
Plotting
Introduction
to
Data
Science
with
R
www.therbootcamp.com
(https://therbootcamp.github.io)
@therbootcamp
(https://twitter.com/therbootcamp)

Wikipedia

In this practical you’ll practice plotting data with the amazing 	ggplot2	 package.

Tasks

A
-
Setup

1. Open your 	baselrbootcamp	 R project. It should already have the folders 	1_Data	 and 	2_Code	. Make sure that the data files
listed in the 	Datasets	 section above are in your 	1_Data	 folder.

#	Done!

2. Open a new R script. At the top of the script, using comments, write your name and the date. Save it as a new file called 	p
lotting_practical.R	 in the 	2_Code	 folder.

3. Using 	library()	 load the set of packages for this practical listed in the packages section above.

##	NAME
##	DATE
##	Plotting	Practical

library(XX)					
library(XX)
#...

library(tidyverse)

4. For this practical, we’ll use the 	mcondalds.csv	 data set, which contains nutrition information about items from McDonalds.
Using 	read_csv()	, load the data into R and store it as a new object called 	mcdonalds	.

mcdonalds	<-	read_csv("1_Data/mcdonalds.csv")

5. Take a look at the first few rows of the dataset(s) by printing them to the console.

mcdonalds

#	A	tibble:	260	x	24
			Category	Item		`Serving	Size`	Calories	`Calories	from	…	`Total	Fat`
			<chr>				<chr>	<chr>													<int>												<int>							<dbl>
	1	Breakfa…	Egg	…	4.8	oz	(136	g)						300														120										13
	2	Breakfa…	Egg	…	4.8	oz	(135	g)						250															70											8
	3	Breakfa…	Saus…	3.9	oz	(111	g)						370														200										23
	4	Breakfa…	Saus…	5.7	oz	(161	g)						450														250										28
	5	Breakfa…	Saus…	5.7	oz	(161	g)						400														210										23
	6	Breakfa…	Stea…	6.5	oz	(185	g)						430														210										23
	7	Breakfa…	Baco…	5.3	oz	(150	g)						460														230										26
	8	Breakfa…	Baco…	5.8	oz	(164	g)						520														270										30
	9	Breakfa…	Baco…	5.4	oz	(153	g)						410														180										20
10	Breakfa…	Baco…	5.9	oz	(167	g)						470														220										25
#	...	with	250	more	rows,	and	18	more	variables:	`Total	Fat	(%	Daily
#			Value)`	<int>,	`Saturated	Fat`	<dbl>,	`Saturated	Fat	(%	Daily
#			Value)`	<int>,	`Trans	Fat`	<dbl>,	Cholesterol	<int>,	`Cholesterol	(%
#			Daily	Value)`	<int>,	Sodium	<int>,	`Sodium	(%	Daily	Value)`	<int>,
#			Carbohydrates	<int>,	`Carbohydrates	(%	Daily	Value)`	<int>,	`Dietary
#			Fiber`	<int>,	`Dietary	Fiber	(%	Daily	Value)`	<int>,	Sugars	<int>,
#			Protein	<int>,	`Vitamin	A	(%	Daily	Value)`	<int>,	`Vitamin	C	(%	Daily
#			Value)`	<int>,	`Calcium	(%	Daily	Value)`	<int>,	`Iron	(%	Daily
#			Value)`	<int>

6. You’ll notice that the 	mcdonalds	 data frame has many column names with spaces and ‘bad’ characters like parentheses.
Run the following code to fix that!

#	Clean	up	the	names	of	mcdonalds
mcdonalds	<-	mcdonalds	%>%
		select(-contains("%	Daily	Value"))	%>%		#	Remove	all	'%	Daily	Value'	columns
		rename_all(.funs	=	~	gsub("	",	"",	.))		#	no	more	spaces!

7. Now print the dataset again, do the names look better?

mcdonalds

#	A	tibble:	260	x	14
			Category	Item		ServingSize	Calories	CaloriesfromFat	TotalFat
			<chr>				<chr>	<chr>										<int>											<int>				<dbl>
	1	Breakfa…	Egg	…	4.8	oz	(13…						300													120							13
	2	Breakfa…	Egg	…	4.8	oz	(13…						250														70								8
	3	Breakfa…	Saus…	3.9	oz	(11…						370													200							23
	4	Breakfa…	Saus…	5.7	oz	(16…						450													250							28
	5	Breakfa…	Saus…	5.7	oz	(16…						400													210							23
	6	Breakfa…	Stea…	6.5	oz	(18…						430													210							23
	7	Breakfa…	Baco…	5.3	oz	(15…						460													230							26
	8	Breakfa…	Baco…	5.8	oz	(16…						520													270							30
	9	Breakfa…	Baco…	5.4	oz	(15…						410													180							20
10	Breakfa…	Baco…	5.9	oz	(16…						470													220							25
#	...	with	250	more	rows,	and	8	more	variables:	SaturatedFat	<dbl>,
#			TransFat	<dbl>,	Cholesterol	<int>,	Sodium	<int>,	Carbohydrates	<int>,
#			DietaryFiber	<int>,	Sugars	<int>,	Protein	<int>

B
-
Building
a
plot
step-by-step
In this section, you’ll build the following plot step by step.

