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Interactive Volume Exploration for Feature Detection
and Quantification in Industrial CT Data

Markus Hadwiger, Laura Fritz, Christof Rezk-Salama, Thomas Hollt, Georg Geier, and Thomas Pabel

Abstract— This paper presents a novel method for interactive exploration of industrial CT volumes such as cast metal parts, with
the goal of interactively detecting, classifying, and quantifying features using a visualization-driven approach. The standard approach
for defect detection builds on region growing, which requires manually tuning parameters such as target ranges for density and size,
variance, as well as the specification of seed points. If the results are not satisfactory, region growing must be performed again
with different parameters. In contrast, our method allows interactive exploration of the parameter space, completely separated from
region growing in an unattended pre-processing stage. The pre-computed feature volume tracks a feature size curve for each voxel
over time, which is identified with the main region growing parameter such as variance. A novel 3D transfer function domain over
(density, feature_size, time) allows for interactive exploration of feature classes. Features and feature size curves can also be explored
individually, which helps with transfer function specification and allows coloring individual features and disabling features resulting from
CT artifacts. Based on the classification obtained through exploration, the classified features can be quantified immediately.

Index Terms—Non-Destructive Testing, Multi-Dimensional Transfer Functions, Region Growing, Volume Rendering.

1 INTRODUCTION

Non-destructive testing (NDT) is a scientific discipline which exam-
ines the internal structures of industrial components such as machine
parts, pipes, or ropes without destroying them. It is an essential tool
in construction engineering and manufacturing, especially in the au-
tomotive and aviation industry. In cast metal parts, for example, the
processes during solidification may cause shrinkage cavities, pores,
cracks, or inhomogeneities to appear inside the structure, which are
not visible from the outside. NDT allows the assessment of such ma-
terial defects which arise throughout the manufacturing process, as
well as during use if the component is exposed to mechanical loads or
corrosion. Furthermore, NDT is nowadays not only used for inspect-
ing metal parts but for a variety of different materials such as plastics,
wood, or concrete, as well as minerals in general. In recent years,
3D Computed Tomography (CT) has become common in NDT, which
has created powerful new possibilities, but also new challenges for the
inspection and testing process. Industrial CT volumes are generally
quite large, with voxels commonly stored with 16 bits of precision,
which leads to several hundred MB to one or more GB of raw data per
scan. Real-time volume rendering has become an essential tool for vi-
sualizing these volumes, usually using bricking strategies [5] to cope
with the large data sizes. However, for NDT practitioners visualization
is just one part of the workflow, which includes a variety of processing
tasks such as defect detection and quantification, computing statistical
measures and properties such as material porosity, performing accu-
rate measurements and comparisons, and many more.

The goal of our work is to help bridge the gap between the visu-
alization of features and the quantification of defects. Feature detec-
tion is usually performed via some type of segmentation, which most
commonly builds on region growing and filtering operations such as
morphological operators. Segmentation results in one or several static
segmentation masks, which can be visualized as part of the 3D volume
and also form the basis of quantification. The segmentation, however,
cannot be modified without re-computation. This decouples the de-
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tection of features from visualization and prevents working in a fully
interactive manner. Most of all, it hampers interactively exploring the
volume without already knowing beforehand what features are con-
tained in it. Whenever the segmentation results for specified parame-
ters are not satisfactory, the user has to modify the parameters and the
entire segmentation has to be computed all over again. This is often
time-consuming and tedious.

Unlike this standard approach, we propose a visualization-driven
method for feature detection that allows features in the volume to be
explored interactively without re-computing the segmentation. The
basis for this is an unattended pre-computation stage that computes a
feature volume and some additional data structures, which contain the
result of feature detection over parameter domains instead of fixed pa-
rameters. This pre-computation has to be performed only once for a
given data set and forms the basis of interactively exploring all con-
tained features. In contrast to detection of a single type of features,
we allow the user to explore all feature classes and decide interac-
tively which classes of features are of interest, instead of specifying
this information beforehand. This is particularly useful in the context
of compound parts or complex materials such as minerals.

In a traditional workflow for detecting defects in cast metal parts,
the parameters for the segmentation need to be specified such that the
density of defects is below a certain threshold (assuming that air or
gas comprises the interior of defects), their sizes are larger than a given
minimum (very small defects are noise), and smaller than a given max-
imum (very big defects are not defects but, e.g., actual holes). More-
over, further parameters must be set for the region growing process,
for example a maximum density variance in the region, or maximum
standard deviation from the neighborhood of a seed voxel. The sys-
tem might also require the user to manually specify seed voxels or set
parameters for automatic seed determination. In contrast, our system
computes and records the result of region growing for the entire den-
sity domain, all different sizes of features, and the entire domain of
the most important region growing parameter (given a specific region
growing algorithm) such as maximum variance. For generality, we re-
fer to this parameter as the “time” parameter ¢ throughout the paper.
Together, these three 1D parameter ranges comprise the 3D (density,
feature __size, time) domain, which is explored by the user via 3D trans-
fer functions (TFs). In order to make TF specification tractable, a 2.5D
metaphor is employed, which still provides the necessary flexibility.

