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Figure 1: Cytosplore. Screenshot of our system with four widgets (adaptive settings, overview (a), embedding (b) and heatmap (c)), repre-
senting the workflow. Views can be rearranged or additional views of these types added.

Abstract

To understand how the immune system works, one needs to have a clear picture of its cellular compositon and the cells’
corresponding properties and functionality. Mass cytometry is a novel technique to determine the properties of single-cells with
unprecedented detail. This amount of detail allows for much finer differentiation but also comes at the cost of more complex
analysis. In this work, we present Cytosplore, implementing an interactive workflow to analyze mass cytometry data in an
integrated system, providing multiple linked views, showing different levels of detail and enabling the rapid definition of known
and unknown cell types. Cytosplore handles millions of cells, each represented as a high-dimensional data point, facilitates
hypothesis generation and confirmation, and provides a significant speed up of the current workflow. We show the effectiveness

of Cytosplore in a case study evaluation.

Categories and Subject Descriptors (according to ACM CCS): 1.3.8 [Computer Graphics]: Applications—

1. Introduction

The immune system primarily protects our body against bacterial,
viral and parasitic infections. However, it may respond to harmless
self antigens, leading to auto-immune diseases, e.g., type 1 diabetes
or rheumatoid arthritis. Detailed knowledge of the immune sys-
tem’s functioning is required to understand the cause of immune-
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mediated diseases, which is an important step towards preventive
or therapeutic measures. To mediate its function, the immune sys-
tem utilizes both; humoral (soluble) and cellular constituents. The
cellular immune compartment consists of a variety of cellular sub-
sets, each with a distinct function and associated phenotype. The
phenotype describes “the observable physical or biochemical char-



T. Holit et al. / Cytosplore: Interactive Immune Cell Phenotyping for Large Single-Cell Datasets

acteristics of an organism, as determined by both genetic makeup
and environmental influences” [AHDOG6]. In the last decades a large
number of phenotypically and functionally distinct subsets have
been defined and, for some, a major role in disease processes has
been found. For immune cells, the functionality mostly relates to a
set of proteins expressed on the cells surface.

Recently introduced mass cytometry [OKB*08] at the moment
allows the observation of 36 of these proteins at the same time,
three times as many as the clinical standard. However, this num-
ber is still orders of magnitude smaller than the estimated 10,000
immune-system-wide available proteins, providing phenotypic in-
formation. Hence, specific panels of markers, corresponding to pro-
teins of interest, need to be designed for each study. The composi-
tion of these panels if often unique to a study and it is not known be-
forehand, which combinations of proteins can be expected. There-
fore, the identification of different phenotypes largely needs to be
carried out in a data-driven fashion by studying data heterogeneity
rather than applying prior knowledge.

The fine granularity of mass cytometry is usually not only used
to increase detail but also to increase breadth, i.e., markers for dif-
ferent cell lineages can be tested simultaneously. A cell lineage de-
scribes a group of subsets, all derived from the same ancestry and
sharing certain characteristics. Consequently, the data inherently
provides multi-scale information; major lineages form clusters on
a high-level scale, while lower-level scale clusters correspond to
phenotypical subsets.

To ensure comparability of measurements of multiple blood or
tissue samples the same marker panel needs to be applied. In ad-
dition, different batches of the same marker can produce different
results. Therefore, experiments are usually run in large cohort stud-
ies, resulting in hundreds of samples containing millions of cells.
These large sizes pose significant challenges during the analysis
process.

We worked closely with immunohaematology experts to design a
data-driven workflow for phenotype specification of cytometry data
that we present in this paper. We are the first to specifically tackle
the multi-scale properties of the data. To this extent, we combine
and link two proven techniques for the analysis of single-cell data
on different levels of detail. For both steps, we provide in-place and
linked visualizations of the feature space to interact with and refine
the automatically-generated classifications.

The major contributions of this paper are:

e Cytosplore: an integrated system to interactively explore large
high-dimensional single-cell datasets and identify phenotypi-
cally distinct subsets in a data-driven fashion.

e An analysis workflow, supporting linking of multiple levels of
detail to enable

— rapid, data-driven phenotype specification (including for un-
known cell types)

— the discovery, pinpointing and fixing of mistakes over multi-
ple levels of detail

2. Biological Background

To analyze heterogeneity of immune cell subsets, multiparameter
analysis of immune cells at single-cell level is required. Flow cy-
tometry has been the method of choice for this purpose, however,
suffers from a limitation; it is restricted by the number of cellu-
lar markers that can be simultaneously analyzed, usually 10 to 12.
Therefore studies employing flow cytometry are usually focused on
very specific, known cell types. This limitation has been overcome
by the introduction of mass cytometry.