1. Using 	ggplot()	, create the following blank plot using the 	data	 and 	mapping	 arguments (but no geom). Use 	calories	 for
the x aesthetic and 	SaturatedFat	 for the y aesthetic

ggplot(data	=	mcdonalds,	
							mapping	=	aes(x	=	XX,	y	=	XX))

ggplot(mcdonalds,	aes(x	=	Calories,	y	=	SaturatedFat))

2. Using 	geom_point()	, add points to the plot

ggplot(data	=	mcdonalds,	
							mapping	=	aes(x	=	XX,	y	=	XX))	+
		geom_point()

ggplot(mcdonalds,	aes(x	=	Calories,	y	=	SaturatedFat))	+
		geom_point()

3. Using the 	color	 aesthetic mapping, color the points by their 	Category	.

ggplot(mcdonalds,	aes(x	=	XX,	y	=	XX,	col	=	XX))	+
		geom_point()	

ggplot(mcdonalds,	aes(x	=	Calories,	y	=	SaturatedFat,	col	=	Category))	+
		geom_point()

4. Add a smoothed average line using 	geom_smooth()	.

ggplot(mcdonalds,	aes(x	=	XX,	y	=	XX,	col	=	XX))	+
		geom_point()	+
		geom_smooth()	

ggplot(mcdonalds,	aes(x	=	Calories,	y	=	SaturatedFat,	col	=	Category))	+
		geom_point()	+
		geom_smooth()

5. Oops! Did you get several smoothed lines instead of just one? Fix this by specifying that the line should have one color: 	"b
lack"	. When you do, you should then only see one line.

ggplot(mcdonalds,	aes(x	=	XX,	y	=	XX,	col	=	XX))	+
		geom_point()	+
		geom_smooth(col	=	"XX")	

ggplot(mcdonalds,	aes(x	=	Calories,	y	=	SaturatedFat,	col	=	Category))	+
		geom_point()	+
		geom_smooth(col	=	"black")

6. Add appropriate labels using the 	labs()	 function.

ggplot(mcdonalds,	aes(x	=	XX,	y	=	XX,	col	=	XX))	+
		geom_point()	+
		geom_smooth(col	=	"XX")	+
		labs(title	=	"XX",
							subtitle	=	"XX",
							caption	=	"XX")

ggplot(mcdonalds,	aes(x	=	Calories,	y	=	SaturatedFat,	col	=	Category))	+
		geom_point()	+
		geom_smooth(col	=	"black")	+
		labs(title	=	"McDonalds	Nutrition",
							subtitle	=	"Each	point	is	a	menu	item",
							caption	=	"Source:	Kaggle.com")

7. Set the limits of the x-axis to 	0	 and 	1250	 using 	xlim()	.

ggplot(mcdonalds,	aes(x	=	XX,	y	=	XX,	col	=	XX))	+
		geom_point()	+
		geom_smooth(col	=	"XX")	+
		labs(title	=	"XX",
							subtitle	=	"XX",
							caption	=	"XX")	+
		xlim(XX,	XX)

ggplot(mcdonalds,	aes(x	=	Calories,	y	=	SaturatedFat,	col	=	Category))	+
		geom_point()	+
		geom_smooth(col	=	"black")	+
		labs(title	=	"McDonalds	Nutrition",
							subtitle	=	"Each	point	is	a	menu	item",
							caption	=	"Source:	Kaggle.com")	+
		xlim(0,	1250)

8. Finally, set the plotting theme to 	theme_minimal()	. You should now have the final plot!

ggplot(mcdonalds,	aes(x	=	XX,	y	=	XX,	col	=	XX))	+
		geom_point()	+
		geom_smooth(col	=	"XX")	+
		labs(title	=	"XX",
							subtitle	=	"XX",
							caption	=	"XX")+
		xlim(XX,	XX)	+
		theme_minimal()

ggplot(mcdonalds,	aes(x	=	Calories,	y	=	SaturatedFat,	col	=	Category))	+
		geom_point()	+
		geom_smooth(col	=	"black")	+
		labs(title	=	"McDonalds	Nutrition",
							subtitle	=	"Each	point	is	a	menu	item",
							caption	=	"Source:	Kaggle.com")	+
		xlim(0,	1250)	+
		theme_minimal()

