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LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in
Recurrent Neural Networks

Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M. Rush
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AcTIVis: Visual Exploration of Industry-Scale
Deep Neural Network Models

Minsuk Kahng, Pierre Y. Andrews, Aditya Kalro, and Duen Horng (Polo) Chau
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Skeleton-based Scagnostics
José Matute, Alexandru C. Telea, and Lars Linsen

Abstract—Scatterplot matrices (SPLOMSs) are widely used for exploring multidimensional data. Scatterplot diagnostics (scagnostics)
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Visual Diagnosis of Tree Boosting Methods

Shixia Liu, Jiannan Xiao, Junlin Liu, Xiting Wang, Jing Wu, Jun Zhu
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DeepEyes: Progressive Visual Analytics

g for Designing Deep Neural Networks

match count

1. Susan starts exploring the
model overview. She selects a
data node (yellow)

4.Inspecting instance #120's activations
reveals it activates neurons in ways
different from correctly classified ones
(#38, #47) and from its class (NUM).

Fig. 1. ACTIVIs integrates several coordinated views to support exploraf]
and subset-level. 1. Our user Susan starts exploring the model architectt
data node (in yellow) displays its neuron activations (at B). 2. The neu
and instance subsets; the projected view displays the 2-D projection of
C), she individual i and their ion results. 4.
activation patterns across instances, subsets, and classes, revealing cal

Abstract— While deep learning models have achieved state-of-the-ar]
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Visual Exploration of Semantic Relationships
in Neural Word Embeddings
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yes is a Progressive Visual Analytics system for the analysis of deep neural networks during training. The overview
is given by the commonly used loss- and accuracy-curves (a) and the Perplexity Histograms (b) a novel visualization
detection of stable layers. A detailed analysis per layer is performed in three tightly linked visualizations. Degenerated
ted in the Activation Heatmap (c), and filter activations are visualized on the Input Map (d). Finally, in thp-Eiltacbdanla)
Imong the filters in a layer are visualized.

ep neural networks are now rivaling human accuracy in several pattern recognition problems. Compar
ere features are handcrafted, neural networks learn increasingly complex features directly from the d
e features, it is now the network architecture that is manually engineered. The network architecture para
layers or the number of filters per layer and their interconnections are essential for good performance. Evi
es exist, designing a neural network is an iterative trial-and-error process that takes days or even we

Filter Map

1 INTRODUCTION
Deep learning has led to maijor breakthroughs in various domains. such __arel

models remains a challenge. Despite the recent interest in developing
complexity and wide variety of models deployed in industry, and the largej
that are inadequately addressed by existing work. Through pamcupalc
at Facebook, we have developed, depl , and i

large-scale deep learning models and resuhs By tightly mtegranng multi
of the model architecture, and a neuron activation view for pattern discoy
network models at both the instance- and subset-level. ACTIVis has b|
present case studies with Facebook researchers and engineers, and usaj

Index Terms—Visual analytics, deep learning, machine learning, infornj
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yyteGuide: Visual Guidance for Hierarchical Single-Cell Analysis

Thomas Hollt, Nicola Pezzotti, Vincent van Unen, Frits Koning, Boudewijn P.F. Lelieveldt, and Anna Vilanova

Abstract— Constructing distributed representations for words through neural language models and using the resulting vector spaces
for analysis has become a crucial component of natural language processing (NLP). However, despite their widespread application, little
is known about the structure and properties of these spaces. To gain insights into the relationship between words, the NLP community
has begun to adapt high-dimensional visualization techniques. In particular, researchers commonly use t-distributed stochastic neighbor
embeddings (t-SNE) and pnncnpal component analy5|s (PCA\) to create two-dimensional embeddings for assessing the overall structure
and exploring linear i (e.g., word ar ), respectively. Unfortunately, these techniques often produce mediocre or
even misleading results and cannot address domain- -specific visualization challenges that are crucial for understanding semantic
relationships in word embeddings. Here, we introduce new embedding techniques for visualizing semantic and syntactic analogies,
and the corresponding tests to determine whether the resulting views capture salient structures. Additionally, we introduce two novel
views for a comprehensive study of analogy relationships. Finally, we augment t-SNE embeddings to convey uncertainty information in
order to allow a reliable interpretation. Combined, the different views address a number of domain-specific tasks difficult to solve with
existing tools.
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il language processing (NLP) is one of the key components in hips most i tor t C

