
Data
Introduction
to
Data
Science
with
R
www.therbootcamp.com
(https://therbootcamp.github.io)
@therbootcamp
(https://twitter.com/therbootcamp)

source (https://www.methodspace.com)

In this practical you’ll learn how to work with basic data objects and functions. By the end of this practical you will know how
to:

1. Create vectors of different types using 	c()	
2. Understand the three main vector classes numeric, character, and logical using 	class()	
3. Calculate basic descriptive statistics using 	mean()	, 	median()	, 	table()	 (and more!)
4. Read and write data of various data formats using 	read_csv()	 and others
5. Access and change vectors from data frames using 	$	
6. Create 	data.frames	 and 	tibbles	! using 	data.frame()	 and 	tibble()	

Tasks

A
-
Getting
setup

1. Open your 	baselrbootcamp	 R project. It should already have the folders 	1_Data	 and 	2_Code	.

2. Open a new R script and save it as a new file called 	data_practical.R	 in the 	2_Code	 folder. At the top of the script, using
comments, write your name and the date. Then, load all package(s) listed in the Packages section above with 	library()	.
Make sure that each of the datasets listed above lie in your 	1_Data	 folder.

B
-
Creating
vectors

The table below shows results from a (fictional) survey of 10 Baselers. In the first part of this practical, you will convert this table
to R objects and then analyse them!

id sex age height weight

1 male 44 174.3 113.4

2 male 65 180.3 75.2

3 female 31 168.3 55.5

4 male 27 209 93.8

5 male 24 176.7

6 male 63 186.6 67.4

7 male 71 151.6 83.3

8 female 41 155.7 67.8

9 male 43 176.1 69.3

10 female 31 166.1 66.3

1. Create a numeric vector called 	id	 that shows the id values. When you finish, print the vector object to see it!

#	Create	a	vector	id
XX	<-	c(XX,	XX,	...)

#	Print	the	vector	id
XX

#	Create	an	id	vector	
id	<-	1:10	#	shortcut	to	creating	the	sequence	from	1	to	10

#	Print	the	vector
id

##		[1]		1		2		3		4		5		6		7		8		9	10

2. Using the 	class()	 function, check the class of your 	id	 vector. Is it 	"numeric"	?

#	Show	the	class	of	an	object	XX
class(XX)

#	Show	the	class	of	the	id	vector
class(id)

##	[1]	"integer"

3. Using the 	length()	 function, find out the length of your 	id	 vector. Does it have length 10? If not, make sure you defined
it correctly!

#	Show	the	length	of	the	id	vector
length(XX)

#	Show	the	length	of	the	id	vector
length(id)

##	[1]	10

4. Create a character vector called 	sex	 that shows the sex values. Make sure to use quotation marks “” to enclose each
element to tell R that the data are of type 	"character"	! When you finish, print the object to see it!

#	Create	a	character	vector	sex
XX	<-	c("XX",	"XX",	"...")

#	Create	a	sex	vector	
sex	<-	c("male",	"male",	"female",	"male",	"male",	"male",	"male",	"female",	"male",	"female")

#	Print	the	vector
sex

##		[1]	"male"			"male"			"female"	"male"			"male"			"male"			"male"		
##		[8]	"female"	"male"			"female"

5. Using the 	class()	 function, check the class of your 	sex	 vector. Is it 	"character"	?

#	Show	the	class	of	the	sex	vector
class(sex)

##	[1]	"character"

6. Using the 	length()	 function, find out the length of your 	sex	 object. Does it have length 10? If not, make sure you defined
it correctly!

#	Show	the	length	of	the	sex	vector
length(sex)

##	[1]	10

7. Using the same steps as before, create a 	age	 and 	height	 vector.

#	Create	a	age	vector	
age	<-	c(44,	65,	31,	27,	24,	63,	71,	41,	43,	31)

#	Print	the	age	vector
age

##		[1]	44	65	31	27	24	63	71	41	43	31

#	Show	the	class	of	the	age	vector
class(age)

##	[1]	"numeric"

#	Show	the	length	of	the	age	vector
length(age)

##	[1]	10

#	Create	a	height	vector	
height	<-	c(174.3,	180.3,	168.3,	209,	176.7,	186.6,	151.6,	155.7,	176.1,	166.1)

#	Print	the	height	vector
height

##		[1]	174	180	168	209	177	187	152	156	176	166

#	Show	the	class	of	the	height	vector
class(height)

##	[1]	"numeric"

#	Show	the	length	of	the	height	vector
length(height)

##	[1]	10

8. Look at the weight data, you’ll notice it contains an missing value. Create a vector called 	weight	 containing these data,
following the same steps as before, making sure to specify the missing value as 	NA	 (no quotation marks).