2 RELATED WORK

Region growing is a fundamental image processing technique for seg-
mentation [18] based on a specified homogeneity criterion. It belongs
to the class of non-uniform problems, whose run-time complexity is

Published by the IEEE Computer Society
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Fig. 1. Overview of our pipeline. The pre-computation stage computes feature size curves via multi-pass region growing, which are stored split up
into a 3D feature volume and a 2D feature growth table. These are the basis for the subsequent interactive exploration stage.

strongly data dependent and cannot be determined at compilation time.
Simple implementations are based on aggregation starting from a spec-
ified seed point in a recursive way. More efficient implementations
use a split-and-merge strategy [8], and parallel implementations have
been developed [4, 11]. The seed points and the homogeneity met-
ric are essential for region growing techniques. Many research groups
have suggested methods to simplify and automatize their specification.
In [1], the homogeneity criterion is omitted by simultaneous evaluation
of several different seed points. The volume seedlings approach [3]
represents an interactive technique for specifying seed points to select
regions of interest. However, since this approach is working in screen
space, it is restricted to a static viewpoint. Other techniques derive
the homogeneity criterion from statistical information about the lo-
cal neighborhood of the seed point, mainly mean value and variance.
In 3D, such techniques are closely related to automatic iso-surface
extraction. Tenginakai et al. [16] propose a method for detection of
salient iso-surfaces based on higher-order statistical moments. Tech-
niques such as contour-trees [17] and -spectrum [2] evaluate informa-
tion about topology, area and enclosed volume of iso-surfaces. This
information is then used for feature classification.

For the visualization of 3D scalar fields, powerful real-time vol-
ume rendering techniques are available [6]. In recent years, usabil-
ity aspects have become more and more prominent in visualization
systems. In their seminal paper, Kindlmann and Durkin describe a
semi-automatic TF design [12]. Although their TF was still one-
dimensional, the gradient magnitude and the second-order derivative
of the scalar field were taken into account. True multi-dimensional
TFs were introduced by Kniss et al. [13]. Here, the derivatives were
pre-computed and a 3D TF was applied for classification. The authors
also proposed a user-interface based on interaction in both the spatial
domain and the feature space of the TF (dual domain interaction). The
original idea of tracing path lines along the gradient field described
in [12], was expanded by Sereda et al. [14]. They employ a LH (low-
high) histogram for selecting regions of interest in feature space. Each
voxel with a gradient magnitude larger than a small threshold is con-
sidered a boundary voxel and a short path line is traced along the gra-
dient field in order to determine two tissue types at the boundary.

Huang and Ma [9] integrate the region growing technique into vol-
ume visualization systems. Besides full segmentation, their technique
may perform region growing on a partial data range in order to define
a 2D TF for volume rendering. Such a visualization, however, will
not be exact compared to the full segmentation. Although their visu-
alization is fast and effective, modifying the seed points at run-time
will also require re-computation. Huang et al. also demonstrate an ap-
plication of their region growing technique for non-destructive testing
of CT data [10], which is effective, but underlies the same limitations
for interactive exploration. Like the approach by Huang and Ma [10],
our visualization technique is based on multi-dimensional TFs. The
feature volume we use, however, is different. Unlike their approach,
our technique allows us to interactively explore the volume by select-
ing feature size, density, and the main region growing parameter in
real-time. Region growing is performed only as a pre-processing step.

3 PIPELINE OVERVIEW

An overview of our pipeline for exploration and quantification of fea-
tures is illustrated in Figure 1. As a pre-requisite, for a given CT vol-
ume additional information must be pre-computed (Section 4), which
constitutes the basis of interactive feature exploration. We employ a
multi-pass region growing approach (Section 4.4) that conceptually

computes a feature size curve over “time” t (which corresponds to the
main region growing parameter) for each voxel in the volume (Sec-
tion 4.1). For memory efficiency, these curves are stored split up into
a 3D feature volume (Section 4.2), and a corresponding 2D feature
growth table (Section 4.3).

When the feature volume and growth table are available, the data set
can be explored interactively for features of interest in the exploration
stage (Section 5). Feature exploration builds on the specification of
a 3D transfer function (TF) in the (density, feature_size, time) domain
(Section 5.1), which is constituted by the CT density volume, the fea-
ture volume, and the feature growth table. TF specification is not only
the means by which the user determines the visualization, but also how
features to be quantified are selected. Features can also be explored in-
dividually using a graphical feature view or picking in orthogonal slice
views (Section 5.2), which can also be used to remove specific features
from rendering and quantification that are artifacts from the CT acqui-
sition process. During exploration, the current feature classification is
displayed using real-time volume rendering (Section 5.3).

From the feature classification specified by the user during the in-
teractive exploration phase, the quantification stage (Section 6) auto-
matically computes statistical measures such as feature count, volume,
and surface area for features that have been selected in the exploration
stage. That is, quantification is performed in a visualization-driven
manner, where everything that is selected for feature visualization is
included in the quantification. Performing quantification only for the
feature classes found to be of interest during exploration empowers
the domain expert to interactively control the final result. Both feature
exploration and quantification can be performed as often as desired
without requiring additional pre-computation.

4 PRE-COMPUTATION

Although exploration is conceptually the most important part of our
pipeline, the basis for interactivity during exploration is a complex
pre-computation stage, whose components are described in this sec-
tion. However, no user input is required for this stage, and thus it
is technically complex and important but decoupled from the explo-
ration. The main goal for pre-computing additional information is to
enable exploration of different classes of features with different param-
eters in such a way that, e.g., the main parameter used to steer region
growing (e.g., maximum variance) can be changed interactively after
actual region growing has been performed. In order to allow this, we
perform region growing in multiple passes and track the progress for
each voxel, which is recorded in feature size curves.

