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Abstract
Diffusion Tensor Imaging (DTI) group studies often require the comparison of two groups of 3D diffusion tensor fields. The
total number of datasets involved in the study and the multivariate nature of diffusion tensors together make this a challenging
process. The traditional approach is to reduce the six-dimensional diffusion tensor to some scalar quantities, which can be
analyzed with univariate statistical methods, and visualized with standard techniques such as slice views. However, this provides
merely part of the whole story due to information reduction. If to take the full tensor information into account, only few methods
are available, and they focus on the analysis of a single group, rather than the comparison of two groups. Simultaneously
comparing two groups of diffusion tensor fields by simple juxtaposition or superposition is rather impractical. In this work,
we extend previous work by Zhang et al. [ZCH∗17] to visually compare two groups of diffusion tensor fields. To deal with the
wealth of information, the comparison is carried out at multiple levels of detail. In the 3D spatial domain, we propose a details-
on-demand glyph representation to support the visual comparison of the tensor ensemble summary information in a progressive
manner. The spatial view guides analysts to select voxels of interest. Then at the detail level, the respective original tensor
ensembles are compared in terms of tensor intrinsic properties, with special care taken to reduce visual clutter. We demonstrate
the usefulness of our visual analysis system by comparing a control group and an HIV positive patient group.

CCS Concepts
•Human-centered computing → Scientific visualization; Visualization design and evaluation methods;

1. Introduction

Diffusion Tensor Imaging (DTI) is an imaging modality that is
able to characterize fibrous tissues such as brain white matter. DTI
group studies aim at spatially locating diffusion-related differences
between groups in order to discover potential markers for white
matter structures, and are normally carried out in a voxel-wise
manner. For example, several studies [SDT05, SJJB∗06, DMA∗09,
VHNE∗09] compare a control group and a patient group to search
for differences caused by certain pathologies. Due to the complex
and multifaceted nature of the tensor data, the analysis of a single
group of diffusion tensor fields is already challenging. Inter-group
comparison only adds more complexity by introducing the need
for comparative solutions in the analysis. The standard approach
relies on the univariate statistical analysis of tensor-derived scalar
quantities such as fractional anisotropy (FA), rather than the mul-
tivariate diffusion tensor itself. Slice views are commonly used to
display the analysis results, which are some specific highly aggre-
gated scalar values (e.g., the t-statistic). This type of scalar-based
comparative analysis provides merely one facet of the full tensor
information, and leaves a large amount of information unused.

To keep the full tensor information, one has to resort to the
multivariate analysis tools such as multivariate normal distribution
[BP03, WWHT07]. However, the intrinsic structure of diffusion
tensors is not taken into consideration, and it is also unclear how to
effectively compare the generated fourth-order covariance tensors.
Furthermore, only few visualizations are available for analyzing a
single DTI group. For example, Abbasloo et al. [AWHS16] focus
on visualizing the complex fourth-order covariance tensor [BP07]
at multiple levels of detail while Zhang et al. [ZCH∗17] summa-
rize and visualize a single DTI group from the perspective of the
intrinsic properties of diffusion tensors (i.e., tensor scale, shape,
and orientation). However, to the best of our knowledge, there is
no comparative visualization technique developed specifically for
inter-group comparison.

Our work extends Zhang et al. [ZCH∗17] to facilitate the vi-
sual comparison of two DTI groups at multiple levels of de-
tail. Our comparative visualization framework is built based on
the Shneiderman mantra “Overview first, zoom and filter, then
details-on-demand” [Shn96]. The spatial overview is for compar-
ing the multivariate statistical summary information of tensor en-
sembles, i.e., mean tensor & tensor variations [ZCH∗17]. We com-
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bine the checkerboard style pair-wise tensor difference (Tender)
glyph [ZSL∗16] and the tensor summary glyph [ZCH∗17] to sup-
port the visual comparison in the spatial domain. More importantly,
we integrate the details-on-demand scheme into the glyph visual-
ization such that, as analysts zoom in, more statistical information
will be progressively revealed. We refer to the visual comparison of
statistical information in the spatial space as summary comparison.
The purpose of the spatial overview is to guide analysts to locate
voxels of interest for the further detailed comparison of the origi-
nal tensors without aggregation. We extend the detail visualization
of Zhang et al. [ZCH∗17] by utilizing superposition and explicit
difference encoding to support the comparison in terms of tensor
intrinsic properties as the finest level, and refer to it as feature com-
parison. Furthermore, we avoid visual clutter by employing the ker-
nel density estimation. The main contributions of this work can be
summarized as:

• We present a level-of-detail glyph representation to support the
visual comparison of tensor ensemble summary information at
different zoom levels in the spatial domain;
• We facilitate the visual comparison of two groups of the diffu-

sion tensors in terms of tensor intrinsic properties by superposi-
tion and explicit encoding.

2. Related Work

Our work mainly belongs to two visualization categories: compar-
ative visualization and the visual analysis of DTI ensembles. We
restrict the discussion here to literature relevant to these two areas.