#	Create	a	weight	vector	
weight	<-	c(113.4,	75.2,	55.5,	93.8,	NA,	67.4,	83.3,	67.8,	69.3,	66.3)

#	Print	the	weight	vector
weight

##		[1]	113.4		75.2		55.5		93.8				NA		67.4		83.3		67.8		69.3		66.3

#	Show	the	class	of	the	weight	vector
class(weight)

##	[1]	"numeric"

#	Show	the	length	of	the	weight	vector
length(weight)

##	[1]	10

C
-
Functions

1. Using the 	table()	 function, find out how many males and females are in the data. You should find 7 males and 3 females!

#	Count	types	in	sex
table(sex)

##	sex
##	female			male	
##						3						7

2. Using the 	mean()	 function, calculate the mean 	age	. It should be 44!

#	Compute	mean	of	age
mean(age)

##	[1]	44

3. Try calculating the mean value of 	sex	. What happens? Why?

#	Compute	mean	of	sex
mean(sex)

##	[1]	NA

4. Try calculating the mean 	weight	. You should get an 	NA	 value. Why?

#	Compute	mean	of	sex
mean(weight)

##	[1]	NA

5. Look at the help menu for the 	mean()	 function (using 	?mean) to look for an argument that will help you with your problem.

#	Inspect	help	for	mean
?mean

6. Using the correct argument for the mean function, calculate the mean weight ignoring 	NA	 values. It should be 76.89!

#	Compute	mean	weight,	ignoring	NAs	
mean(weight,	na.rm	=	TRUE)

##	[1]	76.9

D
-
Read
&
write
delim-separated
text
files

In this section, you will read in a subset of the well known diamonds data set and prepare it for data analysis.

1. Identify the file path to the 	diamonds.csv	 dataset using the 	""	 (quotation marks) auto-complete trick. Place the cursor
between two quotation marks, hit ⇥ (tab-key), and browse through the folders. Save the file path, for now, in an object
called 	diamonds_path	.

#	place	cursor	in-between	""	and	hit	tab
diamonds_path	<-	""

#	place	cursor	in-between	and	hit	tab
diamonds_path	<-	"1_Data/diamonds.csv"

2. Now use the Using 	diamonds_path	 insdide the 	read_csv()	 function to read in the 	diamonds.csv	 dataset. Store it as a new
object called 	diamonds	.

#	read	diamonds	data
diamonds	<-	read_csv(file	=	XX)

#	read	diamonds	data
diamonds	<-	read_csv(file	=	diamonds_path)

3. Print the 	diamonds	 data and inspect the column names in the header line. Something’s wrong!

#	print	diamonds
diamonds

##	#	A	tibble:	99	x	7
##				`0.8`	`Very	Good`	H					VVS1		`62.9`		`58`	`4468`
##				<chr>	<chr>							<chr>	<chr>		<dbl>	<dbl>		<int>
##		1	0.74		Ideal							H					IF						60.9				57			3760
##		2	2.03		Premium					I					SI1					61.4				58		15683
##		3	0.41		Ideal							G					VVS1				62.1				55			1151
##		4	1.54		Premium					G					VS1					61.1				56		14438
##		5	0.3			Ideal							E					VS2					61.8				55				795
##		6	0.3			Ideal							H					VVS2				61.5				56				605
##		7	1.2			Ideal							D					SI1					61.8				58			7508
##		8	0.58		Ideal							E					VS2					62.3				54			1809
##		9	0.31		Ideal							H					VS2					62.6				57				489
##	10	1.24		Very	Good			F					VS1					59						60			9885
##	#	...	with	89	more	rows

4. Fix the header by reading in the data again using the 	col_names	-argument. Assign to 	col_names	 a character vector
containing the correct column names: 	carat	, 	cut	, 	color	, 	clarity	, 	depth	, 	table	, 	price	.