4.1 Feature Size Curves

In order to allow interactive exploration of region growing with differ-
ent parameter settings, such as different variance thresholds, which
would not be possible to change interactively, the result of region
growing is tracked and recorded along the parameter axis in the pre-
computation stage. That is, instead of using a single parameter value,
we track features over an entire parameter range. In order to make
the following description more general, we denote this parameter as
“time” ¢, which is stepped from a start time ¢ (e.g., minimum interest-
ing variance) to a maximum time #, (e.g., maximum interesting vari-
ance) in a specified number of steps b. That is, the time (parameter)
axis is sampled into b bins, e.g., b = 16, which allows the resulting
curves to be stored in arrays with b entries. For each voxel, the size of
the feature (region) it belongs to is recorded, resulting in a feature size
curve for each voxel x along the time axis ¢: fy(X,?).
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Figure 2 illustrates the feature size curves of four different example
voxels. Voxel 0 (red) is the seed voxel of a feature that starts at time 7
with a size of 30 voxels and grows in size several times as ¢ increases.
Voxel 3 (purple) is another voxel in this feature, but only becomes a
part of it at time #;. Voxel 2 (green) belongs to another feature, but
merges with the feature containing voxels 0 and 3 at time 7. Voxel 1
(blue) belongs to a feature with a size of 15 voxels, which stays at this
size over time, i.e., does not grow any further.

Storing feature size curves: The major observation for stor-
ing feature size curves f;(x,) with a manageable amount of memory is
that all voxels in a feature exhibit very similar curves. In the beginning
(time #(), most voxels do not belong to any feature, i.e., f;(x,79) = 0.
Seed voxels that start a new feature at time #; record the entire growth
curve of this feature. In each pass, additional voxels may become a
part of this feature, and when a voxel does so at time ¢, it from then on
shares the feature size curve with the curve of the original seed voxel.
Before a voxel becomes part of a feature, its “voxel-local” feature size
is zero. That is:

0 t<tj

fs(xvt): { fs(x.ﬁt) l‘Zl‘j‘ (1)
for a voxel x that at time #; becomes a part of a feature whose original
seed voxel is x;. This fact makes it possible to store only a single
feature size curve per feature in full. However, for each voxel, the
feature ID that it will become a part of at time ¢; must be stored, as well
as storing #; itself. This per voxel information is stored in a 3D feature
volume (Section 4.2), whereas the curves themselves are stored in a 2D
feature growth table (Section 4.3). Figure 3 illustrates the relationship
between the feature volume, the feature growth table, and feature size
curves, which is described in detail below.

4.2 Feature Volume

The purpose of the feature volume is to store all per-voxel information
that is needed to reconstruct full feature size curves at run-time. As
detailed in the previous section, it is sufficient to store only two values
per voxel X: (IDp; 4, (X), 24, (X)). The first value yields a feature ID
that this voxel belongs to. However, when features merge over time,
feature IDs can change, the handling of which is described in the next
section. In order to avoid storing these changing IDs per voxel, the ID
stored in the feature volume is the feature birth ID (IDyp;,, ), which is
the ID of the first feature this voxel belongs to. The second value de-
termines the time at which this voxel becomes part of the feature with
the corresponding feature birth ID, i.e., its feature birth time (tp,;.47,)-

The feature volume is stored in a 16-bit two-channel 3D texture,
e.g., a Luminance-Alpha texture in OpenGL. During rendering, a sin-
gle texture fetch from this 3D feature texture yields everything needed
to reconstruct the voxel’s feature size curve via the feature growth ta-
ble stored in a 2D texture, as described below.
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Fig. 2. Feature size curves of four example voxels. Seed voxels belong
to a feature from the time where it is created (voxels 0, 1, 2), whereas
other voxels may join a feature at a later time (voxel 3; t;). Features
may merge over time (t,), which implies that the feature size curves of
all contained voxels are the same after the merge (voxels 0, 2, and 3).
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4.3 Feature Growth Table

As described in the previous sections, the feature volume itself does
not store actual feature size curves. Instead, we store one representa-
tive curve for each feature, which is the feature size curve of the fea-
ture’s seed voxel Xy, in a 2D feature growth table. The feature growth
table contains one row per feature and b columns, where b is the num-
ber of bins for sampling the parameter . Each entry in this table is
a (fs(xs,4),ID(t;)) pair, which in each row collectively represent the
sampled growth curve of the feature over time 7: f;(xs,t), as well as
mapping time to current feature ID: ID(t). The latter is necessary in
order to be able to handle the merging of features over time, where
feature birth ID and current feature ID are not necessarily the same
because the ID can change when a feature merges into another one.
Handling the merging of features is described below. The feature size
curve for a given voxel x can be reconstructed for any time #; by using
Equation 1 with ¢; = #3,;,.,,(x), and indexing the feature growth table
in row IDp; .., (x) and the column corresponding to the bin of 7;, to ob-
tain fi(Xy,7;) when #; > t;. This is a very simple and efficient scheme,
which can easily be evaluated in a GPU fragment shader during ray-
casting, illustrated by the pseudo code in Section 5.3.

In principle, the feature growth table is stored in a 16-bit two-
channel 2D texture, e.g., a Luminance-Alpha texture in OpenGL.
However, since this texture has to contain one row per feature and there
can be thousands of features, hardware texture dimension constraints
often make it impossible to use a single 2D texture for this purpose. If
the hardware supports 2D texture arrays (e.g., NVIDIA GeForce 8 or
higher), we split up the feature growth table into a texture array with
m rows and [n/m] layers, where m is the maximum allowed dimen-
sion of a 2D texture as reported by the hardware, and # is the number
of features. If texture arrays are not supported, the feature growth table
is split up in a similar way, but layers are stored in the depth dimen-
sion of a 3D texture, which is functionally almost identical. However,
accessing a 3D texture is slower than accessing a 2D texture array, and
it might be necessary to pad the depth dimension to a power-of-two.

