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Abstract

We present an approach to address the issue of goal misgeneralization,
an intriguing phenomenon most intuitively linked to sequential decision
making (SDM) models. Here, a policy trained to complete a particular
goal during training, misgeneralizes in an out-of-distribution test envi-
ronment and instead capably pursues some other confounding goal. We
view goal misgeneralization as a consequence of causal confusion, a phe-
nomenon in which machine learning models learn the wrong causal model
for some predictive behaviour due to spurious correlations. We posit that
the way in which we specify tasks to our SDM agents is a key factor in
their proclivity to suffer from causal confusion and goal misgeneraliza-
tion. Using the framework of multi-task imitation learning, in the context
of goal misgeneralization, we study the effects of conditioning on (more
expressive) factored task representations derived from natural language,
as opposed to simply conditioning on rewards. To this end, we present
an implementation for specifying tasks to behavioural cloning agents by
conditioning on natural language. Compared to a reward-conditioned
baseline, we show that this approach diminishes the extent of goal mis-
generalization in a toy environment, but nevertheless still suffers from
the phenomenon. We perform some diagnostic experiments for further
analysis of our approach, and provide some discussions around current
limitations and potential future work.
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CHAPTER 1
Introduction

Sequential decision making (SDM) is a key subfield in the area of artificial
intelligence (AI) that studies the problems and algorithms associated with
autonomously interacting with an environment with the purpose of completing
some task through a sequence of actions. With the increased popularity in
machine learning (ML), some attention is now being devoted to rendering
existing tool-like solutions more autonomous, for instance by allowing large
language models (LLMs) to continuously prompt themselves, looping output
into input for a number of iterations with the aim of achieving some higher
level goal. Several contributions, including AutoGPT (Yang et al., 2023) and
others (Bakhtin et al., 2022; Park et al., 2023; Zhou et al., 2023b), have been
made in this vein, making SDM more relevant than ever. While already well-
established as a field for decades (Bellman, 1957; Bryson, 1996; Klopf, 1972;
Minsky, 1954), the recent widespread adoption of deep neural networks (NNs)
in supervised and unsupervised learning in vision (He et al., 2016; Krizhevsky
et al., 2012; Mildenhall et al., 2021) and language (Brown et al., 2020; Devlin
et al., 2019; Mikolov et al., 2013; Vaswani et al., 2017) has led to similar deep
learning (DL) approaches to SDM, particularly in the field of reinforcement
learning (RL) (Sutton and Barto, 2018), achieving impressive results on a wide
range of problems (Fawzi et al., 2022; Mnih et al., 2013; OpenAI et al., 2019;
Silver et al., 2018).

These advances are certainly impressive, but their inherently online nature
has hindered their integration in contexts where interacting with the environ-
ment is either expensive or dangerous, such as consumer robotics (Singh et al.,
2022b), healthcare (Liu et al., 2020a) and autonomous vehicles (Kiran et al.,
2022). In synchrony with ML’s shift to more data-driven approaches, much
attention is now being dedicated to offline solutions to SDM, such as batch
RL (Levine et al., 2020; Prudencio et al., 2022) and imitation learning (Schaal,
1999). Rather than interacting with the environment in real-time, these of-
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2 CHAPTER 1. INTRODUCTION

fline solutions aim to learn control policies using a fixed dataset of previously
collected interactions. Making use of large, diverse datasets can lead to im-
proved generalization, and still affords the option to fine-tune the resulting
policies online at a later stage, drawing parallels with the “pre-train first,
then fine-tune” trend in present-day ML.

1.1 Motivation

ML solutions can be vulnerable to distributional shift, where the data distri-
bution changes between training and deployment (Quinonero-Candela et al.,
2008). This issue of out-of-distribution (OOD) generalization (Shen et al.,
2021) is pervasive to the current paradigm of ML research (Arjovsky, 2020).
Causal confusion is a phenomenon closely linked to OOD misgeneralization
in which the learner wrongly identifies the causal model of the data due to
spurious correlations (de Haan et al., 2019). The more classic failure mode
of causal confusion is capability misgeneralization, where the model generally
fails to take correct or useful actions in deployment (Gupta et al., 2022; Tien
et al., 2022). Closely tied to the field of AI safety (Hendrycks et al., 2022,
2023; Ngo et al., 2022), Langosco et al. (2022) and later Shah et al. (2022)
identify goal misgeneralization as an additional, potentially more dangerous
failure mode, where the model capably pursues a different goal in deployment.
The authors identify goal misgeneralization as being of particular concern due
to the retained capability of the model when generalizing, allowing for the
possibility of visiting arbitrarily undesirable states.

In this work, we set out to tackle the issue of goal misgeneralization by
improving the expressiveness by which we specify the goal or task. We fo-
cus on this direction because we hypothesize that goal misgeneralization may
at times be caused by the limited nature by which tasks are specified. For
instance, specifying a task to an RL agent via sparse rewards awarded only
upon task completion may be too coarse of a specification for tasks that require
more nuance in the behavior throughout the entirety of the trajectory (Vam-
plew et al., 2022). We focus on the problem area of of sequential decision
making (SDM) and, inspired by the recent applications of language in other
fields (Dosovitskiy et al., 2022; Ramesh et al., 2022; Rombach et al., 2022),
we choose explore the use of language for task specification. We choose this
direction because we view task specification as a communication between task
requester and task executor. For communicative intents, we view language
as the best option for providing a more natural and expressive interface be-
tween human and machine to specify goals. After all, this is how humans
communicate desired outcomes to each other.
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1.2 Contributions
With this work, we make the following contributions:

1. We are the first to employ natural language in an attempt to address
the issue of goal misgeneralization.

2. To this end, we are the first to explicitly frame and treat goal mis-
generalization in the context of multi-task learning, and present a new
definition of the phenomenon.

3. Correspondingly, we outline an original framework for task specification
in SDM, and outline why focusing on task specification may help with
causal confusion.

4. We describe, implement and train an implementation under this frame-
work and demonstrate how existing and future foundation models may
be leveraged for the problem.

5. Finally, we are the first to the best of our knowledge to explicitly link
goal misgeneralization to Occam’s razor, and provide actionable advice
to researchers for future work on the phenomenon.

We make our code publicly available at github.com/thesofakillers/nlgoals,
along with a couple of demonstration videos.

1.3 Outline
The remainder of this document will be structured as follows. In Chapter 2,
we provide the necessary background, introducing prior work and theory nec-
essary for the following chapters. In Chapter 3, we first outline our task
specification framework, discuss the role of specification in CC and define
GMG, relating it directly to multi-task learning. We then describe the imple-
mentation details for our approach to the problem. In Chapter 4, we describe
our experimental setup, the results of our experiments and discuss the im-
plications of our findings. We review related work in Chapter 5, and finally
conclude in Chapter 6.

https://github.com/thesofakillers/nlgoals




CHAPTER 2
Background

2.1 Sequential Decision Making
Sequential Decision Making (SDM) is the field studying problems and ap-
proaches wherein an artificial agent interacts with an environment in the
process of pursuing and eventually achieving a specific goal (Frankish and
Ramsey, 2014). In this context, we envision the agent as acting according
to some policy π which maps states S to actions A. States are instantaneous
representations of the environment, descriptions of the environment at a given
moment. Actions are motions and outputs produced by the agent that may
affect the state of the environment. We model the interaction between the
agent and the environment as unfolding over discrete time steps. At each
time step, the agent observes the state, consults its policy π to select an ac-
tion, and then executes that action. In the next time step, the environment
responds by transitioning to a new state, and the loop continues.

What we are gradually formalizing here is the classical Markov Decision
Process (MDP) framework (Puterman, 2014) for SDM, shown in Figures 2.1
and 2.2. Aside for states S and actions A, an MDP additionally consists of

• A transition function P : S ×A× S → [0, 1], describing the probability
that action a in state s will lead to state s′.

• A reward function R : S × A× S → R, the immediate reward achieved
when transitioning from state s to state s′ via action a.

The agent interacting with the MDP gives rise to a discrete sequence of
states, actions and rewards known as a trajectory, indexed by time-steps t
and taking the form

S0, A0, R1, S1, A1, R2, S2, A2, . . . , St, At, Rt+1, St+1, At+1.

5



6 CHAPTER 2. BACKGROUND

Agent

Environment

reward 
Rt

state 
St 

action 
At

Rt+1 

St+1 

Figure 2.1: The agent-environment loop of a Markov decision process.

We note that the transition function only depends on the current state and
action, implying that current state is independent of all but the previous state.
This is the Markov property.

The reward function is a proxy of how well the agent is doing in pursuing
a specific task. Reinforcement Learning (RL) can then be defined as learning
how to act interactively to maximize expected cumulative reward (Sutton and
Barto, 2018).

The transition function of the MDP is often unavailable to the agent and
must be modeled either implicitly or explicitly. Similarly, the reward function
is often unavailable or underspecified, making RL impractical to use. What is
sometimes available instead, are (close to) expert demonstrations of the task
at hand. Imitation Learning (IL) can be defined as the optimization of a policy
πIL such that it behaves similarly to a given expert or set of experts (Schaal,
1999). In our work, we focus on behavioural cloning (BC) (Michie et al., 1990),
reducing our SDM problem to supervised learning.

In general there is no “one-size-fits-all” solution to SDM. However, MDPs,
while limited in some ways, provide sufficient flexibility for a variety of ap-
proaches.

2.2 Goal Misgeneralization

Goal Misgeneralization (GMG) is an empirically observed failure mode of ma-
chine learning models, particularly closely tied to SDM. Two existing defini-
tions exist for the same phenomenon which we present below for background.

Langosco et al. (2022) are the first to formally identify the issue of GMG,
describing it as a form of out-of-distribution (OOD) robustness (Arjovsky,
2020) failure in RL. They specifically distinguish it from “capability gener-
alization failures”, where an agent deployed OOD simply fails to take useful
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St

Rt

At

St+1

Rt+1

At+1

Figure 2.2: A Markov decision process visualized as a causal graph.

actions. Instead, an agent suffering from goal misgeneralization “pursues a
goal other than the training reward while retaining the capabilities” (empha-
sis ours). More precisely, their definition consists of the following: Considering
a deep RL agent trained to maximize some reward R : S × A× S 7→ R, they
assume that, at test time, the agent is deployed in an environment where some
aspect has changed, such that the environment can now be considered OOD.
Under their definition, GMG occurs if the agent achieves low reward because
it continues to act capably but instead behaves as if it were in pursuit of some
other reward R′ 6= R.

Shah et al. (2022) also tackle the phenomenon of goal misgeneralization,
providing a new definition and additional empirical evidence. Under their
definition, goal misgeneralization occurs when, upon deployment in a test set-
ting, a model’s capabilities include those necessary for achieving the intended
goal, but the model’s behaviour is not consistent with the intended goal and
is instead consistent with some other goal.

While both definitions are certainly helpful in painting a picture of the
phenomenon, we find it best grasped through examples, which we present an
instance of in Figure 2.3. For this work, we use our own definition for the
phenomenon, which we present in Section 3.1.3

2.3 Causal Confusion and Goal Misgeneralization

Inspired by the works of Gupta et al. (2022) and Kirk and Krueger (2022), we
hold the view that GMG is a direct consequence of causal confusion (CC) (de
Haan et al., 2019). This is the phenomenon by which a learner incorrectly
identifies the causal model underlying its observations and/or behaviour. This
is typically due to spurious correlations between the true cause X for a random
event Y and some other variable W that does not causally model Y . We refer
to Figure 2.3 for an example of GMG as an instance of CC. Following Occam’s
razor (Ariew, 1976; Blumer et al., 1987), we posit that CC may lead to GMG
when the confounding variable, i.e. the variable spuriously correlated with the
causal factor, is easier to learn.
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Figure 2.3: An example of goal misgeneralization as a consequence of causal
confusion. The intended goal is to move to the key. During training (left), the
key is always red. The confounding goal is to move to the red object. During
testing (right), the key can be of different colors. In other words, the red color
property and the key object type property were spuriously correlated during
training. In this case, we expect learning the red color property to be easier
than the key object type property, which under Occam’s razor would explain
why the agent becomes causally confused and misgeneralizes at test time and
navigates to the red ball instead.