#	read	diamonds	data	with	specified	col_names
diamonds	<-	read_csv(file	=	"XX",	
																					col_names	=	c('name_1','name_2','...'))		#	Vector	of	column	names

#	read	diamonds	data	with	specified	col_names
diamonds	<-	read_csv(file	=	diamonds_path,
																					col_names	=	c("carat",	"cut",	"color",	"clarity",	"depth",	"table",	"price"))

5. Re-inspect the header by printing the data. Has the header been fixed?

#	print	diamonds
diamonds

##	#	A	tibble:	100	x	7
##				carat	cut							color	clarity	depth	table	price
##				<chr>	<chr>					<chr>	<chr>			<dbl>	<dbl>	<int>
##		1	0.8			Very	Good	H					VVS1					62.9				58		4468
##		2	0.74		Ideal					H					IF							60.9				57		3760
##		3	2.03		Premium			I					SI1						61.4				58	15683
##		4	0.41		Ideal					G					VVS1					62.1				55		1151
##		5	1.54		Premium			G					VS1						61.1				56	14438
##		6	0.3			Ideal					E					VS2						61.8				55			795
##		7	0.3			Ideal					H					VVS2					61.5				56			605
##		8	1.2			Ideal					D					SI1						61.8				58		7508
##		9	0.58		Ideal					E					VS2						62.3				54		1809
##	10	0.31		Ideal					H					VS2						62.6				57			489
##	#	...	with	90	more	rows

6. Now pay attention to the classes of the individuals columns (variables). Have all classes been identified correctly? What
about the 	carat	 column? It should be 	numeric	, right?

#	print	diamonds
diamonds

##	#	A	tibble:	100	x	7
##				carat	cut							color	clarity	depth	table	price
##				<chr>	<chr>					<chr>	<chr>			<dbl>	<dbl>	<int>
##		1	0.8			Very	Good	H					VVS1					62.9				58		4468
##		2	0.74		Ideal					H					IF							60.9				57		3760
##		3	2.03		Premium			I					SI1						61.4				58	15683
##		4	0.41		Ideal					G					VVS1					62.1				55		1151
##		5	1.54		Premium			G					VS1						61.1				56	14438
##		6	0.3			Ideal					E					VS2						61.8				55			795
##		7	0.3			Ideal					H					VVS2					61.5				56			605
##		8	1.2			Ideal					D					SI1						61.8				58		7508
##		9	0.58		Ideal					E					VS2						62.3				54		1809
##	10	0.31		Ideal					H					VS2						62.6				57			489
##	#	...	with	90	more	rows

7. Let’s see what went wrong. Select and print the 	carat	 variable to identify the one entry that caused the variable to
become a 	character	 vector (Hint: look for a comma between entry 10 and 20).

#	print	the	carat	column
diamonds$carat

##			[1]	"0.8"		"0.74"	"2.03"	"0.41"	"1.54"	"0.3"		"0.3"		"1.2"		"0.58"	"0.31"
##		[11]	"1.24"	"0.91"	"1.28"	"0.31"	"1.02"	"1"				"0,37"	"0.55"	"0.54"	"0.34"
##		[21]	"0.91"	"0.9"		"0.5"		"0.31"	"1.66"	"0.47"	"0.3"		"0.7"		"1.72"	"0.41"
##		[31]	"1.06"	"0.32"	"0.4"		"0.71"	"0.3"		"1.31"	"1.08"	"0.45"	"0.3"		"0.62"
##		[41]	"1.01"	"2"				"0.38"	"2.03"	"1"				"0.38"	"0.41"	"0.49"	"0.71"	"1.51"
##		[51]	"1.02"	"1.3"		"0.32"	"1.52"	"0.59"	"1.31"	"1.05"	"1.08"	"0.43"	"1.08"
##		[61]	"0.3"		"0.4"		"0.52"	"0.41"	"1"				"0.33"	"0.75"	"0.26"	"0.34"	"1.49"
##		[71]	"0.3"		"0.4"		"0.71"	"0.92"	"0.7"		"0.55"	"1.47"	"0.42"	"0.58"	"0.44"
##		[81]	"0.31"	"0.3"		"0.55"	"0.41"	"0.31"	"0.33"	"0.32"	"2.67"	"0.88"	"0.57"
##		[91]	"0.36"	"0.53"	"0.79"	"0.9"		"0.31"	"1.03"	"0.39"	"0.51"	"0.34"	"0.25"

8. Change the incorrectly formated entry in 	carat	 by replacing 	XX	 with the index of the incorrect value (i.e., the correct
number between 10 and 20) and 	YY	 with the correct entry with a period (.) instead of a comma (,) in the code below.

