
Analysing
Introduction
to
Data
Science
with
R,
October
2018
www.therbootcamp.com
(https://therbootcamp.github.io)
@therbootcamp
(https://twitter.com/therbootcamp)

https://en.wikipedia.org/wiki/Seattle_box (https://en.wikipedia.org/wiki/Seattle_box)

In this practical, you’ll practice grouping and analysing data with the 	dplyr	 and 	tidyr	 packages (part of the `tidyverse
collection of packages).

By the end of this practical you will know how to:

1. Group data and calculate summary statistics
2. Run simple statistical analyses.

Tasks

A
-
Setup

1. Open your 	baselrbootcamp	 R project. It should already have the folders 	1_Data	 and 	2_Code	. Make sure that the data files
listed in the 	Datasets	 section above are in your 	1_Data	 folder.

#	Done!

2. Open a new R script. At the top of the script, using comments, write your name and the date. Save it as a new file called 	a
nalysing_practical.R	 in the 	2_Code	 folder.

3. Using 	library()	 load the set of packages for this practical listed in the packages section above.

4. For this practical, we’ll use the 	kc_house.csv	 data. This dataset contains house sale prices for King County, Washington.
It includes homes sold between May 2014 and May 2015. Using the following template, load the data into R and store it as
a new object called 	kc_house	.

kc_house	<-	read_csv(file	=	"XX")

4. Using 	print()	, 	summary()	, and 	head()	, explore the data to make sure it was loaded correctly.

kc_house

#	A	tibble:	21,613	x	21
			id									date																		price	bedrooms	bathrooms	sqft_living
			<chr>						<dttm>																<dbl>				<int>					<dbl>							<int>
	1	7129300520	2014-10-13	00:00:00		221900								3						1											1180
	2	6414100192	2014-12-09	00:00:00		538000								3						2.25								2570
	3	5631500400	2015-02-25	00:00:00		180000								2						1												770
	4	2487200875	2014-12-09	00:00:00		604000								4						3											1960
	5	1954400510	2015-02-18	00:00:00		510000								3						2											1680
	6	7237550310	2014-05-12	00:00:00	1225000								4						4.5									5420
	7	1321400060	2014-06-27	00:00:00		257500								3						2.25								1715
	8	2008000270	2015-01-15	00:00:00		291850								3						1.5									1060
	9	2414600126	2015-04-15	00:00:00		229500								3						1											1780
10	3793500160	2015-03-12	00:00:00		323000								3						2.5									1890
#	...	with	21,603	more	rows,	and	15	more	variables:	sqft_lot	<int>,
#			floors	<dbl>,	waterfront	<int>,	view	<int>,	condition	<int>,
#			grade	<int>,	sqft_above	<int>,	sqft_basement	<int>,	yr_built	<int>,
#			yr_renovated	<int>,	zipcode	<int>,	lat	<dbl>,	long	<dbl>,
#			sqft_living15	<int>,	sqft_lot15	<int>

summary(kc_house)