2.1. Comparative Visualization

Comparative visualization refers to the process of understanding
the differences between two elements of study by utilizing easy-to-
interpret visual representations. Gleicher et al. [GAW∗11] divide
comparative visualization into three fundamental categories: juxta-
position, superposition, and explicit encoding. Juxtaposition refers
to place the objects to be compared side-by-side. It is straight-
forward to implement, and it is the most commonly used tech-
nique in DTI group analysis [SDT05, VHNE∗09]. Hotz et al.
[HSNHH10] employ juxtaposition to compare tensor interpolation
results. Schultz et al. [SSSSW13] juxtapose two sets of glyphs
to compare fiber variability. Superposition takes objects into the
same frame of reference for comparison but can easily cause oc-
clusions and visual clutter. Jones et al. [JGA∗02] overlay multiple
tensor glyphs to evaluate the registration results while Bergmann
et al. [BKLW06] overlay two tensor glyphs to depict the tensor
estimation results. To suppress visual occlusion when superposing
tensor glyphs, either image blending [AWHS16] or transparency
[MVB∗17] can be applied. Explicit encoding directly encodes the
differences between objects into visual representations but it im-
plies a suitable measure for difference quantification, which is not a
trivial task especially for complex objects such as diffusion tensors.
Kindlmann et al. [KSJEN∗07] use slice views to visualize tensor
shape- and orientation-specific differences. Zhang et al. [ZSL∗16]
combine explicit encoding and juxtaposition to support the voxel-
wise comparison of two diffusion tensor fields.

2.2. Visual Analysis of DTI Ensemble

Basser and Pajevic [BP03, BP07] assume that the set of diffu-
sion tensors follows a multivariate normal distribution, and propose
the fourth-order covariance tensor to quantify the variation. Addi-
tionally, they use radial glyphs for the visualization. Kindlmann
et al. [KEWW07] propose a decomposition framework, which is
based on tensor gradient invariants and rotation tangents, to provide
an intuitive understanding of the complex fourth-order covariance
tensor. Abbasloo et al. [AWHS16] combine slice views, volume
rendering, and superquadric glyphs [Kin04] to visualize the co-
variance tensor at multiple levels of detail. Zhang et al. [ZCH∗17]
propose to summarize diffusion tensor ensembles in terms of ten-
sor intrinsic properties. They extend the conventional superquadric
glyph [Kin04] to additionally encode aggregated variation infor-
mation, and propose three detail views to show the actual distribu-
tion of the original tensors in tensor scale, shape, and orientation,
respectively. Jiao et al. [JPGJ12] construct the so-called shape in-
clusion probability function to visualize an ensemble of diffusion
orientation distribution functions (dODFs) by volume rendering.

Our work is the extension and combination of two previous
works, i.e., the visual comparison of two diffusion tensor fields
[ZSL∗16] and the visual analysis of a single group of diffusion ten-
sor fields [ZCH∗17]. Our visual analysis approach facilitates the
comparison of two groups of diffusion tensor fields in terms of ten-
sor intrinsic properties at multiple levels of detail, ranging from
tensor statistical summary to the original tensors. This type of com-
parative visualization technique, to the best of our knowledge, has
not been reported previously.

3. Comparative Visualization Design

Neuroscientists normally apply voxel-wise analysis to locate dif-
fusion related differences between two groups of DTI datasets.
Therefore, the main objects to be compared in this work are two
groups of diffusion tensors, the so-called tensor ensembles, at the
same spatial location. Each tensor within the ensemble corresponds
to one individual subject. We denote them as {Di}A and

{
D j

}
B

with i ∈ [0,m) and j ∈ [0,n), where m and n are the total number
of subjects in the corresponding groups A and B, respectively. We
use two complementary and colorblind-safe colors, i.e., orange and
blue [DBB∗13, AWHS16], to identify different groups.

In the following sections, we first develop the visualization for
directly comparing {Di}A and

{
D j

}
B but not considering the field

information, and then design the visualization for comparing the
ensemble summary information in the 3D spatial domain.

3.1. Direct Tensor Ensemble Comparison

Zhang et al. [ZCH∗17] visualize a single tensor ensemble in terms
of three tensor intrinsic properties (scale, shape, and orientation),
each of which has a biologically meaningful interpretation. We ex-
tend the detail views [ZCH∗17] to facilitate the visual comparison
of two tensor ensembles, also from the perspective of the tensor in-
trinsic properties. Two synthetic tensor ensembles (see Figure 1a)
are used for illustration in the following sections.
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Figure 1: Direct visual comparison of two tensor ensembles. (a) each row represents a synthetic tensor ensemble, which is the subject of
comparison. All the tensor glyphs are colored according to the major eigenvectors with the conventional spherical colormap [PP99]. The
color is desaturated based on the tensor invariant cl [WMK∗99]. The major eigenvectors of these two ensembles are perpendicular to each
other. (b) shows the line plots of the probability density function of the one dimensional tensor scale for the two ensembles. (c) shows the
blended 2D density plot in the triangular tensor shape space, overlaid with the mean tensor glyphs for each ensemble. (d) shows the pair-wise
orientation dissimilarity matrix with the two dODF [ALS∗10] glyphs. (b–d) blue and orange colors indicate the tensor ensemble at the upper
and lower row in (a), respectively. Note that the glyphs in (a, c, d) are visualized with different viewing settings.