Accordingly, we note that GMG may therefore be addressed by tackling CC
itself. In light of this, we can distinguish three approaches. The first involves
performing causal inference with the assistance of interventions on the data so
to better discover the underlying causal model. This is the main approach of
de Haan et al. (2019). The second approach simply increases the variability of
the training data so as to reduce the likelihood of spurious correlations. This
is the main approach of Langosco et al. (2022). The final approach focuses
on improving the expressiveness of the task specification. We hypothesize
that overly coarse specifications may lead to ambiguity in which task is being
requested, increasing the chance of causal confusion. We provide more detail
in Section 3.1.2.

While each of these approaches have merit, we decide to focus on the
third. Our motivation is manifold. First, we expect implementations un-
der the first approach to become increasingly more difficult as the field shifts
towards offline-learning (Lange et al., 2012; Levine et al., 2020; Prudencio
et al., 2022). Secondly, while the simplicity of the second approach coupled
with recent advancements in scaling laws (Hoffmann et al., 2022; Kaplan et al.,
2020) is promising, we note that increasing the variability of the training data
has no guarantee of de-correlating confounding variables, especially when the
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spurious correlations are unknown, rendering estimating how much and what
kind of variability to work on potentially difficult for more insidious cases of
GMG (Kirk and Krueger, 2022). We choose to focus on the approach of im-
proving task specification not only because we view it as an under-explored
option, but more importantly because, as we will outline in Chapter 3.1, we
view GMG as intrinsically tied to multi-task learning (Caruana, 1997), which
itself is intrinsically tied to task specification.

2.4 Grounding
Our approach to improving task specification will focus on the notion of spec-
ifying tasks through natural language rather than rewards. We refer to this
as language-informed sequential decision making (LISDM). Any treatment of
LISDM will necessarily involve grounding, i.e. ensuring that the language used
to specify tasks is mapped to representations that can be correctly interpreted
by the agent.

More specifically, the symbol grounding problem is the problem of ensuring
that the meaning of abstract symbols (e.g. words) is anchored to more than
the symbols themselves (Harnad, 1990). That is, symbols, on their own, are
meaningless. They only acquire meaning when they are grounded to some
external referent (Bender and Koller, 2020) or relation (Piantadosi and Hill,
2022). For example the word “cat” is meaningless on its own, but when it is
grounded to the concept of a cat, it acquires meaning. The grounding problem
is a problem of communication (Clark and Brennan, 1991), and is therefore
relevant to task specification.

Addressing the grounding problem, at least in part, is a necessary step for
an effective implementation of LISDM. A partial treatment of the problem
may be sufficient since we restrict our focus to the context of representation
learning: In certain narrowly defined LISDM scenarios, it might be sufficient
to ensure that the representations of the same concept in a few modalities are
alike (Mooney, 2008).

The grounding problem warrants attention primarily because the effective-
ness of using language to make decisions in a specific environment hinges on
the accurate alignment of the word meanings with that environment. Failing
this, the effectiveness of language representations in guiding decisions could be
significantly compromised. Take, for instance, the case where we are endeav-
oring to use language for decision-making in a restaurant setting. It becomes
essential to ensure that the representation for the term “apple” aligns closely
with the representation of an actual apple present in the restaurant. This is
because we aim to be able to use the word “apple” to refer specifically to the
apple in that restaurant, rather than some other apple in a different restaurant
or another item in the same restaurant that is not an apple.





CHAPTER 3
Method

3.1 Preliminaries

As mentioned, in this work we tackle the issue of GMG in SDM by focusing on
improving task specification. Below, we first outline specifically what we mean
by task specification, and later discuss the implications for our own definition
of GMG.

3.1.1 Task specification

Task specification is the scenario in which a requester R specifies a task T to
be performed by an actor A1. In SDM, The requester expresses a high-level
representation Z of the ideal trajectory of state-action pairs, corresponding
to the task they would like to be performed. We specifically allow high-level
representations of trajectories because it can occur that the requester does not
know exactly what sequence of state-action pairs they want, and are typically
more interested in more abstract, higher level desiderata anyway.

The actor is necessarily a multi-task policy, as otherwise task-specification
would be futile. The actor receives Z and “interprets” it by using it as a
conditional variable on its policy. Like Cho et al. (2022), we therefore write the
actor’s policy as π(a | s,Z), where Z represents an encoding of the intended
task. We underline that Z can in principle take any form and originate from
any source. Examples include rewards, one-hot encodings, demonstrations,
preferences (Christiano et al., 2017), formal language (Bansal, 2022), natural
language, et cetera.

1This generalizes self-proposed tasks, in which the actor is also the requester A = R.

11



12 CHAPTER 3. METHOD

3.1.2 Specification and causal confusion

Suppose we have some latent notion N , an abstraction encapsulating some
semantic information, that we wish to communicate. The notion is latent,
i.e. not observed directly, and we can instead communicate it through some
language L which maps the notion N to some corresponding expression NL.
Note that there can be more than one corresponding expression per notion.
In general, the mapping between notion and language expression is many-to-
many. Under our task specification framework from above, the task we wish
to specify T is the notion we wish to communicate N , and the high-level
representation Z is the expression NL we use to communicate it.

In the context of communication, a notion N and its corresponding expres-
sions N1

L, N
2
L, . . . , can be treated as random variables. This assumption can

be made given the wide, almost infinite range of possible notions one may wish
to communicate, and similarly to the wide range of ways in which a notion can
be expressed. These lead to uncertainty which we can treat probabilistically
with random variables.

We can therefore quantify the information content of a given notion or ex-
pression using the concept of entropy (Shannon, 1948). Entropy effectively
quantifies the average level of uncertainty or “surprise” associated with a ran-
dom variable. For a discrete random variable X, its entropy H(X) is defined as

H(X) = −
∑
x∈X

p(x) log p(x) (3.1)

where p(x) is the probability mass function of X, and the summation is over
all possible outcomes x of X. A higher entropy indicates greater uncertainty
and thus greater information content. If an outcome is highly uncertain,
it means we have very little prior knowledge about what that outcome will
be. Therefore, learning the actual outcome provides us with a substantial
amount of new information. Conversely, if an event is certain to occur, then
learning that this event has indeed occurred doesn’t provide us with any new
information because we already knew it would happen. Thus, a higher entropy
indicates greater uncertainty and thus greater information content.

The entropy of a given notion N and an expression of it NL therefore serves
as the measure of their respective information content. For a notion, we can
write

H(N) = −
∑
n∈N

p(n) log p(n), (3.2)

where p(n) is the probability of notion n being the one intended for commu-
nication. For an expression, we can write

H(NL) = −
∑

nl∈NL

p(nl) log p(nl), (3.3)



3.1. PRELIMINARIES 13

where p(nl) is the probability of expression nl being the one used for commu-
nication.
NL will typically be a compressed representation of N . In other words, the

mapping between notion and expression is not necessarily lossless in terms of
information

H(NL) ≤ H(N) (3.4)

This compression can be either intrinsic or extrinsic. The former case cor-
responds to compression that occurs due to the fundamentally limited ex-
pressivity of the language L. For example, a language that lacks the grammar
and/or vocabulary for expressing negation, will be fundamentally limited from
expressing the notion of absence.

Extrinsic compression is compression that occurs due to reasons external
to the language itself. This is typically the communicator choosing to use a
coarser expression the notion. For example, choosing to communicate “go to
the block” rather than “breathe in, activate your muscles such that your right
thigh lifts your right foot off the ground and forward, breathe out, breathe
in, ...”.

Compression, whether intrinsic, extrinsic or either, can lead to ambiguity.
These are cases where the same expression F , due to underspecification, maps
to multiple semantically different notions N1, N2, . . . . We view this as a po-
tential avenue for causal confusion to occur.

For instance, under our definitions, we can frame rewards as a language
used to communicate some notion of a desired task to SDM agents. When
our rewards are underspecified, they can over-compress our task notion, such
that the same reward maps to multiple tasks. The policy may therefore suffer
from causal confusion and learn to pursue the wrong task.

We therefore posit that causal confusion and hence GMG can be addressed
by focusing on how we specify the task, so to reduce ambiguity in the task
specification. We move away from rewards (Vamplew et al., 2022) and in-
stead leverage the potentially much higher expressiveness of natural language,
spurred by recent advancements in the field of natural language processing
(NLP) (Brown et al., 2020; Devlin et al., 2019; Touvron et al., 2023). For a
given notion N , assuming the same amount of engineering effort, we expect
the compression faced by the language of rewards LR to be higher than the
compression faced by natural language NL, i.e. we expect the following

H(NLR) < H(NNL) ≤ H(N). (3.5)

We reason that the language of rewards faces higher intrinsic compression
due to its scalar nature, rendering it more difficult to capture nuance than
what would be possible with the multidimensionality and compositionality
of natural language, which could not only encode more information directly,
but could also allow for factored representations which may more easily be
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leveraged for generalization. Similarly, we expect the language of rewards to
also face higher extrinsic compression when compared to natural language.
We reason that task specification is a communication problem, and to this
end natural language is the most natural or “comfortable” interface we have
as communicators. Rewards, while succinct, may at times be awkward to
specify due to the nature of the tasks. This is for instance the case for sparse
rewards awarded only upon task completion, or for the denser proxy rewards
awarded in the process of reward shaping (Ng et al., 1999).

3.1.3 Defining GMG in the context of multi-task learning

Goal Misgeneralization is inherently Multi-task. Indeed, all definitions and
examples of GMG so far have implicitly defined a multi-task setup, with the
presence of some goal task cg and some other confounding task cc. After
all, the definition of GMG implies the existence of at least one other task
beyond the one intended by the designers, as without such a task, it would be
impossible for the model to pursue it. We instead choose to explicitly define
this multi-task setup, relying on the framework from Wilson et al. (2007).

Specifically, let C = {ci}Ni=1 be a set of discrete episodic tasks. This could
for example the set of all tasks T with natural language instructions TNL,
following the notion and expression notation from the previous section. Let
ptrain(C) and ptest(C) be the distributions from which the tasks are sampled
during training and testing respectively. Each task ci then defines a separate
MDP Mi = (S,A,Ri, Pi), such that the reward and transition functions differ
by task. At training time we try to find a task-conditioned policy

π : S × C → ∆(A),

with an objective conductive to good performance across the tasks. For multi-
task RL, such an objective maximizes the expected reward over the distribu-
tion of tasks, i.e.

π∗
RL = argmax

π∈Π
Ec∼ptrain(C)

[
Eπc

[
Tc∑
t=1

γtRt,c

]]
, (3.6)

where T is the horizon of time steps t and γ is the discount factor. For multi-
task IL, such an objective minimizes the expected loss L between policy and
expert behaviour over the distribution of tasks, i.e.

