UNIVERSITAT
KOBLENZ - LANDAU

Fachbereich 4: Informatik

Direct Processing of Compressed
Volume Data

Diplomarbeit

zur Erlangung des Grades eines Diplom-Informatikers
im Studiengang Computervisualistik

vorgelegt von

Thomas Hollt

Erstgutachter: Prof. Dr. Stefan Miiller
Institut fiir Computervisualistik, AG Computergraphik

Zweitgutachter: Dipl.-Inf Matthias Raspe
Institut fiir Computervisualistik, AG Computergraphik

Koblenz, im Mai 2011

Erkldrung

Ich versichere, dass ich die vorliegende Arbeit selbstdndig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein
Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. X O

Der Veroffentlichung dieser Arbeit im Internet stimme ich zu. X O

(Ort, Datum) (Unterschrift)

ii

Abstract

Using programmable graphics hardware (GPU) is the de-facto standard for real
time volume rendering nowadays. In addition to that, GPUs are often used for
non-graphical tasks to accelerate complex computations and also allow the di-
rect rendering of (intermediate) results.

However, the amount of graphics memory can become a problem when work-
ing with large volume datasets. Even though todays graphics hardware pro-
vides more memory than ever before, the amount of data is also increasing
rapidly.

In order to overcome this, lots of compression algorithms have been devel-
oped and some of them even are hardware-accelerated. As these implementa-
tions only support a small range of formats and often do not provide sufficient
quality, custom algorithms have been implemented which often utilize shader
programs for decoding and encoding. While this has proven useful for vi-
sualization, providing interactive framerates for direct volume rendering, the

algorithms focus on displaying the data, not processing it.

In this thesis different compression techniques are compared with focus on
their suitability for processing in the compression domain. A wavelet trans-
form based compression scheme is implemented which allows lossless as well
as lossy compression of volume data. Image processing operations are clas-
sified based on their applicability in the wavelet compression domain. Based
on this classification different image operations are exemplarily implemented.
Furthermore for visualization multi-planar reconstruction directly from the
compressed data is presented.

The results of this thesis are compared to processing in the spatial domain,

showing advantages and shortcomings. Concluding an outlook on possible
future work is given.

1ii

iv

Kurzfassung

Der Einsatz von programmierbarer Graphikhardware (GPU) ist heutzutage
der de-facto Standard fiir Echtzeit Volumen Rendering. Auch werden GPUs
ein Bereichen aufierhalb der Computergraphik eingesetzt um komplexe Berech-
nungen zu beschleunigen und (Zwischen-) Ergebnisse zu visualisieren.

Die begrenzte Grofie des Graphikspeichers kann bei der Verarbeitung von gro-
Ben Volumendaten Probleme bereiten. Auch wenn die Speicherkapazitit heu-
tiger Graphikkarten grofser ist als je zuvor so macht das rapide Wachstum der
Datenmengen diese Entwicklung zunichte.

Um diesem Problem entgegenzuwirken wurde eine Reihe von Kompressions-
algorithmen, manche sogar hardwarebeschleunigt, entwickelt. Da diese Im-
plementationen jedoch nur eine begrenzte Menge von Formaten unterstiitzen
und oft keine ausreichende Qualitdt bieten wurden angepasste Algorithmen
entwickelt, welche oft Shader Programme fiir De- und Encoding einsetzen.
Auch wenn sich dies zur Visualisierung als niitzlich erwiesen hat und inter-
aktive Frameraten bei direktem Volumen Rendering erméglicht bieten diese
in erster Linie zur Visualisierung entwickelten Algorithmen keine Vorteile zur
Verarbeitung von komprimierten Daten.

In dieser Arbeit werden verschiedene Kompressionstechniken mit Hauptau-
genmerk auf ihre Einsatzmoglichkeit fiir direkte Verarbeitung in der Kom-
pressionsdoméne verglichen. Als Ergebnis dieses Vergleichs wird ein Kom-
pressionsverfahren basierend auf der Wavelet Transformation, welche sowohl
verlustbehaftete als auch verlustfreie Kompression erméglicht implementiert.
Anschliefiend erfolget eine Klassifizierung von Bildverarbeitungsoperationen
anhand ihrer Anwendbarkeit in der Kompressionsdoméne und basierend da-
rauf werden exemplarisch einige dieser Operation implementiert. Weiterhin
wird multiplanare Rekonstruktion zur Visualisierung der komprimierten Da-
ten prdsentiert.

Vi

Vor- und Nachteile der Ergebnisse dieser Arbeit werden durch den Vergleich
mit Verarbeitung von nicht komprimierten Daten gezeigt und abschlieffend
wird ein Ausblick auf zukiinftige Arbeit in diesem Bereich gegeben.

Contents

Abstract
Contents
List of Figures

1 Introduction
1.1 Motivation
1.2 Problem Statement and Objectives
1.3 Structure e e

2 Fundamentals
21 Cascada.
2.2 Image Compression Techniques
221 Wavelet Image Compression
2.2.2 Discrete Cosine Transform
223 Fractal Compression
224 Vector Quantization
2.3 A Classification of Image Processing Operations
2.3.1 Point Based Operations
232 Local Operations
233 Global Operations

3 State of the Art
3.1 Compression of VolumeData
3.2 Processing in the Compression Domain

3.3 Summary and Discussion

4 Wavelet Compression of Volume Data
4.1 The Haar Wavelet Transform
42 DataStructure

4.3 ImplementationDetails.

vii

iii

vii

U1 W N =

O O N3

13
16
18
20
20
24
32

33
34
37
42

viii CONTENTS

5 Processing of Compressed Volume Data 57
5.1 Mathematical Considerations 57
52 Implementation Details. 63

52.1 The Data Structureonthe GPU 63
52.2 Visualization 64
523 Processing e 66

6 Results 71
6.1 Compression. 72
6.2 Processing e 77

7 Summary and Conclusion 81
71 Compression. 82
72 Processing e 82
73 FutureWork 83

Acknowledgements 87

Bibliography 89

List of Figures

1.1

1.2

2.1

2.2
23

24

25

2.6
2.7
2.8
29
2.10
211
2.12

2.13

2.14
2.15
2.16
217
2.18

3.1

Visualization of a compressed dataset of a human torso. Filtered
and visualized in the compression domain. 1

Visualization of different large datasets 2

Hierarchy of rendering components in Cascada , courtesy of [Raspe

&Miiller 2007] 8
Haar and Daubechies wavelet and scaling functions 10
A simple example of a Haar wavelet decomposition. An image

and its first and second level wavelet decompositions 11
The image from figure 2.3 after two-level wavelet encoding in

zerotree representationo L. 12
A slice from an MRI- and CT-image of a knee with its wavelet

decomposition L L oo 13
DCT and Quantization Examples[Wallace 1991] 14
ZIg-ZAZING v v v v v i 15
The Sierpinski Triangle, 16
Multiple iterations from a random image to the Sierpinski Triangle 17
Partitioning for a two-dimensional vector quantization 18
Vector quantizationexample 19
The characteristic for the inversion operator (a) and for the his-

togram shift operator with a negativec(b). 21
The characteristic for the histogram spread operator (a) and for

the ~-correction with different y—values (b) 22
The characteristic for a thresholding operator with threshold ¢ . 23
2D Gaussian filterkernel o oL 26
Laplacian of Gaussian filter kernel 29
Morphological operator 31
Morphological operations 32
3D wavelet decomposition o 0oL 34

ix

3.2
3.3
34
3.5
3.6

3.7
3.8

4.1
4.2

4.3

44
4.5

5.1

52
5.3

6.1
6.2
6.3
6.4
6.5
6.6

LIST OF FIGURES

3Dcosinetransform. L 36
3D vector quantization L o oL 36
The standard convolution algorithm in the spatial domain . .. 38
The alternative convolution algorithm in the spatial domain . . 38
Edges in the well known Lena image. Courtesy of [Shen & Sethi

1996] . . . 40
Volume projection with the fourier projection-slice theorem . . . 41

At 1.8 bits per pixel vector quantization compressed MRI Scan
and the result of the proposed VRVQ based edge detection. Im-

ages courtesy of [Cosmanetal. 1993] 42
Separating average coefficients and high band coefficients . .. 48
The remaining coefficients, the sparse coefficient volume and the

importancevolumeo oL 49
Accessing a coefficient with volume coordinates (z,y, z) in the

presented data structure Lo oL 50
The compression class structure 52
The wavelet compression pipeline 53

Flat 3D RGBA texture representation for uncompressed volumes

(a) and for writing wavelet compressed coefficients 64
The compressed rendering class structure 65
The class structure for compressed processing on the CPU and

GPU. . .. 66
The tooth dataset at different compressionrates 72
Difference volumes of the tooth dataset 73
The orange dataset at different compressionrates 74
Difference volumes of the orange dataset 74
The head dataset at different compressionrates 75
Difference volumes of the head dataset. 75

Chapter 1

Introduction

This thesis describes development of techniques to directly process and visual-
ize compressed volume data. Therefore, wavelet compression and decompres-
sion functions as well as algorithms to directly visualize and process wavelet
compressed volume data were implemented. Interactive framerates for visu-
alization could be achieved and processing algorithms which work directly in
the wavelet domain were implemented. Some of them even outperform their
counterparts in the spatial domain.

)

Figure 1.1: Visualization of a 512 x 512 x 128 voxel dataset of a human torso. A bi-
nary threshold followed by a Laplace filter were applied to the compressed
volume. Visualization directly from compressed data. Compression rate is
1 : 5. Processing took combined about six seconds. Rendering at interactive
framerates

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Over the last few years, there has been a tremendous amount of research in the
field of volume visualization and processing, especially with the aid of pro-
grammable graphics hardware (GPUs). Nowadays, real time direct volume
rendering and image processing multiple times faster than on the CPU is pos-
sible with the aid of graphics cards which can be found in most off-the-shelf
consumer PCs.

Alongside this development, data acquisition techniques evolved to deliver
more and more detailed datasets. Today a medical CT-scanner, like the Siemens
SOMATOM Definition feature spatial resolution as low as 0.33mm.

Even though full body scans are still the exception due to the exposure to ra-
diation, long-leg studies are acquired routinely, to plan and review leg artery
bypass surgeries. These studies consist of approximately 2,000 slices, each
512 x 512 pixels large. Stored in a 16bit datatype this results in datasets ap-
proximately one gigabyte in size.

While for medical applications the exposure to radiation has to be minimized,
this is not the case for other areas like archaeology or industrial applications.
For example, researchers from the Rosicrucian Museum and Stanford Univer-
sity created a 3D dataset of an egyptian child mummy, from 60, 000 slices, each
as thin as 200 microns. The total size of this dataset is 92 gigabytes.

Another field that produces huge amounts of volume data is simulation. With
more computing power, simulations have gotten highly detailed over the last
few years. Even small flow simulations reach volume dimensions of 512 x512 x
512. At only a hundred time steps and 8bit per voxel such a dataset would take
up 12.5 gigabytes of memory.

(a) Long leg study (b) Industrial CT (c) Mummy

Figure 1.2: Visualization of different large datasets, (a) a long leg study (courtesy of
[1), (b) pores in a cast housing and (c) the head of the before
mentioned mummy, courtesy of Stanford Medical School, Volume Graphics

1.2. PROBLEM STATEMENT AND OBJECTIVES 3

While the raw computing power of todays GPUs can easily handle these large
datasets, the traditional bottlenecks of the graphics hardware still persist. The
GPU of the first GeForce graphics card, introduced in 1999, consists of 22 mil-
lion transistors. While this number was raised by more than the factor 60, to
1.4 billion on the just released GeForce GTX 280 chips, the amount of memory
and the transfer speeds grew much slower.

In comparison, the first GeForce featured 64MB of video RAM. Over the last
ten years this number has doubled four times to reach 1GB of memory on the
standard GTX 280 Cards.

During the same time, there was only one major revision made to the graph-
ics port which connects the graphics card to the CPU and main memory. In
2004, the Accelerated Graphics Port (AGP) was replaced by PCI express (PCle).
Between 1999 and 2004 there were only two minor revisions to AGP, increas-
ing theoretical maximum transfer speeds to the GPU from 533MB/s (AGP 2x)
to 2,133MB/s (AGP 8x). However, actual transfer rates usually were notably
below these specifications, specifically downloading data from the GPU suf-
fered from poor driver implementations. Upon introduction, PCle featured a
maximum of 16 lanes, each 250MB wide. The theoretical transfer speed was
2,000MB/s. Recently PCle was updated to version 2.0, which features double
the bandwidth per lane, totalling 4, 000MB/s.

Meaning, if one takes the increase of transistors as a measurement for the in-
creasing raw computing power, over the last ten years the development of
computing power outperformed the development of transfer speed and ac-
cesible memory by a factor of four.

Compression can be used to handle the increasing amount of data, the com-
parably slow transfer speed to the graphics board and the small amount of
memory. The vast processing power of today’s graphics cards can be used for
on the fly handling of the compressed data. This way the size of datasets can
be decreased, to speed up transfer to the graphics hardware and make it possi-
ble to load datasets exceeding its memory capacity. Additional computations
to access the compressed data can be handled by the GPU.

1.2 Problem Statement and Objectives

Today, sophisticated volume rendering solutions implement different methods
to be able to render datasets, which would not fit into the graphics boards

memory otherwise.

4 CHAPTER 1. INTRODUCTION

Probably the most commonly used approach is the so-called bricking. In a
preprocessing step the volume is divided into bricks, which are dynamically
loaded onto the graphics card if needed. Depending on the transfer function,
or the iso-surface value some of the bricks would not contribute to the final ren-
dering, as the opacity of all containing voxels is zero. Only the bricks that are
contributing to the rendering are loaded into the GPUs memory. Only when
the transfer function or the iso-surface value changes the bricks on the GPU are
updated.

Other common approaches incorporate classical compression techniques, mostly
typical image compression adapted to 3D volume data.

The volume processing framework Cascada opts for another approach to min-
imize transfers between the CPU and GPU memory. Image processing opera-
tions and visualization are modularly arranged in sequences. For a complete
sequence of different operations and simultaneous visualization the volume
data has only to be uploaded to the graphics board once. The user can inter-
actively change parameters and the results are visualized directly on screen

without the need for uploading new data to the GPU.

All approaches carry along some problems. Bricking can only be used for vi-
sualization purposes, as the compact form of the volume is achieved by only
loading active blocks onto the graphics board. For volume processing, how-
ever, the whole volume is always of importance. Classical compression tech-
niques have the benefit of small datasets, but visualization is quite costly and
for some compression types the data has to be completely reconstructed before
it can be accessed. In addition, currently there are no efforts to directly process
compressed volume data on the GPU.

The sequencing approach used in Cascada efficiently reduces transfers from the
main memory to the GPU memory and vice versa, however, the effective mem-
ory footprint of the volume datasets is not altered. Hence, only datasets which

are not exceeding the GPU memory can be processed.

Within the scope of this thesis, Cascada has been extended to handle wavelet
compressed volume data. Transfer time as well as the memory footprint of
the datasets could be decreased. However, processing and visualization algo-
rithms, suited to operate on uncompressed, regular grid volume data can not
be used to operate on compressed data. Therefore, adapted processing and
visualization algorithms which, if possible, work directly on the compressed
data, or at worst include decompression and compression of fractions of the
volume, to process a voxel have been developed.

1.3. STRUCTURE 5

1.3 Structure

This thesis is structured in the following way; In chapter 2, the fundamentals
of this work are presented. The volume processing and visualization frame-
work Cascada, which is the basis for the implementation of this thesis, will be
presented first. The second part focuses on image compression techniques, to
build a basis for the choice of the compression technique used in this thesis. In

the third part common image processing operations will be presented.

Chapter 3 gives insight to the current state of the art with respect to compres-
sion of volume data, focusing on compression techniques adapted from the
image compression techniques presented in chapter 2, as well as regarding pro-
cessing of compressed images. It concludes with a summary and discussion,
which shows the advantages and shortcomings of the different approaches and
constitutes the choice of volumetric wavelet compression for this thesis.

The following chapters 4 and 5 form the main part of this work. Chapter 4
presents the Haar wavelet transform, that has been implemented in Cascada
alongside the used data structure and closes with the documentation of the
implementation details. In chapter 5 the focus is on the processing and ren-
dering algorithms for wavelet compressed volume data. The chapter starts
with mathematical considerations for different processing operations and con-
cludes with the implementation details. This includes the data structure, as it
is used on the GPU as well as the implemented visualization and processing
algorithms for CPU and GPU.

The results of this work are presented in chapter 6. The performance of the im-
plemented algorithms are discussed. Visual quality as well as processing time
are compared to counterpart algorithms working on non-compressed data,
which are part of Cascada.

Finally, chapter 7 concludes this thesis by giving a summary of the results and
presenting an outlook into future work.

Chapter 2

Fundamentals

In the following chapter the fundamentals of this work are presented. In sec-
tion 2.1 a short survey of the volume processing and rendering framework
Cascada is given, which will serve as the basis for implementation of this thesis.
To be able to relate to the choice of wavelet compression, section 2.2 gives an
overview of different image compression techniques, including wavelet, cosine
and fractal compression as well as vector quantization. This chapter concludes
with section 2.3, which presents some of the most common image processing
operations and classifies them according to their application in the spatial do-

main.

2.1 Cascada

Cascada is a cross platform volume processing and visualization framework de-
veloped at the University of Koblenz over the past few years. Its main focus is
on object oriented modular implementation of volume processing algorithms
on graphics hardware []. The main idea behind Cascada is
to encapsule different processing and visualization modules in so called se-
quences (compare figure 2.1). These modules, named render passes, range
from simple thresholding operations to more complex operations like region
growing. A sequence can consist of multiple passes, or even sequences, which
each can be executed once or multiple times. The result of one pass is then set
to be used as the input of the next pass, by adjusting texture parameters. As de-
noted in section 1.1 the transfer of the data to and from the graphics hardware is
a limiting factor of todays GPUs. Cascada tries to minimize these transfers with
its modular design. Multiple operations can be applied to a volume dataset,
meanwhile the user can change parameters for these operations and view the
results live on screen, without the need for transferring the dataset from GPU

7

8 CHAPTER 2. FUNDAMENTALS

Sequence

| RenderPass C
| RenderPass B m] [Geometry

RenderPass A Em [Geometry D&

ShaderProgram Geometry D
~_
\F/,er(ex D & RenderTarget
rogram —
R RenderTarget ﬁﬁ
: =~ I
Fragment RenderTarget %
Program %
b \ ') until
converged

Figure 2.1: Hierarchy of rendering components in Cascada , courtesy of [

]

into CPU memory a single time.

In [] some insight in the performance relation between
GPU based operations in Cascada and CPU implementation is given. While the
GPU outperforms the CPU easily when measuring the time needed for com-
putation solely, when including the time needed to transfer the data between
CPU and GPU memory especially simple algorithms like a binary thresholding
operator are notably slower on the GPU. In [] additionally,
performance of more advanced sequences consisting of reasonable concatena-
tions of varying operations are compared to the same operations implemented
in software. A notable speedup could be shown by eliminating the costly data
transfer to the GPU these operations. Thus making the GPU a well suited tool
in the field of computation intensive medical image processing.

While the main focus in Cascada is on medical volume processing, one of the
main advantages of processing on the GPU is that visualization is virtually
free, with the data already on the graphics board. Thus, Cascada features direct
volume rendering via raycasting and maximum intensity projection alongside
multi-planar reconstruction. Additionally, one or two dimensional transfer
functions can be used for feature classification.

For comfortable interaction alternative input devices are supported by Cascada.
In addition to keyboard and mouse 3dconnexions 3D mouse SpaceNavigator as
well as Phantom haptic input devices made by SensAble can be used to navi-
gate in the volume.

At the moment version 2.0 of Cascada is in development. It is implemented
from scratch and when finished will feature a much more modular structure
than the current version 1.0. In addition to the current OpenGL based GPU

2.2. IMAGE COMPRESSION TECHNIQUES 9

programming model modern APIs like nVidias CUDA will be available. Cas-
cada 2.0 will be extensible via a flexible plugin interface, for example to support
alternative input devices, just like the SpaceNavigator. Cascada 2.0 will remain
plattform independent (running on Windows, Linux and Mac OSX), CMake
will be used to create project files for the different systems. During implemen-
tation a much higher level of quality control will be kept, for example, with
consisten unit testing.