Tensor Intrinsic Properties. A symmetric positive-definite dif-
fusion tensor D can be eigen-decomposed into three ordered real
eigenvalues (λ1 ≥ λ2 ≥ λ3 > 0), and the corresponding orthonor-
mal eigenvectors {e1,e2,e3}. λi and ei (i = 1,2,3) are referred to
as the major, medium, and minor eigenvalue and eigenvector, re-
spectively. The tensor trace |D| is defined as the sum of the eigen-
values |D| = ∑

3
i=1 λi. Finally, the ordered normalized eigenvalues(

λ̃1, λ̃2, λ̃3

)
are given by normalizing the eigenvalues with respect

to the trace (λ1,λ2,λ3)/|D|.

Tensor intrinsic properties include scale, shape, and orienta-
tion. Tensor scale is mathematically expressed as the trace |D|,
which represents the amount of diffusion. Tensor shape is two di-
mensional, and mathematically expressed as the set of normalized
eigenvalues

(
λ̃1, λ̃2, λ̃3

)
. Tensor shape reflects the underlying fiber

configurations. For example, for regions with coherently aligned
fiber tracts, the diffusion tensors are of linear shape. Tensor orien-
tation is given by the set of eigenvectors (e1,e2,e3), which can be
used to deduce the pathway of the fiber tracts. Interested readers
are referred to previous work [EK06, ZSL∗16] for more details.

Scale Comparison. Zhang et al. [ZCH∗17] employ a 1D probabil-
ity density function (PDF) to depict the distribution of tensor scale,
which is visualized as a line plot. It is straightforward to compare
two distributions of tensor scale. We use the superposition strat-
egy to overlay two line plots within the same frame of reference,
each of which is colored according to their group identifier color.
For example, as shown in Figure 1b, two line plots largely overlap,
indicating that two corresponding distributions are quite similar to
each other.

Shape Comparison. Tensors with all possible shapes are located
on a right triangle [ZCH∗17], and hence we compare the shapes of
two tensor ensembles in this triangular shape space. However, dis-
playing all the tensor glyphs at once or drawing them as a scatter
plot generates clutter or does not allow an easy understanding of
the actual shapes, respectively. We tackle these problems by com-
bining 2D probability density estimation [LH11] with glyph-based
visualization. First, we draw the 2D density plot for each tensor en-
semble separately. We then blend the two plots in image space as
ci, j = pA

i, j ∗ cA + pB
i, j ∗ cB, where (i, j) is the pixel coordinate, p is

the density value, cA and cB are the corresponding group identifier
colors (see Figure 1c). Abbasloo et al. [AWHS16] employ the same
strategy to avoid occlusions for glyph-based visualization. Blend-
ing the colors as described will create an impression of neutral gray,
where the density values are similar. If one of the values is larger,
the corresponding group color will become obvious at this position,
and thus allow the identification of differences in the distribution
of the tensor shape between ensembles. However, the mental re-
construction of the actual tensor shapes is not easy. Therefore, we
draw several representative glyphs to assist the perception of the
blended density plot without introducing much occlusion. We pro-
vide two options. First, the user can select to simply show the mean
tensor for each group, resulting in just two glyphs in total rendered
on top of the density plot (see Figure 1c). However, the shape dis-
tribution can be multi-modal. Therefore, the second option is based
on automatic peak finding in the density and subsequent cluster-
ing. To this end, we apply GPU-based mean shift clustering based
on the generated density plot, similar to previous work by Höllt et
al. [HPvU∗16]. The mean shift algorithm [FH75] has several use-
ful properties. The density clusters will closely match the visual
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clusters that analysts would identify. Furthermore, since we com-
pute the density plot for visualization, we can use the same density
estimate as input for the mean shift algorithm. Finally the mean
shift algorithm can also function as a peak finding algorithm on the
density plot and the identified peaks can be used to place one repre-
sentative glyph for each cluster. To obtain the clusters, based on the
density estimate, we first compute the gradient of the density esti-
mate by calculating the central differences for each pixel in image
space. Then, starting with the initial position for each glyph, we as-
cend along the gradient direction until we reach a peak. All glyphs
that ascend to the same peak are considered as belonging to the
same cluster and the peak can be used for placing the representa-
tive glyph for that cluster. Finally, we reconstruct the shapes for the
representative glyphs, based on the position of the peak in image
space, and render the glyphs on top of the density plots. An example
with tensor glyphs at cluster centers can be seen later in Figure 4d
top. By combining the 2D density plot and the tensor glyphs, we
effectively reduce the visual clutter and provide a straightforward
comparison in the tensor shape distribution.