π∗
IL = argmin

π∈Π
Ec∼ptrain (C) [Eπε [Lc]] . (3.7)

Given the above, we define Goal misgeneralization (GMG) as the observed
phenomenon in which a system successfully trained to pursue a particular
goal c1 in setting X fails to generalize to a new setting Y and instead capably
pursues a different goal c2. A goal in this definition can either be a specific
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Figure 3.1: A high-level overview the CBC architecture. At every time step in
the sequence, a CBC instance receives an RGB representation of the environ-
ment state, proprioceptive state and a task specification from the requester.
These are encoded by their respective encoders. In the case of GCBC, the
specification encoder is CLIPT (see Figure 3.4), while in the case of RCBC,
the specification encoder simply multiplies the reward by a one-hot vector
encoding the specified task. The output of the encoders is concatenated and
fed into the policymaker module, which recursively computes a hidden rep-
resentation vh utilizing hidden state from previous steps. Finally, the actor
module uses this vh to compute a distribution over the action space.

state (static) or a behaviour (dynamic). Note that we use the words “task”
and “goal” interchangeably, and will do so for the remainder of this work.
A system will be in capable pursuit of a given goal if a metric M describing
the extent of goal achievement (e.g. success rate) is significantly higher than
equivalent metric for most other goals in C. Mathematically, we say GMG
happens if

∃c1, c2 ∈ C, s.t. ptest(c1), ptest(c1) > 0, (3.8)

and

Eπc1
[Mc2 ] > Eπc1

[Mc1 ] . (3.9)

We place our definition in between those of Langosco et al. (2022) and
Shah et al. (2022), relaxing the former’s reliance on RL and Orseau et al.
(2018)’s agents and devices framework for simplicity, while focusing on SDM
rather than the more general case proposed by the latter, to avoid overly wide
characterizations of the phenomenon.
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3.2 Conditioned Behavioural Cloning
We are interested in addressing GMG in SDM by improving task specifica-
tion. We follow our requester-actor task specification framework where our
SDM policy is conditioned on our specification. More specifically, our pol-
icy takes the current state s ∈ S and our task specification z ∼ Z as input,
and outputs a distribution over possible actions a ∼ A, π(a|s, z). For the
sake of simplicity, we take inspiration from Lynch et al. (2020)’s baselines and
define a conditioned behavioural cloning (CBC) architecture. Represented in
Figure 3.1, our CBC policy consists in the following modules:

A perception encoder, which at each time step perceives a static view of
the environment state as RGB images and outputs a 64-dimensional dense
representation vperc. We use the same encoder as Lynch et al. (2020),
also adopted in following papers (Lynch and Sermanet, 2021; Mees et al.,
2022a,b). This consists in a deep neural network comprising of a series of
convolutional layers interleaved with the ReLU activation function. Spatial
softmax (Finn et al., 2016) is used to flatten the convolution features into
the output dimension. Figure 3.2 outlines the architecture in more detail.
A proprioceptive encoder, which at each time step encodes proprioceptive
state from the agent (such as e.g. joint positions in the case of a robotic arm)
into a sparse representation vproprio. For our experiments (see Chapter 4)
the proprioceptive state was simple enough that the encoder was simply the
identity function.
A specification encoder which encodes the requester’s specification into
a specification vector vspec. We implement this differently based on which
subclass of CBC we are considering (see Sections 3.2.1 and 3.2.2).
A “policymaker” module which at each time step takes a concatenation
of vperc, vproprio and vspec and recursively encodes it into a 2048-dimensional
vector vh using a gated-recurrent-unit (GRU) (Cho et al., 2014). We choose
a GRU and this particular dimension following Mees et al. (2022a).
An actor module which takes the hidden representation vh from the policy-
maker and encodes it into a distribution over our action space. We implement
the actor module differently based on whether we are dealing with discrete
or continuous action spaces (see Section 3.3).

During training, CBC receives batches of demonstration rollouts, consist-
ing of trajectories of environment state and expert next actions. In parallel
to each trajectory, if applicable2, the batch contains the specification (for ex-
ample raw text) for the trajectory and the ID of the task completed in the
trajectory, the latter of which may or may not be used to assist with handling

2As noted in Section 3.2.2, at least one of our training setups allows for trajectories that
are not labeled with specification nor task ID.
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Figure 3.2: The perception encoder of our CBC policy. Not pictured: Layer
normalization (Ba et al., 2016) is applied after the final fully connected layer.

multi-task considerations. Only the perception encoder, policymaker and ac-
tor are trained, with the other modules either being trained separately or not
requiring training at all.

At inference time, CBC receives the current state and specification and
samples an action from the computed action distribution. Recurrence is al-
lowed for a specific number of steps (typically equivalent to the length of the
trajectories shown during training), after which the hidden state is reset.

3.2.1 RCBC: Reward-conditioned Behavioural Cloning

To serve as a baseline for our experiments addressing GMG (see Section 4.2),
we formulate a subclass of CBC where the task is specified by conditioning
on reward, similarly to (Chen et al., 2021). To fit under our multi-task setup,
the specification encoder simply multiplies the reward by a one-hot encoding
vector obtained from the task ID similarly to Cho et al. (2022), such that
each dimension corresponds to a different task in our multi-task ensemble.
Therefore, for e.g. a 6-task ensemble, we have a 6-dimensional one-hot vector
for vspec, with the non-zero element corresponding to the reward for task at
hand.

3.2.2 GCBC: Goal-conditioned Behavioural Cloning

As stated in previous sections, we posit that task specification can be improved
by using natural language instead of rewards, and that this improvement will
manifest itself when comparing behaviour in causally confused setups. Fol-
lowing our requester-actor framework, we view natural language specifications
as representations of the task that is being specified, or the goal we want our
agent to achieve.

Naively we would like to condition our policy on the rich dense represen-
tations provided by state-of-the-art language models. However, due to the
grounding problem (see Section 2.4), using these representation directly could
result in the policy failing to appropriately relate them to their referents in
the environment and in the policy’s internal representations. Additionally, we
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are faced with the reality that language-annotated trajectories are rare and
expensive to collect.

To address these issues, we instead train on visual representations vvis
spec of

our goals originating directly from the environment (whose state we represent
visually, in RGB images), and assume that these visual representations are
in a semantic space similar to the equivalent textual representations of the
same goals vtxt

spec, obtained via e.g. some form of contrastive representation
learning (Chen et al., 2020; Le-Khac et al., 2020). That is, we assume that
when conditioning on the visual goal of e.g. going to object G, this represen-
tation will be similar to the representation for the instruction “go to object
G”. We keep this description relatively high-level at this stage to keep our
method general. We follow with more detail about how we implement visual
and textual goals in Section 3.4.

Our assumption allows us to leverage the much larger availability of visual
data for training. During this phase, the policy is trained on a behavioural
cloning objective, i.e. matching the behaviour in the expert demonstrations
as closely as possible3. Because our (visual) goal representations can be con-
structed directly from the environment and do not rely on the notion of re-
wards, they are flexible enough to be applied to any trajectory where the goal
can be described with the final image. We therefore can afford to expand
our training beyond merely “successful” trajectories as dictated by our task
ensemble. Instead, we can encompass a wider range of behaviors, incorpo-
rating for instance much cheaper and more available “play data”, consisting
in exploratory, potentially random behaviour in the environment, covering a
wide range of states and actions (Lynch et al., 2020). We posit that the in-
creased variability from this training data should aid with grounding, as the
policy learns to interpret incoming representations. At inference time, thanks
to our assumption, the visual representations can be swapped for more easily
articulable textual representations.

3.3 Actor Modules

We implement our actor modules differently depending on the kind of action
space our policy needs to act in. In discrete action spaces, the possible actions
the policy can take are finite, for instance “move forward”, “turn right”, “turn
left”, et cetera. In continuous action spaces, the possible actions are poten-
tially infinite. These could for instance be a vector describing the (x, y, z, φ, θ)
coordinates for the position and orientation of a robotic arm. We describe our
implementations for both cases below.

3The specific implementation will vary depending on which actor module is used. See
Section 3.3.
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Figure 3.3: A general overview of CLIP. Pairs of images and captions are re-
spectively fed as input to text and image encoders. The encoders are trained
contrastively, such that the similarity between the textual and image repre-
sentations Ti and Ii is maximized for the original pairings (the diagonal) and
minimized for the remaining pairings (off the diagonal).

3.3.1 Discrete Action spaces

Our implementation for discrete action spaces is very simple. For an N -
dimensional action space, we use a linear layer to project our policymaker’s
output representation vh to a 3N -dimensional hidden representation. We
apply ReLU and then use another linear layer to project the hidden repre-
sentation to a N -dimensional vector. We apply a softmax activation function
and train our policy on the cross-entropy loss between the resulting predicted
action distribution and the labeled expert action. We sample actions by se-
lecting the action with the highest probability using the argmax operation.
We log the action prediction accuracy as our performance metric throughout
training.

3.3.2 Continuous Action spaces

For continuous action spaces, we follow Lynch et al. (2020) and use a dis-
cretized logistic mixture likelihood (DLML)4,5 (Salimans et al., 2017). This is
of particular utility for our use case, where many high-level behaviours may

4Also known as “Discretized Mixture of Logistics (DMoL)”, “Discretized Logistic Mix-
ture (DLM).”, “Mixture of Discretized Logistics (MDL)”

5A detailed tutorial, including motivation and implementation details, was produced as
part of the thesis: giuliostarace.com/posts/dlml-tutorial

https://www.giuliostarace.com/posts/dlml-tutorial
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satisfy the same task specification. Utilizing a mixture of distributions can
help with modeling this potentially multi-modal problem. For a given contin-
uous output variable y, the details of DLML consist of the following:

1. We assume that there is a latent value v with a continuous distribution.

2. We take y to come from a discretization of this continuous distribution
of v. We do this 8-bit representation. What this means is that if e.g. v
can be any value between 0 and 255, then y will be any integer between
those two numbers.

3. We model v using the logistic distribution v ∼ L(µ, d), where µ and d are
“location” and “scale” parameters respectively, defining the distribution.

4. We then take a further step, choosing to model v as a mixture of K
logistic distributions:

v ∼
K∑
i

qiL(µi, di), (3.10)

where qi is some coefficient weighing the likelihood of the ith distribu-
tion, which we refer to as “mixture logit”.

5. To compute the likelihood of y, we sum its (weighted) probability masses
over the K mixtures. We can obtain the probability masses by com-
puting the difference between consecutive cumulative density function
(CDF) values of equation (3.10). Note that the CDF of the logistic
distribution is a sigmoid function, σ. We therefore write:

p(y|q,µ,d) =
K∑
i=1

qi

[
σ

(
y + 0.5− µi

di

)
− σ

(
y − 0.5− µi

di

)]
, (3.11)

The 0.5 value comes from the fact that we have discretized v into y
through rounding, and therefore successive values of our discrete random
variable y are found at this boundary.

6. Finally, we can model edge cases, to avoid assigning probability mass
outside the valid range of values. We do this by replacing y − 0.5 with
−∞ when y = 0 and y + 0.5 with +∞ when y = 28 = 255.

We are left with nothing more than a likelihood. We can therefore apply
a maximum likelihood estimation (MLE) process to estimate our parameters
q, µ and d. Pragmatically, For a given output variable y, using K mixture
elements, our model should output K locations, scales and mixture logits.
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We therefore implement a separate linear layer for each of our mixture pa-
rameters, each projecting the policymaker’s output representation vh into
a K-dimensional vector, with each dimension corresponding to one of the
mixture elements. For cases in which our output variable y is actually an
M -dimensional vector y, the linear layers project to a (K ×M)-dimensional
vector instead. We train the resulting policy architecture on the negative log
likelihood loss based on equation (3.11).

To sample actions, we sample a distribution from the mixture based on the
predicted mixture logits using the Gumbel-Max trick (Gumbel, 1954). We
then use inverse sampling with the sampled distribution location and scale
parameters to sample a predicted action. For multivariate actions, we log
action cosine similarity and action L1 distance as the performance metrics
during training.

3.4 CLIPT: Visual/Textual Goal Representations

In Section 3.2.2, we make the assumption that we have access to nearly aligned
visual and textual goal representations. That is, for a given goal, we can
represent it visually based on combinations of environment start and end
state from demonstrated trajectories, and this visual representation will be
semantically similar to an equivalent textual instruction for the goal.