2.2 Image Compression Techniques

In the early stage of this thesis the choice of compression techniques was nar-
rowed down to the four, which will be presented in the following. To consti-
tute the decision for the wavelet compression a short overview of wavelet (sec.
2.2.1), cosine transform based (sec. 2.2.2) and fractal compression (sec. 2.2.3)
as well as vector quantization (sec. 2.2.4) will be given in the following sec-
tions. For the sake of simplicity the two dimensional image based versions of
these techniques are presented. It is assumed that the characteristics of these
techniques do not fundamentally change in higher dimensions. For details
of existing three dimensional data compression techniques and the adaptions
needed to port the presented 2D modes refer to section 3.1.

2.21 Wavelet Image Compression

Wavelet compression is a transform coding technique which is used in the
JPEG 2000 Standard [] and consists of two passes. The first pass, the
actual wavelet transform and the second pass is the quantization or compres-
sion step. After the transform the wavelet domain representation of the image
consists of as much coefficients as the image of pixels. Transform coding tech-
niques are used because quantization applied in the original image domain (or
spatial domain) often result in poor quality. The same quantization technique
applied to a properly transformed image exploiting certain key characteristics
of the transformation domain can yield remarkable results.

The basis functions for the wavelet transform are translations and dilations.
These functions are based on the function 1, referred to as the mother wavelet.
The one dimensional discrete wavelet transform of a function f(z), with the
discrete scale and translation step size a and b, and the discrete scale and trans-
lation variable m and n is defined by

Wy (f) = lag| =% /f(x)w(aam:r — nbg)dx. 2.1

10 CHAPTER 2. FUNDAMENTALS

mother wavelet mother wavelet
scaling function scaling function
15
1.0 1.0
05
05
" ANV
0.0 05
05 1.0
15
1.0
20
02 0 02 04 06 08 1 12 0 05 1 15 2 25 3
(a) Haar wavelet (b) Daubechies wavelet

Figure 2.2: The Haar mother wavelet and the corresponding scaling function (a) and
the Daubechies D4 mother wavelet with its scaling function (b)

Typical examples for mother wavelets are the very simple Haar wavelet

1 for0<ax<1/2
Y(x) = -1 forl/2<z<t (2.2)
0 otherwise

with its scaling function

1 for0<z<1

P(z) = { (2.3)

0 otherwise

P(x) =) apd(2x — k) (2.4)

M—1
Plx) =) bed(2z — k), (2.5)

k=0
where (ag,...,an—1) and (bo,...,byp—_1) are appropriate finite sequences of

real numbers.

The wavelet transform can be interpreted as a low and high pass transforma-
tion. As such, the resulting coefficients can be represented as a low and a high
band. The low band coefficients usually consist of high energy and have no
advantage over non transformed voxels regarding compression. Thus in most
cases the transform is applied recursively on the low band. The number of

recursions is called the level of transformation. For two dimensional images

2.2. IMAGE COMPRESSION TECHNIQUES 11

the 1D wavelet transform is applied line-wise, followed by the same transfor-
mation applied row-wise to the result. This procedure yields four subbands
at each level: one is pass filtered twice and three are high pass filtered at least
once. The representation (at level one) can be seen in figures 2.5(b) and 2.5(e).
The low band is on the top left, the high bands on the right and/or bottom,
corresponding to the direction the high pass filter was applied. The two di-
mensional transform can be applied in two ways, called the standard and non-
standard transform. For the standard transform, first the rows are transformed
till the desired level is reached, then the multi level 1D transform is applied to
the columns. For the non standard transform, the 1D transforms are applied
alternately at each level. Even though this representation yields no compres-
sion thus far (as many coefficients have to be stored as original pixel values),
it often has certain advantages over the original image representation. Neigh-
bouring pixels in natural images tend to have very similar or even the same
values, meaning that the high pass filtered coefficients are often zero or at least
very small (compare the histograms of single level wavelet decompositions in
figures 2.5(c) and 2.5(f)). These characteristics of the coefficients can be used in

the second pass to compress the image.

40 30 20 W=pM 45 25 5 5 WM 35 10 5 5

Figure 2.3: A simple example of a Haar wavelet decomposition. An image and its first
and second level wavelet decompositions

Compression can then be done with a couple of more or less sophisticated
methods. Commonly only the high passed filtered coefficients are compressed,
while the low pass transformed remain unchanged. Thus, in the following
when speaking of coefficients the high pass filter coefficients are meant.

The basic method is quantization, meaning using fewer bits to store the coef-
ficients than the original image. As the coefficients are usually very small one
can delimit the range to a smaller area around zero and use a smaller datatype
to store the coefficients. The naive approach, to just cut off the bits of higher
value might seem to be a good solution, as there are very few coefficients in the
upper section of the range, but as these coefficients carry crucial detail infor-
mation a more sophisticated approach is needed. Another possibility would be
dividing the coefficients by a given divisor and only storing the integer value
of the results. Quantization usually results in a loss of visual quality.

A second approach, the Wavelet Zerotree Encoding [] is also a
lossy compression scheme. The individual recursion steps in the wavelet trans-

form can be interpreted as levels in a tree in which the residing low-band coef-

12 CHAPTER 2. FUNDAMENTALS

|

Figure 2.4: The image from figure 2.3 after two-level wavelet encoding in zerotree rep-
resentation

ficients after the last recursion step resemble the root node (in the above men-
tioned example ag) and the coefficients after the first recursion step are the
leafs. Each node, representing one coefficient of a decoded n-dimensional im-
age has 2" children. Typically there is a great similarity between a node and its
children. In particular it is often the case that if a coefficient is zero its children
will also be zero. This is used in the zerotree to cut off a branch once a coeffi-
cient is zero.

A third approach saves only the non-zero entries. However, as information of
the position in the image is indirectly stored in the position in the array, which
is lost when discarding the zero-elements, one has to store the position with
every item taken from the array. This however, is only feasible when there is a
large amount of zeroes amongst the coefficients, because every coefficient that
needs to be stored (all non-zero coefficients) needs additional memory to store
the position (i.e. 2 - 16bit for an image larger than 256x256 pixels).

A modification to the last approach uses a binary significance map, which cor-
responds in size to the original image. At every position where the wavelet
transformed original image is holding a non zero coefficient the importance
map holds 1. Accordingly, the importance map is 0 on all positions where
there is a zero coefficient in the transformed image. With this map the non zero
coefficients can be stored sequentially in a queue without position information.
To rearrange the coefficients for decoding one goes over the importance map
the same way as over the encoded image, when building the queue and pops
the first element out of the queue at every 1 in the importance map and puts it
in the corresponding position in the target image.

The last two methods are lossless by default, but compression rate can be fur-
ther enhanced for all four methods by setting a certain amount of small non
zero coefficients to zero. This is a lossy process and thus leads to worse visual
quality. But as many of the coefficients are very close to zero this often largely
increases the compression rates.

Decompression is straightforward. First one has to look up the coefficients be-

longing to the current block. Regarding to the compression technique used this

2.2. IMAGE COMPRESSION TECHNIQUES 13

(@) The original image. (b) Wavelet decomposition (c) The histogram
Courtesy of []

(d) The original image. (e) Wavelet decomposition (f) The histogram
Courtesy of []

Figure 2.5: A slice from an MRI-image of a knee (a), respectively from a cardiac CT scan
(d), the single level 2D wavelet decomposition of the images, the coefficients
have been brightened better visualization ((b) and (e)), and the histogram
of the wavelet decompositions, clamped to the interesting regions ((c) and

)

can be a more or less complex step. After that the reconstruction can be done
according to the chosen mother wavelet. If the number of levels used is larger
than one these steps have to be done iteratively from the last to the first level.

2.2.2 Discrete Cosine Transform

Just like the wavelet transform, the discrete cosine transform (DCT) is a trans-
form coding technique which is used for image compression. In fact the DCT
is a widely used image coding technique due to its use in the well known JPEG
compression [], which is the de facto standard for compression of photo-
graphic images today:.

A brief description of the DCT used in the JPEG compression standard can
be found in []. The DCT-based encoder works in three steps. First
a forward discrete cosine transform (FDCT) is applied to the image, then the
resulting cosine coefficients are quantized and finally run through an entropy
encoder.

14 CHAPTER 2. FUNDAMENTALS

139 144 149 153 155 155 155 155 256 -10 121 52 21 17 27 13 16 11 10 16 24 40 51 61
144 151 153 156 159 156 15 156 26 175 62 32 29 01 04 12 12 12 14 19 26 58 60 50
150 155 160 163 158 156 15 156 109 93 16 15 02 49 06 01 14 13 16 24 40 5 69 56
159 161 162 160 160 159 159 159 7119 02 15 09 01 00 03 1417 22 29 51 8 80 62
159 160 161 162 162 155 15 155 6 08 15 16 01 07 06 13 18 22 37 5 68 109 103 77
161 161 161 161 160 157 157 157 8 02 16 03 08 15 10 -10 24 35 55 o4 8 104 113 98
162 162 161 163 162 157 157 157 A3 04 03 15 05 17 11 08 49 64 78 8 103 121 120 101
162 162 161 161 163 158 157 158 26 16 38 -18 19 12 -06 04 7292 9% 98 112 100 103 99

(a) source image % (b) DCT coefficients ipct (c) quantization table ¢
5 0 -1 0 0 0 0 O 240 0 -10 0 0 0 O O 144 146 149 152 154 156 156 156
2 -1 0 0 0 0 0 O 24 -12 0 0 0 0 0 O 147 150 152 154 156 156 156 156
-1 -1 0 0 0 0 0 O -4 -13 0 0 0 0 0 O 155 156 157 158 158 157 156 155
0O 0 0 0 0 0 0 O 0 0 0 0 0 0 0 O 160 161 161 162 161 159 157 155
o 0 0 0 0 0 0 O 0 0 0 0 0 0 0 O 163 163 164 163 162 160 158 156
0O 0 0 0 0 0 0 O 0 0 0 0 0 0 0 O 163 164 164 164 162 160 158 157
o 0 0 0 0 0 0 O 0 0 0 0 0 0 0 O 160 161 162 162 162 161 159 158
0O 0 0 0 0 0 0 O 0 0 0 0 0 0 0 O 158 159 161 161 162 161 159 158

(d) normalized quantized co- (e) denormalized quantized (f) reconstructed image i’
efficients iq coefficients

5 0 2 -1 -1 1 0 O -1 0 O O O O O

(g) Zig-zagged, normalized, quantized coefficients

Figure 2.6: DCT and Quantization Examples| 1

This process is not done on the image as a whole but on 8x8 blocks. For color
images each channel is transformed separately. Therefore the image usually is
transformed into YCrCb (luminance-chrominance) color space.

The decompression incorporates inverse versions of all three steps in inverse
order. First the compressed image data is entropy decoded, then dequantized
and finally inverse discrete cosine transform (IDCT) is applied. A complete
transform including its reversal can be seen in figure 2.6.

Mathematically FDCT (equ. 2.6) and IDCT (equ. 2.7) on 8x8 sample blocks can
be described as follows:

707 i}
incr(,0) = 1CC0) | 303 ile.y)cos EEDT cou BE UV 3
=0 y=0 |
77 _
. 1 . (2z 4+ 1um (2y + 1)ur
i(z,y) = 1 ;;C(U)C(v)m@(x,y) cos 16 cos T (2.7)

with

1 _
Clw),Cw) = V2 forer =0 28)
1 otherwise

2.2. IMAGE COMPRESSION TECHNIQUES 15

and ipct the image in the DCT domain and : the original image in the spatial
domain.

Equation 2.6 is designed to operate on input data, i(x,y) centered around 0
rather than the usual image range from 0 to 2%, so 2%**~1 has to be sub-
tracted from each image value i(z,y). Then each coefficient ipcr(u, v) can be
computed with the given equation. The computed coefficients from an exem-
plary source image i (figure 2.6(a)) can be seen in figure 2.6(b). The top left co-
efficient ipcr(0, 0) represents the lowest frequency in the original image, while
frequencies get larger to the lower right corner.

The FDCT is followed by quantization. The 8x8 coefficient matrix is divided
component-wise by a quantization table, like the one shown in figure 2.6(c) and
the resulting values are converted to integer values (see equation 2.9). The ta-
ble is chosen according to the desired compression ratio. A set of quantization
tables optimized for human perception can be found in []. As the human
eye is more sensitive to lower frequencies the quantization tables represent this
by containing larger quotients in the lower right area and smaller ones in the

upper left region.

iq(U,’U) = ipcT(u,v) <0

q(u,v)

liper(u, v)/q(u,v)| for % >=—0 29
[ipcr(u,v)/q(u,v)] for

After the quantization the normalized quantized coefficients (figure 2.6(d)) con-
sist of a lot of zeroes which are usually divided from the nonzero coefficients
by a diagonal line. This is used for the so called zig-zagging. Instead of coding
the block line- or rowwise the coefficients are rearranged in a zig-zag line from
the upper left to the lower right (compare figure 2.7).

Now the low frequency coefficients, which are more likely to be non zero are
placed before the higher frequency coefficients which helps to make the coding
more efficent. The resulting sequences then get compressed with a Huffman
coding [].

ST

Figure 2.7: Zig-zagging

16 CHAPTER 2. FUNDAMENTALS

2.2.3 Fractal Compression

Fractal image compression was introduced in []asavec-
tor based technique. It is a lossy compression technique, which compresses an
image by storing it as a set of transformations. Ideally an image can be stored
as only one transformation function. The unique fixpoint of this function then
must be (a close approximation of) the image itself.In order to to store such
a function one usually needs only a fraction of the storage amount needed to
store the original image. Decompression is then done by iterative application
of this function on an arbitrary starting image until the original image is re-
ceived.

This concept can be illustrated very easily with one of the simplest fractals, the
Sierpinski triangle (figure 2.8). The Sierpinski triangle is self similar, as one can
copy scaled versions of the triangle into its corners and receive the same image.
In other words, if w; is the transformation that maps the triangle in its upper
corner and respectively w; and w3 map the triangle to the lower corners, the
Sierpinski triangle can be described as the fixed point of the transformation

w=wi Uwg Uws (2.10)

as the transformation applied to the triangle leaves it unchanged. The trans-
formation w is contractive, meaning the distance between two points p and ¢

d(p.q) = (po — ¢)* + (py — @)* (2.11)

after a transformation is never larger than before the transformation, because
all of the transformations w; are contractive. With the Sierpinski triangle being
the fixpoint to the transformation w and w being contractive according to the
Banach Contractive Fixed-Point Theorem [], the Sierpinski triangle is

Figure 2.8: The Sierpinski Triangle

2.2. IMAGE COMPRESSION TECHNIQUES 17

a limit of the sequence
X, wX, WX, ... (2.12)

with X representing an image and w’ the composition of w with itself i-times
meaning by iteratively applying w on any image one will at some point receive
the Sierpinski triangle with any rate of accuracy (compare figure 2.9). Thus,
one can say that the transformation w alone can be used as a representation for

the image of the Sierpinski triangle. The representation is also known as an

Iterated Function System (IFS).

Figure 2.9: Multiple iterations from a random image to the Sierpinski Triangle

Such a compact form as in equation 2.10 can only be achieved for fractals like
the Sierpinski triangle but many images like photographs do have areas of self
similarity. Therefore, Partitioned Iterated Function System (PIFS) based on IFS
can be applied to real world images.

The image is partitioned in a grid commonly known as range blocks. These
range blocks are all the same size and non-overlapping. For each of these
blocks a region in the image has to be found which can be transformed with a
set of contractive functions to match the original range block as close as pos-
sible. In a typical application the rangeblocks are matched to a fixed set of
domain blocks in the image. These blocks are usually double the size as the
range blocks and are not arranged in a fixed grid, i.e. they can overlap. The
transformations applied to the domain blocks consist of scaling, translating,
rotating and reflecting, as well as adjustments in brightness and contrast. As
only the transformations are stored and not the domain blocks, the codebook
formed by these blocks is called virtual.

To decompress the image a new image with the size of the original image is
created. The functions of the PIFS are then applied iteratively to the starting
image until the changes in the image between two iterations are smaller than a
defined threshold. Due to the nature of fixed points the starting image can be
random, however, the time to compose the final image or the number of itera-
tions may vary depending on the starting image, yet the image quality will be
the same.

18 CHAPTER 2. FUNDAMENTALS

2.2.4 Vector Quantization

Just like fractal image compression vector quantization []
is a vector based image compression technique. By nature the vector quan-
tization is a lossy compression scheme as its main concept is to approximate
a range of values by a single value. An example for a one-dimensional vec-
tor quantization is rounding to the nearest integer: all values in the range
lz —0.5...2 + 0.5] are mapped to the single value z.

An example for a two dimensional vector quantization can be seen in figure
2.10. Each of the stars, called codevectors represents all vectors lying in the
surrounding region, the so-called encoding regions. All codevectors together
form the codebook and all encoding regions form the partitioning.

Y —

| /
/ /\/

Figure 2.10: Partitioning for a two-dimensional vector quantization

For a set of input vectors X = {x1,X2,...,x)} and a given codebook C' =
{c1,¢c2,...,cn} the optimal partitioning, meaning the partitioning with the
smallest error is the set of all regions, where every region S,, contains all input
vectors which are closer to the enclosed codevector than to any other codevec-
tor (equation 2.13).

Sp={z|llz—cal’ <llz—cw|?Vn' =1,2,...,N} (2.13)

These regions are also called Voronoi regions and the whole partitioning builds

a Voronoi diagram.

In image compression vector quantization is used in the following way: The
input image is partitioned into a regular grid of non-overlapping blocks, just
as is done for fractal compression. These blocks form the set of input vectors.

Then the input vectors are matched with the codebook as described above. The

2.2. IMAGE COMPRESSION TECHNIQUES 19

codebook can be a set of vectors from the input image, similar to the virtual
codebook in fractal compression or a global set of vectors defined indepen-
dently from the input image. Contrary to fractal compression, input vectors
and codevectors need to be of the same size. When the closest match is found,
rather than the block of pixels a pointer to the vector in the codebook is stored.

In contrast to the fractal compression the codebook needs to be stored to lookup
the blocks in the decompression step in addition to a lookup map, which is the
vector quantization equivalent to the PIFS. Thus the compression ratio mostly
depends on the size of the codebook (the size of the lookup map is defined by
the size of the input image, the size of the input partitioning and the size of the
pointers to the codebook entries), meaning the crucial part in this procedure
is to find a codebook which is small enough to yield the desired compression
ratio, yet big enough to map all input vectors with minimal error.

The decompression is a simple inversion of this process. For all entries in the
lookup table the corresponding codebook vectors are fetched and placed in the
appropriate position in the target image (which is defined by the position of
the pointer in the lookup table).

Figure 2.11 shows an example of a vector quantization. The input image on the
left is partitioned in 1x2 blocks which are the input vectors. These are matched
(red arrows) against the codebook (in the middle) and instead of the input vec-
tors the address in the codebook (green arrows) is stored in the lookup table
(bottom), which has the extents of the input image scaled by the vector size.
The (20,30)7 codevector is the nearest match for the (20,25)7 input vector, so
they get matched. For decompression (blue arrows) codevectors are placed in
the target image at the appropriate positions given by the lookup table.

50 | 20 20 [50 50 20 20 | 50

50 | 30 25 |50 50 30 30 | 50

Figure 2.11: Vector quantization example

20 CHAPTER 2. FUNDAMENTALS

2.3 A Classification of Image Processing Operations

[] break image processing operations down to three classes:
point based operations, local operation and arbitrary or global operations. This
partitioning is the basis for the classification presented in this section. The
three classes are further subdivided and common image processing operations
are presented and assigned to the classes. For the sake of simplicity, just as
it was the case in the previous chapter the operations are presented for two
dimensional images only. It is assumed that the classification will still be valid
for 3D operations.