Merging features: Features can merge as the parameter ¢ in-
creases, e.g., when two or more small disjoint but close features grow
in size over ¢ until they finally touch and thus merge. When this hap-
pens at time 1y, they are treated as a single feature for all # > #;.. In order
to do so, we assign a new current feature ID to the entire merged fea-
ture, using the ID of the (sub-)feature with the largest voxel population
of the features that have merged. During rendering, the feature ID that
is current at a time #; needs to be determined for a given voxel (sam-
ple). Thus, we store the current feature ID corresponding to each #;
(ID(t;)) in the feature growth table, as explained above. Every row in
this table corresponds to a feature birth ID, i.e., the ID that was as-
signed on feature creation, whereas the current feature ID is retrieved
from the ID entry in column ¢#;. Thus, the IDs stored in the feature vol-
ume are feature birth IDs instead of current IDs. The big advantage of
this approach is that it allows the IDs stored in the feature volume to be
left untouched by the merging of features. It is sufficient to know the
feature birth ID for each voxel, i.e., the feature the voxel first belonged
to. Everything else can be obtained from the feature growth table, i.e.,
for any ¢;, the current ID and current size of the feature are retrieved
from the feature growth table in row feature birth ID and column ¢;.

Time Step ———>

|
LI

Feature Volume Feature Growth Table Feature Size Curves

Fig. 3. A feature volume stores only the per-voxel information that is
necessary in order to reconstruct the feature size curve of each voxel
using the per-feature growth information stored in the feature growth
table, where each row corresponds to one feature.
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4.4 Multi-Pass Region Growing and Seed Selection

Both the feature volume and the feature growth table are computed
using region growing in multiple passes, where each pass corresponds
to a specific time step #;. Figure 4 illustrates the overall region growing
process for three consecutive time steps. The resulting feature size
curves over time and the feature volume and feature growth table used
to store them are illustrated in Figures 2 and 3, respectively.

Instead of selecting specific seed voxels either manually or auto-
matically, we in principle consider every voxel in the volume as po-
tential seed for growing a region. This way, no seeds for potential
features can be missed, and the user is not required to specify seeds at
all. Nevertheless, we allow optionally culling away the background as
performance optimization.

Culling: Inindustrial CT parts a significant number of voxels are
usually part of the background, i.e., air. In order to speed up the pre-
computation stage, it is worthwhile to remove these parts of the vol-
ume from the potential seed candidates. We do this by allowing the
user to specify an opacity TF, which is used to cull small sub-blocks
of the volume (e.g., 323). The simplest TF for culling is a simple win-
dowing function. In our system, the default setting is a window over
the entire density range, which disables culling, but can be changed by
the user before pre-computation is started. Culling determines an ac-
tive block list, and the voxels contained in active blocks are considered
as potential seeds.

Region growing: Given the active block list determined by
culling, which might contain the entire volume, selection of seed can-
didates for region growing proceeds by processing block after block,
considering each contained voxel in turn.

In each pass, for each seed candidate, a region is grown as far as
possible given the current parameter #;. In order for a region to be-
come a feature, its size must be both larger than a given minimum
(not too small), to avoid spurious features of only a few voxels due
to noise, and smaller than a given maximum (not foo big), to avoid
turning entire structures such as holes into features. These two size
thresholds are specified globally and are set to very conservative val-
ues by default, which is usually sufficient and thus no specification
by the user is necessary. If a region satisfies these two criteria, a new
feature is created from it. All voxels comprising this feature will sub-
sequently not be considered as seed candidates. Region growing then
continues by considering the next seed candidate. Furthermore, in all
passes after the first one, in addition to starting completely new fea-
tures, existing features have to be grown further if allowed for by the
increased region growing parameter ;1. The distinction between first
and subsequent passes, as well as handling multi-pass region growing
efficiently, is described below.

In the first pass, i = 0, with a corresponding region growing pa-
rameter t; = tg, every voxel that is not yet part of any feature is con-
sidered as seed candidate for starting a completely new feature. Note
that since seed candidates are considered sequentially, even in the first
pass many voxels may already have been assigned to features when
a given candidate is processed. In the next pass, i+ 1, and all subse-
quent passes, (1) as yet unassigned voxels are considered as new seed
candidates, possibly starting a new feature at time #;;1; and (2) al-
ready existing features are grown further from their boundary voxels,

time=0 time=1 time=2

W new features
[ previous features

O culled voxels
X seed voxels

B growing features
B merged features

Fig. 4. Region growing is performed in multiple passes. In each pass,
new features can be created, previously existing features may grow (ex-
cept in the first pass), and features may merge. Optionally, background
voxels can be culled in order to improve pre-processing performance.
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if possible given the new region growing parameter #; 1. If an exist-
ing feature grows further at time #;, 1, its feature size increases, i.e.,
fs(X,tiv1) > fs(x,1;), see Figures 2 and 3.

The following approach allows handling all cases efficiently and
treating the first and all subsequent passes as uniformly as possible.
We maintain two bit masks with one bit per voxel for tagging and thus
removing voxels from further consideration for either growing a new
feature or extending an existing feature. A voxel is considered tagged
when its bit is set in either one of the two masks (or both).

The goal of the checked mask is to remove voxels from consider-
ation for growing a new feature (where it would be a seed voxel), or
extending an existing feature (where it would be a voxel in the fea-
ture’s boundary), both in the current and all subsequent passes. This
mask is cleared only before the first pass and then updated from pass
to pass. A bit in the checked mask is set when either (a) the voxel is
inside a feature, i.e., all its neighboring voxels also belong to the fea-
ture (e.g., using the 26-neighborhood); or (b) because the voxel is part
of a region that became foo big (see above).

In contrast, the goal of the visited mask is to avoid considering the
same voxel twice in the same region growing pass (for either growing
a new feature or extending an existing feature). As such, it is cleared
before each pass. A bit in the visited mask is set when a voxel is
added to a feature in the current pass, irrespective of whether inside
the feature or on its boundary.