To fulfill our assumption, we propose a number of modifications to CLIP (Rad-
ford et al., 2021). CLIP is a method for training two models: a text encoder
and vision encoder, such that representations of the same concept are in sim-
ilar semantic spaces across the two modalities. We refer to Figure 3.3 for an
example and overview. CLIP achieves this with two ingredients. First, the
authors collect a large dataset of image-caption pairs. Secondly, the authors
train their encoders on a contrastive loss objective: maximizing the cosine
similarity of the vision and text representations of the B true pairs in a given
batch, while minimizing the cosine similarity of the remaining B2 − B incor-
rect pairings. This is implemented using the multi-class N-pair loss of Sohn
(2016), which uses categorical cross entropy. For a given image x, its correctly
paired caption t+ and the remaining N − 1 incorrectly paired captions {t−i },
this is defined as

L
(
x, t+, {t−i }

N−1
i=1

)
= log

[
1 +

N−1∑
i=1

exp
(
f(x)>g(t−i )− f(x)>g(t+)

)]
,

(3.12)
where f is the CLIP vision encoder and g is the CLIP text encoder. We refer
readers to the original paper for further details (Radford et al., 2021).

Since the release of the paper, a number of off-the-shelf vision-text encoder
pairings have become available (Ilharco et al., 2021; Schuhmann et al., 2022).
We aim to leverage the rich representations made available by these models
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Figure 3.4: A high-level overview of CLIPT. During phase 1P, the start and
end state of a trajectory are encoded by the CLIP vision encoder (CLIP Vis)
and concatenated into vc. This is projected into vvg by MLPvis which is trained
contrastively to match the paired vt representations of the natural language
instructions produced by CLIP’s text encoder (CLIP Txt). In phase 2P, the
start state of the trajectory is encoded by CLIP Vis and concatenated to vt to
form vk. This is projected into vtg by MLPtxt, which is trained contrastively
to match the paired vvg representations produced by (frozen) MLPvis.

but envision two limitations which we address with our modifications. Firstly,
we expect images of the environment state to be at least slightly out of domain
when compared to the dataset CLIP was trained on. The same applies to the
instructions we intend to use for textual goal specifications. Secondly, we
define a visual goal as being composed of at least two images representing the
start and end state of the trajectory. However, CLIPT is trained on single-
image inputs, necessitating a modification to this end.

To address these limitations, we perform the following steps:

1. We collect a dataset of language-annotated trajectories.
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2. For each sample, we encode the start and end state of the trajectory
using CLIP’s vision encoder, resulting in u-dimensional representations
vs and ve

3. We concatenate vs and ve into a vc of dimension 2u.

4. We project vc back to a u-dimensional vector representing our visual
goal, vvg, using a multilayer perceptron (MLPvis) with a single u-dimensional
hidden layer and ReLU activation function.

5. In parallel, we encode the language annotation using CLIP’s textual
encoder, resulting in u-dimensional representation vt.

6. Keeping the CLIP encoders frozen, we train the MLP on the same con-
trastive objective CLIP was trained on, using vt and vvg instead

The first phase of training (termed as phase 1P) involves training GCBC
on the vvg representations from MLPvis. However, we plan to evaluate us-
ing textual representations, which could cause a performance gap to emerge
due to sub-par representation matching between vision and text modalities,
particularly given that the latter does not rely on the context of the start
state. We therefore perform a second phase (which we refer to as phase 2P)
of training, where we instead work on the textual side. Specifically

1. Using the same dataset from phase 1P, we repeat steps 2-4 from phase
1P.

2. In parallel however, we concatenate vs with vt into vk, in a sense pro-
viding “context” to our language annotations.

3. Just like in phase 1P, we use a separate but architecturally identical MLP
(MLPtxt) to project vk back to a u-dimensional vector vtg representing
our textual goal.

4. We train this MLP on the aforementioned contrastive loss with (vtg,vvg)
pairs, this time additionally freezing MLPvis from phase 1P, so to only
train the textual goal representations.

We settle on this two-phase training setup rather than directly training both
MLP heads together as we expect that the contrastive objective, mixed with
the shared context vector vs, would entice the MLPs to ignore the second
halves of the concatenated inputs, ve and vt respectively, which would greatly
harm our abilities to specify tasks. We refer to the resulting model as CLIPT:
Contrastive Language Image Pretraining for Trajectories. Figure 3.4 provides
a visual overview of the process.





CHAPTER 4
Experiments and Discussion

Having defined preliminaries and the implementation for our approach to the
problem of GMG, we now turn to the experiments to evaluate our methodology
and an analysis of the respective results.

4.1 GCBC’s Instruction Following Capabilities

We initially focus on the verification of our approach with a specific focus on
GCBC’s ability to follow instructions. We strive to determine if our model’s
choices are justifiable, if it can handle somewhat realistic scenarios, and if its
capabilities are up to par.

4.1.1 The CALVIN dataset

Introduced by Mees et al. (2022b), CALVIN (Composing Actions from Language
and Vision) is a benchmark originally intended for training and evaluating
models on long-horizon language-conditioned tasks. That is, a multi-task set
of 34 SDM tasks where the expected interaction sequence is considerably long
(up to 240 steps, due to task chaining) and the tasks are specified via lan-
guage. The benchmark consists of, among other things, an environment and
a dataset.

The environment simulates a 7-DOF1 Franka Emika Panda robot arm (Had-
dadin et al., 2022) interacting with three rectangular objects of different col-
ors and shapes on a desk. The desk additionally features a sliding door and
drawer that can both be opened and closed. Finally, a button and switch can
be used to activate a green light and light bulb respectively. The observation

1scilicet: degrees of freedom.
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Figure 4.1: An overview of the perceptive state in the CALVIN environment.
Top, left to right: scene, static and gripper RGB images. Bottom, left to right:
tactile, static depth, gripper depth. Figure courtesy of Mees et al. (2022b)

Table 4.1: The CALVIN 15-D proprioceptive state and 7-D action vectors.
Bold indicates that these dimensions are present in both proprioceptive state
and action space. In case of actions, these can either be “static” (relative to
the world frame) or “relative” (displacements relative to the gripper frame).
In case of state, this is always static.

Dimension(s) Description
0-2 TCP (x, y, z) coordinates
3-5 TCP (x, y, z) euler angle coordinates

6 Gripper opening width (meters)
7-13 Robotic arm joint state (rad)

14 Binary gripper action (close = −1, open = 1)

space consists of RGBD2 images from a static camera as well as from a cam-
era mounted to the robotic arm’s gripper, with dimensionality 200× 200 and
84 × 84 respectively. A vision-based sensor additionally provides images of
shape 160× 160× 6 for tactile information at the gripper. Figure 4.1 presents
an overview of the perceived state. Finally the proprioceptive state is also

2scilicet: red, green, blue and depth channels.
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Table 4.2: The 34 tasks of the CALVIN environment and an example natural
language annotation. Some tasks are grouped together due to similarity. We
note the group sizes with the numbers in the parentheses.

Task Example annotation

Rotate red/blue/pink block right (3) “turn the red block right”
Rotate red/blue/pink block left (3) “turn the blue block left”
Push red/blue/pink block right (3) “push right the pink block”
Push red/blue/pink block left (3) “push left the red block”
Move slider left/right (2) “slide the door to the left”
Open/close drawer (2) “go open the drawer”
Lift red/blue/pink block table (3) “pick up the red block”
Lift red/blue/pink block slider (3) “lift red block from slider”
Lift red/blue/pink block drawer (3) “lift blue block from drawer’
Place in slider/drawer (2) “put the grasped object in the slider”
Push into drawer (1) “push the block into thedrawer”
Stack blocks (1) “stack blocks on top of each other”
Unstack blocks (1) “collapse the stacked blocks”
Turn on/off light bulb (2) “toggle the light switch to turn on the light bulb”
Turn on/off LED (2) “push the button to turn off the green light”

available in the form of a 15-dimensional vector describing the TCP3 position
and orientation, as well as gripper state and arm joint states. For acting,
models operating in the CALVIN environment sample from a continuous 7-
dimensional action space describing the position and orientation of the TCP
and gripper activation. Table 4.1 provides an overview of what each dimension
of the proprioceptive state and action vectors corresponds to. The authors de-
fine 34 different tasks that can be performed in the environment and can be
labelled with natural language instructions, which we present in Table 4.2.
The environment comes with an oracle that can check for the completion of
a task in a given sequence of steps, as defined by specific changes of the state
between the initial and final steps in the sequence. The environment can take
any of four configurations A, B, C, and D, which are structurally identical but
present some differences in e.g. table colour.

The CALVIN dataset consists of ∼2.2M demonstrations across the four en-
vironment configurations. This is largely composed of “unstructured” demon-
strations, recordings of exploratory and even random expert interactions with
the environment, equivalent to the “play” data described in the previous chap-
ter. The authors then crowd-source over 400 natural language instructions
describing the 34 tasks, and procedurally label 1% of the demonstrations with
these instructions when possible, i.e. when they find that a given demonstra-
tion solves one of the 34 tasks. For our work, we restrict our attention to the
D configuration of the environment, equivalent to ∼700K demonstrations. We
choose to validate our approach using the CALVIN benchmark due to its more

3scilicet: tool center tip
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realistic and challenging nature. We expect that if our implementations suc-
cessfully learn an instructable policy for such a benchmark, then they should
be straightforward to apply to more easily configurable setups. Additionally,
we believe demonstrating applicability to CALVIN could be a good indicator
of the soundness and/or generalizability of our approach.

4.1.2 CLIPT

We use CLIPT as the specification encoder of our GCBC solution. As previ-
ously mentioned, we train CLIPT separately from GCBC. We do this because
we approach the problem from the recently prevalent perspective of utiliz-
ing representations from pre-trained foundation models for applications on
downstream tasks. We take this approach because we expect future solutions
to follow this trend, at least in the short-term. Under this framework, we
treat CLIPT as a stand-in for such a foundation model, and GCBC as the
beneficiary of the representations.

Training details

We train CLIPT on the subset of CALVIN that is language-annotated, sam-
pling only the start and end state of each trajectory. This amounts to a
total of 5124 training samples, and 1011 validation samples, each consisting
of two images and the natural language instruction. We use the Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate of 5×10−5. For both train-
ing phases, we train for a total of 50 epochs, allowing for early stopping if the
validation loss does not improve for 3 epochs, and use the checkpoint with the
best validation loss. We use LAION’s “CLIP-ViT-L-14-laion2B-s32B-b82K”
checkpoint of OpenCLIP (Ilharco et al., 2021) throughout our work. This is
a version of CLIP relying on an L-14 variant of the visual transformer (ViT)
architecture (Dosovitskiy et al., 2022) for the vision encoder, pretrained on
the 2 billion pair subset of the LAION-5B dataset (Schuhmann et al., 2022).

CLIPT sanity checks

We perform a number4of sanity checks on the soundness of our CLIPT design.
Our main concern is whether CLIPT is making use of the crucial information
contained in the second half of its input. We hold this concern due to the fact
that the first half of the input to MLPvis and MLPtxt is the same, namely
the CLIP representation of start state, vs. Given that CLIPT is trained
contrastively, the MLP encoders could be pressured into simply relying on
the first half of the input while ignoring the second half while constructing

4we outline our two main checks here, and present our other CLIPT sanity checks in
Appendix A.
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Figure 4.2: Similarity matrices of the baseline (left) and masked (right) repre-
sentations from CLIPT. The ideal matrix should display a peak in similarity
along the diagonal.

representations, as this would contain sufficient information for matching true
pairs of goal representations.

The first check we perform consists in setting the second half of the input
to a 0-valued vector at inference time, and evaluating whether this affects
performance. We expect that if CLIPT is indeed ignoring the second half
of its input, then masking it in this way should not affect performance. To
perform our check, we operate on the validation split of the CALVIN dataset,
sampling 256 trajectories for which we compute pairs of visual and textual tra-
jectory representations using CLIPT’s MLPvis and MLPtxt respectively. We
then compute the cosine similarity between every possible pairing, for a total
of 2562 similarity scores. We then evaluate in two ways. First, we visualize
the scores in a similarity matrix. Second, we compute the top-k accuracy of
CLIPT, that is, the proportion of times that the correctly paired visual repre-
sentation is in the top-k visual representations ranked by similarity to a given
textual representation. We perform this evaluation with normal CLIPT repre-
sentations as a baseline, and with masked representations as described above
as an ablation and compare. Figure 4.2 and the first two rows of Table 4.3
present the results of this first check. We see that the diagonal disappears in
the ablation, and that the top-k accuracy metric faces relative drops between
-60% and -90%. Based on these results, we had some evidence suggesting that
CLIPT was indeed behaving as intended.
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Table 4.3: Top-k accuracy of CLIPT. The first two rows show the statistics
when using normal and masked representations, on CLIPT trained over two
phases. The final two rows shows the statistics of correctly paired (Sing.Ph.)
and randomly paired (Rand.P.) representations when training in a single
phase.