						id																	date																									price								
	Length:21613							Min.			:2014-05-02	00:00:00			Min.			:		75000		
	Class	:character			1st	Qu.:2014-07-22	00:00:00			1st	Qu.:	321950		
	Mode		:character			Median	:2014-10-16	00:00:00			Median	:	450000		
																				Mean			:2014-10-29	04:38:01			Mean			:	540088		
																				3rd	Qu.:2015-02-17	00:00:00			3rd	Qu.:	645000		
																				Max.			:2015-05-27	00:00:00			Max.			:7700000		
				bedrooms						bathrooms					sqft_living							sqft_lot						
	Min.			:	0.0			Min.			:0.00			Min.			:		290			Min.			:				520		
	1st	Qu.:	3.0			1st	Qu.:1.75			1st	Qu.:	1427			1st	Qu.:			5040		
	Median	:	3.0			Median	:2.25			Median	:	1910			Median	:			7618		
	Mean			:	3.4			Mean			:2.11			Mean			:	2080			Mean			:		15107		
	3rd	Qu.:	4.0			3rd	Qu.:2.50			3rd	Qu.:	2550			3rd	Qu.:		10688		
	Max.			:33.0			Max.			:8.00			Max.			:13540			Max.			:1651359		
					floors							waterfront									view								condition			
	Min.			:1.00			Min.			:0.000			Min.			:0.00			Min.			:1.00		
	1st	Qu.:1.00			1st	Qu.:0.000			1st	Qu.:0.00			1st	Qu.:3.00		
	Median	:1.50			Median	:0.000			Median	:0.00			Median	:3.00		
	Mean			:1.49			Mean			:0.008			Mean			:0.23			Mean			:3.41		
	3rd	Qu.:2.00			3rd	Qu.:0.000			3rd	Qu.:0.00			3rd	Qu.:4.00		
	Max.			:3.50			Max.			:1.000			Max.			:4.00			Max.			:5.00		
					grade									sqft_above			sqft_basement					yr_built			
	Min.			:	1.00			Min.			:	290			Min.			:			0			Min.			:1900		
	1st	Qu.:	7.00			1st	Qu.:1190			1st	Qu.:			0			1st	Qu.:1951		
	Median	:	7.00			Median	:1560			Median	:			0			Median	:1975		
	Mean			:	7.66			Mean			:1788			Mean			:	292			Mean			:1971		
	3rd	Qu.:	8.00			3rd	Qu.:2210			3rd	Qu.:	560			3rd	Qu.:1997		
	Max.			:13.00			Max.			:9410			Max.			:4820			Max.			:2015		
		yr_renovated					zipcode											lat												long					
	Min.			:			0			Min.			:98001			Min.			:47.2			Min.			:-122		
	1st	Qu.:			0			1st	Qu.:98033			1st	Qu.:47.5			1st	Qu.:-122		
	Median	:			0			Median	:98065			Median	:47.6			Median	:-122		
	Mean			:		84			Mean			:98078			Mean			:47.6			Mean			:-122		
	3rd	Qu.:			0			3rd	Qu.:98118			3rd	Qu.:47.7			3rd	Qu.:-122		
	Max.			:2015			Max.			:98199			Max.			:47.8			Max.			:-121		
	sqft_living15				sqft_lot15				
	Min.			:	399			Min.			:			651		
	1st	Qu.:1490			1st	Qu.:		5100		
	Median	:1840			Median	:		7620		
	Mean			:1987			Mean			:	12768		
	3rd	Qu.:2360			3rd	Qu.:	10083		
	Max.			:6210			Max.			:871200		

head(kc_house)

#	A	tibble:	6	x	21
		id				date																	price	bedrooms	bathrooms	sqft_living	sqft_lot
		<chr>	<dttm>															<dbl>				<int>					<dbl>							<int>				<int>
1	7129…	2014-10-13	00:00:00	2.22e5								3						1											1180					5650
2	6414…	2014-12-09	00:00:00	5.38e5								3						2.25								2570					7242
3	5631…	2015-02-25	00:00:00	1.80e5								2						1												770				10000
4	2487…	2014-12-09	00:00:00	6.04e5								4						3											1960					5000
5	1954…	2015-02-18	00:00:00	5.10e5								3						2											1680					8080
6	7237…	2014-05-12	00:00:00	1.23e6								4						4.5									5420			101930
#	...	with	14	more	variables:	floors	<dbl>,	waterfront	<int>,	view	<int>,
#			condition	<int>,	grade	<int>,	sqft_above	<int>,	sqft_basement	<int>,
#			yr_built	<int>,	yr_renovated	<int>,	zipcode	<int>,	lat	<dbl>,
#			long	<dbl>,	sqft_living15	<int>,	sqft_lot15	<int>

B
-
Recap
1. Print the names of the 	kc_house	 data with 	names()	.

names(kc_house)

	[1]	"id"												"date"										"price"									"bedrooms"					
	[5]	"bathrooms"					"sqft_living"			"sqft_lot"						"floors"							
	[9]	"waterfront"				"view"										"condition"					"grade"								
[13]	"sqft_above"				"sqft_basement"	"yr_built"						"yr_renovated"	
[17]	"zipcode"							"lat"											"long"										"sqft_living15"
[21]	"sqft_lot15"			