1y, to preserve

e datasets used for training. In this paper, we present DeepEyes, a Progressive Visual Analytics systel
eural networks during training. We present novel visualizations, supporting the identification of layerg
tterns and, therefore, are of interest for a detailed analysis. The system facilitates the identification of prt
ers or layers, and information that is not being captured by the network. We demonstrate the effectiveneg
e use cases, showing how a trained network can be compressed, reshaped and adapted to different pt

-Progressive visual analytics, deep neural networks, machine learning
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Neural Networks (DNNs) have shown outstand-
various problems, like image and speech recog-
onsist of various interconnected layers. In each

layer, a number of filters detect increasingly cd
example, in networks trained to recognize obj{
first layer generally contains filters that are train
edges. This information is aggregated by other laj
patterns, e.g., grids or stripes. By using hundreds|
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Fig. 1. ConceptVector supports interactive construction of lexicon-based concepts. Here the user creates a new unipolar concept (1)
by adding initial keywords related to ‘tidal flooding’ (2). The system recommends related words along with their semantic groupings
(3), also shown in a scatterplot (4), revealing word- and cluster-level relationships. Irrelevant words can be specified to improve
recommendation quality (5). Concepts (9) can then be used to rank document corpora (10). Document scores can be visualized in a
scatterplot based on concepts such as ‘tidal flooding’ and ‘money’ (7). Users can further refine concepts based on results (8).

Abstract—Central to many text analysis methods is the notion of a concept: a set of semantically related keywords characterizing

a specific object, phenomenon, or theme. Advances in word embedding allow building a concept from a small set of seed terms.

However, naive application of such techniques may result in false positive errors because of the polysemy of natural language. To
mitigate this problem, we present a visual analytics system called ConceptVector that guides a user in building such concepts and then
using them to analyze documents. Document-analysis case studies with real-world datasets demonstrate the fine-grained analysis
provided by ConceptVector. To support the elaborate modeling of concepts, we introduce a bipolar concept model and support for
specifying irrelevant words. We validate the interactive lexicon building interface by a user study and expert reviews. Quantitative
evaluation shows that the bipolar lexicon generated with our methods is comparable to human-generated ones.

Index Terms—Text analytics, visual analytics, word embedding, text summarization, text classification, concepts
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739 dlgnal world responsible for everything from web search to doc-

such relationships, linear projections are preferred. The most common
h is to use principal component analysis (PCA) restricted to

ion and from hi 1 to speech
ial breakthrough that led to the recent surge of Al research in
the concept of neural word embeddings, such as word2vec [27]
ve [33]. These systems utilize a large corpus of training arti-
determine the co-occurrence statistics between pairs of words
a given context, and employ a neural network to infer a vector
ffor embedding words. Interestingly, the position and difference
s between words appear to encode semantic relationships (see

carefully chosen subsets of words, i.e., countries and capitals, nouns
and their plurals, etc. Unfortunately, both the linear (PCA) and nonlin-
ear (t-SNE) approaches, which are now the de facto standard in NLP
research, are fairly limited and often misleading. For example, t-SNE
embeddings are often used to validate (or discredit) various intuitions
on the nature of the embedding space without any consideration for the
inherent distortions in the projection itself. Given the complex nature
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Abstract—Single-cell analysis through mass cytometry has become an increasingly important tool for immunologists to study the
immune system in health and disease. Mass cytometry creates a high-dimensional description vector for single cells by time-of-flight Isen Liu, Peel
measurement. Recently, t-Distributed Stochastic Neighborhood Embedding (-SNE) has emerged as one of the state-of-the-art brmore Natid
techniques for the visualization and exploration of single-cell data. Ever increasing amounts of data lead to the adoption of Hierarchical hail:{liu42,b} = B
Stochastic Neighborhood Embedding (HSNE), enabling the hierarchical representation of the data. Here, the hierarchy is explored \Wang, Yarde| g .=
selectively by the analyst, who can request more and more detail in areas of interest. Such hierarchies are usually explored by versity of Ul . =
visualizing disconnected plots of selections in different levels of the hierarchy. This poses problems for navigation, by imposing a high k Srikumar -
cognitive load on the analyst. In this work, we present an interactive summary-visualization to tackle this problem. CyteGuide guides ek @cs.utah)
the analyst through the exploration of hierarchically represented single-cell data, and provides a complete overview of the current state =) -
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Towards a Systematic Combination of Dimension Reduction
and Clustering in Visual Analytics

John Wenskovitch, Student Member, IEEE, lan Crandell, Naren Ramakrishnan, Member, IEEE,
Leanna House, Scotland Leman, Chris North

Abstract— Dimension reduction algorithms and clustering algorithms are both frequently used techniques in visual analytics. Both

families of algorithms assist analysts in performing related tasks regarding the similarity of observations and finding groups in datasets.
Though initially used independently, recent works have incorporated algorithms from each family into the same visualization systems.