Top-k accuracy k = 1 k = 3 k = 5 k = 10 k = 20 k = 50

Baseline Repr.s 0.238 0.457 0.570 0.773 0.906 0.973
Masked Repr.s 0.016 0.031 0.047 0.082 0.176 0.363

Sing.Ph. Repr.s 1.000 1.000 1.000 1.000 1.000 1.000
Rand.P. Repr.s 1.000 1.000 1.000 1.000 1.000 1.000

We perform another check, more closely concerned in verifying the necessity
of training in two phases. We posit that training in a single phase, with both
MLPvis and MLPtxt instantiated from the start, would indeed result in CLIPT
learning to ignore the second half of its input due to the shared first half of
the input across visual and textual representations. To verify this, we train a
version of CLIPT in a single phase as described above and repeat the top-k
accuracy evaluation and treat this as a baseline. We then repeat training on a
new instance of CLIPT, but pair the representations randomly, treating this as
an ablation. More specifically, during training, we use the same start state first
halves of the representations used for the baseline, but then sample random
instructions for a given end state, rather than the correct pairing. During
testing, we repeat the top-k accuracy evaluation using appropriately paired
representations. If CLIPT is indeed ignoring the second half, we would expect
performance to be unchanged between baseline and ablation. We report the
result of this experiment in the final two rows of Table 4.3. We note that
in both cases we achieve perfect top-k accuracy, which we explain as only
possible if the model learns to ignore the second half and learn to match the
(identical) first halves of the input vectors. We therefore conclude that our
two-phase training setup is indeed necessary.

4.1.3 GCBC

We turn our attention to our GCBC implementation. Here, we are con-
cerned with determining whether an acceptable performance is achievable and
whether a gap forms between the performance when conditioned on visual tra-
jectories and when conditioned on textual trajectories.

Training details

We train GCBC on the play-data trajectories comprising the CALVIN dataset,
equivalent to ∼740 000 training samples. Each sample consists of a sequence
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Figure 4.3: GCBC success rate on the CALVIN dataset.

of states and actions, corresponding to the trajectory of a demonstration in-
teracting with the environment and optionally a language annotation. The
sequences are of variable length, ranging between 28 and 32 frames. We train
for 10 epochs, conditioning on visual trajectory representations from CLIPT.
We use the checkpoint from the final epoch for evaluation. We once again use
the Adam optimizer (Kingma and Ba, 2015), with a learning rate of 5×10−5.
Because the action space in CALVIN is a multivariate continuous action space,
we use the DLML-based continuous actor module described in Section 3.3.2.

Evaluation details and results

We evaluate our GCBC checkpoints by leveraging the oracle included in the
CALVIN environment. Specifically, for each of the 34 tasks in our environment
we recover 100 valid starting states from our test split. For each of the 100
start states, we condition our policy to complete the task and let it interact
with the environment for a maximum of 240 steps, performing a “rollout”.
We reset the GRU hidden state every 28 steps. At each step, we use the
oracle to verify whether the task has been completed. If the task is completed
within the 240 steps, we deem this interaction a success. We measure the
success rate over the 100 rollouts for each task. To assess the gap between
visual trajectory representations (on which the policy is trained) and textual
trajectory representations (which we use at inference time), we perform this
evaluation twice: once conditioning on textual trajectory representations, and
the other conditioning on visual trajectory representations.
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Table 4.4: Summary evaluation statistics of the GCBC experiments on
CALVIN. The first two rows present the success rate (SR) statistics for our ref-
erence checkpoint, trained on CLIPT-2P representations and evaluated with
context resets. The following two rows present the SR statistics when we
have no context resets (NCR) during evaluation. The final row presents the
SR statistics when conditioning on textual trajectory representations from
CLIPT-1P, i.e. directly from CLIP’s text encoder. Statistics computed across
the 34-task set. Multiple seeds were not run due to computational limitations.

mean median min max std err
Text. SR (ref) 0.41 0.27 0.05 0.97 0.05

Vis. SR (ref) 0.36 0.32 0.08 0.79 0.04
Text. SR (NCR) 0.28 0.15 0.04 0.92 0.04

Vis. SR (NCR) 0.25 0.15 0.01 0.82 0.04
Text. SR (CLIPT-1P) 0.16 0.14 0.00 0.69 0.03

Figure 4.3 and the first two rows of Table 4.4 summarize the results of the
evaluation of GCBC on the CALVIN dataset. With textual trajectories, we
note a mean success rate of 0.41 and a median success rate of 0.27, going
as high as 0.97 for some tasks and as low as 0.05 for others. Prior work
achieved a better performance of around 0.647 (Mees et al., 2022b). Direct
comparisons are perhaps inappropriate however. We trained for less time due
to computational limits and relied on a slightly different architecture with the
use of CLIPT, training exclusively on visual goals rather than both vision and
language. For context, we perform an additional evaluation to test whether the
policy takes the goal conditioning into account or simply relies on the current
state. We condition on random vectors rather than the representations from
CLIPT, and find that the mean and median success rate drop to 0.09 and 0.04
respectively. There is a gap between the performance on visual and textual
trajectories, and surprisingly the policy appears to perform better with textual
trajectory representations than on visual trajectory representations, despite
being trained on the latter. This gap however, is relatively small. We reserve
further discussion and analysis of the results to Section 4.3.

Other experiments and results

We perform additional experiments to better understand the impact of design
choices made in GCBC on the performance of the policy. We first inspect the
impact of context resets during inference. We do this by repeating evaluation
without context resets, and comparing the performance to the baseline where
we reset the hidden state every 28 steps. We report our findings in the rows
labeled “NCR” in Table 4.4. We can see that omitting context resets during
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inference results in a clear drop in performance by around 30%, with the
mean success rate dropping from 0.41 to 0.28 when conditioning on textual
trajectory representations, and from 0.36 to 0.25 when conditioning on visual
trajectory representations. Similar drops are also noted on the median values.
The gap between visual and textual performance remains small however. We
see that, perhaps unsurprisingly, our GRU-based architecture is sensitive to
the sequence lengths longer than what it was trained on, but that this has
no effect on whether it handles textual and visual trajectory representations
differently.

To better assess the importance of our two-phase training, we repeat eval-
uation using the CLIPT checkpoint just before the start of the second phase
of training. This is when MLPvis has been trained, but MLPtxt does not ex-
ist yet, such that the textual trajectory representations come directly from
CLIP’s text encoder. We report our findings in the final row of Table 4.4.
Note that the performance when conditioning on visual trajectory represen-
tations is unchanged, so we refer to the second row of the table for that. We
see that the gap in performance when conditioning on textual trajectories as
opposed to visual trajectories is now large, with a mean SR of 0.16±0.03 when
conditioning on natural language as opposed to a mean SR of 0.36±0.04 when
conditioning on visual goals. This underlines the importance of our two-phase
training of CLIPT in allowing us to train on visual trajectory representations
and swapping these for textual trajectory representations at inference time.

4.2 Addressing goal misgeneralization

We now turn to the problem of addressing GMG. We rely on a more man-
ageable environment and dataset platform, and construct a toy-scenario for
observing the phenomenon.

4.2.1 The BabyAI platform

Introduced by Chevalier-Boisvert et al. (2022), BabyAI is a platform originally
designed for the study of grounded language learning via human-in-the-loop
experiments. It consists of a collection of 19 grid-world environments5 of var-
ious difficulty, based on the MiniGrid and Gymnasium libraries (Brockman
et al., 2016; Chevalier-Boisvert et al., 2023; Towers et al., 2023). Each envi-
ronment corresponds to a class of tasks, such as moving to an object, placing
an object next to another, unlocking doors and more. Distractors, i.e. objects
unrelated to the task at hand, may be placed in the environment to compli-
cate the completion of the task. Any instantiation of a BabyAI environment
scene will come with an associated language instruction in “Baby Language”, a
combinatorially rich subset of English unambiguously understood by humans.

5Also referred to as “levels”.
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go to the red ball

open the door on your left

put a ball next to the blue door

open the yellow door and go to the key behind you

put a ball next to a purple door after you put a blue box
next to a grey box and pick up the purple box

Figure 4.4: Example Baby Language instructions. Figure and examples cour-
tesy of Chevalier-Boisvert et al. (2022).

We present example Baby Language instructions in Figure 4.4 and a visual
example of the environment state in Figure 2.3. The environment state is
represented as a 7×7×3 egocentric partial observation, encoding the state of
the 7×7 square of grid cells in front of the agent. A fully-observable RGB en-
coding of the environment is also available through MiniGrid wrappers, which
is what we use for our work, setting the image resolution to 224×224. Agents
in the BabyAI ecosystem additionally perceive a one-dimensional propriocep-
tive state variable, encoding the direction they are facing. This is encoded
using numbers from 0 to 3, corresponding to right, down, left and up. Unlike
CALVIN, the action space in in BabyAI environments is discrete and of a
single dimension. Specifically, there are 7 actions, encoded as numbers from 0
to 6, corresponding to turn left, turn right, move forward, pick up an object,
drop an object, toggle (used e.g. for opening doors) and done.

The platform additionally comes with a bot and verifier, respectively ca-
pable of solving any validly specified task and verifying whether a given task
has been solved. These are particularly useful, as they can be used to gen-
erate demonstrations for imitation learning and offline RL solutions. To this
end, we generate two datasets, BabyAIPlay and BabyAISmall. The former
consists of demonstrations of the bot completing tasks from a wide range of
possible environments. The latter consists of demonstrations of the bot com-
pleting a subset of 6 well-defined tasks from BabyAIPlay, each corresponding
to a specific configuration of custom-made “GoToObject” and “GoToColor”
environments. We refer to Table 4.5 for a more complete overview of the en-
vironments in BabyAIPlay and BabyAISmall. We generate 700 000 training
samples and 40 000 validation samples for each dataset, roughly equivalent to
14 GB of compressed data. Like CALVIN, each sample consists of a sequence
of states and actions corresponding to a demonstration trajectory of the bot
interacting with the environment. The sequences are of varying length, with
an average length of 7 frames. Each sample is additionally annotated with
the relevant Baby Language instruction and the environment name. Sparse
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Table 4.5: An overview of the BabyAI environments, grouped by the datasets
they appear in. The first grouping corresponds to the environments used in
BabyAIPlay, while the second grouping corresponds to the environments used
in BabyAISmall. The number in parentheses corresponds to the number of
tasks associated with each environment.

Environment name (task no.) Description
CustomGoToObj{K/Bx/Bl} (3) go to the {key/box/ball}, color is ir-

relevant. 3 distractors.
CustomGoToColor{R/G/B} (3) go to the {red/green/blue} object,

type is irrelevant. 3 distractors.
Custom-GoToObj (1) go to a {key/box/ball}, color is irrel-

evant. Random number of distractors
Custom-GoToColor (1) go to the {red/green/blue} object,

type is irrelevant. Random number
of distractors.

BabyAI-GoToObj (1) go to the {color} {object}. No dis-
tractors.

BabyAI-GoToLocal (1) go to a/the {color} {object}. 7 dis-
tractors.

BabyAI-PickupDist (1) pick up a/the {color} {type}. 7 dis-
tractors.

BabyAI-PickupLoc (1) pick up a/the {color} {type} {infront
of you/to your right/to your left}. 7
distractors.

BabyAI-PutNextLocal (1) put the {color} {type} next to the
{color} {type}. 7 distractors.

