

Extraction and Visual Analysis of Seismic Horizon Ensembles

T. Höllt*, G. Chen*, C. D. Hansen*, M. Hadwiger*
* King Abdullah University of Science and Technology
* University of Houston
* SCI Institute and School of Computing, University of Utah

Ensemble Data

- Idea: compute multiple solutions for a single simulation/feature/event
- An ensemble usually is
 - multivalued
 - multivariate
 - multidimensional
- Often Gaussian distribution

time

Ensemble Data

- Idea: compute multiple solutions for a single simulation/feature/event
- An ensemble usually is
 - multivalued
 - multivariate
 - multidimensional
- Often Gaussian distribution

time

Ensemble Data

- Idea: compute multiple solutions for a single simulation/feature/event
- An ensemble usually is
 - multivalued
 - multivariate
 - multidimensional
- Often Gaussian distribution[®]

Eurographics 2013

May 6-10, Girona (Spain)

Ensemble Extraction

- We have a global optimization surface extraction technique with a parameterized cost function
 - sample parameter space
 - extract surface for each sample without interaction
 - results in a set of possible surfaces for each horizon
 - strong clustering

MultiValue Visualization

MultiValue Visualization

MultiValue Visualization II

- Statistical analysis
- Overview visualization by combination of representative surface + statistics
- Detail by interactive probing
- Live parameter-space exploration

Representative Surface

- Surface extraction leads to clustering
- mean surface is not a good fit
- ⇒use a 'maximum likelihood' surface instead
 - compute a probability for each surface patch
 - sum up probabilities for all patches
 - use surface with the highest sum

Eurooraphics 2013

Representative Surface

• Surface extraction leads to clustering

Representative Surface

- Surface extraction leads to clustering
- mean surface is not a good fit
- ⇒use a 'maximum likelihood' surface instead
 - compute a probability for each surface patch
 - sum up probabilities for all patches
 - use surface with the highest sum

Maximum Likelihood Surface

mean

0.5

Maximum Likelihood Surface

maximum likelihood

median

Interactive Probing

Parameter Space Exploration

<image/>	Standard Deviation	
	Tracing Parameters Ridge by: Intensity Prefer: Neighbor Flexibility Flexible	Waveform Ridge Stiff
Eurographics 2013 May 6-10 Giroga (Soaio)		

Parameter Space Exploration II