C
-
Adding
multiple
geoms
1. Create the following plot showing the relationship between menu category and calories

ggplot(data	=	mcdonalds,	aes(x	=	XX,	y	=	XX,	fill	=	XX))	+
		geom_violin()	+
		guides(fill	=	FALSE)	+
		labs(title	=	"XX",
							subtitle	=	"XX")

2. Include the additional argument 	+	stat_summary(fun.y	=	"mean",	geom	=	"point",	col	=	"white",	size	=	4)	 to include
points showing the mean of each distribution

ggplot(data	=	mcdonalds,	aes(x	=	Category,	y	=	Calories,	fill	=	Category))	+
		geom_violin()	+
		guides(fill	=	FALSE)	+
		stat_summary(fun.y	=	"mean",	geom	=	"point",	col	=	"white",	size	=	4)	+
		labs(title	=	"McDonalds",
							subtitle	=	"Calorie	distribution	by	menu	category")

3. Now add 	+	geom_jitter(width	=	.1,	alpha	=	.5)	 to your plot, what do you see?

ggplot(data	=	mcdonalds,	aes(x	=	Category,	y	=	Calories,	fill	=	Category))	+
		geom_violin()	+
		geom_jitter(width	=	.1,	alpha	=	.5)	+
		guides(fill	=	FALSE)	+
		stat_summary(fun.y	=	"mean",	geom	=	"point",	col	=	"white",	size	=	4)	+
		labs(title	=	"McDonalds",
							subtitle	=	"Calorie	distribution	by	menu	category")

4. Play around with your plotting arguments to see how the results change! Each time you make a change, run the plot again
to see your new output!

Change the summary function in 	stat_summary()	 from 	"mean"	 to 	"median"	.
Change the size of the points in 	stat_summary()	 to something much bigger (or smaller).
Change the 	width	 argument in 	geom_jitter()	 to 	width	=	0	.
Instead of using 	geom_violin()	, try 	geom_boxplot()	.
Remove the 	fill	=	Category	 aesthetic entirely.

D
-
Using
facets
1. Create the following plot showing the relationship between 	Sodium	 and 	Calories	.

ggplot(XX,	aes(x	=	XX,	y	=	XX))	+
		geom_point(alpha	=	.2)	+
		facet_wrap(~	XX)	+
		labs(title	=	"XX",
							subtitle	=	"XX")	+
		theme_minimal()

ggplot(mcdonalds,	aes(x	=	Sodium,	y	=	Calories))	+
		geom_point(alpha	=	.2)	+
		facet_wrap(~Category)	+
		labs(title	=	"McDonales",
							subtitle	=	"Sodium	vs.	Calories")	+
		theme_minimal()

2. Try the following ways to customise your plot:

Color the points by 	Category	.
Add a smoothed line to each plot with 	geom_smooth()	.

E
-
Adjusting
colors

1. Create a scatterplot showing the relationship between 	Cholesterol	 and 	Protein	 .

2. Color the points according to their Calories by specifying the 	col	 aesthetic.

3. Change the colors by including the additional argument 	+	scale_colour_gradient(low	=	"blue",	high	=	"red")	.

4. Use a gray color palette by using 	scale_color_grey()	 instead of 	scale_colour_gradient()	.

5. Customize! Look at all of the named colors in R by running 	colors()	. Then, use two new colors in your plot.

F
-
Summary
statistics
1. Create the following plot showing the mean number of calories for each menu category using the following template:

ggplot(XX,	aes(x	=	XX,	y	=	X))	+
		stat_summary(geom	=	"bar",	
															fun.y	=	"mean")	+
		labs(title	=	"XX",
							subtitle	=	"XX")

ggplot(mcdonalds,	aes(x	=	Category,	y	=	Calories))	+
		stat_summary(geom	=	"bar",	
															fun.y	=	"mean")	+
		labs(title	=	"Calories	by	McDonalds	menu	category",
							subtitle	=	"Bars	represent	means")

2. Customize your plot!

Instead of showing the 	"mean"	, show the 	"median"	.
Give each bar a different color.
Add overlapping points showing the individual items using 	geom_point()	, 	geom_count()	 or 	geom_jitter()	.