During region growing, a voxel is a candidate for either growing a
new feature or growing an already existing feature further when nei-
ther its bit in the checked mask nor in the visited mask is set. The
distinction between these two cases is done according to the corre-
sponding entry in the feature volume. The entry there contains a valid
birth feature ID if the voxel already belongs to a feature, and thus is
a candidate for growing the feature further. It contains an invalid ID
when the voxel does not yet belong to a feature, and thus is a seed
candidate for growing a completely new feature.

4.5 Region Growing Criteria

Our approach is independent of the actual region growing method that
is used, and works well as long as a single parameter ¢ suffices to char-
acterize the main variation of the growing process. We have used the
two region growing approaches outlined below as a proof-of-concept
of our interactive approach. However, other region growing or feature
detection methods could be adapted as well to work in the context of
our framework.

Region growing method A: We are using a variant of seeded
region growing [1] that is also able to include a region’s boundary.
Region growing is performed in two distinct phases:

1. Grow the homogeneous “core” of a region. A voxel is added to
the region when the difference of its density to the average den-
sity of the whole region is below a given threshold &: [v—v,| <€,
where v is a voxel’s density, and v, is the current region’s average
density. After a new voxel is added, v, is updated accordingly.

2. Expand the region by including its boundary. For every voxel
adjacent to the region, we either check a gradient magnitude cri-
terion in order to decide whether this voxel should be included
in the region, or use the voxel’s LH value [14].

The time parameter ¢ determines the current homogeneity criterion:
t = €. Further, it is possible to separate these two phases in such a way
that they can be distinguished later on during interactive exploration.
By advancing the time parameter ¢ between the two phases, even bins
of ¢ correspond to region cores without their boundary, and odd bins
correspond to regions including their boundary. This allows to select
regions with or without their boundaries in the 3D TF.

Region growing method B: Huang et al. [10] are using a com-
bination of region growing based on the standard deviations of density
and gradient magnitude, respectively. They determine both standard
deviations for a fixed neighborhood of each seed voxel. The main pa-
rameter of their method is a global scale factor k > 0:
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Fig. 5. Apart from inspecting individual features, the feature classification space can be explored through a stack of 2D histograms spanning the
3D domain of (density, feature_size, time). (a) 2D slice through the domain with histogram and transfer function widgets (x axis: density, y axis:
feature_size); (b) Volume view generated with GPU-based real-time ray-casting; (c) Orthogonal slice views can also be used for picking features.
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where v is a voxel’s density value, v, the density of the seed, g a voxel’s
gradient magnitude value, g, the gradient magnitude of the seed, and
o, and O, are the corresponding standard deviations of the seed neigh-
borhood, respectively. The factor p can be set to a constant value but is
set by default to p = ov%%g' We employ these region growing criteria
in our framework by setting ¢ = k for tracking the main parameter k.

5 EXPLORATION

For the user, the exploration stage is the most visible part of our
pipeline. The complexities from the previous pre-computation stage
are hidden to a large extent. During exploration, the current classifica-
tion is shown in real-time in a 3D volume view (Figure 5 (b)) and three
orthogonal slice views (Figure 5 (c)). In order to explore and classify
features and feature classes, the corresponding regions in the volume
can be mapped to color and opacity using one of two different means:
(1) viaa 3D TF in the (density, feature _size, time) domain (Section 5.1;
Figures 5 (a) and 6), which maps entire feature classes; or (2) directly
via picking individual features in one of the slice views or the graphi-
cal feature view (Section 5.2; Figure 7). This special view allows the
user to pick features, inspect their feature size curves, and set their
color and opacity individually, which can also be used for disabling
features that stem from CT artifacts by setting their opacity to zero.
Picked features are immediately highlighted in all views.

An important concept during exploration is the handling of the time
axis . Showing all time steps simultaneously is only supported by
the graphical feature view, where feature size curves can be inspected
along the time axis in a function plot, and the dense color-coding of
feature IDs shows their evolution over time (due to creation and merg-
ing of features), which constitutes the main part of the view (Figure 7).
All other views, i.e., the 3D volume view, the three orthogonal 2D
slice views, and also the TF panel depict only a single time step. This
current time step tcyy is specified globally for exploration and can be
modified by the user at any time via a simple slider.

5.1 Exploring Feature Classes

The main goal of classification is to explore feature classes, instead of
requiring the user to inspect individual features. Features are classified
by specifying a TF in the 3D domain of density (from the CT volume),
feature size (retrieved from feature size curves), and time (the changes
of features according to the main region growing parameter). Al-
though this is a 3D domain, we use a 2.5D metaphor to make the man-
ual specification of TFs manageable. The 2D (density, feature_size)
subdomain can be viewed in its entirety for any given time #¢yy in the
TF panel. This corresponds to choosing a specific time of interest and
then exploring features according to their size and density distribution.

Figure 6 illustrates the 3D TF domain, highlighting two selected 2D
subdomains and the widgets intersecting them.

Feature histograms: The background of Figure 5 (a) is a 2D
histogram plotting voxel density (x axis) against feature size (y axis).
The number of voxels with a given (density, size) combination is color-
coded (red corresponds to a large number of voxels). For each time
step t;, a corresponding 2D histogram is computed, which are together
maintained as a stack of 2D histograms that collectively span the entire
3D domain. In order to gain insight into the distribution of feature
sizes, densities, and their occurrence in time, the time axis is explored
using the slider for #¢yr, which specifies the current time of interest.