2. Change the following column names using 	rename()	.

New
Name Old
Name

living_sqft sqft_living

lot_sqft sqft_lot

above_sqft sqft_above

basement_sqft sqft_basement

built_yr yr_built

renovated_yr yr_renovated

3. Create new column(s) 	living_sqm	, 	lot_sqm	, 	above_sqm	 and 	basement_sqm	 which show the respective room sizes in
square meters rather than square feet (Hint: Multiply each by 0.093).

kc_house	<-	kc_house	%>%
		mutate(living_sqm	=	XXX	*	XXX,
									lot_sqm	=	XXX	*	XXX,
									XXX	=	XXX,
									XXX	=	XXX)

kc_house	<-	kc_house	%>%
		mutate(living_sqm	=	living_sqft	*	0.093,
									lot_sqm	=	lot_sqft	*	0.093,
									above_sqm	=	above_sqft	*	0.093,
									basement_sqm		=	basement_sqft	*	0.093)

4. Add a new variable to the dataframe called 	mansion	 which is “Yes” when the sum of the house’s living, above, and
basement space is above 750 square meters.

kc_house	<-	kc_house	%>%
																mutate(mansion	=	case_when(
																														living_sqm	+	above_sqm	+		basement_sqm	>	750	~	"Yes",
																														living_sqm	+	above_sqm	+	basement_sqm	<=	750	~	"No"))

C
-
Simple
summaries
1. Using the base-R 	df$col	 notation, calculate the mean price of all houses.

mean(XXX$XXX)

mean(kc_house$price)

[1]	540088

2. Now, do the same using 	summarise()	 using the following template. Do you get the same answer? What is different about
the output from 	summarise()	 versus using the dollar sign?

kc_house	%>%
		summarise(
				price_mean	=	mean(XXX)
)

kc_house	%>%
		summarise(
				price_mean	=	mean(price)
)

#	A	tibble:	1	x	1
		price_mean
							<dbl>
1				540088.

3. What is the median price of all houses? Use the 	median()	 function!

kc_house	%>%
		summarise(
				price_median	=	median(price)
)

#	A	tibble:	1	x	1
		price_median
									<dbl>
1							450000

4. What was the highest selling price? Use the 	max()	 function!

kc_house	%>%
		summarise(
				price_max	=	max(price)
)

#	A	tibble:	1	x	1
		price_max
						<dbl>
1			7700000

5. Using the following template, sort the data frame in descending order of price. Then, print it. Do you see the house with the
highest selling price at the top?

kc_house	<-	kc_house	%>%
		arrange(desc(XXX))

kc_house

kc_house	<-	kc_house	%>%
		arrange(desc(price))

kc_house

#	A	tibble:	21,613	x	26
			id									date																		price	bedrooms	bathrooms	living_sqft
			<chr>						<dttm>																<dbl>				<int>					<dbl>							<int>
	1	6762700020	2014-10-13	00:00:00	7700000								6						8										12050
	2	9808700762	2014-06-11	00:00:00	7062500								5						4.5								10040
	3	9208900037	2014-09-19	00:00:00	6885000								6						7.75								9890
	4	2470100110	2014-08-04	00:00:00	5570000								5						5.75								9200
	5	8907500070	2015-04-13	00:00:00	5350000								5						5											8000
	6	7558700030	2015-04-13	00:00:00	5300000								6						6											7390
	7	1247600105	2014-10-20	00:00:00	5110800								5						5.25								8010
	8	1924059029	2014-06-17	00:00:00	4668000								5						6.75								9640
	9	7738500731	2014-08-15	00:00:00	4500000								5						5.5									6640
10	3835500195	2014-06-18	00:00:00	4489000								4						3											6430
#	...	with	21,603	more	rows,	and	20	more	variables:	lot_sqft	<int>,
#			floors	<dbl>,	waterfront	<int>,	view	<int>,	condition	<int>,
#			grade	<int>,	above_sqft	<int>,	basement_sqft	<int>,	built_yr	<int>,
#			renovated_yr	<int>,	zipcode	<int>,	lat	<dbl>,	long	<dbl>,
#			sqft_living15	<int>,	sqft_lot15	<int>,	living_sqm	<dbl>,
#			lot_sqm	<dbl>,	above_sqm	<dbl>,	basement_sqm	<dbl>,	mansion	<chr>