Orientation Comparison. It is challenging to define a space to
explicitly convey the orientation distributions due to the inherent
coupling of tensor shape and orientation. As suggested by Zhang
et al. [ZCH∗17], the pair-wise dissimilarity matrix of tensor orien-
tations proves to be useful in identifying similar orientation behav-
iors. Therefore, we order the elements for each tensor ensemble,
in the same way as Zhang et al. [ZCH∗17], and then concatenate
these two ensembles together to build the final dissimilarity matrix.
The orientation matrix view is therefore composed of three parts
(see Figure 1d). A white-to-black perceptually linear colormap is
employed to color the matrix. The lower diagonal part depicts the
orientation variation of one ensemble, while the upper diagonal part
shows that of the other. The remaining two parts, which are sym-
metric with respect to the diagonal, depict the inter-group orienta-
tion differences. The diagonal parts allow exploring the orientation
variation within the ensemble, and the off diagonal parts allow in-
specting the inter-ensemble orientation differences, which belongs
to the comparison category of explicit encoding.

In order to support the interpretation of tensor orientation vari-
ation of each ensemble, we convert each tensor into the so-called
diffusion orientation distribution function (dODF) [ALS∗10], and
obtain an average dODF glyph for each ensemble [ZCH∗17]. In
principle the dODF glyph is a directional probability density func-
tion defined on a unit-sphere. We apply the superposition strategy
to compare two dODF glyphs, and provide the option to add trans-
parency. We place the dODF glyphs on top of one of the two sym-
metric off diagonal parts, which will not cause information loss.
The dissimilarity matrix is two dimensional while the dODF glyphs
are three dimensional objects. Therefore, we offer the option to
freely rotate the dODF glyphs to have a comprehensive perception
without affecting the viewing settings. Hereby, we not only show
the orientation variations for a single ensemble, but also facilitate
the visual comparison between two ensembles.

As shown in Figure 1d, both ensembles exhibit a small intra-
ensemble orientation variation (i.e., brighter colors), while the
inter-ensemble orientation differences are rather large (i.e., darker

colors). Additionally, the superposed dODF glyphs clearly shows
the differences in dODF for every directions.

Linked Brushing. Each view is extended to support the inter-
group comparison in one tensor intrinsic property. Therefore,
linked brushing is used to connect all of the three views. To min-
imize visual clutter, we only highlight the selected tensor glyphs
with red halos (e.g., see Figure 4d bottom). A filled line plot (e.g.,
see Figure 4e) is drawn to reflect the contributions of selected ten-
sors to the overall scale distributions, and the corresponding diago-
nal entries of the matrix view (e.g., see Figure 4f) are also colored
red. We use a table view to display the metadata (e.g., age) of each
individual subject, which can also be used for linked selection.

3.2. Ensemble Summary Comparison

The extended comparative visualization, described in the previous
section is useful for directly comparing the tensor ensembles for
voxel(s) of interest. However, this visualization cannot provide spa-
tial information. Therefore, we use a separate spatial visualization,
described in this section, to show the ensemble differences in the
3D spatial domain. Before performing voxel-wise ensemble com-
parison information needs to be aggregated. Zhang et al. [ZCH∗17]
summarize the tensor ensemble {Di} into a mean tensor D and the
variations in scale σscale, shape σshape, and orientation σorientation.
Furthermore, they extend the superquadric tensor glyph [Kin04] to
visualize the summary information.

We employ the same aggregation method, which handles the ten-
sor intrinsic properties separately, and design a new glyph to visu-
ally compare the summary information in 3D. Our new design is
a combination of the checkerboard style Tender glyph [ZSL∗16],
designed for comparing two diffusion tensors, and the tensor en-
semble summary glyph [ZCH∗17], designed for visualizing the
summaries of a single tensor ensemble. Both types of glyphs are
suitable for detailed inspection at close-up views. In this work, we
incorporate the level-of-detail concept by designing different visual
representations at different zoom levels. For a small field of view, it
is more suitable to encode the full information for a limited number
of voxels, while for a large field of view it is more suitable to en-
code a limited amount of information for a large amount of voxels
to provide an overview. The zoom level is reversely proportional to
the extent of information aggregation; the higher the zoom level,
the less aggregation is needed. Therefore, in the following, we de-
scribe the levels from the most detailed to the coarsest by gradually
removing information.

Aggregation Level 1 (Zoom Level 3) : Mean tensors and tensor
variations. At the finest zoom level, the aggregate information to
be compared is the mean tensor and three scalar-valued tensor vari-
ations. We apply the checkerboard style Tender glyph [ZSL∗16] to
compare the mean tensors. The original design uses the color chan-
nel to compare tensor scales. However, we decide to reserve the
color channel for later usage at the coarsest zoom level. Therefore,
we have to resort to other visual channels to encode the tensor scale
information. We find that the original sector representation, which
is shown both above and below the glyphs, for the orientation dif-
ference is redundant. Hence, we divide the sector into two parts,
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Group 1 Group 2 Level 3 Level 2 Level 1

(d)(a) (b) (c)

