
Case
Study:
Financial
Data
Introduction
to
Data
Science
with
R,
October
2018
www.therbootcamp.com
(https://therbootcamp.github.io)
@therbootcamp
(https://twitter.com/therbootcamp)

source (https://www.techemergence.com/wp-content/uploads/2016/08/Machine-Learning-in-Finance.jpg)

In this case study, you will analyse historic data of three major stock indices, the Dow
Jones, the DAX, and the Nikkei, and the
exchange rates between the US
dollar, the Euro, and the Yen. Using this data, you will address several questions.

1. How large was the impact of the recent financial crisis on the respective stock markets?
2. How correlated is the development between the stock markets?
3. What is the relationship between stock market returns and exchange rates?

To address these questions, you will import several data files, using various function parameters to match the idiosyncrasies of
the data. You will merge the data files into a single data frame, and mutate the data to reflect changes in index price and
exchange rate. You will analyze correlations of stock indices among themselves and to exchange rates and create illustrative
plots for each of the analyses.

Below you will find several tasks that will guide you through these steps. For the most part these tasks require you to make use
of what you have learned in the sessions Data, Wrangling, Analysing, and Plotting.

Tasks

A
-
Getting
setup

1. Open your 	baselrbootcamp	 R project. It should already have the folders 	1_Data	 and 	2_Code	. Inside of the 	1_Data	 folder,
you should have all of the data sets listed in the Datasets section above!

2. Open a new R script and save it as a new file in your 	R	 folder called 	financial_casestudy.R	. At the top of the script,
using comments, write your name and the date. Then, load the 	tidyverse	 package. Here’s how the top of your script
should look:

##	My	Name
##	The	Date
##	Financial	Data	-	Case	Study

library(tidyverse)

B
-
Data

1. In this practical, you will load three external data sets 	\^DJI.csv	, 	\^GDAXI.csv	, and 	\^N225.csv	. However, two of these
data files are not yet tidy. Specifically, 	\^GDAXI.csv	 and 	\^N225.csv	 include a specific character string to represent
missings in the data and is not identify by R as such. To identify the 	NA	-character string in the data open one of them in a
text viewer, (via RStudio or via, e.g., textedit). Do you see the string value that indicates missing data?

2. Once you have identified the character string for missing data, us the 	read_csv()	 function to load in the stock index data
sets, “^DJI.csv”, “^GDAXI.csv”, and “^N225.csv”, from your 	1_Data	 folder. In so doing, set an explicit 	na	-argument to
account for the fact that “^GDAXI.csv” “^N225.csv” use a specific character string to represent missings in the data.

#	Load	index	data	from	local	data	folder	
dow	<-	read_csv(file	=	'1_Data/^DJI.csv')

Parsed	with	column	specification:
cols(
		Date	=	col_date(format	=	""),
		Open	=	col_double(),
		High	=	col_double(),
		Low	=	col_double(),
		Close	=	col_double(),
		`Adj	Close`	=	col_double(),
		Volume	=	col_integer()
)

dax	<-	read_csv(file	=	'1_Data/^GDAXI.csv',	na	=	'null')

Parsed	with	column	specification:
cols(
		Date	=	col_date(format	=	""),
		Open	=	col_double(),
		High	=	col_double(),
		Low	=	col_double(),
		Close	=	col_double(),
		`Adj	Close`	=	col_double(),
		Volume	=	col_integer()
)

nik	<-	read_csv(file	=	'1_Data/^N225.csv',	na	=	'null')

Parsed	with	column	specification:
cols(
		Date	=	col_date(format	=	""),
		Open	=	col_double(),
		High	=	col_double(),
		Low	=	col_double(),
		Close	=	col_double(),
		`Adj	Close`	=	col_double(),
		Volume	=	col_integer()
)

3. Load in the exchange rate data sets, 	euro-dollar.txt	 and 	yen-dollar.txt	, from the 	1_Data	 folder as two new objects
called 	eur_usd	 and 	yen_usd	. To do this, use the 	read_delim()	-function and 	\t	 as the 	delim	-argument, telling R that
the data is tab-delimited.