Mass cytometry is a novel, mass spectrometry-based, technique
for characterizing protein expression on cells (cyfometry) at single-
cell resolution. In short, antibodies, selected to bind to specific pro-
teins of interest on the cell membrane, are conjugated with heavy-
metal reporters. After staining, the cells are vaporized, atomized
and ionized one by one and the remaining metals in the ion cloud
can be measured in a mass spectrometer to quantify the selected
proteins on a per-cell basis. Mass cytometry currently allows the
simultaneous analysis of 36 markers, a number which is expected
to rise to 100 in the near future. This allows much broader stud-
ies, for example to compare different diseases. Furthermore it al-
lows the inclusion of markers that usually would not be expected
in a certain group, possibly allowing the discovery of unknown cell

types.

2.1. Data

Our partners use a prototypical non-integrated version of the work-
flow presented in this paper in a real world study of tissue- and
disease-associated signatures of the human mucosal immune sys-
tem [VULM*16]. They acquired a cohort data set consisting of
102 samples from 44 donors. During preprocessing, the acquired
dataset was filtered for live cells, with a strong expression of the
CD45 marker (indicating immune cells), resulting in 5.2 million
high-dimensional data points. 32 markers were selected for the
study to provide information regarding six expected major lineages.

The resulting data is a table of cells and their expression profiles
over all available markers. Each row in the table corresponds to a
single cell and can be interpreted as a single high-dimensional data
point. In abstract terms our input data consists of a large number of
high-dimensional data points forming clusters on multiple scales
(see Section 1).

2.2. Tasks

In this work we aim to tackle the first step of the data analysis
process, namely the definition of the phenotype of every cell. In
this process our collaborators need to

e Group similar cells, where similarity is defined based on the pro-
tein expression for each cell.

e Define for each group the type of cell, which can be unknown
beforehand, and annotate the cells.

We provide an abstraction of these tasks, following Brehmer and
Munzner’s multi-level task typology [BM13] in Figure 2a and make
use of their adaptions for the visualization of high-dimensional
data [BSIM14]. We use amonospaced font throughout the pa-
per, when we use their typology.
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Figure 2: Abstraction of the identified high-level tasks (a), consisting of grouping and naming points, as well as the detailed subtasks. b shows
the major lineage delineation (high-level clustering) and c the phenotypical subset exploration and identification (low-level clustering).

3. Related Work

Recent years brought many computer-aided solutions for
cytometry-data analysis. SPADE [QSB*11] visualizes high-
dimensional data and was developed for (and is commonly used
in) single-cell analysis [BSQ*11, BZF*12, LZN*15]. It clusters
data in the high-dimensional space and then builds a minimum
spanning tree. Flow MAP [ZLG™15] follows SPADE, but replaces
the spanning tree by a k-nearest neighbor graph, which is laid
out via a force-directed layout. The approach avoids SPADE’s
problem of placing similar nodes far apart, but creates visual
clutter. Scaffold Maps [SGF*15] enable the user to drive the layout
by defining landmarks of cell-type prototypes and by placing them
in the visual space to build a scaffold in which similar clusters will
be placed.

viSNE [ADT*13] introduces t-Distributed Stochastic Neighbor
Embedding (tSNE) [vdMHO8] to mass cytometry data and AC-
CENSE [SBDC14] uses tSNE as the basis for automatic cluster-
ing. Classification in vViSNE is performed by manually gating on
the scatterplot, while ACCENSE performs automatic clustering of
the embedded data.

The tSNE-based techniques perform exceptionally well in
embedding cytometry data and provide single-cell resolution.
Nonetheless, due to a large computational cost, only limited in-
teractivity is reached. In fact viSNE and ACCENSE both propose
downsampling of large data for increased speed. Recently, Pezzotti
et al. [PLvdM*16] introduced A-tSNE, a tSNE variant, which aims
at minimizing precomputation times for high-dimensional neigh-
borhoods. While the cluster-based techniques are reasonably fast,
they do not allow inspection on a single-cell level, and overall do
not retain the high-dimensional structure as well as tSNE.

A standard system for single-cell data analysis is the web-based
service Cytobank [KKI10]. It offers SPADE and tSNE computa-
tions in a reasonably-easy way. However, it lacks integration and in-
teractivity. As computations are queue-based, significant wait times
of several hours can occur.