Figure 2: Level-of-detail glyph representations for tensor ensemble summary comparison. (a) displays the corresponding tensor summary
glyphs for the synthetic ensembles shown in Figure 1a. (b) shows the new LOD glyph at zoom level 3 (i.e., the fine level), designed to compare
the tensor ensemble summary information. (c) shows the new LOD glyph at zoom level 2 (i.e., the medium level), used to support the visual
comparison of the corresponding mean tensors alone. (d) shows our LOD glyph at zoom level 1 (i.e., the coarse level) with plain color coding
to indicate the tensor shape difference. (b,c) orange and blue color are for the identification of different tensor ensembles.

i.e., the upper and lower parts. Then, the angles of the upper and
lower part are used to encode orientation-related and scale-related
differences, respectively. Figure 3 illustrates the idea of sector rep-
resentation by analogy with the 1D normal distribution. At zoom
level 3, two bands are drawn with the identification color. The cen-
ter of the band is aligned with the mean value (i.e., the vertical
dashed line) while the length of the band is determined by the stan-
dard deviation. As shown in Figure 3a, if these two bands overlap,
the overlapping region will be colored white (i.e., the addition of or-
ange and blue). Otherwise, if there is a gap between the two bands,
the in-between region is colored to with a dark gray (Figure 3b).
We create the sectors for the glyph visualization by replacing the
length with the angle of the arc. Figures 3a and 3b at zoom level 3
are analog to the lower and upper sectors in Figure 2b, respectively,
with the standard deviation corresponding to scale and orientation
variations [ZCH∗17]. The major benefit with this visual design is
that it facilitates the direct evaluation of the overlap between the
two distributions in scale and orientation.

For the comparison of mean tensor shapes, we place them in a
checkerboard style as presented for the Tender glyph [ZSL∗16]. For
the visual comparison of tensor shape variations σshape, we employ
the halftone textures due to their ability to provide a more precise
estimation [ZCH∗17]. In this way, we convert the comparison of
tensor shape variations into that of the density of the colored dots.

Figure 2b shows the final glyph representation at this zoom level,
which combines the two ensemble summary glyphs in Figure 2a.
Please note that Figures 1a and 2a are generated with different
viewing settings. The shape differences between the two mean ten-
sors are manifested as the discontinuities between the glyphs. The
orange ensemble exhibits a slightly larger shape variation (i.e., the
dots are packed slightly more dense). The upper gray sector shown
in Figure 2b indicates a large orientation difference between the
mean tensors while the two small colored sections on both sides in-
dicate little orientation variation within both ensembles. From the
lower sector shown in Figure 2b, we can deduce that two ensembles
have similar scale variations (i.e., two small orange and blue ends

on both sides) and largely overlap with each other (i.e., the white
region).

Aggregation Level 2 (Zoom Level 2) : Mean Tensors. As users
zoom out, more voxels are shown, and hence fewer pixels are as-
signed per voxel. Accordingly, we reduce the amount of informa-
tion to be displayed. Prior to comparing the associated tensor vari-
ation information, neuroscientists are normally interested in com-
paring the mean tensors. If the mean tensors are different, neuro-
scientists prefer to dive further to assess the overlap between the
distributions of the tensor ensembles. Therefore, at this zoom level,
we decide to compare the mean tensors alone. More specifically, we
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Figure 3: Illustration of the sector construction by analogy with
one dimensional normal distributions for (a) a large and (b) small
distribution overlap. Blue and orange colors are used to identify the
corresponding normal distributions. At level 3, two colored bands
are drawn, the length of which are proportional to the standard
deviation of the distribution. The center of the bands are based on
the mean value. (a) if these two bands are overlaid, white color is
generated. (b) Otherwise, the color in-between is kept to gray. At
level 2, a single gray band is drawn, the length of which indicates
the difference in the mean values of the distributions. (a) and (b) are
analog to the lower and upper sectors, respectively, in Figures 2b
and 2c.
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leave out the visual channels that are used to encode tensor varia-
tion information, and show the glyphs to only support the compari-
son of the mean tensors. Figure 2c shows that the glyph at this level
is a simplified representation of the glyph at zoom level 3. Specif-
ically, the textures are removed. The sectors are simplified to en-
code only the pair-wise scale/orientation differences to the angles,
which are analog to the visual representation at level 2 in Figure 3.
Furthermore, the sectors are colored using a neutral gray. At zoom
levels 2 and 3 the glyph color is employed to explicitly encode the
difference of the ensembles, as described in the next paragraph.