CustomGoToObj{K/Bx/Bl} (3) go to the {Key/Box/Ball}, color is ir-
relevant. Three distractors.

CustomGoToColor{R/G/B} (3) go to the {Red/Green/Blue} object,
type is irrelevant. Three distractors.

reward is also available for each sample, equivalent to 1 − 0.9n/nmax, where
n is the length of the episode and nmax is the maximum episode length as
defined internally by each environment.

4.2.2 Goal misgeneralization setup

We choose to focus on BabyAI for our treatment of GMG in part due to the
platform’s simplicity, but also due to the flexibility and the ease of develop-
ment offered by the associated ecosystem. Before generating our BabyAISmall
dataset, we wrap each environment with custom-made wrappers that enforce
the spurious correlation between the defining variables of two of our 6 tasks.
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Specifically, we generate our data such that keys are always red, and red ob-
jects are always keys. In this way, under our hypothesis that GMG is caused
by CC, when training on this dataset containing this spurious correlation,
we maximize the chances of GMG occurring between the associated tasks. To
evaluate for the presence and extent of GMG, at test time we let the policy act
in an environment where the property of being a key and the property of being
red are not correlated, i.e. keys are not necessarily red and red objects are not
necessarily keys. We condition the trained policy on our intended goal, and
evaluate the success rate of the policy on both the intended and confounding
goal. We specifically define going to the key as our intended goal, and going
to the red object as the confounding goal. We choose this setup rather than
the complimentary one, where intended and confounding goal are swapped.
This is because we expect that, in the presence of confounded variables and
the absence of more expressive task specification, Occam’s razor will dictate
which of the two variables to causally model for the perceived policy success.
In other words, we expect the policy to learn the easier variable by default,
which in this case we expect to be the property of being red (a single color
channel) rather than the property of being a key (a non-arbitrary mixture of
shapes and edges).

4.2.3 Training details

Our training setup remains mostly unchanged for CLIPT (see Section 4.1.2),
using data from our BabyAIPlay dataset instead. We train in two phases on a
random subset of 70 000 samples, and validate on 4 000 samples, equivalent to
roughly 10% of our total available dataset size. Having pre-trained CLIPT, we
then train GCBC on the causally confused BabyAISmall dataset. We follow
the same training details as when we trained GCBC on CALVIN. However,
because the action space in BabyAI is discrete, we use the discrete actor mod-
ule described in Section 3.3.1. We also train an RCBC policy with the same
hyperparameters, to serve as a baseline when evaluating for GMG. As per the
implementation outlined in Section 3.2.1, when training RCBC, we multiply
the reward by a 6-dimensional one-hot vector for specifying the desired task.

4.2.4 Evaluation details and results

We evaluate for GMG by letting the trained policies interact in the Custom-
GoToObjK environment, conditioning, as intended by the environment, to go
to the key. We specifically wrap the environment such that, now in test time,
the key is never red, and that there is always one non-key distractor that is
red. In this way, we allow for the possibility of the policy to pursue the con-
founding goal of going to the red object, which was spuriously correlated with
going to the key during training. We leverage the BabyAI bot and verifier
to help us in the evaluation. Specifically, we generate 1000 seeds, and let the
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Table 4.6: Success rate (gap) on the intended and confounding goals by our
GCBC and RCBC policies. We evaluate in a decorrelated environment, where
keys are not red and red objects are not keys, and in a causally confused envi-
ronment, identical to the training set, where the keys are always red and red
objects are always keys. For GCBC, we report SR(G) when conditioning on
visual trajectory representations (vis) and when conditioning on textual tra-
jectory representations (txt). Standard error calculated over 3 trained seeds.

SRG SRIG SRCG

Decorrelated
environment

RCBC −0.74± 0.02 0.102± 0.005 0.84± 0.02
GCBCvis −0.48± 0.08 0.22± 0.05 0.70± 0.06
GCBCtxt −0.59± 0.04 0.17± 0.03 0.76± 0.02

Causally conf.
environment

RCBC 0.000± 0.002 0.996± 0.002 0.996± 0.002
GCBCvis 0.000± 0.005 0.988± 0.003 0.988± 0.003
GCBCtxt 0.000± 0.004 0.989± 0.003 0.989± 0.003

bot solve the environment for each seed, so that we can obtain the visual goal
(consisting of the agent facing the key in an adjacent tile) to condition our
policy with. The environment instance provides the language instruction for
textual conditioning. Then, for each seed, we let the policy interact with the
environment for a maximum of 100 steps, resetting the hidden state every
7 steps, and use the verifier to determine whether the intended goal or the
confounding goal have been completed, keeping track of the success rate of
both throughout. We repeat this evaluation for both GCBC and RCBC, and
compare the success rates on the intended and confounding goal between the
two policies. We additionally repeat the entire evaluation process on an envi-
ronment identical to the training environment, i.e. where keys are always red
and red objects are always keys, to serve as an additional baseline.

We measure the presence and extent of GMG by inspecting the gap between
intended goal success rate and confounding goal success rate. More specifically,
we define the success rate gap (SRG) metric simply as:

SRG = SRIG − SRCG, (4.1)

where SRIG is the success rate measured on the intended goal and SRCG
is the success rate measured on the confounding goal. Based on our GMG
definition, a positive SRG indicates that GMG is not occurring, a negative
SRG indicates that GMG is occurring, while an SRG of 0 does not lead to any
definitive conclusions about whether GMG is occurring or not. While the sign
of the SRG indicates the presence of GMG, the magnitude will indicate the
extent of GMG, i.e. how frequently our policy generalizes or misgeneralizes.
We report our SRG along with the underling SR values in Table 4.6. We
firstly note that both RCBC and GCBC achieve a performance close to 100%
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on unseen environments from the same distribution of the training set, where
keys are always red and red objects are always keys. Because the intended
and confounding goal are spuriously correlated here, as expected we observe
a SRG of 0. To discuss how the policies do with regard to GMG, we turn
our attention to the decorrelated environment, where keys are not red and
red objects are not keys. Here, we note that both RCBC and GCBC policies
suffer from GMG, with the SRG always below 0. However, we also note that
conditioning on goals appears to help, with the extent of GMG being lower
with GCBC (magnitudes of 0.48 and 0.59 for visual and textual conditioning
respectively) than with RCBC (a much higher magnitude of 0.74).

4.3 Discussion
The results described above are mixed. On the one hand, we have demon-
strated that, to some extent, GCBC learns instructable policies on a chal-
lenging benchmark. However, we find that this implementation still suffers
from GMG, despite the hypothetical improvement in task specification ex-
pressiveness, which we expected to nullify the problem. That being said, we
do note the silver lining that the extent of GMG is lower with GCBC than
with RCBC, suggesting that perhaps the expressiveness of the task specifica-
tion does indeed help. We now offer some discussion around observations we
made throughout the work, the limitations and avenues for future work.

4.3.1 Multi-taskedness and Occam’s razor

We note that GMG hinges on the designer’s choice of intended goal. Indeed,
repeating our evaluation conditioning instead on going to the red object (such
that the confounding goal is now going to the key), “eliminated” GMG, in-
verting the sign of our SRG values. We hypothesize that, in absence of clear
specifications, the policy will default to the easier task by Occam’s razor, so
if our intended goal is easier, then GMG will not occur in a certain sense.
We observed similar results in earlier experiments where our multi-task setup
was not fully sound: here, we had trained on a mixture of tasks consisting in
permutations of the “go to {color} {type}” task class. During training, we
artificially enforced a spurious correlation such that red balls always appeared
in the bottom right grid cell of the environment. We then defined going to the
red ball as our intended goal and going to the bottom right as our confound-
ing goal, drawing inspiration from Langosco et al. (2022)’s CoinRun example.
However, going to the bottom right was not explicitly in our multi-task mix-
ture, which instead only contained tasks concerned with navigating to a certain
object. We posit that the distribution of tasks in the multi-task mixture was
very suggestive of what the causally confused task was, making it easy for our
policies to learn to navigate to the red ball rather than to the bottom right
when choosing which of the two spuriously correlated variables to causally
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model for its perceived performance. Indeed, with this setup, GMG did not
occur, with the SRG remaining positive for both RCBC and GCBC. We ad-
justed our experiments accordingly to ensure that our multi-task mixture was
balanced in terms of similarity to intended and confounding goal, and specifi-
cally chose our intended goal to be (at least intuitively) more difficult than the
confounding goal. We report these observations as they may prove valuable
in future investigations on the topic of GMG and CC. One insight that we
draw from these observations is that a simple solution to GMG is therefore
making the intended goal as “easy” as possible for the policy. We believe there
is space for further formalizing task specification under this heuristic, such as
envisioning task specification a way of projecting the task space to some other
space where the intended goal is “easier”, by some metric, than other goals.
We however leave this investigation to future work.

4.3.2 Post-hoc analysis of CLIPT’s representations

To diagnose what may still be causing GMG despite our supposed improve-
ment in specification expressiveness, we performed a post-hoc analysis of the
representations provided by CLIPT, on which we condition our GCBC policy.
Our reasoning is that the ideal representations should have disentangled color
and object-type dimensions, such that the policy can leverage this structure
to appropriately generalize from the non-confounded goal (e.g. going to the
ball) in the mixture to the intended goal (going to the key), despite its spuri-
ous correlation with the confounding goal (going to the red object). To this
end, we visually inspect the representations from CLIPT for this structure.
Specifically, we uniformly sample 1000 textual and visual trajectory CLIPT
representations from each of our tasks in the BabyAISmall mixture, allowing
for instances of non-red keys and non-key red objects. We repeat this for both
our two-phase and single-phase training versions of CLIPT (which we refer to
as CLIPT-2P and CLIPT-1P), where in the latter case the textual represen-
tations come directly from CLIP’s text encoder. We fit a UMAP (McInnes
et al., 2018) dimensionality reduction model on the representations, mapping
to 2 dimensions for our visualization, and report the results in Figure 4.5.
We note that clear color and object-type dimensions are not immediately dis-
cernible. For CLIPT-1P representations, we notice some variation of color
along the vertical axis, while for CLIPT-2P, we see a relatively neatly sorted
cluster of colors in the top center portion of the plot. However, this is not
clearly disentangled from object-type, with, for instance, keys appearing se-
mantically closer to the colors than to other objects in the projected vector
space. This effect is more pronounced in the textual trajectory representa-
tions from CLIPT-1P, where the clusters are very well defined, while in for
the other configurations there is some overlap between clusters. We suppose
that this less-than-ideal structure of our representations may in part explain
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Figure 4.5: Two-dimensional visualization of CLIPT representations obtained
using UMAP. We visualize both visual (left column) and textual (right col-
umn) trajectory representations. We source the representations from both
our single-phase (first row) and two-phase (second row) training variants of
CLIPT (CLIPT-1P and CLIPT-2P respectively). We label our representa-
tions based on the goal object they are specifying. We use the fill color to
indicate the color of the object, and the outline color to identify the object
type (yellow for key, black for box, purple for ball).

why GMG still persists even when conditioning on visual and textual goals
rather than rewards.

In this theme, we conducted two more experiments. First, to probe the effect
of the more well defined clusters of the textual trajectory representations of
CLIPT-1P, we trained a “multimodal” variant of GCBC, using CLIPT-1P rep-
resentations. More specifically, during training, for each batch we randomly
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Table 4.7: Success rate (gap) on the intended and confounding goals by
our multimodal GCBC policy (GCBCMM). Standard error calculated over
3 trained seeds.

SRG SRIG SRCG

GCBCMM
vis −0.53± 0.06 0.20± 0.03 0.73± 0.05

GCBCMM
txt −0.72± 0.02 0.119± 0.009 0.83± 0.02

choose whether to condition on visual trajectory representations or textual
trajectory representations. We then repeated evaluation as described in Sec-
tion 4.1.3. We report the SRG and SR values in Table 4.7. Comparing to our
default implementation of GCBC from Table 4.6, we see that GMG not only
is still present, but also more pronounced. This may be explained by the fact
that, although more precisely defined, the textual trajectory representations
from CLIPT-1P still do not properly disentangle color and object-type dimen-
sions, potentially preventing the model from leveraging any sort of structure
to avoid causal confusion and GMG.