A multitude of visual analysis tools for omics-data have been
proposed recently. The focus of the vast majority of these tools is
on genomic data. Generally, these data are similar in structure, e.g.,
a cell can be represented by a high-dimensional expression vector.
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However, usually the goal of the analysis of these data are quite dif-
ferent. StratomeX [LSS*12] allows exploration of genomics data
for cancer subtype characterization. They allow comparison of
multiple groups using a ribbon-based visualization. The presented
case study data consists of a few thousand data points, consisting
of up to 6,000 genes (dimensions), each. MizBee [MMP09] is tar-
geted at the exploration of syntenic blocks, blocks of features that
appear in the same form on the same or multiple chromosomes.
While the data only consists of dozens of chromosomes, the num-
ber of features reaches hundreds of thousands. invis [DHHH13] al-
lows exploration of RNA sequences. Among others, the authors use
dimensionality reduction, by means of PCA, and two-dimensional
scatterplots to visualize the data. The presented data consist of
19,000 sequences with 186 dimensions. MulteeSum [MMDP10]
is a tool for the visual analysis of gene expression data in cells,
with the addition of spatial and temporal information. Here, a typ-
ical dataset consists of thousands of cells with 50 dimensions over
6 time points. For all these tools it becomes apparent that besides
different analysis questions, the data differs in key properties, com-
pared to cytometry data; instead of millions of data points a typi-
cal genomics dataset only consists of thousands of data points, but
sometimes with thousands of dimensions.

4. Multilevel Phenotype Specification Workflow

We introduce a high-level task description in Section 2.2. In short,
we need to derive groups of similar high-dimensional data points
and annotate these groups. In Section 3, we present a number
of tools that are available and commonly used for these tasks in
single-cell analysis. However, none of these tools performs opti-
mally on large cohort studies (Section 2.1) consisting of millions
of cells. The de facto standard in terms of quality is a combina-
tion of tSNE [vdMHO8] (i.e., viSNE [ADT*13]) with manual or
automatic clustering in the embedding [SBDC14]. However, the
computational complexity severely limits the applicability of tSNE
for large data. Other tools, like SPADE [QSB*11] work with larger
data but do not produce cluster separation of the same quality.

In this work, we propose a multilevel workflow that effectively
reduces these problems; we use SPADE clustering to create a high-
level partitioning of the data, coupled with a detail analysis of each
partition via A-tSNE, reducing the input size of each embedding
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and making it feasible. The partitioning is a means to deal with
large data sizes but also has a biological justification. The amount
of markers in mass cytometry enables the design of marker panels
covering multiple cell lineages at the same time. In this case, the
expression of markers strongly vary between lineages, but are more
subtle within a lineage. Using the increased number of markers to
create breadth inherently creates multiple scales within the data,
which we separate in our multilevel workflow.

In the following, we present an abstraction of the two levels of
this workflow, following Brehmer and Munzner’s multi-level task
typology [BM13]. Similar to their extension for the visualization of
high-dimensional data [BSIM14], we focus on the why and what
in this section. We describe the how in Section 5.

4.1. Major Lineage Delineation

A major lineage of cells corresponds to a high-level cluster in the
data (see Section 2.1). For the details of the biological background
we refer the interested reader to a special issue of Immunological
Reviews [Rot10]. While we do expect tens to hundreds of differ-
ent cell types, the number of major lineages is limited. Since the
marker panel is designed specifically to cover a set of lineages of in-
terest, their number, as well as their discerning markers, are known
beforehand. However, the boundaries between the clusters are not
fixed and the discerning markers are not always unique for a single
lineage. Therefore, we propose an interactive approach to defining
the high-level clustering.

We present an abstraction of the major lineage delineation in Fig-
ure 2b. We propose a two step approach. In T1a we group points,
deriving a set of clusters in the high-dimensional space. Even
though we do know the number of expected high-level clusters, we
propose to create more clusters here and combine them to high-
level meta-clusters in T1b, to find the optimal boundaries. For
T1b, we propose an interactive approach; since the target is known
(based on the discerning markers) the user needs to locate the
corresponding groups of clusters, summarize them to derive
meta-clusters, and finally annotate those meta-clusters.

In summary, we need to provide the user with effective tools and
visual encodings to:

e derive apredefined number of clusters, while preserving high-
dimensional structures.

e locate, summarize and derive major lineages by their
discerning markers using prior knowledge.

4.2. Phenotypical Subset Exploration and Identification

Exploration and identification of phenotypically-distinct subsets
happens in the second step of our workflow. We define a
phenotypically-distinct subset as a group of cells with similar
marker expression profiles. The subsets can greatly vary in size,
in fact small subsets, corresponding to rare cells, are often of major
interest and must not be lost during the analysis. Since the high-
dimensional space, corresponding to the marker panel, varies from
study to study, subsets need to be created in a data-driven fashion.
Other than with the discerning markers in the lineage delineation,
here, all markers can be of interest. We also expect to find subsets
not known before requiring an explorative analysis.

