Interactive Seismic Interpretation with Piecewise Global Energy Minimization

Thomas Höllt*, Johanna Beyer*, Fritz Gschwantner*, Philipp Muigg*, Helmut Doleisch⁺, Gabor Heinemann⁻, Markus Hadwiger⁺

King Abdullah University of Science and Technology

- VRVis Research Center
- SimVis GmbH
- Heinemann Oil GmbH

Seismic Interpretation

Grotzinger et al. Understanding Earth

What is a Horizon?

- Boundary between two different subsurface layers
- These boundaries reflect seismic waves
- Amplitude of reflected waves is measured
- Strong amplitude depicts a boundary
- Horizons indicated by ridge-, valley-lines/surfaces

Workflow

- Interpretation based on well logs/positions
 - Triangulate well logs
 - Work on triangles/prisms instead on slices

Workflow

- Interpretation based on well logs/positions
 - Triangulate well logs
 - Work on triangles/prisms instead on slices

Workflow

Horizons as Features

- In image segmentation:
 - segments are features
 - boundaries implicit
- Explicit boundary segmentation
 - Explicit boundary labeling
 - Boundary constraints
 - Works on primal instead of dual graph

Horizons as Features

- In image segmentation:
 - segments are features
 - boundaries implicit
- Explicit boundary segmentation
 - Explicit boundary labeling
 - Boundary constraints
 - Works on primal instead of dual graph

Image/Seismic to Graph

Horizon Extraction

- Seed is start- and target-node
- Nodes can be added as constraints
- Path split up in segments connecting constraints

- Variant of Dijkstra's algorithm
- Cost of edges defined by adjacent nodes

 dev. from target amplitude
 dev. from average amplitude)

 Set of pixels forming closed contour on the prisms sides

min cost path on prism edges

- For adjacent prisms no new seed needed
- Traced paths are shared between prisms
 - Positions at well logs fixed for traced paths
 - Fixed positions function as seeds/constraints

min cost path on prism edges

- For adjacent prisms no new seed needed
- Traced paths are shared between prisms
 - Positions at well logs fixed for traced paths
 - Fixed positions function as seeds/constraints

Horizon Extraction II

- Dijkstra's algorithm not for surfaces
- Instead solve dual problem
 - Minimum cost Circulation Network Flow (MCNF)
- Input is the dual graph

- Min cost path functions as outer surface boundary
- Facets can be added as constraints
 - Facet boundary is inner surface boundary

- MCNF using lemon graph library
- Same cost function as min cost path
 - used for edge capacity in dual graph

- MCNF returns set of facet candidates
 - Min cost surface is closed surface bounded by initial boundary
 - False candidates might be:
 - dead ends
 - disconnected from the surface
 - Removed by iteratively deleting candidates without neighbors an all sides

- MCNF returns set of facet candidates
 - Min cost surface is closed surface bounded by initial boundary
 - False candidates might be:
 - dead ends
 - disconnected from the surface
 - Removed by iteratively deleting candidates without neighbors an all sides

• Set of facets forming closed surface inside prism

Horizon Visualization

- Horizons shown in all applicable views
 (volume view, slice views, interpretation view)
- In volume view as geometry alongside dvr
- Several properties plotted directly onto horizons (amplitude, deviation, cost...)

Horizon Visualization

Surface Quality

our method — manual interpretation

Results

horizon	constraints	edit time	tracing time	max distance	
a	+8	< 5min	61sec	2,39px	225 - 200 - 175 -
Ь	1+5	< 2min	53sec	2,27px	
С	1+5	< 5min	74sec	4,3px	50 1 A2 9- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

240x240x1509 volume
~½ area covered

8 logs9 prisms

• ~20k triangles for surface

Conclusions & Future Work

- Prism based approach & decoupling of 2D interaction and 3D computation received well by collaborators
- Horizons in context of volume + superimposed properties
 instantaneous feedback on quality
- Performance, performance, performance!
 - Cuda implementation of surface computation
- Integrate live depth conversion

QUESTIONS?

thomas.hollt@kaust.edu.sa

Part of this research project was funded by the Austrian Research Funding Agency (FFG), in scope of the SEIVIS project (No. 818063). The datasets are courtesy of Heinemann Oil GmbH.