6. What percentage of houses sold for more than 1,000,000? Let’s answer this with 	summarise()	.

kc_house	%>%
		summarise(mil_p	=	mean(XXX	>	1000000))

kc_house	%>%
		summarise(mil_p	=	mean(price	>	1000000))

#	A	tibble:	1	x	1
			mil_p
			<dbl>
1	0.0678

7. For mansions only, calculate the mean number of floors and bathrooms (hint: before summarising the data, use 	filter()	
to only select mansions!)

kc_house	%>%
		filter(mansion	==	"Yes")	%>%
		summarise(
				floors_mean	=	mean(floors),
				bathrooms_mean	=	mean(bathrooms)
)

#	A	tibble:	1	x	2
		floors_mean	bathrooms_mean
								<dbl>										<dbl>
1								1.92											3.68

D
-
Simple
grouped
summaries
1. How many mansions are there? To do this, use 	group_by()	 to group the dataset by the 	mansions	 column, then use the 	n

()	 function to count the number of cases.

kc_house	%>%
		group_by(XXX)	%>%
		summarise(XXX	=	n())

kc_house	%>%
		group_by(mansion)	%>%
		summarise(N	=	n())

#	A	tibble:	2	x	2
		mansion					N
		<chr>			<int>
1	No						20862
2	Yes							751

2. What is the mean selling price of mansions versus non-mansions? To do this, just add another argument to your 	summaris
e()	 function!

kc_house	%>%
		group_by(mansion)	%>%
		summarise(N	=	n(),
												XXX	=	XXX(XXX))

kc_house	%>%
		group_by(mansion)	%>%
		summarise(N	=	n(),
												price_mean	=	mean(price))

#	A	tibble:	2	x	3
		mansion					N	price_mean
		<chr>			<int>						<dbl>
1	No						20862				504024.
2	Yes							751			1541915.

3. Using 	group_by()	 and 	summarise()	, create a dataframe showing the same results as the following table.

mansion N price_min price_mean price_median price_max

No 20862 75000 504024 441000 3100000

Yes 751 404000 1541915 1300000 7700000

4. Do houses built in later years tend to have more living space? To answer this, group the data by 	built_yr	, and then
calculate the mean number of living square meters. Be sure to also include the number of houses built in each year!

kc_house	%>%
		group_by(built_yr)	%>%
		summarise(N	=	n(),
												living	=	mean(living_sqm))

#	A	tibble:	116	x	3
			built_yr					N	living
						<int>	<int>		<dbl>
	1					1900				87			161.
	2					1901				29			164.
	3					1902				27			179.
	4					1903				46			140.
	5					1904				45			149.
	6					1905				74			183.
	7					1906				92			168.
	8					1907				65			177.
	9					1908				86			158.
10					1909				94			177.
#	...	with	106	more	rows

5. Was that table too big? Try using the following code to get the results for each decade rather than each year!

kc_house	%>%
		mutate(built_decade	=	floor(built_yr	/	10))	%>%
		group_by(built_decade)	%>%
		summarise(XX	=	XX,
												XX	=	XX(XX))

6. A friend of yours who is getting into Seattle real estate wants to know how the number of floors a house has affects its
selling price. Create a table for her showing the minimum, mean, and maximum price for houses separated by the number
of floors they have.

E
-
Multiple
groups
1. Your friend Brumhilda is interested in statistics on houses in the following 4 zipcodes only: 98001, 98109, 98117, 98199.

Create a new dataframe called 	brumhilda	 that only contains data from houses in those zipcode (hint: use 	filter()	
combined with the 	%in%	 operator as follows:

brumhilda	<-	kc_house	%>%
		filter(XXX	%in%	c(XXX,	XXX,	XXX,	XXX))

brumhilda	<-	kc_house	%>%
		filter(zipcode	%in%	c(98001,	98109,	98117,	98199))

2. For each of the zip codes, calculate the 	mean()	 and 	median()	 selling price (as well as the number of houses) in each zip
code.

brumhilda	%>%
		group_by(zipcode)	%>%
		summarise(price_mean	=	mean(price),
											price_median	=	median(price),
											N	=	n())