We propose an approach consisting of three steps as presented
in abstract form in Figure 2c. We use dimensionality reduction in
T2a to derive two-dimensional data points for visual inspection
of the complete data, without clustering or downsampling. This as-
sures that small subsets do not get lost in a larger cluster or dur-
ing downsampling. For creating the subsets (T2b), we propose to
derive clusters based on the structure of the dimensionality re-
duced data. Finally, for T2¢, we propose to re-introduce the original
high-dimensional data to explore and verify the clusters. If the
clustering is too coarse, the user can go back to the previous step
and derive anew set of clusters. If the clustering is too fine, she
can derive new clusters in this step by merging. Once the user is
satisfied with the clustering she can annotate the clusters based
on the complete expression profile.

To recapitulate; the proposed system needs to provide effective
means to:

e derive two-dimensional coordinates, based on the high-
dimensional expression.

e derive clusters, based on the two-dimensional structure.

e explore and summarize the data at single-cell resolution
and derive subsets with similar marker expression.

5. Cytosplore

We implemented Cytosplore, a complete system for our workflow
respecting the identified tasks (Figure 1). Cytosplore provides a
configurable environment with multiple linked views for the anal-
ysis. Here, we describe the implementation details, reasoning, and
how we map the different workflow tasks presented in Section 4
to the actual visualization and analysis tools. Figure 3 shows the
complete workflow, as implemented.

5.1. Major Lineage Delineation

Figure 2b shows a the abstraction of the major lineage delineation.
We identified two major tasks, described in Section 4.1: Tla:
grouping of points to clusters of similar expression and T1b: the
creation of meta-clusters, clusters of clusters, that correspond to
the major lineages. In the following, we describe how we support
these tasks in our visual analysis tool.

Tla: Group Points. We use SPADE [QSB*11] for automati-
cally grouping points to clusters of similar expression. In short,
SPADE clusters data points based on their similarity in the high-
dimensional space. It does so by downsampling the data, based
on local densities, to avoid removing small distinctive groups. The
downsampled data is then clustered and the data points, removed
during downsampling, are added to the most similar cluster. The
number of clusters needs to be predefined and should be set about
an order of magnitude larger than the expected lineages to compen-
sate for SPADE’s lack of precision. Finally, a minimum spanning
tree is constructed using the clusters’ median expressions.

We chose SPADE, as it is well known in the domain and has
been proven to be a valuable tool for single-cell analysis [BSQ* 11,
BZF*12, LZN*15]. Its lack of precision and the need to prede-
fine the number of clusters are not an issue for the major lineage

(© 2016 The Author(s)
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Figure 3: Phenotype Specification Workflow and its three major user-facing blocks; major-lineage delineation, subset exploration and
identification. SPADE, A-tSNE, GMS and Tag-labeled blocks form the computational glue between user-driven parts. GMS requires a kernel-
bandwidth definition, but is computed in real time, merging subset exploration and identification.

delineation. Here, we are only interested in high-level structures
and, in case points are mis-classified, these can be fixed later in
the pipeline. The number of major lineages expected in the data is
inherently defined by the design of the marker panel and as such
known beforehand. Therefore, the fact that SPADE requires the
definition of the number of clusters beforehand does not pose a
problem. To minimize the risk of clusters containing data points
that belong to multiple lineages, the user simply selects a much
larger number of clusters than expected as major lineages. These
clusters are then grouped manually into meta-clusters, defining the
major lineages.

T1b: Create Meta-Clusters. We visualize the SPADE tree using
a node link diagram, where nodes correspond to the clusters and
the links to the edges in the minimum spanning tree. The nodes
are initially laid out using a force-directed layout but the user can
arrange the layout as needed. Our partners are familiar with
these types of diagrams and used them before to inspect the re-
sults of SPADE clustering, hence, we decided not to change this
basic encoding of the data and rather focused on optimizing it for
the task at hand.

The experts need to 1ocate branches of the tree with a similar
expression in a few markers (usually no more than three), corre-
sponding to the known major lineages. To help the user navigate

Phenotype

Enter the name for the selected Bubble.

cpa+T|

SAVEBUBBLE | CANCEL

»» . »o »a
Figure 4: SPADE Detail. Meta-clusters can be selected by brushing
(left) and annotated (dialog-box and right).
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to and select these branches, we color code the nodes to show
the median expression of one or more markers of the corresponding
cluster. To show two or three different markers, we divide the node
into segments of equal size. By default, we use the pink-to-green
diverging color map from colorbrewer, as the expression is usually
classified in low or high values, which here correspond to the ends
of the diverging spectrum.

Once the user has identified a group of clusters with similar ex-
pression in the selected markers, she can simply brush in the di-
agram to select and annotate the selection via the context
menu. A permanent meta-cluster is automatically derived from
the annotated selection (Figure 4).