#	Change	the	value	at	position	XX	to	YY
diamonds$carat[XX]	<-	YY

#	Change	the	value	at	position	XX	to	YY
diamonds$carat[17]	<-	0.37

9. Ok you fixed the value but 	carat	 is still 	character	. We can fix it with the 	type_convert()	 function. Apply the 	type_conve
rt()	 function to the 	diamonds	 data to have R fix all the data types. Make sure to assign the result back to 	diamonds	 so
that you change the object!

#	re-infer	data	types
diamonds	<-	type_convert(diamonds)

10. Print the 	diamonds	 object and look at the column types. Has the type of 	carat	 changed to 	double	?

#	print	diamonds	data	set
diamonds

##	#	A	tibble:	100	x	7
##				carat	cut							color	clarity	depth	table	price
##				<dbl>	<chr>					<chr>	<chr>			<dbl>	<dbl>	<int>
##		1	0.8			Very	Good	H					VVS1					62.9				58		4468
##		2	0.74		Ideal					H					IF							60.9				57		3760
##		3	2.03		Premium			I					SI1						61.4				58	15683
##		4	0.41		Ideal					G					VVS1					62.1				55		1151
##		5	1.54		Premium			G					VS1						61.1				56	14438
##		6	0.3			Ideal					E					VS2						61.8				55			795
##		7	0.3			Ideal					H					VVS2					61.5				56			605
##		8	1.2			Ideal					D					SI1						61.8				58		7508
##		9	0.580	Ideal					E					VS2						62.3				54		1809
##	10	0.31		Ideal					H					VS2						62.6				57			489
##	#	...	with	90	more	rows

11. Write the, now, properly formatted diamonds data to your data folder as a 	.csv	 file using the name 	diamonds_clean.csv	.
Don’t forget to include both the file name and the folder (separated by 	/) in the character string specifying the 	path	
argument.

#	write	clean	diamonds	data	to	disc
write_csv(x	=	XX,	path	=	"XX")

#	write	clean	diamonds	data	to	disc
write_csv(x	=	diamonds,	"1_Data/diamonds_clean.csv")

12. Read 	diamonds_clean.csv	 back into R as a new object called 	diamonds_clean	. Then, print the object and verify that this
time the types been correctly identified from the start.

#	read	clean	diamonds	data	from	disc
diamonds_clean	<-	read_csv(file	=	"1_Data/diamonds_clean.csv")

13. The data is now ready for analysis. Explore it a bit by calculating a few statistics. For instance, what is the average 	carat	
or 	price	 (use 	mean())? What 	cut	 and 	clarity	 levels exist and how often do they occur (use 	table()	 on both
variables)? You can learn more about the variable values from the help file 	?diamonds	.

#	simple	stats	of	diamonds
mean(diamonds$carat)

##	[1]	0.742

mean(diamonds$price)

##	[1]	3543

table(diamonds$cut)

##	
##						Fair						Good					Ideal			Premium	Very	Good	
##									2									5								46								31								16

table(diamonds$clarity)

##	
##			I1			IF		SI1		SI2		VS1		VS2	VVS1	VVS2	
##				1				4			17			19			15			24			10			10

E
-
Logical
Vectors
and
	$	

1. Logical vectors contain as values only 	TRUE	 and 	FALSE	 (and 	NA	s). Create a new logical vector called 	expensive	
indicating which diamonds are more expensive than $10000. To do this, select the 	price	 variable from the data frame
using 	$	 use the 	>	 (greater than) operator á la 	vector	>	value	.

#	Create	a	logical	vector	expensive	indicating
#	which	dimaonds	cost	more	than	10,000

ZZ	<-	diamonds$XX	>	YY

#	Create	a	logical	vector	expensive	indicating
#	which	dimaonds	cost	more	than	10,000

expensive	<-	diamonds$price	>	10000

2. Print your 	expensive	 vector to the console. Do you see only TRUE and FALSE values? If so, do the first few values match
those in the 	price	 variable?