#	A	tibble:	4	x	4
		zipcode	price_mean	price_median					N
				<int>						<dbl>								<dbl>	<int>
1			98001				280805.							260000			362
2			98109				879624.							736000			109
3			98117				576795.							544000			553
4			98199				791821.							689800			317

3. Now Brumhilda wants the same data separated by whether or not the house is a mansion or not. Include these results by
also grouping the data by 	mansion	 (as well as 	zipcode), and calculating the same summary statistics as before.

brumhilda	%>%
		group_by(zipcode,	mansion)	%>%
		summarise(price_mean	=	mean(price),
											price_median	=	median(price),
											N	=	n())

#	A	tibble:	8	x	5
#	Groups:			zipcode	[?]
		zipcode	mansion	price_mean	price_median					N
				<int>	<chr>								<dbl>								<dbl>	<int>
1			98001	No									277589.							260000			359
2			98001	Yes								665667.							637000					3
3			98109	No									833528.							730500			106
4			98109	Yes							2508333.						2900000					3
5			98117	No									575626.							543000			551
6			98117	Yes								898750								898750					2
7			98199	No									753625.							675000			305
8			98199	Yes							1762618.						1425000				12

4. Ok that was good, but now she also wants to know what the maximum and minimum number of floors were in each group.
Add these summary statistics!

brumhilda	%>%
		group_by(zipcode)	%>%
		summarise(price_mean	=	mean(price),
											price_median	=	median(price),
											floors_min	=	min(floors),
											floors_max	=	max(floors),
											N	=	n())

#	A	tibble:	4	x	6
		zipcode	price_mean	price_median	floors_min	floors_max					N
				<int>						<dbl>								<dbl>						<dbl>						<dbl>	<int>
1			98001				280805.							260000										1								2.5			362
2			98109				879624.							736000										1								3					109
3			98117				576795.							544000										1								3					553
4			98199				791821.							689800										1								3					317

F
-
Statistics
1. Let’s see if there is a significant difference between the selling prices of houses on the waterfront versus those not on the

waterfront. To do this, we’ll conduct a t-test using the 	t.test()	 function and assign the result to 	waterfront_htest	. Fill in
the XXXs in the code below, such that the dependent variable is 	price	 and the independent variable is 	waterfront	

waterfront_htest	<-	t.test(formula	=	XXX	~	XXX,
																											data	=	XXX)

waterfront_htest	<-	t.test(formula	=	price	~	waterfront,
																											data	=	kc_house)

2. Print your 	waterfront_htest	 object to see a printout of the main results.

waterfront_htest

				Welch	Two	Sample	t-test

data:		price	by	waterfront
t	=	-10,	df	=	200,	p-value	<2e-16
alternative	hypothesis:	true	difference	in	means	is	not	equal	to	0
95	percent	confidence	interval:
	-1303662		-956963
sample	estimates:
mean	in	group	0	mean	in	group	1	
									531564									1661876	

3. Look at the names of your 	waterfront_htest	 object with 	names()	.

names(waterfront_htest)

[1]	"statistic"			"parameter"			"p.value"					"conf.int"				"estimate"			
[6]	"null.value"		"alternative"	"method"						"data.name"		

4. Using the 	$, print the test statistic (statistic) from your 	waterfront_htest	 object.

waterfront_htest$statistic

				t	
-12.9	

5. Now using 	$, print only the p-value (p.value) from the object.

waterfront_htest$p.value

[1]	1.38e-26

6. Which of the variables 	bedrooms	, 	bathrooms	, 	living_sqm	, 	waterfront	, 	lat	 and 	long	 best predict a house’s price (pri
ce)? Answer this by conducting a regression analysis using the 	glm()	 function and assign the result to 	price_glm	. Fill in
the XXXs in the code below.

price_glm	<-	glm(formula	=	XXX	~	XXX	+	XXX	+	XXX	+	XXX	+	XXX	+	XXX,
																	data	=	XXX)

price_glm	<-	glm(formula	=	price	~	bedrooms	+	bathrooms	+	living_sqm	+	waterfront	+	lat	+	long,
																	data	=	kc_house)

