x X X X X \!

Collatz Numbers 102 x x x x 0, 1, integer ERC

Replace Space 135 x x X x X X \space, \newline, string ERC, char

with Newline ERC

String Differences 135 x x o ad | as X \space, \newline, integer ERC

Even Squares 72 x x X X

Wallis Pi 103 x x x x 2 integer ERCs, 2 float ERCs

String Lengths 134 x x X x X X integer ERC

Backwards

Last Index of Zero 101 x x X X 0

Vector Average 8 x x x X

Count Odds 104 x x X X 0, 1, 2, integer ERC

Mirror Image 102 x x X X boolean ERC

Super Anagrams 129 x x XA boolean ERC, char ERC, integer ERC

Sum of Squares 71 x x X 0, 1, integer ERC

Vectors Summed 68 x «x X [, integer ERC

X-Word Lines 13 x x X X X X \newline, \space

Pig Latin 141 x x SEEEE X “ay”, \space, \a, \e, \i, \o, \u, “aeiou”,
string ERC, char ERC

Negative To Zero 102 x x x X 0, [

Scrabble Score 158 x x R vector containing Scrabble values
(indexed by ASCII values)

Word Stats 281 x x x x x x x x x x x \,\2\, \space, \tab, \newline, [|,
“words of length ”, “: ”, “number of
sentences: 7, “average sentence
length: ”, integer ERC

Checksum 136 x x i s b X “Check sum is ”, \space, 64, integer
ERC, char ERC

Digits 133 x x X X X X \newline, integer ERC [-10, 10]

Grade 112 x x X X < “Student has a 7, “ grade.”, “A”, “B”,
“C”, “D", “F”, integer ERC

Median 7 x X X X integer ERC

Smallest 76 x x b X integer ERC

Syllables 141 x x X x X X “The number of syllables is ", “aeiouy”,

\a, \e, \i, \o, \u, \y, char ERC, string
ERC

Selection

* In genetic programming, selection is typically based on
average performance across all test cases (sometimes
weighted, e.g. with "implicit fitness sharing")

* In nature, selection is typically based on sequences of
interactions with the environment

| exicase Selection

 Emphasizes individual test cases and combinations of
test cases; not aggregated fitness across test cases

- Random ordering of test cases for each selection event

| exicase Selection

To select single parent:
|. Shuffle test cases
2. First test case — keep best individuals
3. Repeat with next test case, etc.

Until one individual remains

The selected parent may be a specialist in the tests that
happen to have come first,and may or may not be
particularly good on average

Implicit Fitness Sharing

» Scale errors per case based on population-wide error

* Non-binary version

All successes shown
here generalize across
the testing set

Many non-generalizing
"solutions" were also
found

Problem Tourn IFS Lex | Size
Number 10 68 72 98 5)
Small Or Large 3 3 5 27
For Loop Index 0 0 1 21
Compare String Lengths 3 6 7 11
Double Letters 0 0 6 20
Collatz Numbers 0 0 0

Replace Space with Newline 8 16 51 9
String Differences 0 0 0

Even Squares 0 0 2 37
Wallis Pi 0 0 0

String Lengths Backwards 7 10 66 9
Last Index of Zero 8 4 21 5
Vector Average 14 13 16 7
Count Odds 0 0 8 7
Mirror Image 46 64 78 4
Super Anagrams 0 0 0

Sum of Squares 2 0 6 7
Vectors Summed 0 0 1 11
X-Word Lines 0 0 8 15
Pig Latin 0 0 0

Negative To Zero 10 8 45 8
Scrabble Score 0 0 2 14
Word Stats 0 0 0

Checksum 0 0 0

Digits 0 1 7 20
Grade 0 0 4 52
Median 7 43 45 10
Smallest 75 98 81 8
Syllables 1 7 18 14
Problems Solved 13 13 22

Results and Metaresults

- Benchmarks representative of novice programming tasks

- Benchmarks range in difficulty

* PushGP can solve many of them

- Lexicase selection often helps substantially

Conclusions

* GP can now automate some human programming

Proposed benchmarks can guide and assess progress

Full details in technical report:
https://web.cs.umass.edu/publication/details.php?id=2387

Data:
https://github.com/thelmuth/Program-Synthesis-Benchmark-Data

» Coming soon:Tom Helmuth's dissertation!

https://web.cs.umass.edu/publication/details.php?id=2387
https://github.com/thelmuth/Program-Synthesis-Benchmark-Data

W Thanks

* Members of the Hampshire College Computational
Intelligence Lab.

» This material is based upon work supported by the
National Science Foundation under Grants No. [017817,
1129139, and 1331283.Any opinions, findings, and
conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