#	print	expensive
expensive

##			[1]	FALSE	FALSE		TRUE	FALSE		TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##		[12]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##		[23]	FALSE	FALSE		TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##		[34]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE		TRUE	FALSE		TRUE
##		[45]	FALSE	FALSE	FALSE	FALSE	FALSE		TRUE	FALSE	FALSE	FALSE	FALSE	FALSE
##		[56]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##		[67]	FALSE	FALSE	FALSE		TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##		[78]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE		TRUE
##		[89]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[100]	FALSE

3. Add your 	expensive	 vector to the diamonds data frame using 	data_frame$variable_name	<-	variable	. See below?

#	add	vector	to	data	frame
XX$YY	<-	ZZ

#	add	vector	to	data	frame
diamonds$expensive	<-	expensive

4. Using the 	table()	 function, create a table showing how many of the diamonds are expensive how many are not. Select
the variable directly from the data frame using 	$.

#	count	expensive	diamonds
table(diamonds$expensive)

##	
##	FALSE		TRUE	
##				92					8

5. Using the 	mean()	 function, determine the percentage of the diamonds that are expensive, i.e., 	mean(expensive)	. Should
this have worked?

#	percentage	of	expensive	diamonds
mean(diamonds$expensive)

##	[1]	0.08

6. What percent diamonds weigh more than 1 	carat	 (i.e., more than .2 gram)?

#	percentage	of	diamonds	heavier	than	1	carat
mean(diamonds$carat	>	1)

##	[1]	0.26

F
-
Read
other
file
formats

Excel

1. Using 	read_excel()	, read in the 	titanic.xls	 dataset as a new object called 	titanic	 (Make sure you have alredy loaded
the 	readxl	 package at the beginning of your script).

titanic	<-	read_excel(path	=	"XX")

#	Read	titanic	data
titanic	<-	read_excel("1_Data/titanic.xls")

2. Print 	titanic	 and evaluate its dimensions using 	dim()	.

#	print	and	show	dimenisons
titanic

##	#	A	tibble:	1,309	x	14
##				pclass	survived	name		sex						age	sibsp	parch	ticket		fare	cabin
##					<dbl>				<dbl>	<chr>	<chr>		<dbl>	<dbl>	<dbl>	<chr>		<dbl>	<chr>
##		1						1								1	Alle…	fema…	29									0					0	24160		211.		B5			
##		2						1								1	Alli…	male			0.917					1					2	113781	152.		C22	…
##		3						1								0	Alli…	fema…		2									1					2	113781	152.		C22	…
##		4						1								0	Alli…	male		30									1					2	113781	152.		C22	…
##		5						1								0	Alli…	fema…	25									1					2	113781	152.		C22	…
##		6						1								1	Ande…	male		48									0					0	19952			26.6	E12		
##		7						1								1	Andr…	fema…	63									1					0	13502			78.0	D7			
##		8						1								0	Andr…	male		39									0					0	112050			0			A36		
##		9						1								1	Appl…	fema…	53									2					0	11769			51.5	C101	
##	10						1								0	Arta…	male		71									0					0	PC	17…		49.5	<NA>	
##	#	...	with	1,299	more	rows,	and	4	more	variables:	embarked	<chr>,
##	#			boat	<chr>,	body	<dbl>,	home.dest	<chr>

dim(titanic)

##	[1]	1309			14

3. Using 	table()	, how many people survived (variable 	survived) in each cabin class (variable 	pclass)?

#	determine	survival	rate	by	cabin	class
table(titanic$XX,	
						titanic$XX)

#	determine	survival	rate	by	cabin	class
table(titanic$pclass,	titanic$survived)

##				
##							0			1
##			1	123	200
##			2	158	119
##			3	528	181

4. Using 	write_csv()	, write the 	titanic	 dataframe as a new comma separated text file called 	titanic.csv	 in your 	1_Data	
folder. Now you have the data saved as a text file any software can use!

#	write	data	to	.csv
write_csv(x	=	titanic,	
										path	=	"1_Data/titanic.csv")

SPSS

5. Using 	read_spss()	 read in the sleep data set 	sleep.sav	 of staff at he University of Melbourne as a new object called 	sle
ep	. (Make sure that you have first loaded the 	haven	 package).