7. Print your 	price_glm	 object. What do you see?

price_glm

Call:		glm(formula	=	price	~	bedrooms	+	bathrooms	+	living_sqm	+	waterfront	+	
				lat	+	long,	data	=	kc_house)

Coefficients:
(Intercept)					bedrooms				bathrooms			living_sqm			waterfront		
		-65680578							-46146								17422									3157							790264		
								lat									long		
					675209						-275008		

Degrees	of	Freedom:	21612	Total	(i.e.	Null);		21606	Residual
Null	Deviance:						2.91e+15	
Residual	Deviance:	1.09e+15					AIC:	594000

8. Look at the names of your 	price_glm	 object with 	names()	.

names(price_glm)

	[1]	"coefficients"						"residuals"									"fitted.values"				
	[4]	"effects"											"R"																	"rank"													
	[7]	"qr"																"family"												"linear.predictors"
[10]	"deviance"										"aic"															"null.deviance"				
[13]	"iter"														"weights"											"prior.weights"				
[16]	"df.residual"							"df.null"											"y"																
[19]	"converged"									"boundary"										"model"												
[22]	"call"														"formula"											"terms"												
[25]	"data"														"offset"												"control"										
[28]	"method"												"contrasts"									"xlevels"										

9. Using 	$	 print the coefficients from your analysis.

price_glm$coefficients

(Intercept)				bedrooms			bathrooms		living_sqm		waterfront									lat	
		-65680578						-46146							17422								3157						790264						675209	
							long	
				-275008	

10. Using the 	summary()	 function, show summary results from your 	price_glm	 object.

summary(price_glm)

Call:
glm(formula	=	price	~	bedrooms	+	bathrooms	+	living_sqm	+	waterfront	+	
				lat	+	long,	data	=	kc_house)

Deviance	Residuals:	
					Min								1Q				Median								3Q							Max		
-1563708			-116127				-14138					84523			4180382		

Coefficients:
													Estimate	Std.	Error	t	value	Pr(>|t|)				
(Intercept)	-6.57e+07			1.41e+06		-46.51		<	2e-16	***
bedrooms				-4.61e+04			2.05e+03		-22.53		<	2e-16	***
bathrooms				1.74e+04			3.07e+03				5.67		1.4e-08	***
living_sqm			3.16e+03			2.95e+01		107.17		<	2e-16	***
waterfront			7.90e+05			1.79e+04			44.14		<	2e-16	***
lat										6.75e+05			1.12e+04			60.20		<	2e-16	***
long								-2.75e+05			1.14e+04		-24.15		<	2e-16	***

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

(Dispersion	parameter	for	gaussian	family	taken	to	be	5.06e+10)

				Null	deviance:	2.9129e+15		on	21612		degrees	of	freedom
Residual	deviance:	1.0943e+15		on	21606		degrees	of	freedom
AIC:	594064

Number	of	Fisher	Scoring	iterations:	2

11. The 	$residuals	 element in your 	price_glm	 object contains the residuals (difference from the predicted and true
dependent variable values). Add this vector as a new column called 	residuals	 to your 	kc_house	 object using 	mutate()	

kc_house	<-	kc_house	%>%
		mutate(residuals	=	price_glm$residuals)

12. Using the following template, create a histogram of the residuals.

ggplot(data	=	kc_house,
							aes(x	=	residuals))	+
		geom_histogram(col	=	"white")	+
		labs(title	=	"Residual	regression")

ggplot(data	=	kc_house,
							aes(x	=	residuals))	+
		geom_histogram(col	=	"white")	+
		labs(title	=	"Residual	regression")

`stat_bin()`	using	`bins	=	30`.	Pick	better	value	with	`binwidth`.

12. What is the mean of the residuals? How do you interpret this?

kc_house	%>%	
		summarise(resid_mean	=	mean(residuals))

#	A	tibble:	1	x	1
				resid_mean
									<dbl>
1	-0.000000151

13. Now, create a new column called 	residuals_abs	 which shows the absolute value of the residuals (hint: use the 	abs()	
function).

kc_house	<-	kc_house	%>%
		mutate(residuals_abs	=	abs(price_glm$residuals))

14. Create a histogram of the absolute value of the residuals.

ggplot(data	=	kc_house,
							aes(x	=	residuals_abs))	+
		geom_histogram(col	=	"white")	+
		labs(title	=	"Residual	regression")

`stat_bin()`	using	`bins	=	30`.	Pick	better	value	with	`binwidth`.