The described steps are usually sufficient to define the major lin-
eages. In case the user wants to inspect the complete expression of
a cluster, we provide a circular heatmap that opens around the node
of interest by double-clicking.

5.2. Phenotypical Subset Exploration and Identification

We show the abstraction for the phenotypical subset exploration
and identification in Figure 2c. The process is divided into three
major parts, as presented in Section 4.2; T2a: dimensionality re-
duction, T2b: clustering and T2c¢: cluster refinement, as described
below.

T2a: Dimensionality Reduction. Sedlmair et al. [SMT13] con-
clude that “there is no one-and-only Dimensionality Reduction
solution”. A-tSNE [PLvdM™16] is a variant of tSNE [vdMHO8],
which is designed to preserve local structure (i.e., clusters) in the
high-dimensional space and is optimized to target two- or three-
dimensional spaces for visualization [vdM09] and, therefore, fits
our task very well. However, standard tSNE suffers from long com-
putation times. We aim at fast computation of the detail visualiza-
tion, as it will allow us to go back and forth between the high-level
and detail visualizations to iron out mistakes in the high level se-
lection. Therefore, we chose A-tSNE to derive two-dimensional
data points. A-tSNE is specifically designed for such interactive
settings. By approximating the high-dimensional neighborhoods
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Figure 5: tSNE Visualization of a single lineage, as scatterplot (a)
and as density plot (b). Erroneous selections can be identified in the
scatterplot (blue circles) due to the low expression in the discerning
marker for this lineage. Visual clusters can easily be distinguished
in the density plot.

the startup time can be reduced by up to two orders of magnitude,
when compared to the original implementation of tSNE. We use a
conservative approximation parameterization, as described by Pez-
zotti et al. [PLvdM* 16] to make sure that the resulting embedding
faithfully represents the data without user interaction.

T2b: Clustering. Manual selection of visual clusters in the em-
bedding to derive subsets is a tedious task. Previous work pro-
poses to use automatic clustering of the embedding to specify
the phenotypical subsets. In their work on ACCENSE [SBDC14],
Shekhar et al. propose a technique for density-based clustering of
tSNE maps in the context of cytometry. However, ACCENSE suf-
fers from several problems. Most importantly, they use a propri-
etary clustering algorithm that typically clusters only around 50%
of the data.

We decided to use Gaussian Mean Shift (GMS) clustering to cre-
ate the subsets. GMS has proven to be a reliable tool for the analy-
sis of complex data, is capable of creating arbitrarily-shaped clus-
ters [CMO02], will cluster all available data, and corresponds well
with the visually-identified clusters. Similar to ACCENSE, GMS
does rely on density computations and a kernel bandwidth needs to
be specified. ACCENSE tries to find an optimal size automatically
by inspecting the number of resulting peaks for a range of different
values. In our tests, the results of this approach were questionable.
Instead, we expose this parameter to the user, in combination with a
linked feature-space view of the resulting clusters. Hereby we allow
the user to make an informed decision on the kernel bandwidth. For
an effective visual exploration, the data needs to be clustered at in-
teractive rates. GMS is a rather complex algorithm and is therefore
usually not employed in interactive settings. In Section 6.1, we de-
scribe a GPU-based, discrete GMS implementation that allows for
interactive clustering of hundreds of thousands of data points.

T2c: Cluster Refinement. We support the user in the process of
exploring the created clusters and deriving new clusters
with three visual encodings. We use a scatterplot (Figure 5a)
or a density plot (Figure 5b) to show the dimensionality-reduced
data.

1033
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Figure 6: Detail of the Heatmap View showing marker expres-
sions and variation. Variation is encoded in the amount of paint in
each box. Columns are ordered by similarity as indicated by the
dendrogram on top.

In the scatterplot (Figure 5a), subsets can be identified best by
inspecting the actual marker expressions. Therefore, we use color
coding to represent a single user-defined marker, using the same
diverging colormap as described in Section 5.1. E.g., the user se-
lects a discerning marker for the defined lineage from a dropdown
menu to use for the color coding. Cells that show a high expression
of the marker when low is required (or vice versa) can easily be
identified in the scatterplot (see the blue circles in Figure 5a). The
user can then go back and remove them from the defined lineage
using the SPADE visualization, or simply handle them as outliers
and create the correct annotation in the following steps. The den-
sity plot (Figure 5b) shows more detail within the groups. E.g., the
group in the top left of the embedding (black highlight) seems rela-
tively homogeneous in the scatterplot but shows three peaks in the
density plot. However, in the density plot, we lose single-cell res-
olution and the marker expression. We couple the GMS clustering
to the density plot and each cluster is represented by a black dot on
the corresponding density peak for easy discovery.