XX	<-	read_spss(file	=	"XX")

#	Read	sleep	data
sleep	<-	read_spss(file	=	"1_Data/sleep.sav")

6. Print your 	sleep	 object and evaluate its dimensions using 	dim()	.

#	print	and	show	dimensions
sleep

##	#	A	tibble:	271	x	55
##							id	sex					age	marital	edlevel	weight	height	healthrate	fitrate
##				<dbl>	<dbl>	<dbl>	<dbl+l>	<dbl+l>		<dbl>		<dbl>	<dbl+lbl>		<dbl+l>
##		1				83	0								42	2							2											52				162	10									7						
##		2			294	0								54	2							5											65				174	"	8"							7						
##		3			425	1								NA	2							2											89				170	"	6"							5						
##		4				64	0								41	2							5											66				178	"	9"							7						
##		5			536	0								39	2							5											62				160	"	9"							5						
##		6				57	0								66	2							4											62				165	"	8"							8						
##		7			251	0								36	1							3											62				165	"	9"							7						
##		8			255	0								35	2							5											75				174	"	6"							6						
##		9			265	1								NA	2							5											90				180	"	6"							6						
##	10			290	1								41	2							5											75				187	"	9"							9						
##	#	...	with	261	more	rows,	and	46	more	variables:	weightrate	<dbl+lbl>,
##	#			smoke	<dbl+lbl>,	smokenum	<dbl>,	alchohol	<dbl>,	caffeine	<dbl>,
##	#			hourwnit	<dbl>,	hourwend	<dbl>,	hourneed	<dbl>,	trubslep	<dbl+lbl>,
##	#			trubstay	<dbl+lbl>,	wakenite	<dbl+lbl>,	niteshft	<dbl+lbl>,
##	#			liteslp	<dbl+lbl>,	refreshd	<dbl+lbl>,	satsleep	<dbl+lbl>,
##	#			qualslp	<dbl+lbl>,	stressmo	<dbl+lbl>,	medhelp	<dbl+lbl>,
##	#			problem	<dbl+lbl>,	impact1	<dbl+lbl>,	impact2	<dbl+lbl>,
##	#			impact3	<dbl+lbl>,	impact4	<dbl+lbl>,	impact5	<dbl+lbl>,
##	#			impact6	<dbl+lbl>,	impact7	<dbl+lbl>,	stopb	<dbl+lbl>,
##	#			restlss	<dbl+lbl>,	drvsleep	<dbl+lbl>,	drvresul	<dbl+lbl>,	ess	<dbl>,
##	#			anxiety	<dbl>,	depress	<dbl>,	fatigue	<dbl>,	lethargy	<dbl>,
##	#			tired	<dbl>,	sleepy	<dbl>,	energy	<dbl>,	stayslprec	<dbl+lbl>,
##	#			getsleprec	<dbl+lbl>,	qualsleeprec	<dbl+lbl>,	totsas	<dbl>,
##	#			cigsgp3	<dbl+lbl>,	agegp3	<dbl+lbl>,	probsleeprec	<dbl+lbl>,
##	#			drvslprec	<dbl+lbl>

dim(sleep)

##	[1]	271		55

7. How many drinks do staff at the University of Melbourne consumer per day (variable 	alcohol). To do this, use the 	mean()	
function, while taking care of missing values using the 	na.rm	 argument.

#	compute	mean	number	of	drinks
mean(x	=	sleep,	na.rm	=	TRUE)

##	[1]	NA

8. Using the 	write_csv()	 function, write the 	sleep	 data to a new file called 	sleep.csv	 in your 	1_Data	 folder. Now you
have the 	sleep	 data stored as a text file any software can use!

#	write	data	to	.csv
write_csv(x	=	sleep,	
										path	=	"1_Data/sleep.csv")

SAS

9. Using 	read_sas()	, read in 	airbnb_zuerich.sas7bdat	 containing AirBnB listings in Zürich, Switzerland and call the object 	
airbnb_zuerich	.