15. What is the mean of the absolute value of the residuals? How do you interpret this? In general, do you think you can
predict the price of a house very well based on the features in your regression model?

kc_house	%>%	
		summarise(resid_abs_mean	=	mean(residuals_abs))

#	A	tibble:	1	x	1
		resid_abs_mean
											<dbl>
1								144018.

#	On	average,	the	model's	fitted	values	are	off	by	144,018.	So	the	model	isn't	terribly	accurate	on	average.

X
-
Challenges
1. Which zipcode has the highest percentage of houses on the waterfront? (Hint: group by zipcode, calculate the percentage

of houses on the waterfront using 	mean()	, then sort the data in descending order) with 	arrange()	, then select the first
row with 	slice()	. Once you find it, try searching for that zipcode on Google Maps and see if it’s location makes sense!

kc_house	%>%
		group_by(zipcode)	%>%
		summarise(waterfront_p	=	mean(waterfront))	%>%
		arrange(desc(waterfront_p))	%>%
		slice(1)

#	A	tibble:	1	x	2
		zipcode	waterfront_p
				<int>								<dbl>
1			98070								0.203

2. Which house had the highest price to living space ratio? To answer this, create a new variable called 	price_to_living	 that
takes 	price	/	living_sqm	. Then, sort the data in descending order of this variable, and select the first row with 	slice()	!
What id value do you get?

kc_house	%>%
		mutate(price_to_living	=	price	/	living_sqm)	%>%
		arrange(desc(price_to_living))	%>%
		slice(1)

#	A	tibble:	1	x	29
		id				date																	price	bedrooms	bathrooms	living_sqft	lot_sqft
		<chr>	<dttm>															<dbl>				<int>					<dbl>							<int>				<int>
1	6021…	2015-04-07	00:00:00	874950								2									1								1080					4000
#	...	with	22	more	variables:	floors	<dbl>,	waterfront	<int>,	view	<int>,
#			condition	<int>,	grade	<int>,	above_sqft	<int>,	basement_sqft	<int>,
#			built_yr	<int>,	renovated_yr	<int>,	zipcode	<int>,	lat	<dbl>,
#			long	<dbl>,	sqft_living15	<int>,	sqft_lot15	<int>,	living_sqm	<dbl>,
#			lot_sqm	<dbl>,	above_sqm	<dbl>,	basement_sqm	<dbl>,	mansion	<chr>,
#			residuals	<dbl>,	residuals_abs	<dbl>,	price_to_living	<dbl>

3. Which are the top 10 zip codes in terms of mean housing prices? To answer this, group the data by zipcode, calculate the
mean price, arrange the dataset in descending order of mean price, then select the top 10 rows!

kc_house	%>%
		group_by(zipcode)	%>%
		summarise(price_mean	=	mean(price))	%>%
		arrange(desc(price_mean))	%>%
		slice(1:10)

#	A	tibble:	10	x	2
			zipcode	price_mean
					<int>						<dbl>
	1			98039			2160607.
	2			98004			1355927.
	3			98040			1194230.
	4			98112			1095499.
	5			98102				901258.
	6			98109				879624.
	7			98105				862825.
	8			98006				859685.
	9			98119				849448.
10			98005				810165.

4. Create the following dataframe exactly as it appears.

built_yr N price_mean price_max living_sqm_mean

1990 320 563966 3640900 234

1991 224 630441 5300000 244

1992 198 548169 2480000 223

1993 202 556612 3120000 226

1994 249 486834 2880500 209

1995 169 577771 3200000 224

1996 195 639534 3100000 240

1997 177 606058 3800000 234

1998 239 594159 1960000 241

kc_house	%>%
		filter(built_yr	>=	1990	&	built_yr	<	1999)	%>%
		group_by(built_yr)	%>%
		summarise(N	=	n(),
												price_mean	=	mean(price),
												price_max	=	max(price),
												living_sqm_mean	=	mean(living_sqm))	%>%
		knitr::kable(digits	=	0)