2.3.1 Point Based Operations

Point based image operations are operations based on the current pixel only.
No neighbouring data is taken into account. They can be interpreted as a spe-
cial case of local operations (section 2.3.2) with a 1 x 1 neighborhood. Univer-
sally those operations can be described by

f*(xv y) = Tz,y (f(l’, y)) (214)

with f(z,y) the gray value at position (x,y) in the input image and f*(z,y)
the result for the corresponding position in the target image. The index ., on
the transformation 7" denotes dependance on the position in the image which
is non-mandatory. If the transformation is position dependent it is called inho-
mogeneous, (homogeneous otherwise) and can be written without the index

[(@y) =T (f(2,y)). (2.15)

Homogeneous Operations

Homogeneous point operations can easily be calculated by a gray value char-
acteristic. For every input gray value g € G the characteristic provides the
target gray value ¢*:

geG={0,1,...G-1}: g* =T(g) (2.16)

For discrete gray values the characteristic can be replaced by a simple look up
table.

2.3. A CLASSIFICATION OF IMAGE PROCESSING OPERATIONS 21

Inversion

Inversion maps the maximum value of the input to zero and the minimum
value to the original maximum value minus the minimum value. Values in be-
tween the minimum and maximum value are mapped linearly between these

two. Every inverted value can be computed by a single difference operation.

T(9) = gmax — g (2.17)

The only value that must be known besides the input gray value g is the max-
imum gray value of the dataset gmax. The inversion is reversible without any
data loss by repeated appliance.

c-19 e-A9
G+l

o
<
o\ [T

(b)

Figure 2.12: The characteristic for the inversion operator (a) and for the histogram shift
operator with a negative c (b)

Histogram Shift

The histogram shift is a simple method to adjust the brightness of an image. By
adding a constant value to all gray values in the image the image is brightened
or darkened. The histogram shift can be computed with

T(g) = clamp(0, G — 1, g+ ¢) (2.18)

where
a forz<a

clamp(a,b,z) =¢ b forax>b (2.19)
z otherwise

due to the clamp-operator histogram shift is not reversible except for the spe-
cial case when g + c is in between 0 and G — 1 for all pixels in the image.

22 CHAPTER 2. FUNDAMENTALS

Histogram Spread

Histogram spreading is a more advanced brightness regulation technique. It
increases the contrast by mapping the actual minimum and maximum gray
values (gmin & gmax) Of the original image to new boundaries, usually the
boundaries of the target image range. The values in between are mapped lin-
early.
9 — 9min
T(g) = (G —1) - L —Imin_ (2.20)

9max — Ymin
Histogram spreading is a useful tool for converting images to different datatypes
(i.e. converting a CT image with 12 bit depth to an 8 bit gray image). The
histogram spread is reversible by applying histogram compression but due to

rounding errors only in the continuous grey space without error.

(@)

Figure 2.13: The characteristic for the histogram spread operator (a) and for the -
correction with different y—values (b)

Gamma Correction

The gamma correction is used to yield the same luminosity perception for an
image on displays with different luminance settings. The gamma correction
results in an overall darkening or brightening of the input image while pre-
serving the brightest (G — 1) and darkest value (0). With the exponent v < 1
the result is brighter than the input, with v > 1 it is darker. If v = 1 the image
is unmodified (see figure 2.13(b) for characteristics for different y-values).

.
9
T =(G-1)- | 5=——— 221
w=c-1-(g%))
The gamma correction can be reversed exactly only in the continuous gray
space by using % instead of . For the discrete case due to rounding errors

the reverse can only be approximated.

2.3. A CLASSIFICATION OF IMAGE PROCESSING OPERATIONS 23

Thresholding

Thresholding is a very basic segmentation algorithm based solely on gray val-
ues. One or more thresholds can be used to partition the image into regions
of similar gray values. The simplest form is binary thresholding with only one
threshold ¢. If the input gray values is smaller than ¢ it is set to zero, else to the

maximum value of the gray range.

T(g9) =

{ 0 forz <t (2.22)

G—-1 forx>t

Multiple thresholds can be used to partition the image into more different re-

gions. Thresholding is not reversible.

c-19

0 t G-1

Figure 2.14: The characteristic for a thresholding operator with threshold ¢

Inhomogeneous Operations

All of the above presented operations are homogeneous point based. Inhomo-
geneous operations are used rather infrequently compared to homogeneous.
Since the result of such an operation is not solely dependent on the gray value
they cannot be written as functions of g. Thus, these operations also cannot be

represented by a gray value characteristic.

Difference Image Operator

The difference image operator uses two images (fy and f;) as input and deliv-
ers the absolute difference between the gray values of the two pixels with the

same position in the input images as result.

f*(‘rn’y) = |f0(x,y)—f1(x,y)\ (223)

The operation is often used to compare an image after the appliance of an op-
eration with the original image, for example to measure the error of a lossy

24 CHAPTER 2. FUNDAMENTALS

compression. The difference image operator is not reversible due to the use of
the absolute-operation.

Correction of Inhomogeneous Illumination

Inhomogeneous illumination can be caused by several reasons when acquiring
an image. Many imponderabilities have influence on the acquired image. For
example dust on the lens or unbalanced sensitivity of the sensor can cause a
bias. If the bias is known, or can be measured by acquiring a neutral image
with the same recording device, it can be corrected by point wise division of
the input image f by the bias image f3.

f(z,y)
fb($7y)

[y) = (G=1)- (2.24)
In the discrete gray space the reverse can only be approximated, in the contin-

uous the operation is fully reversible.

2.3.2 Local Operations

Point based operations as described in section 2.3.1 can only be used to describe
a very small set of image operations. A more general approach is to use infor-
mation of the neighborhood of a pixel to compute the transformation of the
pixel. One can comprise only the direct neighbors or the complete neighbor-
hood of the pixel. Usually a neighborhood of 3 x 3 or 5 x 5 pixels is considered
for such an operation. Neighborhood based operations are not limited to two
dimensional images and neighborhoods. Typically n-dimensional data is pro-
cessed on the basis of an 2™ neighborhood. Local operations are also referred

to as filtering.

Local operations can be divided in linear and non-linear operations. For linear
operations a kernel or mask is created which assigns a weight, h(i, j) to every
pixel of the desired neighborhood by the following scheme:

h(~1,—-1) h(0,—1) h(1,—1)
h(=1, 0) h(0, 0) h(1, 0)

h(=1, 1) (0, 1) h(1, 1)

Hereby the pivot point, which usually is the center of the mask has the coordi-

2.3. A CLASSIFICATION OF IMAGE PROCESSING OPERATIONS 25

nates (i,j) = (0,0). The application of such a mask M on an image f is called
convolution (denoted f * h) and can (without normalization) be described as
follows:

Fay)= > fle—iy—j)-nj) (2.25)

(4,5)eM

Whether the result of the convolution is normalized depends on the different
masks. Usually if the sum of all items in the kernel is equal to zero no normal-
ization is needed else the result gets divided by this sum.
Linear filters can be further subdivided in separable and non separable filters.
Separable means an n-dimensional filter of edge length k can be applied by
consecutively applying n one-dimensional filters with k elements. If imple-
mented as sequence of one dimensional filters separable filters can be com-
puted much faster as non separable filters, as only 2k operations instead on k?
operations are needed. Generally filter masks with the rank 1 are separable,

mask with a rank # 1 are not.

Box Filter

The box filter is used for noise reduction by inscribing the arithmetic mean of
the neighborhood to the current pixel. The box filter can be written as a 3 x 3

mask
1 1 1 1
M = g 1 1 1 (2.26)
1 1 1

While single points with extreme gray values are flattened the disadvantage
of the box filter is the fact that it does smear the image. It smoothes edges and
small periodically repeating edges could be lost completely.

The box filter is seperable and can be computed with the following two filter

masks:
1
1 1
1
Gaussian

The Gaussian filter is the discrete version of the probability density function of

the normal distribution (normalized, with mean i = 0 and the variance 02 = 1)

Fr) = —— % (2.28)

26 CHAPTER 2. FUNDAMENTALS

The Gaussian filter is being used for noise reduction and image smoothing. It
is not as strong as the box filter but still capable of smoothing extreme gray

value changes. As a 3 x 3 mask the Gaussian filter looks as follows:

Ltz
M=— - .
242 (2.29)

1 2 1

The Gaussian, just like the box filter, is seperable. It can be computed by two

one-dimensional Gaussian filters:

M1 =--1 2 1 and M2 = Z -2 (230)

Figure 2.15: 2D Gaussian filter kernel

Differential Edge Detection

Differential edge detection is used to emphasize edges in an image. In the
continuous an edge is defined by local extrema in the differential quotient of
the input signal. The edge direction is then perpendicular to the direction the
input signal was differentiated in. In the discrete this can be approximated by

differencing, however, the smallest distance between two points is 1.

[@y) = flzy) — flz—1y) (2.31)

and

2.3. A CLASSIFICATION OF IMAGE PROCESSING OPERATIONS 27

emulate the partial derivative in 2- (equ. 2.31) respectively y-direction (equ.
2.32). The corresponding filter masks look as

0 0 0 0 -1 0
M,= -1 1 0 respectively My,=0 1 0. (2.33)
00 0 0

These edges in the resulting image have to be interpreted as shifted by half a
pixel in the particular direction. Alternatively symmetric versions of the ker-
nels are used:

0 0 0 —1
M,= -1 0 1 respectively M,=0 0 0. (2.34)
0 0 O 0

All the four kernels are merely one dimensional vectors in matrix notation, so
they are all separable to the used 1D vector and the vector (0, 1, 0) respectively
(0,1,0)”. However, only using the original 1D vector is more efficient. These
operations, besides detecting edges also amplify differences caused by noise.
The following edge detection operators (Prewitt and Sobel) include noise sup-

pression to minimize this problem.

Prewitt Operator

The Prewitt operator is a combination of the symmetric difference operator for
edge detection and an averaging over the neighboring pixels of the pivot point
in the supposed edge direction for noise reduction. It can be represented for

the z- and y-direction by the following masks:

1 -1 0 1
M, = -1 0 1 = 1 = -1 0 1
1 -1 0 1
and (2.35)
—1 -1 -1 -1
M, = 0 * 111 = 0 0 0
1 1 1

It is obvious that the two kernels are separable, as they both are derived from
two one dimensional filter masks.
Edges in both directions can be combined in a single result image by applying

28 CHAPTER 2. FUNDAMENTALS

both kernels to the input image and adding the absolute results.

1) = /(Mo f(a,9)? + (M * f(2,))? (2.36)

Sobel Operator

The Sobel operator is very similar to the Prewitt operator, however, instead of

averaging a one dimensional Gaussian is used to suppress noise:

-1 0 1
M, = -1 0 1 = 2 = -2 0 2
1 -1 0 1
and (2.37)
—1 -1 -2 -1
M, = 0 * 1 21 = 0 0 0
1 2 1

The Sobel operator can also be used for diagonal directions:

0 -1 -2 —2 -1 0
M, =1 0 -1 and M= -1 0 1. (2.38)
2 1 0 0 1

A direction independent edge image can be received analogous to the Prewitt
operator, as shown in equation 2.36. Just as the Prewitt operator the orthogonal
versions M, and M, are separable, however, the diagonal versions are not, as

their rank is three.

Laplace Operator

The aforementioned Prewitt and Sobel operators are referred to as first order
edge detection operators. The Laplace operator is a second order edge detector.
Meaning, the Laplace operator is based on the the second partial derivate of the
input signal. The continuous version is defined by the sum of the second order

partial derivates:
o°f 0°f
=5+ 5 2.39
ox? = 0y? (2:39)
The discrete pendant is obtained by the sum of iterations of the first order

derivates from equations 2.31

fy) = (fe+ly) - flzy) - (fl@y) - flz—1y) (2.40)
f(‘r+ 1’3/) —2f($7y)+f($— 1,?}),

2.3. A CLASSIFICATION OF IMAGE PROCESSING OPERATIONS 29
for z-direction and 2.32

for y-direction. The resulting kernel the looks like

0 10
M= 1 -4 1. (2.42)
0 10

The Laplace operator is rotation independent, thus emphasizes edges in all
directions. Homogenous areas and constant gray ramps are ignored. As the
operator does not incorporate noise suppression, like the Prewitt and Sobel
operator it emphasizes noise alongside edges. Thus, often a Gaussian operator
is used before the Laplace. The combination is referred to as Laplacian of Gaus-
sian (LoG) or due to the form of the combined kernels mexican hat operator.

The rank of the Laplace operator is 2, hence it is not separable.

Figure 2.16: Laplacian of Gaussian filter kernel

Symmetric Nearest Neighbor

The symmetric nearest neighbor (SNN) filter is a non-linear procedure to re-
duce noise. In a 3 x 3 neighborhood, two opposing pixels build a pair, as de-
noted with equal letters in equation 2.43.

C1 b1 dl
ay T ap (2.43)

dg b2 Co

30 CHAPTER 2. FUNDAMENTALS

For each tuple, the element whose gray value is closer to the gray value of the
pivot point (the nearest neighbor) is stored, the other one discarded.

ni for ni—x<no—x (2.44)

N ={a,b,c,d} with n= {
ny else

The average of these four nearest neighbors then is inscribed in the pivot point.

1
x:Z(a—&-IH—c—f—d) (2.45)

The SNN filter smoothes single pixels with a large gray value difference com-
pared to their neighborhood, as the pivot point is not used for calculating the
result. The main advantage of the SNN filter compared to linear smoothing
filters is that edges and details are retained in the process. Drawbacks of this

method are that it leads to an artificial look and very blocky images.

Median Filter

The median filter is used to remove outliers, meaning pixels whose gray value
differ greatly from the neighboring pixels. Instead of using the arithmetic mean
of the surrounding pixels, the pixels from the neighborhood are sorted accord-
ing to their gray value and the pivot point is replaced with the center element
of the sorted sequence. An example is given in equation 2.46. The center pixel
with the grayvalue of 89, clearly an outlier, is detected as such by the median
filter and replaced with the median element of the corresponding neighbor-
hood, which is 14.

15 16 15
14 89 13 ~— {12,12,13,13,14,15,15,16,89} — 14 (2.46)
13 12 12

The median filter is an excellent tool to dispose salt and pepper noise, which
are single, randomly distributed pixels with no connection to their neighbor-
hood, for example caused by broken sensor elements. The disadvantage of
most median implementations is that they are very performance consuming
for larger masks due to the sorting, which has to be done for every pixel. How-
ever, [] presents an algorithm which decreases computational com-
plexity from O(r), where r is the radius of the mask to O(log r).

2.3. A CLASSIFICATION OF IMAGE PROCESSING OPERATIONS 31

Morphological Operations

Morphological operations describe a set of operations, mainly used on binary
images (images with the range G = {0, 1}), to modify the form of features in
the image. The most common morphological operations are erosion (©), dila-
tion (&), opening (o) and closing (e).

For morphological operations, images, as well as the structure elements, which
are the morphological counterparts of the kernels described before, are consid-
ered as sets of coordinates, rather than signals. Such a set of coordinates is
given by

P={peZ’, p=(xy) (2.47)

The input image is defined as I and the structure element as S. The morpho-
logical operations can then be described with set algebra.

(@ (b)

Figure 2.17: A binary input image (a) and a morphological structure element (b), the
field marked with the circle is the pivot point

For the erosion, the structure element is moved over the image, the pivot point
p is part of the resulting image, if all points of the structure element at this

position are also element of the input image.
IcS={pcZ?S, CI} (2.48)

Dilation is the counterpart to erosion. If at least one point in the structure
element at pivot point position p is also element of the input image, the point
also belongs to the result.

I1eS={pecZS,NI#0} (2.49)

Erosion and dilation can be used for noise reduction in binary images, how-
ever, the size of the remaining structures is considerably altered after the oper-
ation. By applying the counterpart operation with the same structure element

32 CHAPTER 2. FUNDAMENTALS

the size can approximately be restored. The combination of erosion followed
by dilation is called opening and defined by

IoS=(IcS)®S. (2.50)
Dilation followed by erosion is referred to as closing and can be written as
IeS=(I®S)oS. (2.51)

Opening will remove thin parts sticking out of an object and split up thin con-
nections between objects. Closing gaps in an objects shape will be closed and
close objects will be combined.

For greyscale images the morphological operators can be implemented similar
to the median operator. Instead of the center element of the sorted sequence
for erosion the first and for dilation the last element is assigned to the pivot

point.

(a) erosion (b) dilation (c) opening (d) closing

Figure 2.18: The image from figure 2.17 after applying morphological operators

2.3.3 Global Operations

Just like point based operations, global operations can be described as a special
case of local operations. Basically, a global operation is a neighborhood based
operation which uses the whole image as the neighborhood.

Even though they are usually implemented on local subimages, typical global
operations are the transform coding operations presented in sections 2.2.1 and
2.2.2 in this chapter. Another transform coding technique which is a global op-
eration is the fourier transform (although usually implemented as fast fourier
transform via multiple local operations, as well).

Other arbitrary operations include image scaling, rotation, translation or warp-
ing. However, these kinds of operations are not in the focus of this thesis and

will not be described here in detail.

Chapter 3

State of the Art

Data acquisition techniques, as well as the accuracy of simulations were greatly
improved over the last several years. This is a mixed blessing; For example,
medical images or flow simulations are now extremely detailed but the amount
of storage space needed has vastly increased.

With the limited amount of memory on today’s graphics boards, which are
utilized for a lot of volume visualization and processing tasks, efficient volume
compression techniques are needed to load these large datasets into the graph-
ics boards memory. Many of the existing compression techniques, mostly those
for image compression, have been adapted to 3D for volume as well as video
compression. The most important work regarding volume compression will

be presented in section 3.1.

With the compressed data on the graphics board the visualization and process-
ing algorithms, which are based on regular grid volume data, will not work
anymore. Section 3.2 will give a short overview of the important research done
to directly visualize and process compressed image and volume data. Most of
the research regarding processing in the compression domain has been done
for two dimensional image data. Thus, the presented processing approaches
are based on 2D images but it is assumed that these techniques can be adapted
to 3D volume data. The visualization methods presented, however are all for
3D data.

In the concluding section 3.3, advantages and disadvantages of the compres-

sion techniques with regard to processing will be discussed and the decision to
choose wavelet compression as the basis for this thesis will be reasoned.

33

34 CHAPTER 3. STATE OF THE ART

3.1 Compression of Volume Data

In [] a brief overview of wavelet transforms and compression in
computer graphics applications, including volume rendering is given. Volume
wavelet transformation can easily be done by transforming the volume slice by
slice with a two dimensional wavelet transform. However, it usually is better
to exploit the similarities in the third dimension by a real three dimensional
transform. This can be done by consecutively applying three one dimensional
wavelet transforms on the volume, one along each axis. Shigeru Muraki dis-
cusses the application of three dimensional orthogonal wavelet transforms to
volume data in []. Since then the main focus in this area has been
on wavelet compression especially suited for volume rendering.

[] and [] present multiresolution frameworks for volume
rendering which incorporate the implicit multiresolution representation in the
wavelet decomposition with hierarchical structures. [],

[] and [] focus on fast random access of voxel values in
the compression domain without decompressing the volume as a whole to op-
timize the compressed data for volume rendering. Finally in []
a system for wavelet transforms utilizing graphics hardware is presented. The
authors come to the conclusion that for simple (de-)composition the graphics
hardware does not perform much better than software, however a lot of time
can be saved in rendering applications due to the fact that the data transfer
between CPU and GPU can be reduced severely.