#	read	sas	data
XX	<-	read_sas(data_file	=	"XX")

#	read	airbnb_zuerich.sas7bdat
airbnb_zuerich	<-	read_sas(data_file	=	"1_Data/airbnb_zuerich.sas7bdat")

10. Print 	airbnb_zuerich	 and then evaluate its dimensions using 	dim()	.

#	print	and	show	dimenisons
airbnb_zuerich

##	#	A	tibble:	2,392	x	20
##				room_id	survey_id	host_id	room_type	country	city		borough	neighborhood
##						<dbl>					<dbl>			<dbl>	<chr>					<chr>			<chr>	<chr>			<chr>							
##		1		1.37e7						1363		5.63e7	Entire	h…	""						Zuri…	""						Kreis	12				
##		2		8.00e6						1363		1.65e7	Entire	h…	""						Zuri…	""						Kreis	7					
##		3		1.52e7						1363		5.03e7	Entire	h…	""						Zuri…	""						Kreis	4					
##		4		7.56e6						1363		4.92e6	Entire	h…	""						Zuri…	""						Kreis	1					
##		5		1.86e7						1363		2.04e7	Entire	h…	""						Zuri…	""						Kreis	12				
##		6		6.44e6						1363		1.24e7	Entire	h…	""						Zuri…	""						Kreis	2					
##		7		1.88e6						1363		1.60e6	Entire	h…	""						Zuri…	""						Kreis	7					
##		8		3.63e6						1363		1.83e7	Entire	h…	""						Zuri…	""						Kreis	8					
##		9		1.44e7						1363		5.19e7	Entire	h…	""						Zuri…	""						Kreis	2					
##	10		1.28e7						1363		2.64e5	Entire	h…	""						Zuri…	""						Kreis	2					
##	#	...	with	2,382	more	rows,	and	12	more	variables:	reviews	<dbl>,
##	#			overall_satisfaction	<dbl>,	accommodates	<dbl>,	bedrooms	<dbl>,
##	#			bathrooms	<chr>,	price	<dbl>,	minstay	<chr>,	name	<chr>,
##	#			last_modified	<dttm>,	latitude	<dbl>,	longitude	<dbl>,	location	<chr>

dim(airbnb_zuerich)

##	[1]	2392			20

11. How many AirBnB listings were there of each 	room_type	 in Zürich? (Hint: use 	table())

#	table	room	type
table(airbnb_zuerich$room_type)

##	
##	Entire	home/apt				Private	room					Shared	room	
##												1386													975														31

12. Using 	write_csv()	 write your 	airbnb_zuerich	 data frame to as new comma-separated text file called 	airbnb_zuerich.cs
v	 in your 	1_Data	 folder.

#	write	data	to	.csv
write_csv(x	=	airbnb_zuerich,	
										path	=	"1_Data/airbnb_zuerich.csv")

G
-
Creating
data
frames

1. Using the 	data.frame()	 function, create a data frame called 	ten_df	 that contains each of vectors you just created: 	id	, 	
age	, 	sex	, 	height	, 	weight	.

#	Create	data	frame	ten_df	containing	vectors	id,	age,	sex,	height,	and	weight.
XX	<-	data.frame(XX,	XX,	XX,	XX,	XX,	XX)	

#	Create	ten_df	data	frame	from	vectors
ten_df	<-	data.frame(id,	age,	sex,	height,	weight)	

2. Print your 	ten_df	 object to see how it looks! Does it contain all of the vectors?

#	Print	ten_df
ten_df

##				id	age				sex	height	weight
##	1			1		44			male				174		113.4
##	2			2		65			male				180			75.2
##	3			3		31	female				168			55.5
##	4			4		27			male				209			93.8
##	5			5		24			male				177					NA
##	6			6		63			male				187			67.4
##	7			7		71			male				152			83.3
##	8			8		41	female				156			67.8
##	9			9		43			male				176			69.3
##	10	10		31	female				166			66.3

3. Using the 	dim()	 function, print the number of rows and columns in your data frame. Do you get 10 rows and 5 columns?

#	Inspect	dimensions
dim(ten_df)

##	[1]	10		5

4. What is the class of your 	ten_df	 object? Use the 	class()	 function to find out!

#	Inspect	class
class(ten_df)

##	[1]	"data.frame"

5. Use the 	summary()	 function to print descriptive statistics from each column of 	ten_df	

#	Inspect	class
summary(ten_df)

##								id													age											sex								height								weight					
##		Min.			:	1.00			Min.			:24.0			female:3			Min.			:152			Min.			:	55.5		
##		1st	Qu.:	3.25			1st	Qu.:31.0			male		:7			1st	Qu.:167			1st	Qu.:	67.4		
##		Median	:	5.50			Median	:42.0														Median	:175			Median	:	69.3		
##		Mean			:	5.50			Mean			:44.0														Mean			:174			Mean			:	76.9		
##		3rd	Qu.:	7.75			3rd	Qu.:58.2														3rd	Qu.:179			3rd	Qu.:	83.3		
##		Max.			:10.00			Max.			:71.0														Max.			:209			Max.			:113.4		
##																																																										NA's			:1

6. Using the 	$	 operator, print the 	age	 column from the 	ten_df	 data frame.

#	Inspect	age
ten_df$age

##		[1]	44	65	31	27	24	63	71	41	43	31

7. Calculate the maximum 	age	 value from the 	ten_df	 data frame using 	max()	. Do you get the same result from when you
calculated it from the original vector 	age	?