3D TFs and 2.5D widgets: The 3D TF in the (density, fea-
ture_size, time) domain is specified using 2.5D widgets, which result
from extending some of the well-known regular 2D TF widgets such
as boxes, tents, or Gauss blobs [13] into the third dimension by as-
signing a time range [t,,1,] to each widget using a range slider. This
range determines in which time steps this widget is active, i.e., 2D
widgets are extruded into 3D from time ¢, to time #,. The actual wid-
get shape is 2D, e.g., a Gauss blob is extruded into a cylindrical shape
in 3D. The reason for this is that opacity ramps are very useful in the
(density, size) subdomain, but gradually changing the opacity classi-
fication over time is not meaningful because the time axis is in fact
not continuous (it is not only sampled, but also corresponds to the im-
pact of fixed increments in the main region growing parameter on the
evolution of regions, not actual time). Thus, a widget is either fully
present at a time t; with 7, <t; <1, or not present at time ¢; at all.
In many cases, in order to determine a specific feature class the user
explores the time domain until a time step is found that depicts the
features of this class well. In this case, widgets for this class are set to
be active only in this particular time step, i.e., f; = #,. Example TFs
are also shown in Figures 8, 9, and 10.

5.2 Exploring Individual Features

In addition to exploring whole classes of features, it is important to
also allow the user to pick and inspect individual features. Features
can be picked with the mouse in either (1) one of three orthogonal
slice views, which retrieves the current feature ID at the picked loca-
tion; or (2) in the graphical feature view. The graphical feature view

Fig. 6. TF with 2.5D widgets in the 3D (density, feature_size, time) do-
main. A stack of 2D (density, feature_size) histograms, one for each time
step, helps with TF specification.
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time step

Fig. 7. Graphical feature view, where each row (middle image) corre-
sponds to a feature and IDs are color-coded. The horizontal axis is
time ¢. A plot of the feature size curve of the currently picked feature is
also shown (right image). The color coding of IDs can be used during
volume rendering for immediate inspection of the result of region grow-
ing for a given time step t¢yr without specifying a 3D TF (left image).

(Figure 7) has two main components, a visualization of all features
with their feature IDs color-coded and depicted over time (Figure 7,
center), and a plot of the representative feature size curve of the cur-
rently picked feature (Figure 7, right). The former visualization con-
tains one row for each feature, with the vertical coordinate correspond-
ing to the feature ID (increasing from bottom to top). The horizontal
axis is time ¢, where horizontal changes in color indicate the merging
of features and thus a change in feature ID. The gray areas (top left)
correspond to features that are only created at later time steps, i.e.,
who have no valid feature ID before their feature birth time. This view
depicts the feature growth table described in Section 4.3 as a color-
coding of the ID(¢) channel from the (f;(xXy,#),ID(t;)) pairs stored in
the table. As such, it is a visual representation of the behavior of all
features over time with respect to their creation and merging with other
features. When features merge, their ID changes (except for the fea-
ture with the largest voxel population of the merging features, which
is kept, see Section 4.3). This shows up as color changes within a row
in this view. This color-coded view does not allow detailed analysis
but provides a good overview at a glance whether a lot of features are
merging or not, and at what time steps a lot of merges occur. Detailed
inspection is then possible by picking a feature (row), and looking at
the corresponding plot that shows all details of the feature’s size curve.

o Feature picking: When a feature is picked, a specific individual
color and opacity can be specified, which is then stored per fea-
ture by overriding the corresponding entry in the 1D color ramp
TF described in the next paragraph.

e Feature color coding: All features can automatically be shown
in different colors, by mapping feature IDs to colors and opacity
via a 1D transfer function, which is filled with a color ramp by
default. This is the same color ramp used in the graphical feature
view (Figure 7, center). Figure 7 (left) shows this color mapping
applied in the 3D volume view, which is useful to gain a quick
overview before transfer functions are specified.

o Removal of artifacts: Picking features is also very useful for
removing erroneous features that in fact are artifacts from the
scanning process, such as reconstruction/Feldkamp artifacts or
center/circular artifacts. When an artifact is picked, its individual
opacity can be set to zero, which removes it from both rendering
and quantification.

5.3 Volume Rendering

Volume rendering is performed by using ray-casting in the fragment
shader [15]. Since industrial CT volumes are quite large and a feature
volume is required in addition to the density volume itself, we employ
bricking in conjunction with single-pass ray-casting [7], keeping only
the visible subset of the entire volume in GPU memory. The following
pseudo-code (similar to GLSL) illustrates the main steps that need to
be done in order to determine the color and opacity (without shading)
of a given sample, as RGBA tuple in the vec4 variable out:
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float density = texture3D(density.volume, sample_coord3) ;
vec2 feat_vox = texture3D(feature.volume, sample_coord3) ;

float birthID = featvox.x;
float birthTime = feat_vox.y;
if ((birthID == IDNONE) || (birthTime > T_CUR)) {
out = texturelD(tflD, density);
} else {
vec2 fsmap = texture2D(growth2D, vec2 (T_-CUR, birthID)) ;
float curSize = fsmap.x;
float curID = fsmap.y;
if (curID == PICKED.ID) {
out = pickingColor;
} else {

out = texturelD(selectionlD, curlD);
if ( (out.a > 0.0)
out = texture3D(tf3D,
if (out.a == 0.0)
out = texturelD(tflD, density);

&& !use_color_ramp_1D )

vec3 (density, curSize, T._CUR));

}
}

which can then be composited during ray-casting, or simply displayed
in an orthogonal slice view. The volume is rendered for a specific time
step, i.e., the global current time #¢yr, which is denoted as T_CUR in
the code. For a sample with volume coordinates sample_coord3,
the density volume (density_volume) and the feature volume
(feature_volume) are sampled at that position, which yields the
density and the feature birth ID (birthID) and time (birthTime).
When no feature is present at that location given the current classifica-
tion, i.e., no feature exists there at all (ID_NONE), or the feature does
not yet exist at time #¢r, or is mapped to zero opacity in the feature TF
(t£3D), the regular 1D density TF (£ £1D) is used. The feature growth
table is growth2D. For color-coding features or using individual col-
ors and opacity (see Section 5.2), a 1D table isused (selectionlD),
which overrides the feature TF when use_color_ramp_1D is set.