The third visual encoding is a heatmap view (Figure 6),
showing the median marker expression of the created clusters. A
phenotypically-distinct subset is defined by a homogeneous unique
marker expression of the contained cells. Consequently, we propose
to use the homogeneity of the resulting clusters as a quality mea-
sure. We provide the standard deviation as a measure for the homo-
geneity. Inspired by Gove and Herzog’s work [GH13], we encode
the standard deviation in the amount of paint in each box in the
heatmap. Here, a filled box means little standard deviation, whereas
a box with a lot of white corresponds to large heterogeneity inside
the cluster for the corresponding marker. The combination of the
interactive clustering and the linked heatmap view, including infor-
mation on the homogeneity of clusters allows the user to make an
informed decision on when the automatic clustering is satisfactory.

Once the user has defined a suitable kernel bandwidth, she pro-
ceeds to refine the created clusters, i.e., by merging clusters with
a similar expression. We provide quick interactions (directly in the
heatmap view) to merge multiple clusters that belong to the same
phenotypical subset. The user can select one or more clusters by
clicking on the corresponding column in the heatmap. The clus-
ter will be highlighted in the heatmap view and the embedding
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to indicate the correspondence to the spatial location. We provide
different ways to arrange the heatmap for easy comparison. To
organize columns by their overall similarity, we compute hierar-
chical clustering using the median cluster expressions and visual-
ize the columns as leaves of the resulting dendrogram. Thus, sim-
ilar columns are automatically placed next to each other, allowing
fast exploration of the clusters and the corresponding feature
space. In addition, the user can also sort the columns based on the
values of a single row. To derive new clusters, the user can sim-
ply select multiple columns and merge them to a single cluster via
the context menu. The dendrogram and sorting are automatically
updated on such interaction. Finally, the refined clusters can be
annotated directly in the heatmap and exported to separate files
for further inspection and quantitative analysis in external tools.

6. Implementation

We implemented the core system of Cytosplore using C++ and
Qt. For the visualization components, we use a combination
of different rendering techniques, including D3 [BOH11] and
hardware accelerated OpenGL [SSKLK13] with custom GLSL
shaders [RLKG*(09], depending on the amount of objects on
screen. Even though we mix and match hardware-accelerated
OpenGL-based visualization with slower web-based techniques,
we would like to note that we strictly divide between pure visu-
alization and intensive computational tasks. All heavy lifting, such
as clustering, gradient descent and computation for A-tSNE is im-
plemented in C++ or, if possible, on the GPU for maximum perfor-
mance. When applicable, we only use a thin web layer for visual-
ization.

6.1. GPU-based, Discrete Mean-Shift Clustering

One of the main drawbacks of the mean-shift algorithm is its com-
putational complexity, making it not applicable in interactive sce-
narios with millions of data points. Therefore, we implemented
a grid-based streaming version of the Gaussian Mean Shift al-
gorithm based on work by Sirotkovic et al. [SDP13] for image
segmentation. Instead of using the Improved Fast Gauss Trans-
form [YDGDO03], however, we use fast density estimation on the
GPU [LH11] reducing the shift operation to a single lookup in a
gradient table.

F
e

a)

Figure 7: GPU Mean-Shift Steps. a shows the density map, with
increasing density from white to black. b shows the corresponding
(absolute) gradients, using the m and c¢ channels of the cmyk color
space to indicate the x and y components of the gradient vectors,
respectively. ¢ shows the final segmentation using unique colors for
each partition. d shows the clustered points using the same coloring
as in c.
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In general, the mean-shift algorithm is a mode-seeking algo-
rithm, taking each input data point and iteratively shifting it to the
average of the data points in its neighborhood until convergence to
a fixed location. To increase the performance, we map the cluster-
ing problem to a segmentation problem of the visual space used
for the embedding, to be able to apply the algorithm presented by
Sirotkovic et al. [SDP13]. As a result, the cost of the shift operation
is dependent on the resolution of the visual space, rather than the
number of input points. Additionally this approach maps nicely to
the GPU, further increasing performance.

We use three render passes to compute the segmentation of the
visual space. In the first pass, we compute the density profile (Fig-
ure 7a) in image space [LH11]. Based on the density, we compute
the first derivative via central differences, resulting in the gradient
at each grid position in the second render pass (Figure 7b). In the
third pass, we follow the gradient map upwards until we find a local
peak for each pixel with a non-zero density. We inscribe the found
position as a color to the starting pixel, resulting in a map of con-
stant colored partitions (Figure 7c). Finally, on the CPU, we set a
unique id for each of these partitions. Assigning this id to each data
point is then a simple look up in the resulting map using the point’s
position. Figure 7d shows the final clustered points.