#	Load	exchange	rate	data	from	local	data	folder	
eur_usd	<-	read_delim(file	=	'1_Data/euro-dollar.txt',	delim	=	'\t')

Parsed	with	column	specification:
cols(
		`04	Jan	1999`	=	col_character(),
		`1.186669`	=	col_double()
)

yen_usd	<-	read_delim(file	=	'1_Data/yen-dollar.txt',	delim	=	'\t')

Parsed	with	column	specification:
cols(
		`02	Jan	1990`	=	col_character(),
		`0.006838`	=	col_double()
)

4. Print the 	eur_usd	 and 	yen_usd	 objects. Are all the data types and variable names correct? Not quite, right?

#	print	exchange	rate	data	sets
eur_usd	

#	A	tibble:	6,545	x	2
			`04	Jan	1999`	`1.186669`
			<chr>														<dbl>
	1	05	Jan	1999									1.18
	2	06	Jan	1999									1.16
	3	07	Jan	1999									1.17
	4	08	Jan	1999									1.16
	5	11	Jan	1999									1.15
	6	12	Jan	1999									1.16
	7	13	Jan	1999									1.17
	8	14	Jan	1999									1.17
	9	15	Jan	1999									1.16
10	18	Jan	1999									1.16
#	...	with	6,535	more	rows

yen_usd

#	A	tibble:	8,764	x	2
			`02	Jan	1990`	`0.006838`
			<chr>														<dbl>
	1	03	Jan	1990						0.00686
	2	04	Jan	1990						0.00698
	3	05	Jan	1990						0.00695
	4	08	Jan	1990						0.00694
	5	09	Jan	1990						0.00689
	6	10	Jan	1990						0.00688
	7	11	Jan	1990						0.00688
	8	12	Jan	1990						0.00688
	9	16	Jan	1990						0.00687
10	17	Jan	1990						0.00687
#	...	with	8,754	more	rows

5. To fix the data, first load the data again and use the 	col_names	-argument to explicitly assign the column names to be 	Dat
e	 and 	Rate	. This will prevent R to take names from the first row of the data.

#	load	data	specifying	col_names
eur_usd	<-	read_delim(file	=	'1_Data/euro-dollar.txt',	
																						delim	=	'\t',
																						col_names	=	c('Date',	'Rate'))

Parsed	with	column	specification:
cols(
		Date	=	col_character(),
		Rate	=	col_double()
)

yen_usd	<-	read_delim(file	=	'1_Data/yen-dollar.txt',	
																						delim	=	'\t',
																						col_names	=	c('Date',	'Rate'))

Parsed	with	column	specification:
cols(
		Date	=	col_character(),
		Rate	=	col_double()
)

6. Now, change the variable 	Date	 to type 	date	. Fix this using the 	parse_date()	 function with 	format	=	'%d	%b	%Y'	. This
specifies the exact format the dates are formatted in. Overwrite the existing 	Date	-variable.

#	change	Date	to	date	type	in	both	datasets
eur_usd	<-	eur_usd	%>%
		mutate(Date	=	parse_date(Date,	format	=	'%d	%b	%Y'))

yen_usd	<-	yen_usd	%>%
		mutate(Date	=	parse_date(Date,	format	=	'%d	%b	%Y'))

7. Now you should have tidier data! Go ahead an explore the data a bit. What data do they contain? Consider using 	summary	
or 	skimr::skim()	.

C
-
Wrangling

1. Before we can begin the analysis of the data, we to join the individual data frames into a single data frame called 	financia
l_data	 that contains only the dates variable (Date), the stock index (unadjusted) closing prices (Close), as well as the
exchange rates. Begin by joining 	dow	 and 	dax	 using 	inner_join()	, selecting only the 	Date	 and 	Close	 variables of each
data frame. See code below.

#	create	single	data	frame
financial	<-	dow	%>%	
		select(Date,Close)	%>%	
		inner_join(dax	%>%	select(Date,	Close),	by	=	'Date')
financial

#	A	tibble:	7,577	x	3
			Date							Close.x	Close.y
			<date>							<dbl>			<dbl>
	1	1987-12-30			1950.			1005.
	2	1987-12-31			1939.					NA	
	3	1988-01-04			2015.				956.
	4	1988-01-05			2032.				996.
	5	1988-01-06			2038.			1006.
	6	1988-01-07			2052.			1014.
	7	1988-01-08			1911.			1027.
	8	1988-01-11			1945.				988.
	9	1988-01-12			1929.				987.
10	1988-01-13			1925.				966.
#	...	with	7,567	more	rows

2. Inspect the data! What has R done with the names of the two 	Close	 variables? Run the code again, this time using the 	su
ffix	-argument to give both variables suffixes preserve the origin of these variables, e.g., 	suffix	=	c(_dow','_dax')	.