built_yr N price_mean price_max living_sqm_mean

1990 320 563966 3640900 234

1991 224 630441 5300000 244

1992 198 548169 2480000 223

1993 202 556612 3120000 226

1994 249 486834 2880500 209

1995 169 577771 3200000 224

1996 195 639534 3100000 240

1997 177 606058 3800000 234

1998 239 594159 1960000 241

5. Create a regression object called 	living_glm	 predicting the amount of living space (living_sqm) as a function of 	bedroom
s	, 	bathrooms	, 	waterfront	, and 	built_yr	. Explore the object with 	names()	 and 	summary()	. Which variables seem to
predict living space?

living_glm	<-	glm(formula	=	living_sqm	~	bedrooms	+	bathrooms	+	waterfront	+	built_yr,
																		data	=	kc_house)

names(living_glm)

	[1]	"coefficients"						"residuals"									"fitted.values"				
	[4]	"effects"											"R"																	"rank"													
	[7]	"qr"																"family"												"linear.predictors"
[10]	"deviance"										"aic"															"null.deviance"				
[13]	"iter"														"weights"											"prior.weights"				
[16]	"df.residual"							"df.null"											"y"																
[19]	"converged"									"boundary"										"model"												
[22]	"call"														"formula"											"terms"												
[25]	"data"														"offset"												"control"										
[28]	"method"												"contrasts"									"xlevels"										

summary(living_glm)

Call:
glm(formula	=	living_sqm	~	bedrooms	+	bathrooms	+	waterfront	+	
				built_yr,	data	=	kc_house)

Deviance	Residuals:	
			Min						1Q		Median						3Q					Max		
-705.7			-32.0				-4.9				25.7			566.1		

Coefficients:
												Estimate	Std.	Error	t	value	Pr(>|t|)				
(Intercept)	219.6403				27.7140				7.93		2.4e-15	***
bedrooms					23.1621					0.4532			51.11		<	2e-16	***
bathrooms				71.3214					0.6294		113.31		<	2e-16	***
waterfront			62.5121					4.1476			15.07		<	2e-16	***
built_yr					-0.1297					0.0143			-9.09		<	2e-16	***

Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

(Dispersion	parameter	for	gaussian	family	taken	to	be	2750)

				Null	deviance:	157675161		on	21612		degrees	of	freedom
Residual	deviance:		59420739		on	21608		degrees	of	freedom
AIC:	232503

Number	of	Fisher	Scoring	iterations:	2

6. The 	chisq.test()	 function allows you to do conduct a chi square test testing the relationship between two nominal
variables. Look at the help menu to see how the function works. Then, conduct a chi-square test to see if there is a
relationship between whether a house is on the waterfront and the grade of the house. Do houses on the waterfront tend to
have higher (or lower) grades than houses not on the waterfront?

#	First	look	at	a	table

table(kc_house$waterfront,	kc_house$grade)

			
							1				3				4				5				6				7				8				9			10			11			12			13
		0				1				3			29		238	2026	8958	6028	2590	1106		379			79			13
		1				0				0				0				4			12			23			40			25			28			20			11				0

chisq.test(table(kc_house$waterfront,	kc_house$grade))

				Pearson's	Chi-squared	test

data:		table(kc_house$waterfront,	kc_house$grade)
X-squared	=	300,	df	=	10,	p-value	<2e-16

Additional
Resources

See https://cran.r-project.org/web/packages/dplyr/vignettes/dplyr.html (https://cran.r-
project.org/web/packages/dplyr/vignettes/dplyr.html) for the full dplyr vignette with lots of wrangling tips and tricks.

Overview Datasets Packages Glossary Cheatsheet Examples

https://therbootcamp.github.io/
https://twitter.com/therbootcamp
https://en.wikipedia.org/wiki/Seattle_box
https://cran.r-project.org/web/packages/dplyr/vignettes/dplyr.html
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Analysing/Analysing_practical.html#overview
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Analysing/Analysing_practical.html#datasets
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Analysing/Analysing_practical.html#packages
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Analysing/Analysing_practical.html#glossary
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Analysing/Analysing_practical.html#cheatsheet
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Analysing/Analysing_practical.html#examples