#	Get	max
max(ten_df$age)

##	[1]	71

8. Instead of creating a data frame of the data using the 	data.frame()	 function, try creating a tibble called 	ten_tibble	 using
the 	tibble()	 function. 	tibble	s are a more modern, leaner variant of data frame that we prefer over classic 	data.frame	s
You can use the exact same arguments you used before.

#	create	tibble
ten_tibble	=	tibble(id,	sex,	height,	weight)

9. Print your new 	ten_tibble	 object, how does it look different from 	ten_df	? Try calculating the maximum 	age	 from this
object. Is it different from what you got before?

#	print	tibble
ten_tibble

##	#	A	tibble:	10	x	4
##							id	sex				height	weight
##				<int>	<chr>			<dbl>		<dbl>
##		1					1	male					174.		113.	
##		2					2	male					180.			75.2
##		3					3	female			168.			55.5
##		4					4	male					209				93.8
##		5					5	male					177.			NA		
##		6					6	male					187.			67.4
##		7					7	male					152.			83.3
##		8					8	female			156.			67.8
##		9					9	male					176.			69.3
##	10				10	female			166.			66.3

max(ten_tibble$age)	==	max(ten_df$age)

##	[1]	FALSE

X
-
Challenges

1. If you take the 	sum()	 of a logical vector, R will return the number of cases that are 	TRUE	. Using this, find out how many of
the ten Baselers are male while using the is-equal-to operator 	==	.

#	Determine	the	frequency	of	a	case	in	a	vector
sum(XX	==	XX)

#	Determine	the	frequency	of	a	case	in	a	vector
sum(ten_tibble	==	"male")

##	[1]	NA

2. You can use logical vectors to select rows from a data frame based on certain criteria. using the following template, get the
id values of Baselers who are younger than 30:

#	Create	a	logical	vector	indicating	which	baselers	are	younger	than	30
young_30	<-	XX$XX	<	30

#	Print	the	ids	of	baselers	younger	than	30
XX$XX[young_30]

#	Create	a	logical	vector	indicating	which	baselers	are	younger	than	30
young_30	<-	ten_tibble$age	<	30

#	Print	the	ids	of	baselers	younger	than	30
ten_tibble$id[young_30]

##	integer(0)

3. Use a combination of logical vectors and the 	mean()	 function to answer the question: “What is the mean age of Baselers
who are heavier than 80kg?”

#	Mean	age	of	baselers	heavier	than	80kg
mean(ten_tibble$age[ten_tibble$weight	>	80])

##	[1]	NA

4. What are the id values of Baselers who are male and are shorter than 165cm? (Hint: You will need to use the logical AND
operator 	&	 to combine multiple logical vectors)

#	Mean	age	of	baselers	heavier	than	80kg
ten_tibble$id[ten_tibble$sex	==	"male"	&	ten_tibble$height	<	165]

##	[1]	7

Additional
Resources

For more information on the fundamentals of object and functions in R see the R Core team’s introduction to R
(https://cran.r-project.org/doc/manuals/r-release/R-intro.html) and for even more advanced object and function-related
topics Hadley Wickham’s Advanced R (http://adv-r.had.co.nz/).

Overview Datasets Packages Glossary Examples

https://therbootcamp.github.io/
https://twitter.com/therbootcamp
https://www.methodspace.com/
https://cran.r-project.org/doc/manuals/r-release/R-intro.html
http://adv-r.had.co.nz/
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Data/Data_practical.html#overview
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Data/Data_practical.html#datasets
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Data/Data_practical.html#packages
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Data/Data_practical.html#glossary
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Data/Data_practical.html#examples

For more information on reading and writing (and everything else) see Grolemund`s and Wickham’s R for Data Science
(http://r4ds.had.co.nz/data-import.html).

http://r4ds.had.co.nz/data-import.html