#	create	single	data	frame
financial	<-	dow	%>%	
		select(Date,Close)	%>%	
		inner_join(dax	%>%	select(Date,	Close),
												by	=	'Date',
													suffix	=	c('_dow','_dax'))
financial

#	A	tibble:	7,577	x	3
			Date							Close_dow	Close_dax
			<date>									<dbl>					<dbl>
	1	1987-12-30					1950.					1005.
	2	1987-12-31					1939.							NA	
	3	1988-01-04					2015.						956.
	4	1988-01-05					2032.						996.
	5	1988-01-06					2038.					1006.
	6	1988-01-07					2052.					1014.
	7	1988-01-08					1911.					1027.
	8	1988-01-11					1945.						988.
	9	1988-01-12					1929.						987.
10	1988-01-13					1925.						966.
#	...	with	7,567	more	rows

3. Looks better now? OK, now that you know how to join two data sets repeat the steps until all five data sets are included in
	financial	. Remember, we only want the dates variable (Date), the stock index (unadjusted) closing prices (Close). Note
if you have trouble fixing all variables names using the 	suffix	-argument you can also take of this at the end using 	rename
()	.

financial	<-	financial	%>%
		inner_join(nik	%>%	select(Date,	Close),	by	=	'Date')	%>%
		inner_join(eur_usd,	by	=	'Date')	%>%
		inner_join(yen_usd,	by	=	'Date',	suffix	=	c('_eur',	'_yen'))	%>%
		rename(Close_nik	=	Close)

4. Alright, now let’s create 	change	 variables that show how the exchange rates and stock indices have moved. Use the 	muta
te	- and the 	diff()	-function. The 	diff	 computes the differences between every adjacent pair of entries in a vector. As
this results in one fewer differences than there values in the vector add an 	NA	 at the first position of the change variable à
la 	c(NA,	diff(my_variable))	.

#	create	variables	representing	day-to-day	changes
financial	<-	financial	%>%	
		mutate(
		Close_dow_change	=	c(NA,	diff(Close_dow)),
		Close_dax_change	=	c(NA,	diff(Close_dax)),
		Close_nik_change	=	c(NA,	diff(Close_nik)),
		Rate_eur_change	=	c(NA,	diff(Rate_eur)),
		Rate_yen_change	=	c(NA,	diff(Rate_yen))
)

5. We will be mainly interested in how stock prices and exchange rates change over the course of a year. To create a variable
that codes the year 	mutate()	 and 	lubridate::year(Date)	, which will extract from 	Date	 the year information.

#	load	lubridate
library(lubridate)

Attaching	package:	'lubridate'

The	following	object	is	masked	from	'package:base':

				date

#	create	year	variable
financial	<-	financial	%>%	
		mutate(year	=	year(Date))

6. Finally, we want the data in the “long”, instead of the current “wide” format. Call this dataset 	financial_long	. In long
formats variables occupy different rows rather than columns. To this using the 	gather()	-function. Hint: The first two
arguments to the 	gather	-function specify the names of the new variables, the third and fourth specify the names of the
variables whose format you would like to change (minus in front is intentional). Check out the example in the 	?gather	-help
file.

#	create	long	version	of	data	frame
financial_long	<-	financial	%>%	
																gather(variable,	
																							value,	
																							-XXX,	
																							-XXX)

#	create	long	version	of	data	frame
financial_long	<-	financial	%>%	
		gather(variable,	
									value,	
									-Date,	
									-year)
financial_long

#	A	tibble:	45,920	x	4
			Date								year	variable		value
			<date>					<dbl>	<chr>					<dbl>
	1	1999-01-04		1999	Close_dow	9184.
	2	1999-01-05		1999	Close_dow	9311.
	3	1999-01-06		1999	Close_dow	9545.
	4	1999-01-07		1999	Close_dow	9538.
	5	1999-01-08		1999	Close_dow	9643.
	6	1999-01-11		1999	Close_dow	9620.
	7	1999-01-12		1999	Close_dow	9475.
	8	1999-01-13		1999	Close_dow	9350.
	9	1999-01-14		1999	Close_dow	9121.
10	1999-01-15		1999	Close_dow	9341.
#	...	with	45,910	more	rows

7. Now your data is tidy proper (at least with regard to the analyses required here)! Go ahead an explore the data a bit. What
data do they contain? Consider using 	summary	 or 	skimr::skim()	.

D
-
Analysing
and
Plotting

1. Plot the development of each of the stock indices over the available time periods. First, select rows corresponding to the
stock index prices. Then use the 	ggplot()	-function to start a plot. Then, Map 	Date	 to 	x	 and 	value	 to 	y	 in the 	aes()	-
function. And, finally, add a 	geom_line()	. Does the plot look right?