Performance. Figure § shows computation times of the GPU
mean-shift algorithm for different numbers of points, different grid
sizes, and different kernel sizes from 10% to 40% of the image size.
The computations were carried out using a 4 core intel core i7 pro-
cessor, clocked at 4Ghz and an AMD Radeon R9 M295X with 4GB
of GPU memory. Blue columns show measured times for 10,000
data points, green columns for 50,000 points and orange columns
correspond to tests using 100,000 data points. It can be seen that
the performance mostly depends on the resolution of the grid, while
kernel size and number of points have a smaller effect. However, for
larger resolutions, the impact of these two factors is visible. Over-
all, it can be seen that for the 1282 resolution, we easily achieve
real-time update rates for all tested kernel and data sizes. We can
keep interactivity even at 5 122 resolution and 100,000 data points.
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Figure 8: Performance of our Mean-Shift Clustering. The graph
shows that the grid size has the biggest impact on performance,
while the number of points and kernel size only contribute slightly.
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7. Results

As described in Section 5, we focused on improving existing visual
encodings and designing an integrated interactive workflow with
the goal to improve efficiency. We conducted interviews with three
experts from our collaborating institute to validate the choices we
made to improve the visual encodings (Section 7.1). A prototyp-
ical version of the presented workflow, using separate tools, such
as Cytobank, Matlab and custom R-scripts, is the basis for our col-
laborators complete study as presented in [vULM™16]. For detailed
information on specific findings, especially how the workflow sup-
ports hypothesis generation, we refer to that work. In our case study
(Section 7.2), we focus on how we improve the effectiveness of the
analysis by creating an integrated interactive system.

The participants in our evaluation had different exposure to Cy-
tosplore before the study. Participant A was our main partner when
developing the workflow and had strong influence on the design
process of the system. He tested the system since its inception and
can be considered an expert user. Participant B is a close collabora-
tor but was less involved in creating the system. She tests the sys-
tem frequently but for her daily routine still relies on other tools.
Participant C was presented with the final system just for this study
and only had brief exposure to a very early prototype before. All
participants are familiar with the available computational tools.

7.1. User Evaluation

We demonstrated the tool to the participants in a group session and
installed it on their lab computers, including a short document, de-
scribing the most important features and how to access them. The
participants had as much time as needed to familiarize themselves
with the system. We followed this up with a structured interview, to
find out which parts of the proposed system work and which could
be improved.

The integrated nature of Cytosplore provides a strong improve-
ment. Participant C specifically mentions the linking; “fo see which
clusters in the heatmap are which cells in the tSNE [...] makes it
easy to make adjustments in the beginning of the pipeline” and
“makes it more reliable”.

All participants agree that showing two markers at once in the
SPADE visualization “saves time” (Participant B). Participant C
mentions that she is fine with using a single marker in Cytobank,
“but with two markers, it is a lot faster to find subsets”. Without
knowledge that we tested more markers in an early design phase,
she also states that “more than two markers would probably |...]
make me lose the overview.”. The circular heatmap received mixed
reactions. Participant C states that “it is not very helpful when a lot
of markers are used in the panel”. Hovering over each item to see
the corresponding marker is time consuming, “however, it is still
faster than adjusting the color of the node one by one”. Particpant
A sums it up to “looking at high detail for one node is a luxury but
not a necessity”, validating our choice to make it optional.

Participant B works with data that sometimes produces very
small lineages (i.e., consisting of a few hundred cells). During test-
ing, she was able to successfully define the subsets with this kind
of data. With such small data, where the differences in the den-
sity of the embedding are rather subtle, “we need the heatmap to

combine our immune knowledge to define the kernel bandwidth.”.
Before, this process completely failed with her standard workflow.
Interactively defining the kernel density made Participant C much
more confident in the results of the density-based clustering: “Yes,
this [the linked heatmap view] is very helpful. The variation dis-
play shows even more clearly whether more subsets need to be
created.” Participant A praises the linking between clustering and
the heatmap visualization of marker expressions: “It immediately
feedbacks the signatures revealing overall heterogeneity and homo-
geneity that often is the unknown for your data. It gives so much
valuable simulteaneous information and you are flexible in chang-
ing parameters without having to do hours of computations again.
I am really happy with it.” He does not, however, use the visual-
ization of the standard deviation since markers without a clear low
or high expression are hard to discern from the background due to
the diverging colormap with a white center. We since changed the
available colormaps in the heatmap view by removing the very light
colored blocks, but did not conduct an updated evaluation.

7.2. Case Study

To measure the efficiency of our proposed system, we set up a
small case study. The study consists of a single blood sample which
was downsampled to 50,000 cells. The task was to specify the
phenotypically distinct subsets within the dominant major lineage
(CDA4+T) within the sample.