Aggregation Level 3 (Zoom Level 1): Difference Measure be-
tween Mean Tensors. At the coarsest zoom level, each voxel oc-
cupies a very limited number of pixels, and therefore requires a
higher level of aggregation. The goal of this level is to help an-
alysts to gain a first overview and identify areas of interest, into
which they can dig deeper. Consequently, we decide to reduce these
two mean tensors to single scalar values that can then be encoded
into the color channel, which is still visible even if only few pix-
els are available per voxel. At this level, it is most important to
choose an appropriate difference measure between the mean ten-
sors. Such measures are strongly application-dependent. For exam-
ple, Abbasloo et al. [AWHS16] use slice views to show the overall
variance and generalized FA of the fourth-order covariance tensor
to provide a first impression of the DTI ensemble. We allow an-
alysts to choose among a set of pre-defined difference measures
between the mean tensors d

(
DA,DB

)
, depending on the task at

hand. For example, the analyst can chose the difference in a spe-
cific tensor intrinsic property such as the tensor shape difference
dshape. Furthermore, statistical measures like the t-statistic, with
which neuroscientists are familiar in their routine research, can be
used. We decide to use the shape of the glyphs instead of simple
view-aligned quads to show the color at this zoom level. This guar-
antees a smooth transition between different glyph representations
as much as possible. Since usually only a few pixels are used for
the glyph at this zoom level, the shape of individual glyphs is barely
noticeable, making it unnecessary to apply an illumination model.
Figure 2d shows the glyph representation at the coarse level, which
is colored according to the shape differences between the mean ten-
sors.

3.3. Summary

We have introduced the three zoom levels in reverse order for the
sake of the easy explanation of the aggregation of tensor ensembles.
The actual visual exploration workflow starts from zoom level 1.
The coarse zoom level utilizes the explicit encoding strategy to de-
pict application-dependent difference measures between two mean
tensors. This level provides a first impression for a large field of
view, and hence can guide analysts to voxels of interest (e.g., Fig-
ure 4a). Analysts can then zoom into level 2, which is based on
juxtaposition and explicit encoding. At this level, analysts can vi-
sually compare the mean tensors in all the three aspects of ten-
sor intrinsic properties. If analysts would like to further compare
the tensor ensemble variations, they can continue to zoom level 3,
which is also based on juxtaposition and explicit encoding. At this
level, analysts can scrutinize a small amount of voxels, harnessing
the full tensor ensemble summary information. Finally, this zoom

level serves as the bridge between the comparison of the tensor en-
semble summaries in spatial domain and the comparison in tensor
intrinsic properties for voxels of interest. This level-of-detail glyph
visualization enables the gradual exposure of the differences be-
tween two tensor ensembles in a voxel-wise manner.

4. Application

We demonstrate the usefulness of our visual analysis prototype by
an exemplary comparison of two groups of diffusion tensor fields.
The two groups consist of a group of 75 HIV positive (HIV+) pa-
tients and a control group with 46 subjects. Each DTI dataset has
an original resolution of 224× 224× 144 with an isotropic voxel
size of 2mm. We uniformly crop each dataset to 121× 161× 111
voxels in order to remove those outside of the skull. The diffusion
weighting is b= 1000 s/mm2 along 64 uniformly distributed direc-
tions with four non-diffusion averages. The numerical range of the
tensor values is scaled by 1000. The case studies were conducted
and interpreted together, by the first and the third author, who is a
neuroscientist specialized in DTI group analysis. Throughout the
examples, we indicate the HIV+ group by orange color and the
control group by blue color.

All datasets are registered with a non-rigid approach provided by
DTI-TK [ZYAG06], which takes the whole tensor information into
consideration. The registration quality is important for voxel-wise
analysis, however, here, we focus on the comparative visualization
of DTI group studies only. Therefore, the influence of the registra-
tion quality on the analysis results is beyond the scope of this work.
Although we do not explicitly show the detail level comparison for
several selected voxels, it is possible to do this with our prototype.
Therefore, this type of local averaging can to some extent reduce
the influence of potential mis-registration. Please note that our de-
tail level comparison makes no difference whether a single voxel or
multiple voxels are selected.

4.1. Case Study 1: Fornix

The neuroscientist starts the analysis with the visualization of
the coarsest zoom level (Figure 4a) to identify voxels of interest.
This zoom level is constructed based on the tensor shape differ-
ence dshape, which represents the difference in the mean diffusion
anisotropy profiles between two groups. We can see that the high-
lighted region is largely white, indicating that the voxels exhibit
only small differences in shape. This region roughly matches the
ventricle of the brain (see the dashed line in Figure 4a). Therefore,
these small differences in shape are not surprising, since the dif-
fusion tensors in the ventricles are nearly isotropic. We can see a
small region in the center, highlighted by the rectangle in Figure 4a,
which is notably darker, indicating a larger shape difference. The
neuroscientist selects this region, which turns out to be the body
of the fornix, for further analysis in zoom level 2 (Figure 4b). The
fornix is a C-shaped bundle of fibers that roughly travel anteriorly.
Note that in zoom level 2 the glyphs are rotated without chang-
ing the viewing settings for the sake of a clearer illustration. Here,
we can see that the more elongated glyphs exhibit larger pair-wise
shape differences (i.e., darker colors). For example, in the central
voxels, the discontinuities between the checkerboard sides of the
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Figure 4: Exemplative exploration of the fornix (roughly indicated by the small rectangle in a). Overview visualization in the spatial domain
at different zoom levels, from coarse to fine are shown in (a–c). At zoom level 2 (b), the dark glyphs indicate that the average tensors of the
patient group have larger normalized first eigenvalues (e.g., see the inset). At zoom level 3 (c), it is observed that the shape variation (i.e.,
the colored dots) is higher for the HIV+ group than that of the control group. The voxel enclosed in the purple rectangle (c) is chosen to be
further analyzed in the feature space (d–f). Here a selected group of subjects is indicated by red arrows and shown as additional glyphs with
red halos (d, bottom), area under the pdf of tensor scale (e), and glyphs on the diagonal of the orientation dissimilarity matrix (f). The dODF
glyphs are used to assist the comparison in tensor orientations.