For discrete cosine and discrete fourier transformation based compression tech-
niques the extension to 3D and volume data can theoretically be made by using
3D versions of the cosine and fourier transformations. The 2D fourier transfor-

(a) (b) ()

Figure 3.1: The 3D wavelet decomposition in 3 steps. (a) shows the original volume,
(b), (c) and (d) the volume after wavelet transform in x-direction, followed
by y- and z-direction. Note: the different shades of gray denote different
subbands, not actual gray values in the volume data

3.1. COMPRESSION OF VOLUME DATA 35

mation o oo
Flu,v) = / / F(,y)e 2T gy (3.1)

for example would be replaced by the 3D version

F(u,v,w) Z/ / / f(a?,y,z)e_ﬂ”(“”r’“y*“’z)dxdydz. (3.2)
—o00 J—o0 J —o0

In practice, however, these forms are not used for 2D nor 3D fourier transforms.
Usually for the n-dimensional case the fourier transform is applied iteratively n
times to the input data, just as described before for the wavelet transformation.
For discrete data, like images the discrete fourier transformation

N-1
Fu)= " fz)e ¥, (3.3)
@=0

is used. Implementing this straightforwardly, however, would perform very
poorly. Instead, the discrete fourier transform is usually computed via fast
fourier transforms, like the Cooley-Tukey algorithm [I
This decreases the number of computations needed for n points from 2n? to
2n - logz(n). The cosine transform is very similar, mainly differing in the use of
the cos-function rather than e-functions. Porting the DCT defined by equation
2.6 to 3D results in

inct(u,v) = $C(u)C(v)C(w) -

(3.4)

i i il(%), 7) cos (2z Jerl)wr cos (2y T61)v7r o (22 J;61)w7r
©=0 y=0y=0
However, just like the discrete wavelet transform and the discrete fourier trans-
form the discrete cosine transform is usually computed by applying 1D trans-
forms for each dimension. In addition, faster algorithms similar to the fast
fourier transform do exist.

[] present volumetric compression using a three dimensional
discrete cosine transform alongside quantization, adaptive bit-allocation and
Huffman encoding. The authors conclude that while compression efficiency
was better compared to slice-wise 2D transformation, the visual quality of the
3D transformation data was at least as good as of the 2D data. As random voxel
access in the cosine and fourier domain require inverse transformations of the
whole image, the authors of [] partition the volume and ap-
ply the fourier transformation separately for every partition. Accessing voxels
then requires only the inverse transformation of the circumjacent partition.

36 CHAPTER 3. STATE OF THE ART

(@) (b)

Figure 3.2: A random volume (a) and the much more sorted 3D cosine transform with
the typical zig-zag structure (b)

Fractal compression can be adapted for volumes easily by matching three di-
mensional range- and domain-blocks instead of two dimensional. The addi-
tional dimension results in a broader pool of transform functions, benefiting
in better compression rates and better visual quality but the trade off is an in-
crease in time needed for the pairing tests as more possible matches have to
be tested. In [] a fractal volume compression system is
presented. The system reaches slightly higher compression rates at similar sig-
nal to noise ratios for real 3D compression compared to slice-wise compression
(i.e 22.27 : 1 compared to 18.06 : 1 for a CT scan of a head). In []
an implementation of (two dimensional) fractal compression using graphics
hardware is presented. The authors state that their GPU implementation can
performs about 21 million pairing tests per second, whereas the CPU version
yields about 220 thousand tests per second. Combining the use of 3D blocks
with a GPU implementation could thus eliminate the largest disadvantage of

the three dimensional fractal compression.

Vector quantization can make use of 3D structures by choosing 3D blocks as
input- as well as codebook-vectors. [] present an image
sequence compression approach based on 2D blocks. It uses label replenish-

(@

Figure 3.3: A volume (a) with a lookup volume for vector quantization based on 2x2x2
input blocks (b) and the 3D codebook (c)

3.2. PROCESSING IN THE COMPRESSION DOMAIN 37

ment in temporally stationary regions to exploit similarities in the time dimen-
sion. They claim to achieve less error at same compression rates compared to
the three dimensional approaches based on slice-wise coding. In [

] a more advanced method for image sequence coding is introduced. It in-
corporates spatiotemporal correlation alongside motion information and uses
2 x 2 x 2 blocks as vectors. [] present a 3D compression pro-
cedure, based on vector quantization, for hyperspectral images. In addition
to the two spatial dimensions hyperspectral images have a third dimension,
containing spectral information. They can be used to differentiate materials,
which have similar or equal visual properties, but different properties in the

part of the spectrum not visible for the human eye.

3.2 Processing in the Compression Domain

A lot of work has been done in the field of image denoising in the wavelet do-
main. Consider a noise free image, most of the wavelet coefficients would be
zero. The non-zero coefficients likely would be comparatively large, as they
would result from edges in the original image. Noise, however, would in the
wavelet representation be transformed to small, non-zero coefficients. Con-
sequentially in [] an image denoising approach in
the wavelet domain named SureShrink is presented, which incorporates soft-
thresholding to remove small coefficients identified as noise directly in the
wavelet domain. The SureShrink defines the threshold adaptively by minimiz-
ing the Stein Unbiased Risk Estimate (SURE). Another similar thresholding ap-
proach is presented in [|. However, here the threshold is de-
fined via Bayesian risk minimization. Finally the authors of []
propose a soft-thresholding method named NormalShrink, which outperforms
the other approaches in visual quality as well as computation time. Another
competing approach is Wiener filtering [] in the wavelet domain.
Instead of thresholding, linear Wiener filtering is applied in the wavelet do-
main. Work in this area has been presented by numerous authors [;
; 1
The authors of [] as well as []
present more general image processing methods in the wavelet domain. In
[] the application of scalar multiplication and scalar addi-
tion as well as the addition of two images in the wavelet domain is shown.
Furthermore arbitrary linear operators are ported into the wavelet domain.
Therefore the operator (O) as well as the wavelet transform (V) and the in-

verse wavelet transform (W™!) are represented as matrix multiplications. Con-

38 CHAPTER 3. STATE OF THE ART

for all image elements (x, y)

o0 - -0 > - ' - ’ ' - ' ' D
* lon|an|en|aen I:>
' ’ ! ’ ! ’
02 | L2 | 22 | G2
' ' . ! ' . ’ ' D

Figure 3.4: The standard convolution algorithm in the spatial domain

sequentially the operation transformed into the wavelet domain can be repre-
sented by

flxy)* = Wow™) f(z,y), (3.5)

where the ~ denotes that the image is in wavelet form. [)|
the application of wavelet transform for warping, blending and convolution of
images and image sequences is covered. Instead the usual implementation of
moving the convolution kernel M over the image, which is illustrated in figure
3.4, here for a convolution kernel of edge length k convolution is described by
creating k? copies of the original image I. For every position in the kernel one
image has to be shifted by the inverted position (based on the pivot point of
the kernel being the origin). Now the convolution is the sum of these images
scaled by the corresponding kernel entry.

MxI= > kI (3.6)

i,5€[=11]

where | = [k/2] and I"Y denotes the image translated by 4,j. This tech-
nique is illustrated in figure 3.5. The pixels marked with the dotted line are

not part of the original image domain. They are the counterparts of the posi-

0,00 § (0,00 § (1,07 & (2,0) ©,0 } (1,00 : (20) ¢ 3,0) (1,0) ¢ (2,00 : (3,0) ¢ (3.0)

. . 1) 0,0) (1,00 2,0 =+ . . 0,0/ (1,00 2,0 (3,00 =+ D . 1,0 2,0 (3,0 310

©2 { o1 | an | @n on | an | ey | en an f@n | 6y en

(0,0 0,0 (1,00 2,0 0,0 (1,00 2,0 (3,0 (1,00 2,0 (3,0 30

=+ . . 1) 1 a1 [eA)] + E . 1 an @2 3.1 + D . an @2 3.1 [EA)]
©2 | 02 | 12 | @2 02 | .2 | 22 | G2 12 | @2 | G2 | 62

©o { o1 | an | @n on | an | ean|en an f@n | ey en

+ . cien {02 |er + . cloa a2 ey|e2 + D o2l ery | el
02) §(0,2) f (1,2) ¢ (2,2) ©2)§ (1,2) 1 (22) ¢ B2) 1,2) 3 (22) 1 B2) ; (312)

Figure 3.5: The alternative convolution algorithm in the spatial domain

3.2. PROCESSING IN THE COMPRESSION DOMAIN 39

tions, where the pivot of the convolution kernel overhangs out of the image
boundary. Usually these pixels are extrapolated from the boundary pixels. As
already shown in the previously mentioned publications, scalar multiplication
as well as image addition can easily be transferred into the wavelet domain.
The shift operation, however, is not trivial in the wavelet domain. Thus, the
shift is done in the spatial domain and the resulting images are then trans-
formed into the wavelet domain. However, a number of people have proposed
modified wavelet transforms which allow shift operations in the wavelet do-
main. Although the technique is mostly the same or at least very similar for
all publications the approaches are identified by different names; the a trous

algorithm [], shift invariant wavelet transform [;
], undecimated discrete wavelet transform [],
or overcomplete discrete wavelet transform []. As indicated

by the name of the last one the basic idea behind these approaches is over-
sampling the input signal and computing the translation by interpolating the
over-sampled data.
For direct visualization of wavelet compressed data, the already mentioned
publications [; ;] (in section 3.1),
presenting fast random access in the wavelet domain are of interest. [

] focuses on efficient data structures to implement volume render-
ing in the compression domain. In [] an approach based
on the fourier slice theorem (see next section, respectively figure 3.7 for more

information) is presented.

[] introduces image manipulation algorithms in the DCT
domain. The authors show how to apply pixel addition, pixel multiplication
as well as scalar addition and scalar multiplication directly on the quantized
blocks in the frequency domain. They show that these operations can be ap-
plied much faster in the DCT domain than in the spatial domain due to the
sparseness of the transformed arrays. In the subsequent publication [

] this work is extended to the application of linear local and
global operations, such as convolution, scaling, rotation etc. Images, as well
as the image operations are formulated as tensors. The first part of the JPEG-
compression pipeline up to the entropy coding can be described as a product
of the tensors for the cosine transform, the zig-zag scanning and scaling. The
image is formulated as a two dimensional array of first rank tensors named
SC-vectors, which represent the 8 x 8 blocks introduced in section 2.2.1. For
processing the compression pipeline has to be reversed until the SC-vectors
are accesible. Then the JPEG decompression without entropy coding, the de-
sired operation, and the re-compression can be formulated by the product of

40 CHAPTER 3. STATE OF THE ART

the corresponding tensors. However, in this representation the operations are
a lot more expensive than in the spatial domain and the entropy decoding and
coding which has to be done before and after the operations is also quite costly.
For example a shrink by two requires an average of 256 multiplies per pixel in
the DCT domain, compared to only four in the spatial domain. To reduce cost
a method called condensation is presented. The sparseness of the tensors is
exploited by modifying the compressed domain operators so that the results
are similar, but the operator is more sparse and thus less costly to compute. In
[] a similar approach is presented. Additionally an architecture
for a JPEG codec with a programmable processing unit as coprocessor is pre-
sented. [] present another similar approach especially suited
for edge detection with large Laplacian of Gaussian masks. The authors con-
clude, that not only a speedup, compared to non-compressed processing can
be reached, but also their approach yields better edges (see figure 3.6). While
they focused on edge detection with LoG, the method can be used universally
with linear filter kernels. In the subsequent publication [] the
application to video editing in the compressed domain is presented.

(a) Original (b) DCT convolution (c) Spatial domain convolution
Figure 3.6: Edges in the well known Lena image. Courtesy of [1
For visualization []and [] use the fourier

projection-slice theorem to render images directly from the data in the fourier
domain (see figure 3.7). The fourier projection-slice theorem states that for an
m-dimensional image an n-dimensional slice in the frequency domain through
the origin is equal to the n-dimensional fourier transformation of the original
image projected on an n-dimensional slice. Thus, for volume rendering one can
simply place a plane into the fourier transformed volume which contains the
origin and is parallel to the viewing plane. Inverse fourier transform applied
to the image embedded in this plane then yields a projection of the original
volume onto the viewing plane. While this approach is faster than traditional
volume rendering modes it is limited to projection, which results in X-ray like

visualization only.

3.2. PROCESSING IN THE COMPRESSION DOMAIN 41

Spatial Domain Frequency Domain

2D fourier

transform % /\

@ projection @ slice

1D inverse
fourier transform

Figure 3.7: Volume projection with the fourier projection-slice theorem

Currently, there are no publications dealing with processing of fractal com-
pressed data. Due to the virtual form of the codebook in fractal compression
neighborhood based processing in the compression domain seems impossible.
Homogeneous, pixel based operations might be possible as the functions con-
tain brightness and contrast adjustments, but one would need to investigate
the behavior of adjustments in these functions in the iterative process in the
image reconstruction.

Partial image reconstruction followed by standard processing on the recon-
structed part and re-compression also seems improbable as the iterative pro-
cess of reconstruction is quite time consuming and the re-compression would
need at least a large part of the processed image to find a new domain block
matching the processed range block.

Finally, a divide and conquer approach like partitioning the original image into
subimages which are then treated as separate images until the final reconstruc-
tion step would be possible. Every subimage would have to be completely
decompressed processed and re-compressed in the processing step. However,
this would in most cases result in notably worse image quality as the set of do-
main blocks to match the range blocks is much smaller for each subimage and
thus often much worse matches would have to be used to build the iterative

function system.

A broad overview of image processing in combination with vector quantiza-

tion is given in []. Specifically point based operations

42 CHAPTER 3. STATE OF THE ART

are found to be suited for vector quantized data. These operations can be ap-
plied directly to the codebook. As different codewords might have the same
shape after processing, though, rebuilding the codebook might be necessary
to achieve optimal compression. Local operations usually incorporate a neigh-
borhood significantly exceeding the size of the codewords, thus making this
class of operations working directly on the codebook impossible. The authors
propose an alternate approach to edge detection with variable rate vector quan-
tization (VRVQ). In VRVQ higher bitrates are used for areas with high activ-
ity, whereas homogeneous or inactive regions are compressed with fewer bits.
This implicit information can then be used to classify codewords with higher
bitrates as edges. The results, as shown in figure 3.8, however, are not compa-
rable to the standard edge detection algorithms based on linear filtering.

(a) Compressed image (b) After edge detection

Figure 3.8: At 1.8 bits per pixel vector quantization compressed MRI Scan and the result
of the proposed VRVQ based edge detection. Images courtesy of [
]

In [] a volume rendering system using vector quan-
tized data is introduced. In the subsequent publication [

] the authors extend their system with volume shading by also compress-
ing the surface normal field gathered from the volume and a modified ray-
tracing approach, which first performs the raytracing block-wise on the code-
book from the desired viewing direction and then adds the blocks along the ray
through the volume. To achieve fast rendering, however, each block must con-
tain enough information to interpolate inter-cell values. Due to this additional
information, only very low compression rates can be achieved. In combination
with the proposed pre-integrated shading the resulting amounts of data are
just as large as the input data.

With the increasing use of graphics hardware in volume rendering, vector
quantization based raycasting was also ported to the GPU [

I

3.3. SUMMARY AND DISCUSSION 43

3.3 Summary and Discussion

In the previous two sections, four volume compression methods were pre-
sented. Additionally, where available recent developments of processing and
visualization techniques for compressed image and volume data were dis-

cussed.

Fractal compression seems to promise high compression rates and since frac-
tal compressed data is virtually resolution independent, because the iterated
function system can be applied at any resolution make it a very interesting
approach. In addition, the GPU accelerated compression system, presented
in[] improves the computation performance remarkably. However,
fractal compression has several drawbacks, which make it unfeasible to use
it as compression technique in this thesis. It is virtually impossible to com-
press data with fractal compression without losing information. This is a large
disadvantage for a system which operates on medical data, where it is impor-
tant to alter the data as little as possible. Furthermore, as discussed in the
previous section there seems to be no probable way to operate directly on the

compressed data and even intermediate solutions do not appear to be practical.

The two transform coding techniques, the wavelet and cosine transform, do
have very smilar properties. Both have proven to be valuable in widely used
image compression formats (JPEG and JPEG 2000), where both transforms are
used as the first step of a compression pipeline. The compression results, both
compression rate and visual quality highly depend on the steps after the trans-
form itself. Approaches to directly perform commonly used image processing
algorithms have been presented for the wavelet transform [

;], as well as the cosine transform [

,]. Both transformations are not lossy in principle. Whether the com-
pression will be lossless or not depends on the quantization and compression
used for the coefficients. The biggest difference between the two transforms is
the size of the blocks the image is divided into to perform the transformation.
While for a single level Haar wavelet transform blocks of 2 x 2 x 2 are used and
every voxel can be reconstructed by a combination of eight coefficients, for the
cosine transform typically blocks of 8 x 8 x 8 voxels are used for transforma-
tion. This means to reconstruct a single voxel from the transformed data in the
worst case 512 coefficients have to be used for computation (note that usually
most of the coefficients are zero and thus do not contribute to the calculation).
This means, for an operation which might require (partial) decompression of

the volume, or random access to single voxels the wavelet transform is less

44 CHAPTER 3. STATE OF THE ART

computational expensive than the cosine transform.

Due to the fact that the vectors in vector quantization consist of items from the
original image domain, vector quantization seems the most promising com-
pression technique with regard to processing directly on the compressed data.
Additionally, visualization from vector quantized data was presented in nu-
merous publications [, ;

]. Even though vector quantization is especially suited for point based op-
erations, local operations suffer from the small vectors, which usually are not
any bigger than 2 x 2 x 2 voxels. Thus, multiple vectors are needed to apply
a local operation to one voxel. A major drawback of vector quantization when
modified for visualization, however, is the fact that compression rates are quite
low.

When comparing vector quantization and wavelet compression directly, the
main advantage of vector quantization is that all point based operations can
be applied directly to the codebook vectors (even though the codebook might
not be the optimal codebook after the operation), however, most of these op-
erations can also be applied in the wavelet domain. For local operations and
random access both techniques are about equal as the blocks used in both ap-
proaches are the same size. However, the reconstruction needed for (single
level) wavelet transformed data slightly increases computational cost. (For
now, the special case of linear filtering, directly on shift invariant wavelet trans-
formed data is ignored and it is assumed that a neighborhood based operation
requires block-wise reconstruction of the data.)

With vector quantization, optimized according to [], as
well as single level wavelet compression rates will be limited. Wavelet com-
pression, however will offer the possibility for lossless compression if needed.

Thus far, fractal compression as well as cosine transform based compression
were eliminated as possible compression techniques to function as the basis for
this thesis. Wavelet compression and vector quantization, even though very
different approaches are very similar regarding the aforementioned features.
Finally, for this thesis wavelet compression has been favored because of the
future prospects. With possible higher level wavelet transforms the compres-
sion rates can be enhanced considerably. Additionally the option to implement
a shift invariant wavelet transform, making linear filtering possible directly in
the compression domain, would be a large advantage over vector quantization,
even though it is not realized in this thesis.

Chapter 4

Wavelet Compression of

Volume Data

In this chapter, the specifics of the wavelet compression implemented in this
thesis are described. Section 4.1 gives a more practical overview of the Haar
wavelet transform, which was used compared to the general overview in sec-
tion 2.2.1. In the following section 4.2 an overview of the data structures used
in the implementation to exploit the sparseness of the wavelet transformed
array is given. Concluding, in section 4.3 the implementation details for the

framework Cascada are presented.

4.1 The Haar Wavelet Transform

The Haar wavelet transform can be described as an averaging and detail pro-
cess [].
Consider a four pixel, one dimensional image ¢ = {i1,i2,i3,74}. Averaging

over two pixels

a1og = (7:1 —I—ig)/?

.- (i3 +1i4)/2 b

a1

(the first subscript always denotes the level, the second the position in the
subband) results in a coarser image with only two pixels: iavg = {a1,0,a1,1}.
Obviously information is lost if 4; and i, respectively i3 and i4 have different

values, as one can reconstruct the original image only to {a1,0,a1,0,01,1,01,1}.

45

46 CHAPTER 4. WAVELET COMPRESSION OF VOLUME DATA

To achieve exact reconstruction the differences (or coefficients)

dio = (i1 —12)/2

42
din = (i3 —i1)/2 *.2)

have to be added to the image representation, resulting in the wavelet form
Yevet1 = {@1,0, 01,1, d1,0, d1,1}. The original image can now be reconstructed by

it (a1,0 + d10)
i, = (a10—d10)
> - 4.3)
iy = (a11+di1)
iy = (a11—di1)

Usually the averaging and differencing process is done recursively on the av-
erage image iayg until the number of averages, which are not compressed, as
described in section 2.2.1, is as small as desired:

azo = (a10+a1,1)/2

(4.4)
deo = (ai0—ai1)/2.