#	create	long	version	of	data	frame
financial_long	%>%	
		filter(variable	%in%	c("Close_dow",	"Close_dax",	"Close_nik"))	%>%
ggplot(mapping	=	aes(x	=	Date,	y	=	value))	+	
		geom_line()

2. Looked like the values of the three stock indices were somehow overlayering each other. Use 	+	facet_grid(~variable)	 to
teas them apart. Also give it a slightly nicer appearance using 	+	theme_light()	 What does the plot tell you? Has there
been a particular drop in any year?

#	create	long	version	of	data	frame
financial_long	%>%	
		filter(variable	%in%	c("Close_dow",	"Close_dax",	"Close_nik"))	%>%
ggplot(mapping	=	aes(x	=	Date,	y	=	value))	+	
		geom_line()	+	
		facet_grid(~variable)	+	
		theme_light()

3. Calculate the overall stock index price change per year. To do this, use 	group_by()	 and 	summarise()	 on the stock index
change variables. Use the basic 	sum()	-function inside 	summarise()	 to compute the overall change in the year. In doing
this, don’t forget there were 	NA	’s in two of the stock index price variables. Check out the result! When was the biggest
drop in stock index prices?

#	calculate	aggregate	change	per	year
aggregate_change	<-	financial	%>%	
		group_by(year)	%>%	
		summarize(
				mean_dow_change	=	sum(Close_dow_change),
				mean_dax_change	=	sum(Close_dax_change,	na.rm	=	TRUE),
				mean_nik_change	=	sum(Close_nik_change,	na.rm	=	TRUE)
)
aggregate_change

#	A	tibble:	20	x	4
				year	mean_dow_change	mean_dax_change	mean_nik_change
			<dbl>											<dbl>											<dbl>											<dbl>
	1		1999												NA													1529.										5903.	
	2		2000										-709.												-455.									-5561.	
	3		2001										-766.											-1254.									-4436.	
	4		2002									-1680.											-2112.									-2235.	
	5		2003										2112.													718.											327.	
	6		2004											329.													180.										1335.	
	7		2005											-65.5											1108.										3219.	
	8		2006										1746.												1189.										1504.	
	9		2007											903.												1470.									-1918.	
10		2008									-4697.											-3257.									-6448.	
11		2009										1880.												1147.										1513.	
12		2010										1021.													957.										-318.	
13		2011											648.											-1016.									-1774.	
14		2012											721.												1714.										1940.	
15		2013										3566.												1940.										5896.	
16		2014										1479.													253.										1159.	
17		2015										-379.													937.										1583.	
18		2016										2159.													738.												80.7
19		2017										4957.												1266.										3439.	
20		2018										-455.												-960.									-2395.	

4. The results up to now suggest that modern financial markets are closely intertwined, to the extent that a change in one
market can bring about a change in the markets. Evaluate this aspect of financial markets by calculating all correlations
between the three stock index change variables using the 	cor()	-function. 	cor()	 can take a data frame as an argument
to produce the full correlation matrix among all variables in the data frame. This requires, however, that the data is stored
in a “wide” format. Reactivate the old, wide 	financial	 data set and use it inside 	cor()	. Before that select the variables
you are interest in. Again, don’t forget about the 	NA	s - there is an argument for 	cor()	 to deal with them. How closely are
the stock indices related and which ones are most closely related?

financial	%>%	
		select(Close_dow_change,	Close_dax_change,	Close_nik_change)	%>%
		cor(.,	use	=	'complete.obs')

																	Close_dow_change	Close_dax_change	Close_nik_change
Close_dow_change												1.000												0.570												0.169
Close_dax_change												0.570												1.000												0.318
Close_nik_change												0.169												0.318												1.000

5. Evaluate the stability of the relationships between financial markets by calculating pair-wise correlations for each year
using 	group_by	 and 	summarise()	. Note that here you have to specify each pairwise correlation separately inside 	summaris
e()	.

financial	%>%	
		group_by(year)	%>%	
		summarize(
				cor_dow_dax	=	cor(Close_dow_change,	Close_dax_change,	use	=	'complete.obs'),
				cor_dow_nik	=	cor(Close_dow_change,	Close_nik_change,	use	=	'complete.obs'),
				cor_dax_nik	=	cor(Close_dax_change,	Close_nik_change,	use	=	'complete.obs')
)