We additionally experiment with increasing the variance of our natural lan-
guage instructions. By default, we relied on the Baby Language instructions,
which were limited in vocabulary and structure to the form “go to the (color)
object” (and very slight variations depending on the task). Because we do not
actually rely on Baby Language, we increase the natural language instruction
variance by randomly paraphrasing the instructions using the substitute maps
summarized in Table 4.8. More specifically, we parse the words in the Baby
Language instructions and randomly substitute them with valid substitutes
that convey the same or similar semantic meaning. For example, “go to the
red ball” could be replaced with “navigate to the scarlet sphere”. We then re-
train CLIPT and repeat our representation visualization experiment described
at the beginning of this section. We report the results in Figure 4.6, finding
that while the variability unsurprisingly widens the clusters in CLIPT-1P tex-
tual trajectory representations, the overall results are similar to our default
approach: while there is some presence of what one may refer to as a color
dimension, this is entangled with our object representations, with, once again,
keys being more similar to colors than to other object types.

4.3.3 Other considerations and Future work

Our treatment of the CLIPT representations, while potentially interesting,
generally does not rule out other explanations for why GMG is still occurring
with our GCBC policy. We note that our policy architecture, while perhaps
somewhat complex on first glance, is ultimately rather simple, with most of
the parameters defining our single layer GRU policymaker module. Due to
computational limitations, we did not perform hyperparameter optimization
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Table 4.8: Expression to substitute mapping for our paraphrasing purposes.

Expression Available substitutes

“go to” “move to”, “navigate to”, “proceed to”, “advance to”, “make
your way to”, “head to”

“pick up” “pick up”, “grab”, “take”, “get”, “remove”, “collect”

“blue” “azure”, “sapphire”, “cyan”

“green” “emerald”

“red” “scarlet”, “crimson”, “ruby”, “carmine”, “vermilion”

“purple” “violet”, “lavender”, “lilac”

“yellow” “gold”, “amber”, “lemon”, “mustard”, “ochre”

“grey” “gray”, “silver”

“ball” “sphere”, “orb”, “globe”, “circle”, “marble”

“box” “cube”, “cuboid”, “chest”, “crate”, “square”, “rectangle”

“key” -

“object” “object”, “thing”, “item”

or devote much effort to exploring better architectures, such as the now very
popular Transformer architecture (Vaswani et al., 2017). It is therefore un-
clear whether our policy simply does not have the capacity to leverage the
expressiveness of the CLIPT representations we condition it on. On this note,
we are unsure if our modification of CLIPT is detrimental to our needs: we
modify CLIP by adding MLP heads which we train in two phases on rela-
tively small datasets – it is entirely possible that in doing so we overfit and
lose the expressiveness afforded by the original foundation model. Similarly,
it remains unclear whether GMG is primarily alleviated due to the suppos-
edly improved task specificiation or due to the de-correlated pretraining of
CLIPT. Nevertheless, we believe that our underlying thesis, that GMG can
be addressed by improving task specification, is valid, and we hope future
work will devote some attention to formulating better implementations for
approaching the problem from this perspective. However, we do not envision
LISDM to be the silver bullet for GMG. For instance, we expect future work
to be able to show that the use of language may also exacerbate GMG, for
example by referring to colors using ambiguous language such as “acquama-
rine”, “turquoise” and “indigo” that instead of “blue”. These colors generally
fall within the spectra of “blue” and other more commonly used colors such
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Figure 4.6: Two-dimensional visualization of CLIPT-1P representations ob-
tained using UMAP. This particular CLIPT model was trained on paraphrased
natural language instructions, to increase data variance. We visualize both vi-
sual (left column) and textual (right column) trajectory representations. We
label our representations based on the goal object they are specifying. We
use the fill color to indicate the color of the object, and the outline color to
identify the object type (yellow for key, black for box, purple for ball).

as “green” or “red”, but their exact hue, saturation, and brightness may vary
between individuals’ interpretation, leading to potential ambiguity.

Future work may also wish to devote more attention to the grounding prob-
lem. Indeed, while our approach of using a multimodal foundation models
does address the issue, it only does so in part. The use of multimodal models
will limit the scope of applications to the modalities handled by the model. In
our case, that means we can only handle cases in which the environment state
is represented with RGB images. While this is a reasonable assumption for
many applications, it is certainly not universal. Additionally, our approach
mostly focuses on the grounding between natural language instructions and
environment state, with very little attention devoted to action abstractions,
also known as options (Sutton et al., 1999). We are curious to see work fo-
cusing on the grounding between language and action abstractions, similar
to Garg et al. (2022) and Jiang et al. (2019), and its applications to GMG.
We also believe that future work may generally be necessary in the area of
causal representation learning (Schölkopf et al., 2021) and reasoning (Yu et al.,
2023; Zhang and Sridharan, 2022), as it is unclear, particularly from our anal-
ysis of the CLIPT representations, whether purely associative learning will
efficiently achieve the structure in the representations necessary for avoiding
causal confusion and goal misgeneralization.
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Finally, we believe that future work may benefit from additional revisions
to the definition of GMG. Indeed, we view all existing definitions of the phe-
nomenon, including ours, to be limited in some way. We envision that em-
pirical work will benefit tremendously from improved definitions of the term,
perhaps devoting more attention to its relation to Occam’s razor using ele-
ments from statistical learning theory. Aided by this, future work could devote
some effort in determining whether GMG occurs in more complex and realis-
tic scenarios, with potentially more dangerous confounding goals, given that
existing work so far has mostly been able to demonstrate the phenomenon in
innocuous toy environments. We believe that such a demonstration (or lack
thereof) would provide a lot of value in terms of calibrating researchers on
what problems to focus on.



CHAPTER 5
Related Work

5.1 Natural Language and Sequential Decision
Making

Fueled by the Transformer architecture (Vaswani et al., 2017), advancements
in natural language processing (Brown et al., 2020; Devlin et al., 2019; Vaswani
et al., 2017) are now finding themselves in other domains of ML (Dhariwal
et al., 2020; Radford et al., 2021; Rombach et al., 2022) as the field becomes
increasingly multi-modal (Baltrušaitis et al., 2019; Xu et al., 2022) and the
boundaries between paradigms fade. Moreover, the natural language inter-
face afforded by these models provides a means for leveraging expressive and
flexible user input, leading to advancements in “prompt engineering” for in-
context learning (ICL) (Dohan et al., 2022; Dosovitskiy et al., 2022; Hertz
et al., 2022; Reynolds and McDonell, 2021; Wei et al., 2022). On this note,
recent work in SDM has also explored the integration of natural language in
existing or new SDM methods (Luketina et al., 2019) and (more famously)
viceversa (Ouyang et al., 2022). This work focuses on the former case. Here,
Google’s SayCan (Ahn et al., 2022) and DeepMind’s Gato (Reed et al., 2022)
are the current reference works, the first utilizing language models for planning
robotics tasks and the latter leveraging a multimodal transformer to perform
decision-making aided by language and other modalities. Jiang et al. (2022a)’s
VIMA presents a similar approach to Gato, devoting more attention to the
design of multimodal prompts. Moving away from purely transformer-based
solutions, CLIPort (Shridhar et al., 2021) use CLIP (Radford et al., 2021)
and Transporter (Zeng et al., 2021) in a two-stream architecture for language-
specified manipulation tasks using imitation learning. More distantly, Zhou
and Small (2021) attempt to address generalization issues when using NL
goals by proposing a sample-efficient inverse reinforcement learning algorithm
based on latent goal relabeling (Nair et al., 2018). Choi et al. (2022) also
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tackle generalization through their LMPriors framework which shapes the re-
ward (Ng et al., 1999) based on priors computed by a generative language
model. Instead of providing input instructions or feedback, Lampinen et al.
(2022) take a different approach by making their agents produce NL explana-
tions as part of their output, which is then used in an additional loss term for
learning causal structure and OOD generalization. Yang et al. (2021) focus
on developing an operationally safe RL algorithm by proposing a modular
constraint interpreter capable of mapping NL constraints to spatial and tem-
poral representations of hidden states. DeepMind et al. (2022) and Fan et al.
(2022) leverage contrastive vision-language training to address the issue of
grounding language representations to the environment, while Watkins et al.
(2021) proposes a novel bootstrapping solution for grounding. Sumers et al.
(2021) explores reward learning using open-ended linguistic feedback. The
same authors contribute formalizations of the type of language a modeled
speaker could use for preference expression (Sumers et al., 2022) and most re-
cently by extending hindsight experience replay (HER) (Andrychowicz et al.,
2017) to a language-conditioned setting using generative visual-language mod-
els (VLM) (Alayrac et al., 2022). A number of language-annotated datasets
are available for research in this area (Fan et al., 2022; Jiang et al., 2022b;
Liu et al., 2022; Mees et al., 2022b; Shridhar et al., 2020; Zholus et al., 2022).
However the field is still clearly in early stages and has yet to settle on a par-
ticular direction. To our knowledge, this work is the first to investigate the
effects of NL on goal misgeneralization in SDM.

5.2 Causal Confusion and Goal Misgeneralization

The issue of causal confusion was first identified and defined by de Haan et al.
(2019) in the context of imitation learning. They address the issue by learning
a graph-parametrized policy for each possible causal graph and subsequently
performing targeted interventions to select the best policy. Tien et al. (2022)
later successfully identify the same phenomenon in the context of preference-
based (Christiano et al., 2017) inverse reinforcement learning (IRL) (Ng and
Russell, 2000). Concurrently, Gupta et al. (2022) identify causal confusion in
the more relevant context of offline RL, and explore active sampling as a means
to mitigate the issue. While these works focus mainly on capability failures,
Kirk and Krueger (2022) also recognize goal misgeneralization and incentive
mismanagement (Farquhar et al., 2022) as two additional failure modes, where
we focus on the former of the two. Langosco et al. (2022) are the first to for-
mally define goal misgeneralization based on Orseau et al. (2018)’s definition
of agency. The authors demonstrate the phenomenon in a number of RL
agents trained on the Procgen (Cobbe et al., 2020) benchmark, proposing in-
creased training data diversity as a means of alleviating the issue. Shah et al.
(2022) later generalise the definition, removing the assumed RL framework
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necessary in Langosco et al. (2022)’s formalization, and demonstrating the
issue in a variety of new settings. Aside from more diverse training data, the
authors suggest uncertainty-aware models, better inductive biases and tech-
niques targeting deception as potential routes for mitigation. The issue of
goal misgeneralization draws parallels with reward hacking (Pan et al., 2022;
Skalse et al., 2022) and reward tampering (Everitt et al., 2021) where there is
a misalignment between the designers intended behaviour and the algorithm’s
behaviour due to misspecified rewards. This misalignment makes goal mis-
generalization of particular interest to research in Artificial Intelligence (AI)
alignment (Ngo et al., 2022) and AI safety more broadly (Hendrycks et al.,
2022; Houben et al., 2022).