This results in the final transformed representation #cyei2 = {a2,0,d2,0,d1,0,d1,1}-
The number of recursion needed to get to a certain coefficient is usually called
the level at this point in the wavelet transform. Note that the image extents
must be multiples of 2!"*! to reach that level in the transform.

To adapt the Haar wavelet transform to three dimensional data the averaging
and differencing process is first done line-wise in z-direction, on the resulting
image the process in done row-wise in y-direction and finally again on the re-
sult slice-wise in z-direction (compare figure 3.1 in the previous chapter). This
process can be subsumed to the following set of calculations for each 2 x 2 x 2
block

2000 = (%000 + %100 + %010 + 110 + G001 + t101 + G011 + P111) / 8

7100 = (%000 — %100 + 010 — 110 + G001 — t101 + G011 — P111) / 8

010 = (%000 + 100 — 010 — 110 + G001 + 101 — G011 — P111) / 8

7110 = (4000 — 4100 — %010 + P110 + 001 — %101 — G011 +4111) / 8 (4.5)
2001 = (%000 + %100 + %010 + P110 — 001 — 101 — G011 — P111) / 8 '
7101 = (%000 — %100 + %010 — t110 — G001 + G101 — G011 + P111) / 8

11 = (4000 + i100 — 010 — F110 — %001 — %101 + G011 + %111) / 8

7111 = (%000 — 1100 — %010 + P110 — G001 + P101 + G011 — P111) / 8

4.1. THE HAAR WAVELET TRANSFORM 47

for first level decomposition, respectively

i000 = (%000 + 7100 + 010 + 2110 + %001 + 7101 + 011 + T111)

100 = (%000 — 7100 + 010 — 2110 + %001 — 7101 + T011 — 1111)

i610 = (%000 + 7100 — %010 — 1110 + %001 + 7101 — 011 — 1111)

ih10 = (%00 — 7100 — %010 + 7110 + %001 — T101 — Z011 + 2111) 4.6)
i00r = (%000 + 7100 + 010 + 2110 — %001 — 7101 — T011 — 111) '
101 = (%00 — 7100 + 010 — 7110 — %001 + 7101 — %011 + 111)

i611 = (%000 + 7100 — %010 — 1110 — %001 — 7101 + 011 + 1111)

ih11 = (%00 — 7100 — 010 + 7110 — %001 + 101 + 011 — 111)

for reconstructing the image. 7., denotes the value in the wavelet transformed

block at position (z,y, z) and i, respectively 7, ., the values in the image and
recompositioned image at position (x,y, z) in local block coordinates. The av-
erage or three times low pass filtered coefficient is 700 whereas a 1 means that

the coefficient belongs to the high pass sub band for this direction.

For this thesis, level one transformations are always used. This is a tradeoff
between compression rate and fast random accessibility as the number of com-
putation increases quadratically with the number of levels, as for some opera-
tions which require the decomposition of the original voxel values fast access
is indispensable. A maximum of eight coefficient lookups and seven additions
is needed to reconstruct a voxel in 3D, as can be seen in equation 4.6 when us-
ing level one Haar wavelet transforms. At level two an additional 64 lookups
and 56 additions are needed to reconstruct all level one coefficients needed to
reconstruct the desired voxel. The downside of single level decomposition is
that the average subband which is one eighth of the original volumes size per-
sists uncompressed, thus a theoretical maximum compression rate of 1 : 8 can
be reached. As will be shown later on, approximate compression rates of 1 : 4
to 1 : 5 can be reached with this approach at good visual quality. The focus
of most wavelet compression approaches is on maximization of compression
rates, thus as few residual average coefficients as possible are preserved. How-
ever the denoted compression rates seem an acceptable compromise to pre-
serve fast access, yet allow it to load significantly larger datasets into the GPUs
memory.

However, the processing algorithms presented in this thesis are fully compat-
ible with higher levels of wavelet decomposition, meaning with a few adjust-
ments the decomposition can always be extended to support these. The data
structure had to be extended by importance volumes and entry point maps

for all consecutive levels. Compression and decompression algorithms as well

48 CHAPTER 4. WAVELET COMPRESSION OF VOLUME DATA

as the operations requiring these would have to be applied recursively/itera-
tively to the residual average coefficients. The adjustments to the operations
working directly in the transformation domain are typically insignificant, if
needed at all. For example, for inverting or scalar multiplication no adaption
is needed.

4.2 Data Structure

After the wavelet decomposition, the first step for compression is to separate
the average coefficients which will remain uncompressed from the rest of the
coefficients. Initially the average coefficients are always at position (0,0, 0) of
a 2 x 2 x 2 block. This means every second coefficient in every second row in
every second slice is an average coefficient, as denoted by the green blocks in
figure 4.1(b). To store the average coefficients a volume with half the size in
every dimension is used (see figure 4.1(c)). A coefficient at position (z,y, z) in
the original volume is then stored at position (z/2,y/2, z/2) in the average vol-
ume. In memory the volume is stored as a simple one dimensional vector. The
averages are sorted row-wise from the first to the last slice. Thus, a coefficient
with the 3D coordinates (z, y, z) has the index

idx = x + y - rowsize + z - slicesize 4.7)

in the vector. Rowsize, denotes the extent of the average volume in z-direction
and slicesize the number of coefficients in a single slice in the average volume.
The remaining coefficients are stored in a different data structure. To exploit
the sparseness of the coefficient volume, the fixed volume grid needs to be
broken up and the coefficients smaller than the defined compression threshold
must be discarded. This can be simply done by only storing the coefficients
larger than the threshold in a one dimensional, linear vector. Doing so, how-

(@) Input volume (b) Wavelet decomposi- (c) Detached averages
tion

Figure 4.1: Separating average coefficients and high band coefficients. The averages are
marked green

4.2. DATA STRUCTURE 49

(a) Coefficients (b) Sparse volume (c) Importance volume

Figure 4.2: The remaining coefficients, the sparse coefficient volume and the impor-
tance volume

ever, the implicit information of the position in the original volume would get
lost. Thus, to be able to relocate a coefficient to its original position, its orignal
coordinates are stored alongside the coefficient. When trying to access a coef-
ficient at a desired position (z,y, z) in the volume, it is inevitable to search the
whole set of coefficients up to the position of the desired coefficient. This can
be quite time consuming, especially when the coefficient is in the rear end of
the vector.

To minimize search time a modified approach based on [lis
used. Instead of storing all coefficients as a single stream, the coefficients with
the same (z,y) coordinates are stored as a group. When using a 2D array of
different sized vectors the sparse volume representation would look as shown
in figure 4.2(b). Instead of storing the complete position (z, y, z) with every co-
efficient it is sufficient to store only z, as the and y coordinates are preserved
in the (x,y) coordinates of the 2D array. A coefficient at position (x,y, z) can
then be accessed by looking up the vector at position (z,y) and searching for
the coefficient with the position z attached.

In addition, to avoid searching, when the coefficient is zero and thus not in the
sparse volume, a binary importance volume of the same size as the original
volume is used (figure 4.2(c)). Only when the bit at the desired position is set,
the coefficient is searched. This importance volume can also be used to deter-
mine the index of a coefficient in the sparse volume representation, making it
unnecessary to store any position information with the coefficients. When try-
ing to access a coefficient at position (z, y, z), first this position is looked up in
the importance array. If the bit is set the number of bits set with the same x and
y and a smaller z coordinate denotes the index of the coefficient in the vector
at (z,y) in the sparse volume representation.

As an array of differently sized vectors is not available on the GPU another step
is performed to yield the final representation for the compressed coefficients.
The sparse volume vectors are stored continuously in a simple 1D vector. To

preserve fast access to the (z,y) coordinates a two dimensional array with the

50 CHAPTER 4. WAVELET COMPRESSION OF VOLUME DATA

size of a single slice is created. Every position (x,y) in this entry point ar-
ray corresponds to the vector with the same = and y coordinates in the sparse
volume representation and holds the index of this vector inside the coefficient
vector.

The complete procedure to access a given coefficient at volume position (z, y, z)
is shown in figure 4.3. A unique color was assigned to every row in the volume
for easier reference in the coefficient vector, for easier allocation in the coeffi-
cient map. Additionally for larger z values brighter versions of the color are
used. The coefficient array is shown as a 2D field solely for visualization. In
the actual implementation it is stored as describe above in a one dimensional
vector.

First it is verified that the bit at position (z,y, z) in the importance map is set.
Then, the number of bits set between (z,y, z) and (x, y,0) is counted. This re-
sults in the +2 entry denoting the index of the coefficient in the corresponding
sparse volume vector. The offset of this vector in the coefficient vector can now
be looked up at position (x,y) in the entry points map. The first item of the
sparse volume vector is at position 15 in the coefficient vector. The coefficient
can now be fetched from position 15 + 2 in the coefficient vector.

In a nutshell, the data structures used in thesis consists of the pseudo 3D av-
erage volume, which for single level deomposition is always one eighth of the
size of the original volume. For fast access the binary significance map, another
pseudo 3D volume (stored in a standard 1D vector), is used, whose size is 1/16
of the original volume (for 16-bit datatypes). Additionally, the 2D entry points
map takes up the size of one slice. Finally, the coefficients are stored in a 1D
vector. Its size solely depends on the number of non-zero coefficients.

_H A

(xy2)

importance volume i 24 31

[P —
DEpDn FEEERGS- NN
entry point map

Figure 4.3: Accessing a coefficient with volume coordinates (z,y, z) in the presented
data structure. Also compare listing 4.1 for pseudo code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

4.3. IMPLEMENTATION DETAILS 51

Listing 4.1: The function to fetch a coefficient in pseudo code

getCoefficient(x, y, z){

// only if this position is important
if (importanceMap|[x, y, z]){

// get the entry Point
index = entryPointsl[x, y |;

// the number of importance bits set
offset = 0;

// from current z position to 0
for(zz =z — 1; zz >= 0; zz—){

// if the importance bit is set ...
if (importanceMap[x, y, zz]){

// ...increase the offset
offset++;

}

}
// fetch the coefficient at index + offset
return Coefficients|[index + offset];

// if importance bit at (x, y, z) is not set return 0.0
return 0.0;

}

4.3 Implementation Details

The most important parts added to Cascada for compression and decompres-
sion can be seen in figure 4.4. The CompressedVolume class implements the data
structure presented in section 4.2. The class includes constructors to create an
empty volume of minimal size, an empty volume of a given size and a volume
as a copy of another compressed volume.

The required data fields are implemented as private one dimensional STL vec-
tors of the required type. The data can be accessed via the corresponding get
functions which return pointers to the fields. The flag m_changes is used to de-
note what kind of changes an operation caused to the volume. When a process-
ing operation is applied to the volume the flag is changed from NO_CHANGES
to MAJOR_CHANGES or MINOR_CHANGES. MAJOR_.CHANGES means all
data fields were changed during processing, MINOR_.CHANGES means only
the averages and coefficients were touched, thus the importance volume and
the entry points map do not have to be updated.

The m_threshold variable is used to save the compression threshold used to ini-
tially compress the volume. If an image processing operation requires (partial)
decompression the threshold is needed for re-compression.

The minimum and maximum gray values of the volume are needed for linear
scaling during rendering stage. It is quite costly to compute them from the
compressed data, as full decompression would be needed. Thus it is advised

52 CHAPTER 4. WAVELET COMPRESSION OF VOLUME DATA

[—
+—
T T S
I I)
I I '
I I I
,,,,,,,,,,,,, l l '
T: DATATYPE_COMPRESSED | | jend ove | Rotify of
CompressedVolume =-----T-=---- i | Volume | Volume changes
m_averages - sidzveclor< T > . | 5
- m_coefficients : std:vector< T > H | l
- m_importanceMap : std:vector< bool > q v .
- m_entryPoints : std::vector< uint > ' WaveletCompressionSequence WaveletCompressionCPU
-m_changes : int ' exocute
m_threshold : int I +WaveletCompressionSequence [T T~ -~ + WaveletCompressionCPU —
+ Compressedvolumel) —_— (const std:string & inputName, (inputName : const std::string &
' Gompresasdolumal v : const Vecsul &) o 0 const std:string & outputName) G outputName : const std:string &
+ ~WavelelCompressionSequencel) ¢ Sompressed | parameterSet : ParameterSet *)
+ CompressedVolume(v : const Vecui &, d : const Vec3! &) +executeCPU() : void Volume ™ execute() : void
+ CompressedVolume(other : CompressedVolume<T> &) Beessy i
+ ~CompressedVolume() -
]
+ getAverages() : std:vector< T > * | 1
+ getCoefficients() : std:vector< T> * v L
+getEntyPoints() : stdivector<int> * WaveletDeCompressionSequence WaveletDeGompressionCPU
+ getimportanceMap() : std:vectors bool >
+getThreshold() : int 1+ WaveletDeCompressionSequence |- xecute _ 3 WaveletbeCompressionCPU -
+int getChanges() (const std:string & inputName, (inputName : const std:string &
+void sefThreshold(int threshold) const std:string & outputName) outputName : const std::string &
+void setChanges(const int changes) +~WaveletDeC) |caecomeressect)
+void setMinVal (const T minval) + executeCPU() : void Volume |, execute() : void
+ void setMaxVal (const T maxval) + oxoculeGPU() void

+void setSize(const Vec3ui & s)

Figure 4.4: The compression class structure

to track these values during compression and processing operations, manipu-
lating gray values. Therefore the setMinVal and setMaxVal functions are used
to save the values alongside the compressed volume data. The member vari-
ables to store these values are already present in the Volume class, however here
they can not be set from outside the volume but rather are updated through
the updateStatistics function, which scans the whole volume for minimum and
maximum gray values.

The compression and decompression routines themselves are implemented as
sequences, which is the standard implementation for all volume operations in
Cascada. A sequence is instantiated by the sequence manager, with an input
and output volume name given. The sequence gets the volumes associated
with these names from the volume manager. When the volume is processed
the volume manager gets notified of the changes. Based on the current sys-
tem state the sequence decides whether to execute the CPU or the GPU version
of the related operation. As the main focus of this thesis is on processing of
compressed data, it was decided to implement the wavelet compression and
decompression only as CPU versions. Thus when executeGPU is called it falls
back to executeCPU. Through this the implementation costs where acceptable,
while receiving a compression which fitted the needs of this thesis.

Compression is divided into two main sections, the wavelet decomposition
and the actual compression step. It can be visualized by a simple pipeline,
shown in figure 4.5.

In the first part the input volume is decomposed into the wavelet average- and
difference-coefficients. The average coefficients are already sorted into the av-

4.3. IMPLEMENTATION DETAILS 53

Compression

Mother Wavelet Threshold
Input Volume Decomposed Volume
ol = el =
Spatial Domain Wavelet Domain

Coefficient

Compressed Volume
as
Average Volume
and
Coefficient Map

Wavelet

Figure 4.5: The wavelet compression pipeline

erage volume at this point. The difference coefficients, however, for the time
being remain in volume representation at their original position. At this stage
the average volume and importance volume are created in their final forms.
Pseudo code of the implementation is shown in listing 4.2. The algorithm pro-
cesses the input volume block-wise, based on the wavelet 23 block structure.
The eight voxels belonging to one block are fetched from the input volume and
transformed into wavelet representation according to equation 4.5 (p. 46). The
first coefficient is immediately saved in the averageVolume, while the seven re-
maining coefficients are subject to the subsequent first part of the compression
step. All coefficients whose absolute value is smaller than the threshold, de-
fined by the user are discarded. The coefficients larger than this threshold are

saved in the temporaryCoefficient Volume at their original position. For every co-

Listing 4.2: The wavelet decomposition

for (int x, y, z = 0; x, y, z < volumeSize; x, y, z += 2){

// fetch the 2x2x2 block which will be decomposed
waveletBlock[8] = fetchVoxelsIn([x, y, z .. x+1, y+1, z+1]);

// decompose to wavelet coefficients
coefficients [8] = decomposeToWavelet(waveletBlock);

// extract the average coefficient
averageVolume[x/2, y/2, z/2] = coefficients[0];

// sort the other coefficients into the temporary coefficient volume
for(remaining seven coefficients){

// if coefficient is mnot discarded for compression
if (abs(coefficient) > compressionThreshold){
// the volume position of the current coefficient is needed

position = volumePosition(coefficient);

// set the important bit
importanceMap|[position] = true;

// put the coefficient in the temporary volume
temporaryCoefficientVolume[position] = coefficient;

1
2
3
4
5

® N o

54 CHAPTER 4. WAVELET COMPRESSION OF VOLUME DATA

efficient stored, the corresponding bit in the importanceMap is set.
Multiple iterations of this loop on partial regions of the volume can be run si-
multaneously without side effects. In the implementation this fact is used to
parallelize the process with the omp parallel for construct of the OpenMP library.
For more information on the OpenMP library refer to []

The entry point map and the coefficient vector are filled in the second step
from the temporaryCoefficient Volume. The procedure is demonstrated in listing
4.3. First, the index to access the coefficient in the coefficients vector is initial-
ized to 0. For the current (x,y) coordinate the index value is recorded into the
entryPoints map. Then, the non zero coefficients from (x,y,0) to (z,y, sizez)
are put consecutively into the coefficients vector. For every coefficient put into
the vector index has to be increased by one. After the processing of one line
in z-direction it is switched to the next (z,y) coordinate. The updated index is
recorded in the entryPoints map and so on. As it is crucial to put the coefficients
into the vector in the right order no parallelization for this loop can be applied.

After the decomposition and reordering of the coefficients the temporaryCoef-
ficientVolume is deleted. Minimum and maximum gray values as well as the
compression threshold are set in the compressed volume and, as all data fields
were altered, the m_changes flag is set to MAJOR_.CHANGES. After that the vol-

ume manager is notified that the volume has changed and the render mode is

Listing 4.3: The coefficient reorder process

// the index in the coefficient vector for every coefficient
index = 0;

// loop over the first slice
for (int x, y = 0; x, y < sliceSize; x, y ++){

// set the entry Point at position (x, y)
entryPoints[x, y] = index;

// sort the coefficients from (x, y, 0) to (x, y, sizez)
for (int z = 0; z < sizez; z ++) {

// get the coefficient from the Volume created in listing 4.2
coefficient = temporaryCoefficientVolume[x, y, z |;

// if the coefficient is 0 it is discarded , else ...

if (coefficient != 0){
// ... it is put in the coefficient vector
coefficients[index] = val;

// the index is increased with every coefficient stored
index++;

1
2
3
4
5
6
7
8
9
10
1
12
13
14
15

4.3. IMPLEMENTATION DETAILS 55

Listing 4.4: The wavelet decompression

for (int x, y, z = 0; x, y, z < volumeSize; x, y, z += 2){

// fetch the average coefficient
average = averageVolume[x/2, y/2, z/2];

// fetch the remaining coefficients
for(remaining seven coefficients){

// get the coefficients as shown in listing 4.1
getCoefficient(current Position);

// recpompose the Voxel data
composeVoxelValues(average, coefficients);

}

automatically switched to render from compressed data.

Decompression is straightforward. After getting the input and output volumes
from the volume manager the image composition is accomplished block-wise
by fetching the average value for the block from the averageVolume and the cor-
responding coefficients with the function shown in listing 4.1 on page 51. The
voxel gray values are then composed with the equations shown in equ. 4.6 (p.
47) and recorded in the proper positions in the not compressed target volume.
At the end of the decompression process the volume manager is notified of the
changes and it is switched back to rendering from uncompressed data. The
main decompression loop is shown in listing 4.4. It can be parallelized with

the aid of omp parallel for just as the decomposition loop.

Chapter 5

Processing of Compressed

Volume Data

This chapter presents the processing and visualization sequences added to Cas-
cada for wavelet compressed data. In the first section (5.1) it will be shown
mathematically how to transform certain processing operations into the wavelet
space, if possible. The operations are then classified based on their application
in wavelet form. In section 5.2 the implementation of some different operations

will be presented exemplarily.

5.1 Mathematical Considerations

As shown in section 4.1 (equ. 4.6) every voxel (in the re-composed volume)
can be described by a simple sum of coefficients. Different local positions in

the wavelet block only differ by the signs of the coefficients in the sum.