6 QUANTIFICATION AND RESULTS

In order to assess the quality of materials or the whole casting process
itself, it is necessary to quantify the features contained in a data set,
e.g., their number, volume, surface area, as well as global statistical
measures such as average volume and standard deviation. The focus
of our system is to provide the basis for interactively specifying what
should be quantified, as a basis for a variety of actual quantification
options. Our system computes and displays quantities corresponding
to feature classes selected via the 3D TF, individual features, as well
as overall information computed in the pre-computation stage.

6.1 Feature Quantification

In contrast to rendering during exploration, quantification does not pri-
marily consider individual voxels (samples), but whole features with
all their voxels. Therefore, quantification does not need the feature
volume but relies mainly on the feature growth table (Section 4.3),
which contains the representative feature size curves for every fea-
ture, as well as information computed during region growing that is
not needed for rendering, such as lists of voxels comprising individual
features. For a feature f, the representative feature size curve f(x,f)
is the feature size curve of the feature’s seed voxel fi(x;,?), see Sec-
tion 4.1. The size of the feature in voxels at time #; can be determined
directly from this representative feature size curve, which is stored
in the feature growth table. However, this considers only the region
growing process itself, not the classification done via the TF which can
exclude features and whole feature classes from quantification. During
the region growing process (Section 4.4), a list of contained voxels is
incrementally constructed for each feature. In order to quantify a fea-
ture, these voxels have to be visited, and their density, together with
the feature’s size at time ¢;, must be used to perform a lookup in the 3D
feature TF. The resulting opacity determines whether this voxel should
be included in the quantification or not. In addition to using the opac-
ity, feature classes can be quantified individually by either quantifying
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Fig. 8. A golf ball, reinforced with dense particles. Two different time
steps and the corresponding 2D section of the 3D TF are shown. In the
earlier (left) time step, the indicated particle is still small because the
region growing parameter has not advanced far enough yet. In the later
(right) time step, it has become a big feature that does not grow further
since it has reached its maximum (actual) size. See also Table 1.

each widget’s classification separately, or combining the classification
of several widgets that collectively classify a single feature class.

We compute the most common measures such as the volume of fea-
tures in voxels, or mapped to cubic millimeters via the reference size
of a single voxel in x,y,z, the surface area of a feature, density aver-
age and standard deviation, as well as global statistical measures such
as average feature size and standard deviation. However, additional
measures can be added easily.

6.2 Results

Table 1 illustrates exemplary quantification results for two of the data
sets we have used in this paper, see also Table 2.

Figure 5 depicts a part of a cast housing for the automotive indus-
try. The part is produced of an AlSi-type alloy in a die-casting process.
As it carries fluids during operation, impermeability of the housing is
one point of specification. Therefore a characterization of voids in the
casting has to be performed. Table 1 (top) gives quantification results
for different void sizes (feature classes) contained in this data set, in-
cluding the number of features in each class, their average volume in
voxels, and the percentage of voxels in the class with respect to the
number of voxels in the whole part (excluding the surrounding air).

Figure 8 shows a 2-piece construction golf ball. The inner piece is
reinforced with dense particles. To evaluate the quality of these rein-
forcements, their distribution and size were checked using industrial
CT. The two different time steps in Figure 8 clearly show the influence
of the region growing parameter (here, k of region growing method B,
Section 4.5) on the quantification result at the end of the pipeline. A
3D TF was used to obtain an optimal result for the complex structure
of the sample. Table 1 (bottom) contrasts the quantification results of
two selected time steps. The user visually determined that the earlier
time step (values in parentheses) corresponded to incomplete results,
whereas the later one resulted in a plausibly complete detection of fea-
tures. For example, the particle indicated in Figure 8 corresponds to
an agglomeration of smaller particles during the production of the golf
ball. It also appears in the quantification as a singular particle of large
size (last row of Table 1).

Data set class feature count | avg.vol. [voxels] % of part vol.
Cast | |SHEID 337 158.1 0.041
Housing | [med. | 16 717.2 0.088
(Fig. 5) | large 6 1629.7 0.075
XL 6 5181.3 0.024

XXL 3 10678.7 0.026

Golf | [small | 6131(4375) 702 (83.5) 0.044 (0.037)
Ball med. 1875 (948) 209.1 (224.2) 0.040 (0.022)
(Fig. 8) 78 (26) | 1152.2(1029.8) 0.092 (0.027)
1) 9472 (3441) | 0.0097 (0.0035)

Table 1. Example quantification results. The results for the golf ball
are for the time step selected by the user as the “complete” one (Fig. 8,
right), and an earlier, “incomplete” time step in parentheses (Fig. 8, left).
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Figure 9 shows a “reduced-pressure-test sample” (RPTS), which is
used in the casting industry to evaluate the gas content of an aluminum
or copper melt. Therefore about 30cm> (1.83in%) of the melt is solidi-
fied at a pressure of 8000 Pa (1.16 psi), which causes the gas in the melt
to form pores in the metallic volume. Furthermore, the shrinkage of
the metal during solidification causes shrinkage cavities to be formed
in the center of the upper regions of the sample. Therefore, these sam-
ples are ideal test pieces for the evaluation of feature detection, as they
are virtually full of different pore sizes and shrinkage cavities. The
evaluation of those basic types of features is of great relevance to the
casting industry as they are the most common defects in metallic cast
parts beside non-metallic inclusions. The distinction between these
defects is of special interest for the casting expert, as they are both
voids but have a completely different origin, and therefore have to be
treated differently in the casting process. For this application, the time
step tcyr in our system was chosen interactively, such that the ren-
dered features comply with the actual position and size of the different
defects. In this case, a (2D) feature TF for the time step ¢y was suffi-
cient in order to classify the gas pores according to their size, and the
shrinkage cavities can be separated by their morphologies.