G
-
Saving
plots
1. It’s time to save your favorite plot to an image file! Pick your favorite plot you’ve created so far. Then, assign the plot to a

new object called 	mcdonalds_gg	 using 	mcdonalds_gg	<-	ggplot(...)	

mcdonalds_gg	<-	ggplot(...)	+	...	#	Include	your	plotting	code	here

2. Evaluate your 	mcdonalds_gg	 object to see that it does indeed contain your plot.

3. Save your plot to a .pdf-file called 	mcdonalds.pdf	 using 	ggsave()	. When you finish, find your plot in 	3_Figures	 and open
it to see how it looks!

#	Save	mcdonalds_gg	to	a	pdf	file
ggsave(filename	=	"3_Figures/mcdonalds",	
							device	=	"pdf",	
							plot	=	mcdonalds_gg,
							width	=	4,	
							height	=	4,	
							units	=	"in")

4. Play around with the 	width	 and 	height	 arguments to change the dimensions of the plot.

5. Customize your code to create a jpeg image called 	mcdonalds.jpeg	

H
-
Adding
labels
Let’s create the following plot with additional point labels using 	geom_text()	:

1. Start with the following template

ggplot(mcdonalds,	aes(x	=	XX,	
																						y	=	XX,	
																						col	=	XX))	+
		geom_point()	+
		xlim(XX,	XX)	+
		ylim(XX,	XX)	+
		theme_minimal()	+
		labs(title	=	"XX")

2. Try adding labels to the plot indicating which item each point represents by adding 	+	geom_text()	.

3. Where are the labels? Ah, we didn’t tell 	ggplot	 which column in the data represents the item descriptions. Fix this by
specifying the 	label	 aesthetic in your first call to the 	aes()	 function. That is, include 	label	=	Item	 underneath the line 	c
ol	=	XX	. Now you should see lots of labels!

4. Customize your 	geom_text()	 by including the arguments: 	geom_text(col	=	"black",	check_overlap	=	TRUE,	hjust	=	"lef
t")	.

5. Using the 	data	 argument in 	geom_text()	, specify that the labels should only apply to items over 1100 calories (hint: 	geom
_text(data	=	mcdonalds	%>%	filter(XX	>	XX)))

6. Play around!

Specify that the size of the points should correspond to their Calories. Do this with the 	size	 aesthetic.
Instead of mapping 	Category	 to the 	color	 aesthetic, try creating different facets for each 	Category	 with 	facet_wrap(~	C
ategory)	.
Try using a different plotting theme. For example, you can try 	theme_excel()	 included in the 	ggthemes	 package.

I
-
Make
your
plots
interactive
with
	plotly::ggplotly()	

1. With the 	ggplotly()	-function from the 	plotly	 package, you can turn any 	ggplot	 object into an interactive plot like the
one below! Run the following code to see it in action.

#	Create	a	standard	ggplot	object
MyPlot	<-	ggplot(data	=	mcdonalds,
																	aes(x	=	Calories,	y	=	TotalFat,	col	=	Category))	+	
		geom_point()

#	Make	it	interactive	with	ggplotly()!
library(plotly)
ggplotly(MyPlot)

2. Play around with your plot! See what happens when you hover over the points with your mouse. You can even zoom in by
dragging your mouse.

3. Try turning one of your favorite previous plots into an interactive 	plotly	 plot using the 	ggplotly()	 function!

X
-
Challenges
For these challenges, use the 	kc_house	 dataset. Load the data as 	kc_house	

1. Make this plot

Hint: use 	scale_color_gradient(low	=	"green",	high	=	"red"))

2. Make this plot

Hint: take the log of price with 	log(price)	

3. Make this plot

Hint: Start by creating an aggregated dataset with median home prices of the top 20 zipcodes. Then, use this dataset in
ggplot!

Overview Datasets Packages Cheatsheet Examples References

0 500 1000 1500

0

30

60

90

120

Beef	&	Pork

Beverages

Breakfast

Chicken	&	Fish

Coffee	&	Tea

Desserts

Salads

Smoothies	&	Shakes

Snacks	&	Sides

Calories

To
ta
lF
at

Category

https://therbootcamp.github.io/
https://twitter.com/therbootcamp
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Plotting/Plotting_practical.html#overview
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Plotting/Plotting_practical.html#datasets
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Plotting/Plotting_practical.html#packages
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Plotting/Plotting_practical.html#cheatsheet
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Plotting/Plotting_practical.html#examples
file:///Users/dwulff/Dropbox%20(2.0)/Work/Software/R%20Bootcamps/Intro2DataScience_2018Oct/_sessions/Plotting/Plotting_practical.html#references