8
flu,v,w) = Z 5 cp with se{-1,1} (5.1)

n=0

(u, v, w) denote the local position in the wavelet block, f(u,v,w) the gray value
at this point and c the corresponding eight coefficients. For convenience it is
differentiated between the low pass filtered average coefficient and the seven
high band coefficients. As the average coefficient is always positive the sum

can be formulated as

7

f(ua v, w) = Cavg + Z S+ Cp. (5.2)

n=0

57

58 CHAPTER 5. PROCESSING OF COMPRESSED VOLUME DATA
In section 2.3.1 the application of a point a based operation 7' is described by

f*(‘rv Y, Z) = Tt7y7z (f(«I, Y, Z)) . (53)

Combining the two equations 5.2 and 5.3 delivers

7
F(x,y,2) = Toy. (eavg +) s cn> , (5.4)
n=0
The most simple operations are addition of a constant value and scaling the
gray value by a constant factor. Most homogeneous point based operations
can be described as combinations of these two. Usually the operations are dif-
ferent for the wavelet sub bands. Therefore, the operator 7" usually is mapped
to two separate operators 7T,z and T, for application on the average respec-
tively high band coefficients.

Addition of a constant is defined by T'(g) = g + k. Inserted in equation 5.4
this yields

7
ffz,y,2) = (cavg + Z 5 - cn> +k
n=0

7

R S S

n=0

(5.5)

Thus adding a constant value to all pixels can be applied in the wavelet domain
by adding a constant value to the average coefficients.

Taglc) =c+k (5.6)

Multiplication with a constant value in the spatial domain is defined by T'(g) =
g - . Again, in combination with equation 5.4 this leads to

7
f*(m,y7z) = (Cavg+23'cn> -1

n=0

(.7)
7

= (cavg)+ D s (ca-1).

n=0

Consequentially, the two wavelet operations are defined as

Tavg(c) = Te(c) = c- 1 (5.8

5.1. MATHEMATICAL CONSIDERATIONS 59

Combinations of addition and multiplication can be expressed by nesting op-
erators. For example the operator T(g) = (g + k) - I can also be applied as
T(T4(9)) with T (g) = g+ kand T'(g) = g - k.

Also, it can easily be shown that the inhomogeneous addition of two im-
ages/volumes can be done in the wavelet domain simply by adding the two
wavelet transformed volumes. For the one dimensional case consider the two
discrete signals {a,b} and {c¢, d}. It has to be shown that the sum of these two
signals in the spatial domain {a + ¢, b+ d} yields the same result as the sum

of the wavelet transformed signals. The Haar wavelet transforms of the two

c+d c—d
20 2

signals are defined by {22, 2-b1 respectively {

= }. Component-wise

addition leads to

{a+b’a—b}+{c+d c—d}:{a+b+c+d a—b+c—d}.(5%

2 2 2 72 2 ’ 2

Inverse wavelet transform results in

{a+b+c+d+a—b+c—d a+b+c+d_a—b+c—d}

2 2 ’ 2 2
{a+b+c+d+ab+cd a+b+c+d(ab+cd)}
2 ’ 2 (5.10)
_f2a+2c 2b+2d
B 2 72
:{a+c7b+d} {a7b}+{cvd}

As the wavelet transform for higher dimensional data is nothing more than
the repeated application of the one dimensional transform this is also valid for
the addition of higher dimensional images. Note that the images must be of
the same size and transformed to the same level.

Other operations such as inhomogeneous multiplication, potentiation or rela-
tional operators can not be transformed like this to be applicable in the wavelet
domain.

In the following, when possible, wavelet transformed versions of the spatial
domain image operators shown in section 2.3 are presented. For this thesis
there will be mainly four classes of operations. The first two classes consist
of the point based operations which can be applied within the wavelet do-
main. These can be further subdivided into those operations with 7;(0) = 0

60 CHAPTER 5. PROCESSING OF COMPRESSED VOLUME DATA

and those which de not necessarily map zero to zero. Operations of the first
class can be applied directly to the sparse coefficient representation without
zeroes (i.e. after the last step in the pipeline). The second class requires the re-
version of the last step as access to all coefficients including those whose value
is zero is needed. The coefficients have to be re-compressed after processing.
Point based operations which are applied in the spatial domain and thus re-
quire full re- and de-composition of the current voxel form the third class. The
fourth class consists of operators which additionally require the re-composition
of voxels, other than the current.

The invert operator in the spatial domain

T(9) = gmax — g (5.11)

at length can be written as the combination of a simple addition and multipli-

cation:
T(g) = 9max T+ (_1) 9. (512)

The combination of equations 5.6 and 5.23 results in the two wavelet operators
Tavg(c) = gmax +(=1)-c (5.13)
and T.(c) = -—c (5.14)

According to the above defined classification inversion is a class one operation.

Histogram shift, without clamping to minimum an maximum gray values in

the spatial domain is a simple addition
T(9) =g +k (5.15)

As such the operation in the wavelet domain is specified by T, only, just as
shown in equation 5.6.
Tan(c) = €+ Yoffset (516)

Histogram shift as defined here is a class one operation. However, it lacks the
clamp operation as shown in section 2.3.1, which as a combination of relational
operators, can not be implemented in the wavelet domain. As long as the re-
sults stay within the range of the datatype used in the actual implementation
the clamping can be done live in the rendering stage and during decompres-
sion. This also has the advantage that as long the data remains in wavelet form
the histogram shift is fully reversible.

5.1. MATHEMATICAL CONSIDERATIONS 61

To convert the histogram spread operation into wavelet representation, first
the form of the operator is written slightly different to reach a representation

that needs as few combinations of the multiplication and addition operators as

possible:
9 — 9min
T =(G-1) —————
(g) () 9max — Ymin
(5.17)
_ (G - 1) _ YJmin
9max — Ymin 9max — Ymin
with the two constants
-1 min
e G2 g o gmn (5.18)
9max 9max — Imin

this finally yields a simple combination of one addition and one multiplication
T(g)=g k-1 (5.19)

and thus the two wavelet operators are defined by

—1 min
Togl) = c—2—W 9 (5.20)
9max — Ymin 9max — Imin
-1
T.(e) = c-g. (5.21)

9max — Ymin

Just like inversion and histogram shift, histogram spread is a class one opera-
tion.

The only operation presented in section 2.3.1 which in the wavelet transformed
form is a class two operation is the difference image/volume operation. It is a
combination of the inhomogeneous volume addition and homogeneous multi-
plication by (—1), applied to the the second volume. As the difference volume
operation is inhomogeneous it can not be described as a transformation on gray

values, but as a transformation of gray values at a certain position (z, y, z).

T(f(x,y,z),e(m,y,z)) - ‘f(xayaz) - 6($,y,2)|

(5.22)
= \f(ac,y,z) + e(x7y>z) : (_1)|

Similarly, to the clamp operator in the histogram shift operation, the absolute
operator (|z]) can not be applied in the wavelet domain, however, in most cases

62 CHAPTER 5. PROCESSING OF COMPRESSED VOLUME DATA

it is sufficient to apply it right at the rendering stage or during decompression.
The operation in wavelet form without the absolute operator is defined by:

Tavglei(z,y,2),ca(w,y,2)) = ci(z,y,2) +cax,y,2) - (=1) (5.23)
Tc(Cl(I7y,Z)7CQ(ZZ?7y,Z)) = Cl($,y72)+62(177y72)'(*1) (524)

Gamma Correction, thresholding and correction of inhomogeneous illumi-
nation all fall in class three. Gamma corrections can not be transformed in
the wavelet domain due to the potentiation applied to the gray values. For
thresholding to compare the gray value with the threshold wavelet form must
be re-composed to voxel values and the correction of inhomogeneous illumi-
nation applies inhomogeneous multiplications to the volume, which also can
not be transformed into the wavelet domain. Thus all three operations require
the complete reversion of the wavelet pipeline (at least locally).

As shown in [] (see section 3.2) linear local operations
can be described as a combination of the homogeneous multiplication oper-
ation and the inhomogeneous volume addition. However, it would require
either the translation of the volume in the spatial domain or a shift invariant
wavelet transform to translate the volumes directly in the wavelet domain. De-
compressing the volume as a whole to translate it in the spatial domain, one
the one hand, would increase the memory footprint too much for the desired
application and as such makes this approach improbable. On the other hand,
the implementation of a shift invariant wavelet transform is out of the scope
of this thesis (and additionally has other drawbacks, like inferior compression
rates). Hence, linear and non-linear local operations are treated the same, and
thus are classified as class four operations. To process a single gray value the
needed neighborhood is completely decompressed, the operation is applied in
the spatial domain and the value gets re-compressed. The memory footprint
increases only very slightly as only small parts of the volume need to be de-
compressed.

Computationally, class one operations will likely outperform their counterpart
operations in the spatial domain. The operations themselves are very similar
in the wavelet domain, however, they have to be applied only to the set of
non zero coefficients which usually is much smaller than the number of vox-
els in the original volume. class two operations can be expected to perform
slightly worse compared to the non compressed versions, as the last step in the
wavelet pipeline has to be reversed and re-applied. class three and four op-

5.2. IMPLEMENTATION DETAILS 63

erations usually should be noticeable slower, as the reversion of the complete
wavelet pipeline is quite costly.

5.2 Implementation Details

To load the compressed dataset onto the graphics hardware with standard
OpenGL the data fields have to be represented as textures. Subsection 5.2.1
gives an overview how this affects the data structure. In the following sections
5.2.2 and 5.2.3 the implementation details for rendering and processing in the

compression domain are given.

5.2.1 The Data Structure on the GPU

To be able to access the compressed volume data on the GPU the data structure
has to be slightly adapted. All data fields are wrapped either in two or three
dimensional textures. To be fully compatible with older graphics cards all data
fields into whom it is written need to be represented as 2D textures since write
support for 3D textures is implemented for nvidia G80 based GPUs or newer
only.

Depending on whether the position in the volume is necessary for processing
or not and if the operation can be applied in the transform domain the input
and output data differs.

Operations which were classified as class one in the previous section solely de-
pend on the gray value and can be applied in the wavelet domain. For these
operators only the coefficient data fields are needed for processing. Depend-
ing on the operation both, or only the average coefficients are loaded onto the
graphics board. Therefore the the three dimensional average volume, as well
as the one dimensional coefficient vector are represented as two dimensional
RGBA textures. By using four channel RGBA textures four values can be pro-
cessed at once by the vector units of the GPU.

All other operations including rendering require the complete set of data fields
as input. For intuitive access the 3D average volume and importance volume
are represented as three dimensional textures with one channel. The 2D en-
try Point map also is a single channel two dimensional texture. For read only
access solely the 1D coefficient vector is transformed to a single channel 2D
texture. The result of the operation is then written into a four channel 2D tex-
ture which has to be rearranged into the input data structure in a second step
(which is performed in software). Therefore the slices of the original volume
are laid out into a large 2D texture. This is also done for the non compressed

64 CHAPTER 5. PROCESSING OF COMPRESSED VOLUME DATA

@ (b)

Figure 5.1: Flat 3D RGBA texture representation for uncompressed volumes (a) and for
writing wavelet compressed coefficients

volumes. Here every slice consists four slices, one slice is in every channel
of the RGBA texture. For the compressed approach this would mean that ev-
ery RGBA texel would consist of elements from two wavelet blocks. Thus, to
compute the operation result for one texel two 2 x 2 x 2 wavelet blocks would
have to be reconstructed. Therefore, to increase performance in compressed
processing the texture is laid out, such that every RGBA texel holds one slice
of a 2 x 2 x 2 wavelet block.

A problem affecting compression rates comes along with the binary impor-
tance volume. As standard OpenGL does not offer a texture format for a binary
datatype, at the moment the binary importance volume is stored in an eight bit
datatype. However, due to the fact that GLSL is missing bitwise operations it
does not make sense to store multiple 1bit values as a single 8bit texel. For the
moment this means that the importance volume, when needed on the GPU,
reduces compression rates substantially. It does not appear that textures using
a binary datatype will be available sometime soon, yet nvidias CUDA [

] allows bitwise operations which could be used to resolve this problem.

5.2.2 Visualization

To visualize the compressed data, without decompressing it as a whole, multi-
planar reconstruction with on the fly fragment wise decompression was im-
plemented. Contrary to the compression and decompression sequences, vi-
sualization is done by means of the GPU only. Therefore, as shown in figure
5.2 Cascada was extended by the SimpleComp VolumeRenderingSequence class
and the SimpleComp VolumeRenderingGPU class which is called by the first.
SimpleComp VolumeRenderingGPU mainly differs in the shader files which
are loaded and the parameters given to the shaders, compared to its counter-
part for non compressed rendering. The volume handling itself is done in the
shader manager which is notified automatically to switch to compressed ren-

5.2. IMPLEMENTATION DETAILS 65

l
I

l

l

1 hand over

| Compressed
1 Volume

l

I

blendResultsWavelet.frag

i '
i '
i '
i '
i '
i '
i '
e — p
i '
1 1 uses E
1 U '
i '
i '
i '
i '
i '
i '
i '
i '
i '

v
v SimpleCompVolumeRenderingGPU SimpleCompVolumeRenderingSequence

WaveletFunctions.frag.gls! + SimpleCompVolumeRenderingGPU + SimpleCompVolumeRenderingSequence
(const std::string & inputName,

(inputName : const std:string &]
outputName : const std:string & | Fs const std::st
parameterSet : ParameterSet *) : void + ~SimpleCompVolur
execute() : void + executeCPU() : void
+ executeGPU() : void

+getCoefficients : float[8]
+getCoefficient : float
+ buildNeighborhodd : float[8]
+interpolateLinearaD : float

Figure 5.2: The compressed rendering class structure

dering when a volume gets compressed.

For visualization the main difference between compressed and non compressed
data is the fetch of the current voxel. Instead of a simple texture lookup the
needed voxel has to be reconstructed from the compressed data in the com-
pressed mode. This means the eight surrounding coefficients of the related
2 x 2 x 2 wavelet block need to be fetched and the current voxel is received by
the invert discrete wavelet transform of these coefficients.

The hardware native texture lookup features trilinear interpolation which is
used to improve visual quality when rendering from non compressed data.
For the compressed mode the interpolation has to be done manually. For fast
rendering from the compressed data no interpolation is used by default. How-
ever, if desired the value for each fragment can be interpolated trilinear. Yet
this requires reconstruction of up to seven neighboring wavelet blocks in the

worst case, leading to significantly slower rendering.

The necessary functions to fetch a single coefficient or a complete wavelet

block are swapped out into the separate WaveletFunctions fragment shader

file, which has to be loaded alongside the blendResultsWavelet fragment shader.
Hereby the functions can be reused in all fragment shaders, which require the

lookup of coefficients from wavelet compressed data, i.e. the processing opera-

tions, which require local decompression (compare figure 5.3). The function to

fetch a single coefficient follows the pseudo code previously shown in listing

4.1. The function to fetch the complete block just calls the function to fetch a

single coefficient for all coefficients of the block the current position belongs to

and returns a matrix with all eight entries.

66 CHAPTER 5. PROCESSING OF COMPRESSED VOLUME DATA

5.2.3 Processing

Processing of the compressed data differs from visualization in the fact that it
is a read and write operation, whereas for rendering only read access to the
volume is needed. Thus a data structure for writing the result of the operation
must be held ready. Not all operations need the complete data structure for
processing, i.e. homogeneous point based operations, which can be applied
in the compression domain can be executed with the average volume and the
coefficient vector only. When no reordering of the coefficients is needed (all
coefficients which initially were zero remain zero), which is the case for homo-
geneous addition and multiplication the results can be written directly into the
average volume respective coefficient map. For all other operations the result
must be written in a temporary coefficient volume containing all coefficients
including these smaller than the threshold. The compressed coefficient map
than has to be rebuild in a postprocessing step.

All illustrated operations which are presented in this thesis are shown in in
the class diagram in figure 5.3. All operations were implemented in for CPU
and GPU, thus for every operation a class for the sequence and one for the CPU
and one for the GPU version are added to Cascada .

[CompressedscaleCoeft.rag | CompressedScaleGPU CompressedScaleCPU
——

CompressedScaleAvg.frag

GLOfscroenenderPass”
ray< DATATYPE_COMPRESSED >*

CompressedBinaryCPU

+ CompressedBinaryCPU

CompressedBinaryGPU

m_orpBinary - GLOfiscreenFlenderPass™
m. ray< DATATYPE_COMPRESSED >*

sssss GPU
const std:string &
onst stdsting &

ParamelerSel *) : void

v
WaveletFunctions.frag.gis|

+ execute() : void

+getCoe

s - float(8]
at

60 :foal(8]
D - float

CompressedLaplaceGPU
Lo

uses.

CompressedLaplace.frag

fiscreonRenderPass”
DATATYPE_COMPRESSED >*

()
+ oxecuteGPU() - void

Figure 5.3: The class structure for compressed processing on the CPU and GPU

5.2. IMPLEMENTATION DETAILS 67

Processing in the Compression Domain

Two similar operations, the invert operator and the histogram spread opera-
tor, which operate directly on the compressed data are presented in this thesis.
The main difference between the two operations is that the histogram spread
operator incorporates a user adjustable parameter, while the invert operator is
only dependent on the actual volume data. Meaning, that for the invert opera-
tor input and output volume can be the same volume, while for the histogram
spread operator a second volume has to be created as the target for the opera-
tion to be able to access the original volume data when changing the parameter.

As shown in the previous section 5.1 both operations can then be applied as
gray value transformations on the wavelet coefficients.
For the software implementation this simply means that in a loop over the av-

erage volume every average value is transformed with Tyyg (-(—1) + gmax for
(G-1) _ 9Imin
gmax —9min gmax —9min
loop the entries of the coefficient map are transformed with Tt (-(—1) for invert
(G=1)
gmax—9min
multiple threads as there are no dependencies between items in the data fields.

invert and - for the histogram spread) and in a second

and - for the histogram spread). These two loops can be computed in
Implementation on the GPU is a bit more complex. To load the data onto the
GPU both data fields are converted to two dimensional RGBA textures. By
using four channel RGBA textures, later on four values can be computed in
a single step. Therefore, the closest square which fits one fourth of the corre-
sponding data field is computed and a texture of this size filled with the data
from the average volume or the coefficient map is created as input data. Addi-
tionally, an offscreen renderpass is created and the viewport is set to the same
size. The results of the operation are then rendered into this viewport. For both
operations each data field must be treated as a single operation, as not only the
operations T,y and 7 differ, but also the data fields are of different size. The
shader programs for the operations themselves are rather simple one liners, as
shown in listings 5.1 and 5.2.

Listing 5.1: The code for invertion

invert averages

gl_FragColor = maxVal — texture2D(avgTex, gl -TexCoord[0].st);

invert coefficients

gl_FragColor = — texture2D(coeffTex, gl-TexCoord[0].st);

=

e =T B S O

68 CHAPTER 5. PROCESSING OF COMPRESSED VOLUME DATA

Listing 5.2: GLSL code for histogram spread
// param = { g-min/(g-max—g_min), (G—1)/(g-max—g_min) }
histogram spread averages

gl_FragColor = (texture2D(avgTex, gl -TexCoord[0].st) — param.x) * param.y;
¥

histogram spread coefficients

gl_FragColor = (texture2D(coeffTex, gl-TexCoord[0].st)) * param.y;
¥

Processing with Block-wise Decompression

Binary thresholding and Laplace filtering were implemented as examples for
operations which require block-wise decompression of the data. As a point
based operations binary thresholding was classified as a class three operation
in section 5.1 and the Laplace filter, as a linear filter falls in the category of class
four operations. For both operations sequences as well as CPU and GPU off-
screen render passes were added to Cascada (compare figure 5.3).

As denoted in section 5.2.1 operations requiring decompression are applied in
two steps. In the first step, the block which is processed is decompressed fol-
lowed by the application of the operation in the spatial domain and backtrans-
formation into the wavelet domain. In the second step the resulting coefficient
field has to be reordered.

To minimize cost of the decompression and recompression operations in soft-
ware the complete eight-voxel wavelet block is decompressed, processed and
retransformed. For binary thresholding this means that one indirect coefficient
fetch is needed, instead of a simple array fetch per voxel. An additional seven
additions are needed to transform each voxel in the block from the wavelet
into spatial domain. After that the threshold operator is applied just like for
the non compressed operation followed by retransformation into the wavelet
domain which requires another seven additions.