The asphalt drilling core depicted in Figure 10 with a diameter of
100mm (3.9in) is used to characterize the quality of asphalt. It is com-
posed of three main phases: the mineral phase, the bitumen binding
phase, and pores. The mineral phase can be composed of different
minerals in different grain sizes. This highly complex composition
concerning density profile and dimensional range makes a reliable
evaluation especially difficult. Such samples ideally show the advan-
tages of interactive feature detection. Due to the fundamentally differ-
ent behavior and composition of the employed phases, a 3D TF can be
used to separately characterize the different phases. Figure 10 shows
the result of two different feature TFs at a specific time ¢y

6.3 Performance and Memory Usage

Table 2 gives typical numbers for pre-computation times and volume
rendering frame rates for the data sets used in this paper. Perfor-
mance has been measured on an Athlon 64 2.4GHz, 4GB, XP64, and
a GeForce 8800 GTX, 768MB. The first region growing step always
consumes the most time. It has to compute the additional data re-
quired, such as mean and standard deviation of the seed voxel neigh-
borhood, considers the most voxels as seeds, and grows and discards
all regions that become too big. All following time steps are then
much faster. The bit masks maintained during region growing ensure
that many voxels are visited only once over time, which reduces pro-
cessing time for further iterations. Volume rendering is fast, as only a
few additional operations compared to regular volume rendering have
to be executed per fragment, see the pseudo code in Section 5.3.
Table 2 also lists the memory usage of the major additional data
structures computed, i.e., the feature volume (first value) and the fea-

Fig. 9. Reduced-Pressure-Test Sample (RPTS). Lower densities are the
interior of pores (red-blue), higher densities their boundaries (yellow).
Feature size is mapped with a color gradient from red (small) to blue
(large). Very large features are set to transparent. An individual picked
feature is highlighted in green, here of size 7939 voxels and 9.02mm?.
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Data Set Resolution Feat.-Mem. Pre-comp. (1st, 2nd, 3rd..nth time step, overall for 16 steps), Method A||B Rendering
Cast Housing | 667x465x512 | 606MB+128KB 600 s 8.7s 7-8s | 12.1min || 421s | 0.84s | 0.5-09s 7.2 min 16-22 fps
Golf Ball 512x512x256 | 256MB+448KB 198 s 3.8s 3-4s 4.2 min 447 s 72s 5-6's 8.9 min 22-28 fps
RPTS 373x377x512 | 275MB+192KB || 280s | 64.6s | 45-66s | 20.5min || 260s | 146s 29-85s | 15.1 min 20-23 fps
Asphalt Core | 512x512x256 | 256MB+1.3MB || 253s | 274s | 17-21s 94 min || 450s 24's 10-15s | 10.9 min 20-40 fps

Table 2. The data sets we have used in this paper, with typical pre-computation times (first and second time step, range for 3rd+; and overall time for
16 time steps), and typical volume rendering frame rates (viewport 512x512). The left four columns of pre-processing use region growing method A,
and the right four columns method B (Section 4.5). The first step is the most expensive; after the second step, computation times decrease rapidly.

ture growth table for 16 time steps (second value). For rendering, only
a subset of the entire feature volume needs to be resident in GPU mem-
ory due to texture bricking, whereas the feature growth table is always
resident in texture memory in its entirety.

7 CONCLUSIONS AND FUTURE WORK

We have presented an approach for interactive exploration of features
in industrial CT volumes that helps to bridge the gap between visu-
alization and feature detection. Given the complexity of feature and
defect detection, and the wide variety of data and material properties,
we do not claim that our approach solves all challenges in this area.
However, it enables a powerful interactive workflow that tightly cou-
ples visualization and feature detection, here building on region grow-
ing, and allows for a full exploration of the volume with no or almost
no beforehand parameter specification. The result of exploration is
a classification of all feature classes of interest using transfer func-
tions, which can then immediately be used in order to quantify only
the corresponding features. This implies that subsequent quantifica-
tion is visualization-driven as well, i.e., quantification is performed
exactly for what the user has chosen to be visualized. This empowers
users who are experienced domain experts to decide on their own and
make informed decisions for quantification, instead of relying on the
result of a given set of parameters, which is the approach employed by
systems currently used in practice.

We believe that the concept presented in this paper is very powerful,
but it is also only one step toward driving defect and feature detection
by visualization and bringing visualization methods and segmentation
closer together. There are many possibilities that can be explored in
the future. We have used two different simple region growing methods

Fig. 10. Asphalt drilling core with different material components. Region
growing vyields features of two clearly distinguishable density ranges.
The higher density range (orange widget in left column) corresponds to
mineral components of higher density incorporated in the coarse frac-
tion of the asphalt, which in this case are undesired features. Map-
ping them to completely transparent (right column) removes them. The
phases between the coarse mineral components of lower density (red
widget, left column) can be further distinguished according to feature
size, giving different constituents of the fines (right column): small fea-
tures (green), medium-sized features (yellow), and large features (red).

as a proof-of-concept of our general framework, and would like to ex-
plore additional options in the future. We would also like to investigate
adaptive sampling schemes of the parameter (time) domain. Extending
the basic concept further, higher-dimensional parameter spaces would
enable exploration of a wider variety of possible segmentations. Semi-
automatic transfer function generation in our new 3D TF domain or
similar domains would also be a worthwhile venue of future research.
Finally, we are also planning to extend the possibilities for quantifica-
tion, specifically with respect to global measures such as porosity.
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