We asked Participant A to create the subsets using his traditional
workflow [vVULM™16] as a benchmark, as well as our workflow for
comparison. We chose Participant A because he is the most experi-
enced user among our three participants. Table 1 shows the time it
took to create the subsets with the traditional workflow compared
to the time with our integrated solution. It can be seen that Cy-
tosplore outperforms the traditional workflow roughly threefold. It
should be noted that this small test case cannot completely cap-
ture the details of the workflow. E.g., as shown in Section 6.1, our
implementation of the clustering for T2b scales very well with in-
creasing data sizes, whereas the automatic clustering within AC-
CENSE often takes hours with real-world data sizes. However, it
was necessary to use such a simple example, to allow the subset
definition within a reasonable time frame.

SPADE and tSNE computations in Cytobank are done in the
cloud. We assume they use distributed computing, as their conven-
tional tSNE was computed in the same time as our A-tSNE. How-
ever, since Cytobank runs on shared hardware, SPADE and tSNE
computations are queued for all users and wait times easily reach
hours during peak times. We measured the time only after the job
was started to make sure the comparison is fair.

Table 1: Case Study Performance. Time in minutes needed for the
different steps in the workflow.

Total T1: Lineage T2a/b: Subset T2c:Subset
Delineation Computation™® Postprocessing
Traditional 108 27 29 52
Ours 39 13 11 15

* completely automatic in the traditional and interactive in our workflow
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Figure 9: Subsets Created in the Evaluation by Participant A with
the traditional workflow (a) and using Cytosplore (b). Note that a
consists of only 54% of the cells assigned to the lineage, due to
incomplete clustering using ACCENSE.

With our tool, clusters can be merged with a few clicks and be
verified immediately. The most time is needed for the biological
interpretation of the heatmap itself. We can see a large speed up in
this step, due to the fact that this is the least integrated part in the
original workflow and requires several different tools and some-
times multiple iterations for verification of the results.

Finally, we compared the subsets that were assigned to each cell,
to make sure our results are comparable to the traditional work-
flow. In the SPADE tree 27,172 cells were assigned to the created
CD4+T lineage with the traditional workflow, 26,591 with ours.
Within the lineage, in all tests, the same 14 subsets were identified
after merging 16 automatically-generated subsets in the traditional
workflow and 19 with ours. The results are not directly comparable
on a single-cell level, because ACCENSE only clustered 14,643 of
the original 27,172 cells. Figure 9 shows the composition of the
cells according to the subset specification during the evaluation.
Except for the groups labeled I and II, where we found more cells
using Cytosplore, the results were very similar; overall 14 subsets,
6 CD4+T Naive (different shades of blue) and 8 CD4+T Mem-
ory (different shades of purple) were defined in all tests. After fur-
ther investigation, we found out that the additional cells in group I
and II were mostly from the regions that were not clustered using
ACCENSE. It needs to be investigated further, whether the differ-
ence is due to a bias introduced by the incomplete clustering in
ACCENSE, or if the greedy clustering using mean shift introduces
cells into the subsets where the phenotype is uncertain.

To summarize, we were able to achieve comparable results
using our interactive workflow, when compared to previous
work [VULM™16]. Therefore, we assume that our framework al-
lows for generating hypotheses in a similar fashion. However, it has
the main advantage of significantly higher efficiency, when com-
pared to the previous approach.

8. Conclusion and Future Work

We presented Cytosplore, an interactive integrated system and
workflow for the specification of phenotypical subsets in large high
dimensional cytometry data sets. We have shown the benefits of
our approach in a case study evaluation. Participants found our in-
tegrated workflow useful and it allows them to produce results con-
siderably faster than with their traditional workflow. The integrated
nature of Cytosplore leads to much faster iteration during the subset
specification.

(© 2016 The Author(s)
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Cytosplore allows us to go beyond data sizes currently possi-
ble to handle with other tools by effectively partitioning the input.
However, scalability (in terms of data points) is still limited by the
input size for A-tSNE. In our tests, tSNE is not only a limiting fac-
tor in terms of computational performance, but the embedding qual-
ity also quickly degenerates when going beyond a few million data
points. We expect the number of dimensions to rise to around a hun-
dred. For the computational tools presented in this work this will
not be an issue. Cytosplore is also flexible enough to be employed
in a basic clinical setting, e.g., to analyze the lower-dimensional
flow cytometry data. If data are small enough, e.g., when analyzing
a single blood sample, the overview generation using SPADE can
be skipped entirely and the data can be analyzed using the embed-
ding and heatmap, immediately.

For the analysis of the immune system as a whole, the specifi-
cation of cell types is only the first step, followed by a quantitative
analysis of the found subsets. In future work, we would like to in-
tegrate the quantitative analysis within Cytosplore.
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