On the GPU not all eight coefficients can be computed at once due to the fact
that the result of every operation of a fragment shader is a color which offers
at most four channels (in case of RGBA colors). However, to compute the four
voxels in the spatial domain all eight coefficients of the corresponding block
are needed as are all eight voxels of the block needed to compute the four re-
sulting coefficients of the retransformation. Accordingly, the effective cost per
voxel for decompression and retransformation into the wavelet representation
doubles compared to the CPU version, meaning two coefficient fetches and 28

additions are needed per operation and voxel.

5.2. IMPLEMENTATION DETAILS 69

The application of Laplace filter proceeds very similar to the binary threshold
operation. The only difference besides the operator itself is that the neighbor-
hood of the current block has to be fetched. The Laplace filter is implemented
as a 3 x 3 x 3 mask. Only the six direct neighbors of the pivot and the pivot itself
of the Laplace filter kernel do not equal zero. Such only the six directly neigh-
boring voxels of each processed voxel contribute to the result and thus have to
be fetched. Thinking in wavelet blocks this means additionally to the current
block the six direct neighbors have to be fetched, however, for the 3 x 3 x 3 filter
mask only a 4 x 4 x 4 voxel neighborhood has to be reconstructed for process-
ing the current block. In software this results in seven coefficient fetches and 21
additional additions per voxel. On the GPU for the same reason as mentioned
before this number effectively doubles to 14 fetches and 42 additions for recon-
struction and recompression.

For a 5 x 5 x 5 Laplace filter kernel the 12 neighboring blocks sharing one edge
with the block being processed have to be fetched and reconstructed increas-
ing the number of fetches to 19, respectively 38 and the number of additions to
70 per voxel on the CPU and 140 on the GPU. A general 3 x 3 x 3 filter mask
would require 27 fetches and 28 additions on the CPU and twice the amount
on the GPU.

The indirect coefficient fetches are computationally very expensive, compared
to simple array lookups/texture fetches, such a significant performance de-
crease has to be expected for these neighborhood based operations.

The actual code for both operations on the CPU as well as on the GPU are very
similar to the code for the uncompressed versions only differing in the data
structure being used and the operation itself being framed by the coefficient
lookup and reconstruction beforehand and retransformation into the wavelet
domain afterwards.

After the operation the reordering of the coefficient map is done just as in the
wavelet compression, described in section 4.3 and listing 4.3.

Chapter 6

Results

In this chapter, the results of this work are presented. Section 6.1 compares vi-
sual quality of compressed datasets and lists the performance for compression
of different data sets at multiple compression rates. In Section 6.2 the perfor-
mance of the different processing operations is compared to the performance

of the non compressed counterpart operations.

If not mentioned otherwise the performance was measured using the following

system:

e Dual Processor PC, 2 x 4-core intel Xeon E5462 (2.8Ghz)

6GB fully buffered ECC RAM

nVidia GeForce 8800 GT (g92)

512MB Video RAM

e Windows Vista x64
e Cascada compiled in 32bit mode

As mentioned in the implementation chapters (4.3 and 5.2) the main processing
loops of all operations, including compression itself, were threaded with help
of the OpenMP library. This is not the case for all operations in the spatial do-
main. Hence, for better comparability results for all CPU operations are shown
with multithreading disabled alongside the threaded versions. Performance of

the compression itself, however was always measured with threading enabled.

71

72 CHAPTER 6. RESULTS

6.1 Compression

In the following, renderings of different datasets compressed at multiple rates
are presented to compare visual quality. Additionally, difference volumes were
created to get a better impression of the difference between compressed and
non compressed datasets. All renderings were created with MevisLab []
based on datasets created with Cascada by compressing and then decompress-
ing the original datasets. The three datasets listed in table 6.1 were used for

comparison. The compression times are averaged over 100 runs. The render-

Table 6.1: The Datasets

Dataset Size Max Value Mean Value
Tooth 256 x 162 x 256 x 16bit 1300 193.88
Orange 256 x 256 x 64 x 8bit 228 18.83
Head 512 x 512 x 460 x 16bit 4095 1081.8

ings of the difference volumes were created by direct volume rendering with a
simple linear ramp as transfer function. Darker pixels represent higher devia-
tion. For all comparisons the maximum and mean differences are given in the
associated tables alongside the threshold used to reach the given compression
rate and the time needed for compression. A compression rate of 1 : n means
the original dataset is n-times the size of the compressed dataset.

The Tooth Dataset

The tooth dataset is an industrial micro CT scan, courtesy of GE Aircraft En-
gines, Evendale, Ohio, USA. With a maximum intensity of 1, 300 it consists of
a quite small range, meaning the thresholds to reach the desired compression

(a) lossless,1:2 (b) 1:2.5 (c) 1:3 (d) 1:4

Figure 6.1: The tooth dataset at different compression rates

6.1. COMPRESSION 73

(a) 1:2.5 (b) 1:3 (c) 1:4

Figure 6.2: Difference volumes of the tooth dataset

rates are the smallest of the two 16bit datasets presented in this section. About
a third of a second is needed to compress the dataset.

The renderings shown in figure 6.1 seem nearly identical, in fact it is nearly
impossible to find a difference just by visual examination. Figure 6.2 shows
renderings of the difference volumes created by subtracting the compressed
volume from the original volume and storing the absolute value of the result.
The appended table shows the maximum (Max Diff) and mean value (Mean
Diff) of the difference volumes at all compression rates. The difference is the
sum of the initial values of all coefficients set to zero in a single block. Thus,
the maximum difference usually is equal to seven times the threshold. The
difference volumes seem to contain only homogeneous noise but as indicated
by the maximum deviation which is only about 3.5% of the maximum value
of the original volume at very low intensity. Thus, the impact on the actual
renderings is very low.

Table 6.2: Compression Performance for the Tooth Dataset

Compression Rate ~ Time [ms] Threshold Max Diff Mean Diff

lossless, ~ 1 : 2 359 0 0 0

~1:25 359 2 14 0.76
~1:3 328 3 21 1.28
~1:4 312 5 35 2.19

The Orange Dataset

The orange dataset is an MRI scan, courtesy of Bill Johnston and Wing Nip of
the Information and Computing Sciences Division, Lawrence Berkeley Labo-
ratory, USA. The original dataset only uses eight bits per voxel so the range
is notably smaller compared to the other two datasets presented here. Also,

74 CHAPTER 6. RESULTS

Table 6.3: Compression Performance for the Orange Dataset

Compression Rate ~ Time [ms] Threshold Max Diff Mean Diff

lossless, ~1:1.1 218 0 0 0

~1:25 187 0.75 5 0.73
~1:3 171 1.2 7 0.99
~1:4 156 1.9 12 1.27

even though the absolute difference values are the smallest in relation to the
volumes maximum and mean values these are the biggest of all presented
datasets. This leads to the difference volumes shown in figure 6.4. Specifically
at the compression rate of 1 : 4 the noise mainly in the region of the orange is
much more dense than at the lower compression rates. By visual examination
small differences in the renderings shown in figure 6.3 can be seen, mainly in
the region of the orange zest. However, it should be noted that a maximum
difference of 12 is still only about five percent of the volumes range.

(a) lossless, 1:1.1 (b) 1:2.5 (c) 1:3 (d) 1:4

Figure 6.3: The orange dataset at different compression rates

(a) 1:2.5 (b) 1:3 (c) 1:4

Figure 6.4: Difference volumes of the orange dataset

6.1. COMPRESSION 75

With only 4, 194, 304 voxels the orange dataset is the smallest of all presented
datasets, hence it is not surprising that compression time is the shortest, rang-
ing from 156 to 218 milliseconds.

The Head Dataset

The Head dataset is a medical CT angiography taken from the Osirix sample
image website []. Depending on the compression rate it takes approxi-
mately 3.5 to 5 seconds to compress the dataset. The dataset uses the complete
range of the original 12bit with a maximum intensity value of 4,095. Even
though the maximum value as well as the absolute mean value are the biggest
of the presented datasets, the maximum and mean difference values are very
similar to the values of the tooth dataset. Consequentially the renderings pre-
sented in figure 6.5 do not show any notable differences. When comparing the
renderings of the difference volumes shown in figure 6.6 it seems a bit surpris-
ing that the renderings are so similar as for all compression rates the images are
quite solid. However, at a compression rate of 1 : 4 the maximum deviation

is only about 1% of the maximum gray value in the original dataset meaning

o

o
f \y

(a) lossless, 1:1.5 (b) 1:2.5 (c) 1:3

Figure 6.5: The head dataset at different compression rates

(a) 1:2.5 (b) 1:3 (c) 1:4

Figure 6.6: Difference volumes of the head dataset

76 CHAPTER 6. RESULTS

Table 6.4: Compression Performance for the Head Dataset

Compression Rate ~ Time [ms] Threshold Max Diff Mean Diff

lossless, ~ 1 : 1.5 5195 0 0 0

~1:25 4305 1 9 0.47
~1:3 3962 2 14 0.84
~1:4 3604 6 42 1.86

even though a lot of the voxels in the compressed dataset differ from the origi-

nal values the difference is so small that it is hardly notable.

Conclusion

Concluding, it can be said that all three presented test datasets can be com-
pressed at least up to 1 : 4 with minimal loss or even without affecting visual
quality at all. A small threshold can also increase image quality. Considering
the seven coefficients as high pass filtered voxel values it becomes clear that in
homogeneous regions of the input data the coefficients will be zero, edges on
the other hand will be mapped to large coefficients. Noise in the input data,
however, will typically be transformed to small coefficients. Thus, when using
a threshold homogeneous regions and edges will not be altered while noise
will be removed by discarding small coefficients.

Typically MRI data contains much more noise than CT data. The more noise a
dataset contains, the less coefficients will be zero, meaning a higher threshold
will be necessary to reach the same compression rates compared to datasets
with less noise. However, the higher the threshold the more likely actual fea-
tures of the dataset will be affected by discarding coefficients. This behaviour
can be seen when comparing the orange dataset to the other two datasets. In
relation to the range of input volume the thresholds are much higher for the
orange dataset than for the other two. Consequentially, the orange dataset is
the only dataset where (even though very small) differences between the non
compressed and compressed renderings are visible.

When comparing the time needed to compress the datasets it becomes clear
that for the same compression rates the time increases approximately linearly
with the size of the dataset. The fact that the time decreases when increasing
compression rates is simply due to the fact that the second step of the com-
pression pipeline, the reordering, has to be done on fewer voxels for higher

compression rates and thus demands less time.

6.2. PROCESSING 77

6.2 Processing

To compare performance of the processing operations the tooth dataset and the
orange dataset shown in the previous section 6.1 were used. The tooth dataset
was cropped to the tooth only without the surrounding air resulting in a vol-
ume of 120 x 160 x 100 voxels. Four operations, invert (Inv), histogram spread
(Hist), binary thresholding (Thresh) and a Laplace filter (Lap) were applied to
the volume. All operations were applied by means of the CPU and GPU on the
original datasets as well as the datasets compressed at different rates. As men-
tioned earlier, all CPU operations for compressed data are multithreaded and
benefit strongly from the eight cores of the test system. As this is not the case
for the operations working on non compressed data, for better comparability
all operations were additionally benchmarked with multithreading disabled.
This also gives good insight how well the parallelization works. The Laplace
filter implemented on the CPU, although leading to plausible results with very
small test datasets, performs very slowly. For the two small datasets presented
here the filter takes multiple minutes until it yields a result. Even though it is
expected that the neighborhood based operations perform slow it seems that
the current implementation is flawed and as such, no performance measure-
ments are listed in the corresponding tables. All remaining times are averaged

over 100 runs.

Table 6.5 shows the performance of the CPU operations on the tooth dataset.
As expected, the invert and histogram spread operators which both are applied
directly on the wavelet coefficients perform better than the corresponding op-
erators for the non compressed data. For the cutout only about 14% of the co-
efficients are discarded. Thus the speedup by the factor three respectively four
can be explained by the fewer values which have to be partially processed. As
shown in equation 5.13 and 5.20, the high pass filtered coefficients which are
about six sevenths of the remaining coefficients are multiplied by a constant,
whereas the original operations each involve an additional addition. Thus, the
main speedup seems to be caused by the more simple operations on the high
pass filtered coefficients. Consequentially, with higher compression rates the
performance does not scale linearly, as the quota of the low pass filtered av-
erage coefficients which are processed with the same operator as the original
values, gets larger with larger.

The threshold operator in the spatial domain is in the same class as the first two
operators. In the wavelet form, however decompression is required. Depend-
ing on the compression rate the operations requires between 13 and 40 times
the time of the operation in the spatial domain. The most expensive part of the

78 CHAPTER 6. RESULTS

Table 6.5: Processing Times for the Tooth Dataset (CPU)

Mode Inv [ms] Hist[ms] Thresh[ms] Lap [ms]
Singlethreaded

Uncompressed 45.6 68.5 31.47 271.8
Lossless Compressed 15.6 18.1 1235.4 n/a
Compressed @1 : 2.5 10.0 12.5 797.1 n/a
Compressed @1 : 3 7.8 10.3 623.9 n/a
Compressed @1 : 4 55 8.3 404.0 n/a
Multithreaded

Lossless Compressed 2.3 25 337.0 n/a
Compressed @1 : 2.5 1.3 1.6 205.9 n/a
Compressed @1 : 3 1.1 14 168.5 n/a
Compressed @1 : 4 0.6 0.9 120.1 n/a

decompression is the coefficient lookup. Consequentially, at higher compres-
sion rates where fewer coefficients have to be fetched the performance scales
comparably to the performance of the invert and histogram spread operators.
All three operations benefit from multithreading. However, where the invert
and histogram spread operations use the eight cores to full capacity, the thresh-
olding only gains a speedup of about 4x.

The GPU operations, listed in table 6.6, behave a little different compared to
the CPU versions. Whereas the uncompressed versions of the invert and his-
togram spread operators outperform the CPU versions by the factor 17 respec-
tively 52, the compressed versions perform approximately on the same level on
the GPU and CPU (single threaded). This means that on the GPU, in contrast to
the CPU, the compressed versions perform worse than their non compressed

Table 6.6: Processing Times for the Tooth Dataset (GPU)

Mode Inv [ms] HistS[ms] Thresh[ms] Lap [ms]
Uncompressed 2.7 1.3 14 24.0
Lossless Compressed 154 15.4 46.0 582.8
Compressed @1 : 2.5 9.4 8.3 42.6 451.8
Compressed @1 : 3 7.0 6.6 39.6 417.8

Compressed @1 : 4 53 4.4 32.3 334.1

6.2. PROCESSING 79

counterparts. This is caused by the data handling of these two versions. The
textures for these two operations differ from the textures used by default and
thus some overhead is caused by preparing the data for these operations which
seems to affect performance significantly.

As expected, just like the CPU version the GPU version of the binary thresh-
old as well as the Laplace filter perform significantly worse in the compression
domain compared to the operators in the spatial domain. The binary threshold
performs about 30 times worse in the compression domain at lossless compres-
sion, the Laplace filter about 25 times worse. This is in the same range as the
CPU versions. However, on the GPU the speedup due to higher compression
rates is not as big as on the CPU.

Tables 6.7 and 6.8 show the performance of the same operations on the orange
dataset. The orange dataset is about twice the size of the cutout from the tooth
dataset. The execution of all operations in the spatial domain as well as the in-
vert and histogram spread operations in the compression domain takes about
twice the time as on the tooth dataset. This does not transfer to the binary
threshold and Laplace operators because both operations recompress the data
after the the application of the operation itself. Thresholding and the Laplace
filter significantly alter the structure of the volumes and therefore the compo-
sition of the coefficients. As the performance of the compression step heavily
depends on the number of coefficients which is altered by applying the opera-
tions, the results can not directly be compared between different volumes.
Other than this, all conclusion drawn for the tooth dataset are valid for the or-
ange dataset as well. With higher compression rates the invert and histogram
spread operations perform significantly better and the slower GPU versions
indicate problems with the data handling. The speedup, due to higher com-
pression rates for the thresholding operation and the Laplace filter, is not as
great as for the two other operatons. The multiprocessor speedup is with ap-
proximately 8x for the invert and histogram spread operations and 4 x for the
binary threshold on the same level as for the tooth dataset.

80 CHAPTER 6. RESULTS

Table 6.7: Processing Times for the Orange Dataset (CPU)

Mode Inv [ms] Hist[ms] Thresh[ms] Lap [ms]
Singlethreaded

Uncompressed 100.2 164.1 67.7 302.2
Lossless Compressed 32.0 37.6 2035.5 n/a
Compressed @1 : 2.5 13.6 19.8 854.5 n/a
Compressed @1 : 3 10.5 16.4 673.9 n/a
Compressed @1 : 4 8.3 14.4 570.9 n/a
Multithreaded

Lossless Compressed 41 4.5 552.5 n/a
Compressed @ 1 : 2.5 1.7 2.2 263.6 n/a
Compressed @1 : 3 1.3 19 224.6 n/a
Compressed @1 : 4 0.9 1.6 198.1 n/a

Table 6.8: Processing Times for the Orange Dataset (GPU)

Mode Inv [ms] Hist[ms] Thresh[ms] Lap [ms]
Uncompressed 4.4 52 2.81 73.6
Lossless Compressed 28.6 28.9 172.2 910.2
Compressed @1 : 2.5 10.8 11.5 140.4 630.3
Compressed @1 : 3 8.6 9.2 121.4 517.6

Compressed @1 : 4 6.2 6.9 114.2 446.2

Chapter 7

Summary and Conclusion

This chapter summarizes the results of this thesis and gives an outlook for fu-
ture work including enhancement of compression rates, linear filtering in the

compression domain and hierarchical processing.

Within the scope of this thesis solutions to directly process compressed volume
data were developed. Therefore, a wavelet transform based compression tech-
nique for volume data was designed which allows comparatively fast random
access to single voxels at acceptable compression rates. Based on this compres-
sion technique direct volume visualization via multi-planar reconstruction was
implemented. Moreover, image processing operations were classified by their
applicability in the wavelet domain and some operations were implemented
both on the CPU and GPU exemplarily.

In a nutshell, this thesis presents the following achievements:

e A wavelet compression scheme for volume data
e Visualization directly from wavelet compressed volume data

e Processing of compressed volume data directly in the compression do-

main (for some operations)

e Processing of compressed volume data with local decompression for op-
erations not possible directly in the compression domain with minimal

expansion of the memory footprint

81

82 CHAPTER 7. SUMMARY AND CONCLUSION

7.1 Compression

As shown in section 6.1, the implemented wavelet compression technique de-
livers very good visual quality. With CT datasets hardly any differences be-
tween renderings of non compressed and compressed dataset can be found by
visual examination. The higher noise level of typical MRI datasets makes it
necessary to use larger thresholds to achieve compression rates similar to the
CT datasets. This, however, leads to a loss in image quality. Yet, at the pre-
sented compression rates only slight deviations are notable.

The current implementation is limited to single level decomposition and thus
a theoretical maximum compression rate of 1 : 8 only. A compression rate of
1 : 8, however, woud mean that all high pass filtered coefficients are set to zero.
This would basically result in a downscaled version of the original volume. As
shown in section 6.1, at compression rates of 1 : 4 excellent visual quality can be
reached. Depending on the dataset compression up to 1 : 6 has proven feasible.

For datasets within the range of several hundred million voxels compression
takes several seconds. Thus, it does not make sense to compress a volume only
to benefit from the performance increase of the operations applicable in the
compression domain. The time, however, is acceptable when it is essential to
reduce the memory footprint of the volume.

7.2 Processing

The goal of directly processing compressed volume data was reached. Some
operations were transferred directly into the compression domain, whereas for

others the detour of block- or voxel-wise decompression had to be used.

The operations which could be ported into the compression domain, especially
on the CPU, perform really well. It is not only possible to keep the memory
footprint of the datasets small during processing, the operations actually per-
form better than in the spatial domain. On the GPU, however, the operations
do not perform as well as on the CPU. It should be possible to improve perfor-
mance significantly by optimizing the data handling for these operations and
bringing the data structures for all operations and visualization in line.