#	A	tibble:	20	x	4
				year	cor_dow_dax	cor_dow_nik	cor_dax_nik
			<dbl>							<dbl>							<dbl>							<dbl>
	1		1999							0.453						0.0730							0.192
	2		2000							0.308					-0.0519							0.195
	3		2001							0.667						0.255								0.287
	4		2002							0.654						0.196								0.236
	5		2003							0.695						0.127								0.249
	6		2004							0.468						0.166								0.344
	7		2005							0.390						0.0625							0.327
	8		2006							0.594						0.100								0.266
	9		2007							0.537						0.0874							0.394
10		2008							0.613						0.212								0.527
11		2009							0.732						0.175								0.260
12		2010							0.695						0.255								0.329
13		2011							0.796						0.185								0.351
14		2012							0.725						0.212								0.325
15		2013							0.566						0.161								0.256
16		2014							0.567						0.149								0.176
17		2015							0.538						0.254								0.295
18		2016							0.605						0.214								0.387
19		2017							0.554						0.367								0.395
20		2018							0.378						0.108								0.481

6. Another important aspect of financial markets are exchange rates between currencies. Generally, it is assumed that a
strong economy translates into both a strong stock index and a strong currency relative to other currencies. For the end of
this practical, let’s find out if that holds true our data. First, evaluate whether changes in exchange rates changes correlate
with each other in the same way that stock indices did using the 	cor	-function.

financial	%>%	
		select(Rate_eur_change,	Rate_yen_change)	%>%
		cor(.,	use	=	'complete.obs')

																Rate_eur_change	Rate_yen_change
Rate_eur_change											1.000											0.391
Rate_yen_change											0.391											1.000

7. Now, evaluate whether exchange rates vary as a function of the difference between stock indices. That is, for instance,
does a large difference between Dow Jones and DAX translate into a strong Dollar relative to the EURO? According to the
above intuition this should be the case. However, there is an alternative economic hypothesis. That is, foreign investors
who benefit from a rise in stock index price may be motivated to sell their holdings and exchange them for their own
currency to maintain a neutral position. This would, in effect, depreciate the currency at the same time as the stock index is
outperforming, thus producing a negative relationship. What do you think? Ask the data.

financial	%>%	
		summarize(
				cor_dow_dax	=	cor(Close_dow	-	Close_dax,	Rate_eur,	use	=	'complete.obs'),
				cor_dow_nik	=	cor(Close_dow	-	Close_nik,	Rate_yen,	use	=	'complete.obs')
)

#	A	tibble:	1	x	2
		cor_dow_dax	cor_dow_nik
								<dbl>							<dbl>
1						0.0869							0.569

8. Finally, evaluate the stability of the above relationship for each year separately. Can you make out a stable pattern? No? I
guess it depends. As always.

financial	%>%	
		group_by(year)	%>%	
		summarize(
				cor_dow_dax	=	cor(Close_dow	-	Close_dax,	Rate_eur,	use	=	'complete.obs'),
				cor_dow_nik	=	cor(Close_dow	-	Close_nik,	Rate_yen,	use	=	'complete.obs')
)

#	A	tibble:	20	x	3
				year	cor_dow_dax	cor_dow_nik
			<dbl>							<dbl>							<dbl>
	1		1999						-0.639					-0.501	
	2		2000						-0.222					-0.479	
	3		2001						-0.393					-0.221	
	4		2002							0.162					-0.287	
	5		2003							0.772					-0.320	
	6		2004							0.253						0.427	
	7		2005							0.831						0.862	
	8		2006							0.776						0.0745
	9		2007						-0.136						0.824	
10		2008							0.825						0.788	
11		2009							0.837						0.740	
12		2010							0.714						0.932	
13		2011						-0.334						0.459	
14		2012						-0.248						0.727	
15		2013						-0.235						0.898	
16		2014						-0.856						0.781	
17		2015							0.601						0.819	
18		2016						-0.108						0.831	
19		2017							0.784						0.629	
20		2018							0.470						0.792	

References
weforum.org “What’s the relationship between stock returns and exchange rates?”
(https://www.weforum.org/agenda/2015/07/whats-the-relationship-between-stock-returns-and-exchange-rates/)

Overview Datasets

https://therbootcamp.github.io/
https://twitter.com/therbootcamp
https://www.techemergence.com/wp-content/uploads/2016/08/Machine-Learning-in-Finance.jpg
https://www.weforum.org/agenda/2015/07/whats-the-relationship-between-stock-returns-and-exchange-rates/
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/CaseStudies/Financial_Data_Case_Study.html#overview
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/CaseStudies/Financial_Data_Case_Study.html#datasets

faz.net (http://www.faz.net/aktuell/finanzen/aktien/eine-geschichte-des-dax-die-wichtigsten-ereignisse-12970011.html)

http://www.faz.net/aktuell/finanzen/aktien/eine-geschichte-des-dax-die-wichtigsten-ereignisse-12970011.html