5.3 Representation Learning and Foundation
Models

Our approach of working on the representations produced by a pre-trained
multimodal model such as CLIP (Radford et al., 2021) is closely related to
the field of representation learning. This is the study of the processes for
learning transformations of raw input data into more abstract representations,
typically in the form of dense vectors. The idea is that the more abstract na-
ture of the learned features can lead to better generalization, for usefulness
and applications on a wide range of downstream tasks, omitting the need for
less transportable hand-engineered features. Now a ubiquitous component of
modern-day ML, in 2013 Bengio et al. identify the paradigm-shift from fea-
ture engineering to representation learning. The authors define desiderata
for “good representations”, such as local smoothness, hierarchically-organised
explanatory factors shared across tasks and a sparse activation for a specific
input. They compare representation learning in the context of probabilistic
graphical models (PGM) and neural networks and outline connections to man-
ifold learning and invariance (Bronstein et al., 2021). More recently, Liu et al.
(2020b) write a book covering representation learning in NLP, while Xie et al.
(2020) provide a statistical perspective, linking representation learning to fac-
tor analysis (Rubin and Thayer, 1982) and multidimensional scaling (Kruskal,
1964). Readers of our work may find the ideas of Schölkopf et al. (2021) of
particular interest. Here, the authors relate fundamental concepts of causal
inference to representation learning, defining causal representation learning as
the problem of discovering high-level causal variables from low-level observa-
tions. Lopez-Paz et al. (2017) work precisely on this issue of causal discovery
in the context of objects in images, leveraging proxy variables for identifying
causal relationships between entities in images. In the context of SDM, Lan
et al. (2022) study the generalization of state representations in RL, relying
on the notion of “effective dimension”. They provide a bound on the gener-
alization error that arises when using a given k-dimensional representation.
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They demonstrate the usefulness of the bound in the context of successor
representations (Dayan, 1993). Closely related to CLIP, Guo et al. (2019)
and Le-Khac et al. (2020) provide surveys covering multimodal and contrastive
representation learning respectively. The latter builds on the aforementioned
work from Bengio et al. (2013) and identify core principals for learning good
representations: distributedness, abstraction, invariance and disentanglement.
Much modern work in the field points to foundation models and the use of their
representations for downstream tasks (Bommasani et al., 2021; Zhou et al.,
2023a). While originating mostly in the field of NLP (Brown et al., 2020;
Devlin et al., 2019; Touvron et al., 2023), attention has increasingly included
or shifted to other modalities. Here, CLIP (Radford et al., 2021) is the most
prominent example. Leveraging a carefully curated dataset of image-caption
pairs and a contrastive loss, CLIP learns semantically similar representations
across text and vision symbols. Similar to CLIP, ALIGN (Jia et al., 2021) re-
laxes the need for careful curation of the dataset, instead relying on a noisier
but larger dataset of images and alt-text descriptions. They demonstrate that
expert knowledge is not necessary for dataset curation in contrastive learning.
BEIT-3 (Wang et al., 2022) and M3AE (Geng et al., 2022) take a different
approach: instead of training an encoder for each modality and ensuring that
the representations from each are similar, they train a single encoder capable
of handling both modalities, avoiding the need for paired data and hence en-
abling larger scale training. FLAVA (Singh et al., 2022a) operates in a similar
vein, utilizing a single model for multimodal representations. It however also
includes cross-modal contrastive objectives, aiming for performance on image-
only, text-only and image-text downstream tasks with the same single model.
Florence (Yuan et al., 2021) expands the dimensions covered by their repre-
sentations, covering for instance both static (images) and dynamic (videos)
inputs, or coarse (scene) and fine-grained (object) tasks.

5.4 Grounding

The work by Harnad (1990) typically acts as the starting reference for most
work on the symbol grounding problem. In machine learning and linguis-
tics, the focus is typically on grounding in the context of of natural language
understanding (NLU) and meaning (Winograd, 1972). Clark and Brennan
(1991) and DeVault et al. (2006) are examples of early work in this theme.
A commonly held perspective is that referents from other modalities are a
necessary ingredient for grounding language. Mooney (2008) make early con-
nections to perception of visual symbols as a means of grounding natural
language for NLU. Contemporary to their influential work on distributional
semantics (Baroni et al., 2014a,b), Bruni et al. (2014) propose multimodal
distributional semantics to address the lack of perceptual grounding of distri-
butional models. In particular, they leverage computer vision techniques to
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extract “visual words” from images and incorporate these into the training
data such that the distributional representations can capture these references.
More recently, some focus has been dedicated to comparing how grounded lan-
guage and meaning is learned in humans and in machines (Lake and Murphy,
2023). Linzen (2020) touch on the subject in their position paper critiquing
the current paradigm for NLU evaluation. They argue, among other things,
that humans do not learn language from text alone, but additionally through
their experience of the world, and that more careful attention should be ded-
icated to this direction. In parallel, Bisk et al. (2020) make similar claims
around the usefulness of world experience for linguistic grounding and NLU.
They propose the notion of “World Scopes (WS)” as a framework for auditing
progress in NLP. Bender and Koller (2020) outline how current state-of-the-
art techniques are limited in their ability to acquire meaning, due to the lack
of grounding referents. Piantadosi and Hill (2022) directly respond to this
critique, offering an alternative explanation for how grounding and meaning
can be achieved through the lens of conceptual role theory (Block, 1998).





CHAPTER 6
Conclusion

In this work, we presented a first attempt at addressing the issue of goal mis-
generalization by focusing on the improvement of task specification through
the use of natural language. We devoted our attention to sequential decision
making, and provided a preliminary formalization of a task specification frame-
work. Here, we identified requester and executor parties, as well as the notion
of a latent specification representation, corresponding to some high-level ab-
straction of the desired trajectory. Concurrently, we provide a new definition
of the goal misgeneralization phenomenon, and are the first to explicitly frame
it in the context of multi-task learning and to link it to Occam’s razor. We
developed our own implementation of a possible solution, first demonstrating
its applicability on a challenging benchmark, and later tackling a simpler envi-
ronment platform for toy scenarios of goal misgeneralization. Here, we showed
that, under our implementation, natural language appears to decrease the ex-
tent of goal misgeneralization, but nevertheless fails to completely eliminate
the problem. We performed some diagnostic experiments to understand pos-
sible failure modes, and provide some discussions around current limitations
and potential future work.
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APPENDIX A
More CLIPT Sanity Checks

We performed a number of additional sanity checks to guide our choices around
the design of CLIPT.

A.1 Why not just CLIP?

CLIPT modifies CLIP such that there are two separate MLPs projecting con-
catenated representations back into the original dimension. This choice is
not arbitrary. Indeed, a more comfortable choice would have been to use the
representations from CLIP’s vision and text encoders directly. As outlined in
the previous chapter, we are motivated to make this design decision for two
reasons:

1. We define a trajectory to be composed of at least start and end state,
necessitating the need for two-image representations.

2. We believe images of our state will be slightly out of domain compared
to CLIP’s training mixture.

We take the first as a definitional aspect, a basic premise, for which we
therefore do not envision verification as being necessary. We however do per-
form a quick experiment to check the validity of our second motivation. We
expect the similarity between textual annotations and images of our state to
be lower than the similarity between textual annotations and more “realis-
tic” images, which are closer to the distribution of data CLIP was trained
on. To test this hypothesis, we collect 8 textual annotations and 8 images of
final states of the corresponding trajectories. We compute the cosine similar-
ity between the CLIP representations of all possible pairings, for a total of
64 similarity values. We then repeat this computation, replacing the images
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Figure A.1: Comparison of an image from the CALVIN environment and the
corresponding “realistic” version obtained via latent diffusion

Table A.1: Similarity statistics between textual annotations and original vs
“realistic” state images.

Cosine Similarity Original state image “Realistic” state image
mean 0.308 0.350

median 0.311 0.353
maximum 0.384 0.408
minimum 0.234 0.289

std. err. 0.004 0.003

with “realistic” versions obtained via an off-the-shelf text-conditioned image-
to-image model. In particular, we use RunwayML’s “Stable Diffusion 1.5”
checkpoint of Rombach et al. (2022)’s latent diffusion model1. Using the Hug-
gingFace diffusers library (von Platen et al., 2023), we set strength to 0.35,
guidance scale to 50 and employ the following prompt: “Photograph of robotic
arm interacting with wooden table top. Canon 60D. Realistic, HD, 8k, ultra
detailed.” Figure A.1 presents a sample comparison between an original state
image and its “realistic” version. Table A.1 instead summarizes the results of
the experiment.

We find that there is a clear difference in the similarity of textual annota-
tions and the original state images and the similarity of textual annotations
and the transformed “realistic” state images. In particular, we find the latter
case to result in clearly higher similarity. While far from a perfect evalua-
tion, we take this as sufficient evidence that some fine-tuning is necessary to

1Courtesy of RunwayML: runwayml.com

https://runwayml.com/
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adjust the domain-gap between the CLIP pre-training mixture and our envi-
ronment state. An alternative solution may have been to simply apply the
“realism” transform to our environment state. This is however infeasible for
three reasons. Firstly, latent diffusion inference is computationally expensive.
Secondly, there is a very high variance in the results obtained due to the nature
of prompting, resulting in images that rarely preserve the details necessary for
the task. See for instance Figure A.1, where the “realistic” version loses the
any notion of the sliding door or switch. Lastly, we are still motivated by our
first reason above, i.e. the need for two-image representations, so we will need
to train a head on top of CLIP regardless.

A.2 Alternatives to CLIPT

We performed a number of experiments similar to the previous section before
choosing to embark on our modification of CLIP into CLIPT. Our experi-
ments generally consisted in collecting language annotations and trajectory
end states and visualizing similarity matrices in search of well-defined diag-
onals. The lack of a diagonal would indicate that whatever modification we
were testing in that experiment was insufficient to guarantee that we could
perform our desired swapping of visual goals language goals. We first tried two
alternatives to CLIP, namely FLAVA (Singh et al., 2022a) and ALIGN (Jia
et al., 2021), however these did not return promising results. We therefore
returned to CLIP and attempted some prompt engineering (Gu et al., 2023;
Liu et al., 2023) of the natural language instructions. Specifically we tried
converting the instructions to the past tense, paraphrasing them to be more
similar in style to image captions, and finally even some BLIP2-based (Li
et al., 2023) reformulations. Ultimately however, none of these experiments
provided satisfactory results, so we proceeded with our CLIPT modifications.

A.3 Task Classifier

Before proceeding to our GCBC implementation, we wanted to check whether
our idea of training on visual representations and evaluation on textual repre-
sentations from CLIPT was sound on an easier task. Leveraging the fact that
CALVIN trajectories annotated with language are additionally also annotated
with the task that is being completed, we implemented a simple task classifier
network. This consisted in a simple three-linear-layer MLP, trained to clas-
sify visual representations of CLIPT across the 34 possible tasks. We used
CLIPT-1P, the checkpoint of CLIPT from the first phase of training where
the language encoder is simply the CLIP language encoder. At test time, we
then evaluated with both visual and textual trajectories and compared the
performance across modalities. We report the results in Table A.2.
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Table A.2: The test accuracy of our task classifier on visual trajectory repre-
sentations and textual trajectory representations from CLIPT-1P.

Accuracy Std. Err.
Visual Trajectory Representations 0.703 0.003

Textual Trajectory Representations 0.857 0.009

To our great surprise, the classifier performed better when classifying tex-
tual trajectory representations than when classifying visual trajectory repre-
sentations, despite being trained on the latter. One possible explanation is
that the frames and/or trajectories in the test set are somewhat out of distri-
bution compared to those in the train split, while the textual descriptions do
not really change too much between splits. You explanation was somewhat
reinforced when noticing that textual accuracy remained almost unchanged
between validation and test (∼ 0.85) while visual accuracy dropped from 0.89
in validation to 0.70 in test. Given the promising results with our task classi-
fier, we proceeded with our GCBC implementation.



APPENDIX B
More GCBC experiments

B.1 Performance over training
In an attempt to diagnose the relatively underwhelming performance of our
policy, we perform our evaluation on the test set at various checkpoints through-
out training on the CALVIN dataset. Figure B.1 presents the mean SR over
training when conditioning on textual trajectory representations1. From the
few data-points that we have, we see a very slow increase in performance over
training, indicating that perhaps our model is not sufficiently expressive. A
more complete analysis is however necessary to make conclusions.

4 5 6 7 8 9 10
Epoch

0.26

0.28

0.30

0.32

SR

SR (Textual Conditioning)
SR (Visual Conditioning)

Figure B.1: GCBC success rate over training

1We mistakenly performed these evaluations without context resets. However, since we
are mainly interested in the trend rather than actual values with this experiment, we deemed
this oversight as negligible.
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