Whenever decompression is needed performance drops significantly compared
to processing in the spatial domain. Decompression and recompression consti-
tute a significant overhead. Besides porting operations directly into the com-

pression domain, whenever possible, this overhead can only be reduced by

7.3. FUTURE WORK 83

optimizing the data structure to better exploit caching, etc.

Additionally, simple visualization based on multi-planar reconstruction directly
from the wavelet compressed data was implemented allowing real time to in-
teractive rendering speeds, depending on the size of the dataset. Visual qual-
ity, however, is not as good as for uncompressed data as fast rendering only
works with nearest neighbor interpolation, while for uncompressed data hard-
ware native trilinear interpolation is used. Even though trilinear interpolation
for the compressed visualization is implemented framerates drop significantly

when activated.

7.3 Future Work

There are several possibilites to improve the compression rates of the presented
wavelet compression scheme. At this point there is no quantization applied to
the coefficients at all. By scaling the coefficients to fit into a smaller datatype
the size of the coefficient map could be reduced considerably. In the current
implementation the coefficients are stored in the same 16bit datatype as the in-
put volume, however, typically only a small part of the available range is used
and the major part of the coefficients is very small. Scaling the coefficients to fit
into an eight bit datatype would cut the size of the coefficient map by half. Yet
the maximum possible compression rate would remain 1 : 8. Additionally, one
has to be very cautious with the larger coefficients, as these provide important
detail to the image.

The fixed maximum compression rate of 1 : 8 can only be raised by decreas-
ing the size of the average volume. This can be done by applying the wavelet
transform onto the average volume and compressing the resulting subbands
(this is described in section 2.2.1 as multiple level wavelet transform). For ev-
ery level the maximum possible compression rate will be increased by the fac-
tor eight. However, raising the level also increases the number of computations
necessary to reconstruct a voxel and such would have negative impact on the
rendering and processing speed when reconstruction is needed. However, the
performance of class one operations like invert and histogram spread, which
work directly on the coefficients, would benefit from higher compression lev-
els.

As shown in section 6.2, operations demanding decompression perform quite
poorly. For linear filters decompression could be made unnecessary if trans-
lation were possible in the wavelet domain. In section 3.2 it is shown how

84 CHAPTER 7. SUMMARY AND CONCLUSION

to apply linear filters as a combination of homogeneous multiplication, image
addition and a shift operation. In the currently implemented wavelet trans-
form, however, shifting or translating the image is not possible directly in the
transformation domain. Yet, as presented in section 3.2, several shift invariant
wavelet transforms exist. Extending the current framework by a shift invari-
ant wavelet transform would make linear filtering directly in the compression
domain possible, making decompression only necessary for very few opera-
tions. Applying linear filters in such way is expected to increase performance
markedly. Consequentially, when extending the work of this thesis a shift in-
variant wavelet transform should be one of the top priority tasks.

A very interesting practical application of the presented work could be so-
called hierarchical processing. Many tasks when working with volume data,
wether visualization or processing, require user input. For example, in visu-
alization the user might want to modify the transfer function to examine dif-
ferent features of the dataset or when applying the binary threshold operator
the user interactively wants to change the threshold and follow the modifica-
tions live on screen. For good usability user inputs should at best lead to an
instant feedback on the screen. For large datasets, however, not all operations
can be applied in real time. When using wavelet compression to store the vol-
ume every level in the compression hierarchy implicitly contains a downscaled
version of the original dataset, the average volume. Whenever the user is inter-
acting with the system the average volume can be used to generate previews
of the results, based on which the user can decide wether he is satisfied with
the chosen parameters or not. If yes the system can apply the operation with

the chosen parameters to the entire volume.

Acknowledgements

This work has been carried out at the working group Computer Graphics at
the Institute for Computational Visualistics of the University of Koblenz.

I'would like to express my sincere gratitude and appreciation to all who made
this thesis possible. First and foremost to my adviser Matthias Raspe for his ex-
pert guidance. Thanks for encouraging me in choosing this challenging topic
for my diploma thesis, for all the helpful advices, for the long (GPU) debug-
ging sessions and for proof reading large parts of this thesis. Further thanks
goes to Stefan Miiller for arising my interest in computer graphics.
Additionally sincere thanks go to Dina and Stephan for proof reading this the-
sis as well as Christian and Michael for their input regarding illustrations and
especially 3D the models used in this thesis.

A special thanks is reserved for my parents for their financial aid, but espe-
cially for always believing in me over now nearly six long years of my study-

ing. Thank you!

Finally i have to thank Sarah for her sheer infinite patience with me. It is even-
tually done!

87

Bibliography

DEBEBE ASEFA, DINESH MITAL, SYED HAQUE & SHANKAR SRINIVASAN,
2006, Restoration of fMRI Signal using Wiener Filter in a Wavelet Domain, in
The Internet Journal of Medical Informatics, vol. 3, no. 2.

MICHAEL F. BARNSLEY & LYMAN P. HURD, 1993, Fractal Image Compression, A.
K. Peters, Ltd., Natick, MA, USA.

ANDREW P. BRADLEY, 2003, Shift-invariance in the Discrete Wavelet Transform,
in DICTA’03: Digital Image Computing: Techniques and Applications, pp.
29-38.

CCIR, 1990, Encoding Parameters of Digital Television for Studios, International

Radio Consultative Committee, in Recommendations of the CCIR, vol. 601.

KELBY K. CHAN, CHRISTINA C. LAU, KEH-SHIH CHUANG & CRAIG A.
MORIOKA, 1991, Visualization and Volumetric Compression, in Medical Imag-
ing V: Image Capture, Formatting, and Display, vol. 1444, pp. 250-255, SPIE.

S. GRACE CHANG, BIN YU & MARTIN VETTERLI, 2000, Adaptive Wavelet
Thresholding for Image Denoising and Compression, in IEEE Transactions on Im-
age Processing, vol. 9, no. 9, pp. 1532-1546.

Tz1-CKER CHIUEH, CHUAN-KAI YANG, TAOSONG HE, HANSPETER PFISTER
& ARIE KAUFMAN, 1997, Integrated Volume Compression and Visualization, in
VIS "97: Proceedings of the 8th conference on Visualization ‘97, pp. 329-f.,
IEEE Computer Society Press, Los Alamitos, CA, USA.

HUNG-KAI CLIFF CHOI & CHOK-KI CHAN, 1996, Motion Classified 3D Vector
Quantization for Sequence Coding, in Proceedings of International Conference
on Image Processing 96, vol. 3, pp. 275-278.

WAYNE O. COCHRAN, JOHN C. HART & PATRICK J. FLYNN, 1996, Fractal

Volume Compression, in IEEE Transactions on Visualization and Computer
Graphics, vol. 2, no. 4, pp. 313-322.

89

90 BIBLIOGRAPHY

ISRAEL COHEN, SHALOM RAZ & DAVID MALAH, 1997, Orthonormal Shift-

invariant Wavelet Packet Decomposition and Representation, in Signal Process.,
vol. 57, no. 3, pp. 251-270.

JAMES W. COOLEY & JOHN W. TUKEY, 1965, An Algorithm for the Machine Cal-
culation of Complex Fourier Series, in Mathematics of Computation, vol. 19,
no. 90, pp. 297-301.

PAMELA C. COSMAN, KAREN L. OEHLER, EVE A. RISKIN & ROBERT M. GRAY,
1993, Using Vector Quantization for Image Processing, in Proceedings of the
IEEE "93, vol. 81, pp. 31326-13419, IEEE Computer Society, Washington, DC,
USA.

CUDA 2.0, NVIDIA CUDA Compute Unified Device Architecture - Programming
Guide Ver. 2.0, nvidia,

visited August, 10th, 2008.

DAvVID L. DONOHO & IAIN M. JOHNSTONE, 1995, Adapting to Unknown
Smoothness via Wavelet Shrinkage, in Journal of American Statistical Associ-
ation, vol. 90, no. 432, pp. 1200-1224.

ANDREW DORRELL, 1996, Image Processing in the Block-DCT Domain: Fast
Techniques and Applications, published through
(no longer available).

ANDREW DORRELL & DAVID LOWE, 1995, Fast Image Operations in Wavelet
Spaces, in Digital Image Computing, Techniques and Applications, Brisbane,
Australia.

IDDO DRORI & DANI LISCHINSKI, 2003, Fast Multiresolution Image Operations
in the Wavelet Domain, in IEEE Transactions on Visualization and Computer
Graphics, vol. 9, pp. 395-411.

S. DUNNE, S. NAPEL & B. RUTT, 1990, Fast Reprojection of Volume Data, in Pro-
ceedings of the First Conference on Visualization in Biomedical Computing,
1990., pp. 11-18.

KLAUS ENGEL, MARKUS HADWIGER, CHRISTOF REZK-SALAMA, JOE M.
KNI1ss & DANIEL WEISKOPF, 2006, Real-time Volume Graphics, A. K. Peters,
Ltd., Natick, MA, USA.

UGO ERRA, 2005, Toward Real Time Fractal Compression Using Graphics Hardware,
in ISVC '05: Proceedings of the International Symposium on Visual Comput-
ing, vol. 3804, pp. 723-728.

http://developer.download.nvidia.com/compute/cuda/2.0-Beta2/docs/Programming_Guide_2.0beta2.pdf
http://developer.download.nvidia.com/compute/cuda/2.0-Beta2/docs/Programming_Guide_2.0beta2.pdf
http://developer.download.nvidia.com/compute/cuda/2.0-Beta2/docs/Programming_Guide_2.0beta2.pdf
http://www.pnc.com.au/~enviscom/research/dct-processing.pdf
http://www.pnc.com.au/~enviscom/research/dct-processing.pdf

BIBLIOGRAPHY 91

ALLEN GERSHO & ROBERT M. GRAY, 1992, Vector Quantization and Signal Com-
pression, Kluwer Academic Publishers.

M. GOLDBERG & HUIFANG SUN, 1986, Image Sequence Coding Using Vector
Quantization, in 1IEEE Transactions on Communications, vol. 34, no. 7, pp.
703-710.

ROBERTO GROSSO, THOMAS ERTL & JOACHIM ASCHOFF, 1996, Efficient Data
Structures for Volume Rendering of Wavelet-Compressed Data, in WSCG "96 - The
Fourth International Conference in Central Europe on Computer Graphics
and Visualization, vol. I, pp. 103-112, University of West Bohemia, Plzen.

HAITAO GUO & C. S. BURRUS, 1996, Convolution Using the Undecimated Discrete
Wavelet Transform, in ICASSP "96: Proceedings of the Acoustics, Speech, and
Signal Processing, 1996. on Conference Proceedings., 1996 IEEE International
Conference, pp. 1291-1294, IEEE Computer Society, Washington, DC, USA.

STEFAN GUTHE, MICHAEL WAND, JULIUS GONSER & WOLFGANG STRASSER,
2002, Interactive Rendering of Large Volume Data Sets, in VIS '02: Proceedings
of the conference on Visualization ‘02, pp. 5360, IEEE Computer Society,
Washington, DC, USA.

MATTHIAS HOPF & THOMAS ERTL, 1999, Hardware-Based Wavelet Transforma-
tions, in Workshop of Vision, Modelling, and Visualization (VMV '99), pp.
317-328, infix.

INSUNG IHM & SANGHUN PARK, 1999, Wavelet-Based 3D Compression Scheme
for Interactive Visualization of Very Large Volume Data, in Computer Graphics
Forum, vol. 18, no. 1.

JPEG, The JPEG Standard, Joint Photographic Experts Group,
visited June, 11th, 2008.

JPEG 2000, The JPEG 2000 Standard, Joint Photographic Experts Group,
visited June, 11th, 2008.

LAKHWINDER KAUR, SAVITA GUPTA & R. C. CHAUHAN, 2002, Image Denois-
ing Using Wavelet Thresholding, in The 3rd Indian Conference on Computer

Vision, Graphics and Image Processing "02.

TAE-YOUNG KM & YEONG GIL SHIN, 1999, An Efficient Wavelet-Based Com-
pression Method for Volume Rendering, in PG '99: Proceedings of the 7th Pacific
Conference on Computer Graphics and Applications, p. 147, IEEE Computer
Society, Washington, DC, USA.

http://jpeg.org/jpeg/index.html
http://jpeg.org/jpeg/index.html
http://jpeg.org/jpeg2000/index.html
http://jpeg.org/jpeg2000/index.html

92 BIBLIOGRAPHY

DoNALD E. KNUTH, 1985, Dynamic Huffman Coding, in Journal of Algorithms,
vol. 6, no. 2, pp. 163 - 180.

THOMAS LEHMANN, WALTER OBERSCHELP, ERICH PELIKAN & RUDOLF
REPGES, 1997, Bildverarbeitung fiir die Medizin, Springer-Verlag, Berlin.

L. LIPPERT & MARKUS. H. GROSS, 1995, Fast Wavelet Based Volume Rendering
by Accumulation of Transparent Texture Maps, in Computer Graphics Forum,
vol. 14, pp. 431-444.

ToM MALZBENDER, 1993, Fourier Volume Rendering, in ACM Trans. Graph.,
vol. 12, no. 3, pp. 233-250.

SHIGERU MURAKI, 1993, Volume Data and Wavelet Transforms, in Computer
Graphics and Applications, vol. 13, no. 4.

MVL, MeVisLab, Medical Image Processing and Visualization, meVisLab down-
load at visited August,
10th, 2008.

PAUL NING & LAMBERTUS HESSELINK, 1992, Vector Quantization for Volume
Rendering, in VVS "92: Proceedings of the 1992 workshop on Volume visual-
ization, pp. 69-74, ACM, New York, NY, USA.

PAUL NING & LAMBERTUS HESSELINK, 1993, Fast Volume Rendering of Com-
pressed Data, in VIS '93: Proceedings of the 4th conference on Visualization
93, pp- 11-18.

OpenMP, OpenMP Application Program Interface, OpenMP Architecture Re-
view Board,
visited July, 17th, 2008.

OsiriX, DICOM Sample Image Sets, The OsiriX Foundation,
visited June, 23th, 2008.

JAVIER PORTILLA, VASILY STRELA, MARTIN]J. WAINWRIGHT & EERO P.
SIMONCELLI, 2002, Image Denoising Using Gaussian Scale Mixtures in the
Wavelet Domain, Tech. Rep. TR2002-831, Computer Science Technical Report,

Courant Inst. of Mathematical Sciences, New York University.

SHEN-EN QIAN, ALLAN B. HOLLINGER, DAN WILLIAMS & DAVINDER
MANAK, 1995, 3D Data Compression System Based on Vector Quantization for
Reducing the Data Rate of Hyperspectral Imagery, in Proceedings of Interna-
tional Conference on Applications of Photonics Technology, pp. 641-654.

http://www.mevislab.de/index.php?id=4
http://www.openmp.org/mp-documents/spec30.pdf
http://pubimage.hcuge.ch:8080/
http://pubimage.hcuge.ch:8080/

BIBLIOGRAPHY 93

MATTHIAS RASPE, GUIDO LORENZ & STEFAN MULLER, 2008a, Evaluating the
Performance of Processing Medical Volume Data on Graphics Hardware, in Bild-
verarbeitung fiir die Medizin, pp. 427-431.

MATTHIAS RASPE, GUIDO LORENZ & STEPHAN PALMER, 2008b, Hierarchical
and Object-Oriented GPU Programming, in Computer Graphics International
Conference, pp. 333-337.

MATTHIAS RASPE & STEFAN MULLER, 2007, Using a GPU-based Framework for
Interactive Tone Mapping of Medical Volume Data, in SIGRAD 2007. The An-
nual SIGRAD Conference, Special Theme: Computer Graphics in Health-
care, vol. 28, no. 3, pp. 3-10.

FLEMMING FRICHE RODLER, 1999, Wavelet Based 3D Compression with Fast Ran-
dom Access for Very Large Volume Data, in PG '99: Proceedings of the 7th Pa-
cific Conference on Computer Graphics and Applications, p. 108, IEEE Com-
puter Society, Washington, DC, USA.

J. K. ROGERS, 1998, Robust Wavelet Zerotree Image Compression with Fixed-Length
Packetization, in DCC "98: Proceedings of the Conference on Data Compres-
sion, p. 418, IEEE Computer Society, Washington, DC, USA.

JENS SCHNEIDER & RUDIGER WESTERMANN, 2003, Compression Domain Vol-
ume Rendering, in Proceedings of the 14th IEEE Visualization 2003, p. 39, IEEE
Computer Society, Washington, DC, USA.

PETER SCHRODER, 1996, Wavelets in Computer Graphics, in Proceedings of the
IEEE, vol. 84, pp. 615-625.

N. SEBE, C. LAMBA & M.S. LEW, 2002, An Overcomplete Discrete Wavelet Trans-
form for Video Compression, in ICME ’02. Proceedings. 2002 IEEE International
Conference on Multimedia and Expo, vol. 1, pp. 641-644.

BO SHEN & ISHWAR K. SETHI, 1996, Convolution-Based Edge Detection for Im-
age/Video in Block DCT Domain, in Journal of Visual Communication and Im-
age Representation, vol. 7, no. 4, pp. 411-423.

BO SHEN, ISHWAR K. SETHI & V. BHASKARAN, 1998, DCT Convolution and its
Application in Compressed Video Editing, in IEEE Transactions on Circuits and
Systems for Video Technology, vol. 8, no. 8, pp. 947-952.

MARK J. SHENSA, 1992, The Discrete Wavelet Transform: Wedding the A Trous
and Mallat Algorithms, in IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 40, no. 10, pp. 2464-2482.

94 BIBLIOGRAPHY

BRIAN C. SMITH & LAWRENCE A. ROWE, 1993, Algorithms for Manipulating
Compressed Images, in Computer Graphics and Applications, vol. 13, no. 5,
pp- 34-42.

BRIAN C. SMITH & LAWRENCE A. ROWE, 1996, Compressed Domain Processing
of JPEG-encoded Images, in Real-Time Imaging, vol. 2, pp. 3-17.

VASILY STRELA, 2000, Denoising via Block Wiener Filtering in the Wavelet Do-
main, in Third European Congress of Mathematics, Progress in Mathematics,
Birkhauser Verlag, Barcelona.

OSCAR VALERO, 2005, On Banach Fixed Point Theorems for Partial Metric Spaces,
in Applied General Topology, vol. 6, pp. 229-240.

GREGORY K. WALLACE, 1991, The JPEG Still Picture Compression Standard, in
Commun. ACM, vol. 34, no. 4, pp. 30-44.

BEN WEISS, 2006, Fast Median and Bilateral Filtering, in ACM Transactions on
Graphics, vol. 25, no. 3, pp. 519-526.

STEPHEN WELSTEAD, 1999, Fractal and Wavelet Image Compression Techniques,
SPIE - The International Society for Optical Engineering.

RUDIGER WESTERMANN, 1994, A Multiresolution Framework for Volume Render-
ing, in VVS '94: Proceedings of the 1994 symposium on Volume visualiza-
tion, pp. 51-58, ACM, New York, NY, USA.

NORBERT WIENER, 1949, Extrapolation, Interpolation, and Smoothing of Stationary
Time Series, Technology Press of MIT, Cambridge, MA, USA.

	Abstract
	Contents
	List of Figures
	Introduction
	Motivation
	Problem Statement and Objectives
	Structure

	Fundamentals
	Cascada
	Image Compression Techniques
	Wavelet Image Compression
	Discrete Cosine Transform
	Fractal Compression
	Vector Quantization

	A Classification of Image Processing Operations
	Point Based Operations
	Local Operations
	Global Operations

	State of the Art
	Compression of Volume Data
	Processing in the Compression Domain
	Summary and Discussion

	Wavelet Compression of Volume Data
	The Haar Wavelet Transform
	Data Structure
	Implementation Details

	Processing of Compressed Volume Data
	Mathematical Considerations
	Implementation Details
	The Data Structure on the GPU
	Visualization
	Processing

	Results
	Compression
	Processing

	Summary and Conclusion
	Compression
	Processing
	Future Work

	Acknowledgements
	Bibliography