glyphs can be readily perceived (due to size limitations of the fig-
ure, see the inset in Figure 4b for a clearer view). Glyphs with
orange sidefaces have larger normalized major eigenvalues λ̃1 but
smaller normalized medium λ̃2 and minor eigenvalues λ̃3. This im-
plies that, on average, the HIV+ group has larger linear anisotropies
in the fornix. This finding surprises the neuroscientist, as it conflicts
with the common hypothesis that diseases of the nervous system
reduce the extent of diffusion anisotropy by damaging the under-
lying fiber tracts. Furthermore, we can observe that the orientation
differences are consistently small for this region, while scale dif-
ferences (i.e., the angles of the lower sectors) are proportional to
the shape differences (i.e., the darkness of the color). The neurosci-
entist further zooms into the finest level to inspect variations in a

three by three voxel area in the center, as marked in Figure 4b. In
Figure 4c we can see that variation in orientation is small and simi-
lar for both groups, as indicated by the angles of the upper sectors.
The glyphs corresponding to the HIV+ group exhibit larger scale
variations (i.e., larger angles in the orange part of the lower sec-
tors) and larger shape variations (i.e., more densely packed orange
dots). The fornix on the axial slice consists of only a few voxels
and, therefore, partial voluming effects and/or mis-registration can
lead to a contamination by voxels from the surrounding ventricles
which normally have larger diffusion scales. The larger variation
in the diffusion scales could be an indicator that the HIV+ group is
more vulnerable to such contamination. More surprising is the large
difference in shape variation between two groups (see the purple
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rectangle in Figure 4c). Therefore, the neuroscientist selects this
voxel to compare the original tensor ensembles at the detail level.

First, the neuroscientist inspects the shape distribution. Figure 4d
top shows the density plot of the shape distribution, overlaid by the
glyphs corresponding to the automatically generated density clus-
ter centers. We can see that the tensor shapes are mainly linear for
both groups. The overall span is quite large, with FA values rang-
ing from 0.2 to 0.9, as indicated by the glyph locations relative
to the background FA contours. Therefore, we select all the tensor
glyphs corresponding to large anisotropies (i.e. the glyphs marked
by the red arrow in Figure 4d, bottom). It can be seen that most of
the selected glyphs originate from the HIV+ group (orange color)
while only one is from the control group (blue). The neuroscien-
tist speculates that this could be attributed to the scanner shift, as
some subjects were scanned with two different scanners. However,
we could exclude this hypothesis by inspecting the origin of each
scan, which showed that 1) both groups contain subjects scanned
with either scanner and 2) the selection includes tensors originat-
ing from either scanner (see the supplementary video). Inspecting
the detail visualization for the scale (Figure 4e), we can see that all
of the selected tensors also exhibit small values for tensor scale (see
the colored region in Figure 4e). The orientation matrix view (Fig-
ure 4f) does not exhibit such a strong clustering. Overall, we see
that, based on the average dODF glyphs with added transparency,
the HIV+ group has larger diffusion probability in the vertical di-
rection. We also find two tensors in the HIV+ group (red circle in
Figure 4f) exhibiting larger orientation difference compared to the
rest of the group and some subjects from the control group.

This example demonstrates that our prototype is able to help the
neuroscientist to obtain new findings, i.e, the HIV+ group presents
both larger linear anisotropies and tensor shape variations for the
fornix structure. While the interpretation of the described findings
is out of the scope of this article, they inspired the neuroscientist to
further verify these findings with a quantitative analysis.

4.2. Case Study 2: Corpus Callosum

In the second case study we inspect the corpus callosum (CC),
which is a flat bundle of fibers connecting the left and right cere-
bral hemispheres. It is indicated by the dashed line in a sagit-
tal slice shown in Figure 5a. The neuroscientist starts with the
overview visualization on zoom level 1, employing the commonly
used scalar-valued statistical measure, i.e., t-statistic, color-coded
using a green-white-violet colormap. We use a diverging colormap,
since the values for the t-statistic are centered around zero and
specifically this green to violet one, as it does not interfere with the
blue and orange colors used for the different groups. The neurosci-
entist hypothesizes that the FA value is higher in the control group
than in the HIV+ group. A positive t-statistic (violet) would indi-
cate that the hypothesis is true while a negative t-statistic (green)
indicates that it is false. The absolute value of the t-statistic indi-
cates the extent to which the FA values are significantly different
between two groups. Significant difference intuitively means large
difference in the FA values of the mean tensors and small distri-
bution overlaps. The voxel-wise t-statistic is constructed following
the standard routine in the Tract-Based Spatial Statistics (TBSS)
toolkit based on FA [SJJB∗06]. In zoom level 1 (Figure 5a), it can

be seen that the anterior part of CC (i.e., the genu) appears to be
more violet while the posterior part (i.e., the splenium) exhibits
some green. The neuroscientist is specifically interested in these
voxels with negative t-statistic values and zooms into level 2 for
this region (Figure 5b). We observe that the HIV+ group, indicated
by orange sidefaces (see the inset in Figure 5b), has larger nor-
malized major eigenvalues λ̃1 and smaller normalized medium and
minor eigenvalues, similar to what we have found in the fornix.
Furthermore, the scale and orientation differences are quite small,
as indicated by the small lower and upper sectors, respectively.
For further comparison of the group variations, we then zoom into
level 3 (see Figure 5c). It can be seen that the variations in scale,
shape, and orientation are quite similar between the two groups. We
now inspect the complete distributions for a single voxel, indicated
by the square in Figure 5c. In the shape space visualization (Fig-
ure 5d), we can immediately see that the two mean tensor glyphs
are placed at some distance. In combination with the emphasized
blue and orange tones on the ends of the density plot this confirms
that the FA is indeed larger for the HIV+ group, as indicated by
the green color in Figures 5a–c. As discussed before, diseases like
HIV damage the fiber structures, which then makes the water dif-
fuse more freely. Consequently, we expect the HIV+ patients to ex-
hibit a larger amount of diffusion [WSC∗06]. However, inspecting
Figure 5e, we find that the distribution of the tensor scale for the
HIV+ group (orange line) is slightly more skewed towards a lower
scale value compared to the control group (blue). This means that
a subject from the HIV+ group has a higher probability to present
a small amount of diffusion, compared to a subject from the con-
trol group. This finding contradicts the expectation that HIV+ pa-
tients would exhibit a larger amount of diffusion. While we cannot
present a solid interpretation for this finding in the scope of this
paper, it shows that our prototype is able to reveal more informa-
tion compared to the standard FA-based statistical analysis of DTI
inter-group comparison.

5. Conclusions and Future Work

In this work, we present a level-of-detail comparative visualization
technique to support the comparison between two groups of dif-
fusion tensor fields. The comparison is divided into two parts, i.e.,
the comparison of tensor ensemble summaries in the spatial domain
and that of the original tensor ensembles in terms of tensor intrinsic
properties. For the comparison of tensor ensemble summaries, our
glyph representation is based on the combination of two existing
glyph designs [ZSL∗16, ZCH∗17]. More importantly, we integrate
the details-on-demand concept to present more information as users
zoom in. The coarse zoom level is designed to show large scale
patterns of user specified scalar-valued difference measures, mim-
icking slice views. The medium zoom level facilities the compari-
son of the mean tensors of the two groups in terms of their tensor
intrinsic properties. The glyph representation at this level is a vari-
ant of the Tender glyph [ZSL∗16]. The finest zoom level addition-
ally supports comparison of variation information of each group.
The glyph representation at this level is an extension of the tensor
ensemble summary glyph [ZCH∗17]. Here, the glyph-based com-
parative visualization helps analysts to locate voxels of interest for
further comparison in tensor intrinsic properties at the detail level.
Therefore, we extend the detail visualization [ZCH∗17] to support
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Figure 5: Comparative visualization for the corpus callosum (CC), colored according to the t-statistic values with a green-white-violet
colormap. (a) shows the coarsest zoom level with the CC marked with the dashed line. (b) shows the mean tensor glyphs at zoom level 2,
corresponding to the splenium that is marked by the rectangle in (a). The green color means negative t-statistic values for the splenium. The
inset shows the HIV+ group has larger normalized major eigenvalues, as shown by the discontinuity, exposing the orange sideface. (c) shows
the visual comparison of 6 selected voxels at zoom level 3 indicating rather small difference between the two groups. (d, e, f) show the detail
level comparisons for the shape, scale, and orientation, respectively.

the visual comparison of two original tensor ensembles by exploit-
ing the superposition and explicit encoding strategy. We performed
two case studies together with a neuroscientist to illustrate the use-
fulness of our prototype by comparing an HIV+ patient group and
a control group. Our prototype successfully reveals new findings
that are otherwise unknown with standard scalar-based comparison.
The case studies triggered the neuroscientist’s interest to perform a
formal study to further inspect these new findings.

There is still room for improvement as future work. Regarding
the glyph design, the sector representation is not intuitive since it
relies on the users’ memory of the correspondence to tensor scale or
orientation. Furthermore, although the image-space textures, used
to indicate shape variation, provide a good estimation of the vari-
ation, their image-space nature can cause annoying effects during
interaction. Research regarding these issues could further improve
the glyph representation. In the spatial visualizations, the glyphs
are placed on a regular grid, which is likely to hide the underlying
continuous structures of the field. The combination of a smart sam-
pling scheme [KW06] with the level of detail glyph representations

could further improve the overview visualizations. Finally, the next
logical step would be the comparison of more than two groups.
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