However, these algorithmic combinations are often ad hoc or disconnected, working independently and in parallel rather than integrating
some degree of interdependence. A number of design decisions must be addressed when employing dimension reduction and
clustering algorithms concurrently in a visualization system, including the selection of each algorithm, the order in which they are
processed, and how to present and interact with the resulting projection. This paper contributes an overwew of combining dimension
reduction and clustering into a visualization system, ing the ct inherent in ping a ion system that makes
use of both families of algorithms.

Index Terms—Dimension reduction, clustering, algorithms, visual analytics
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1 INTRODUCTION

Visual metaphors for exploring high-dimensional datasets come in a
variety of forms, each with their own strengths and weaknesses in both
visualization and interaction [37,69]. In particular, datasets with high
dimensionality present tractability challenges for computation, design,
and interaction [29]. One frequently used method of visual abstraction
is to reduce a high-dimensional dataset into a low-dimensional space
while preserving properties of the high-dimensional structure (e.g., re-
tain or respect pairwise relationships from the higher dimensions in
the lower dimensional projection). Such dimension reduction algo-

Component Analysis (PCA) dimension reduction implicitly performs
data clustering as well.

Indlcauons from prevmus studies [8,33] have shown that analysts
use a ination of both developing clusters and organizing
observations in space in the sensemaking process [76] as they explore
a dataset. These explorations generate clusters created by the analyst
during exploratory interactions to spatially organize information on
the display, as well as clusters that naturally develop due to expressive
interactions updating the underlying layout (these interaction types are

ler’s interface: the matrix view (1) with an overview (1A) and detail (1B) matrix. The snippet view (2) presents regions
X as interactive small multiples. In this example, snippets are arranged with t-SNE (2C) and a pile of snippets with a
hced average pattern is highlighted (2A). View menus for operation are located at the bottom (1C and 2B).

[his paper pi anir ive visualization ir

HiPiler—for the exploration and visualization of regions-of-interest

ome interaction matrices. Genome interaction matrices approximate the physical distance of pairs of regions on the
leach other and can contain up to 3 million rows and columns with many sparse regions. Regions of interest (ROls)
ed, e.g., by sets of adjacent rows and columns, or by specific visual patterns in the matrix. However, traditional matrix
or pan-and-zoom interfaces fail in supporting search, inspection, and comparison of ROls in such large matrices. In
s are first-class objects, represented as thumbnail-like “snippets”. Snippets can be interactively explored and grouped or
bmatically in scatterplots, or through dimension reduction methods. Snippets are linked to the entire navigable genome
hatrix through brushing and linking. The design of HiPiler is based on a series of semi-structured interviews with 10 domain
lved in the analysis and interpretation of genome interaction matrices. We describe six exploration tasks that are crucial for
Interaction matrices and demonstrate how HiPiler supports these tasks. We report on a user study with a series of data
Bessions with domain experts to assess the usability of HiPiler as well as to demonstrate respective findings in the data.

Is—Interactive Small Multiples, Matrix Comparison, Biomedical Visualization, Genomics

DN
le is about 2 meters long and tightly folded into each
results in a dense, fractal-like and three-di ional

‘

3D structure is an imponam factor for regulation of gene expression,
rephcauon DNA repair, and other biological functions. Biologists
are d in uncovering the mechanisms that drive global and

genome sequences that are distant on the genome,
atial proximity. It has been shown [20] that this
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local folding to better understand the vast and complex gene regulation
network. This aids ¢ hension of the functional diversity of cells
and how changes in the spatial conformation of the genome can cause
diseases [24,32,40].

The probability of two sequences being in close proximity to each
other, i.e. interacting, can be inferred using modern genome sequencing
techniques, which yield for every genome a huge symmetric genome
interaction matrix with up to 3 million rows and 3 million columns.
Each of the 9 trillion matrix cells represents the proximity of two
genomic regions. Repetitive and hierarchically nested visual patterns
can be identified across the matrix, which represent so called regions
of interest (ROISs). These patterns appear at different scales and range
from hundreds of millions down to a few thousand base pairs in size.

Exploring an entire genome interaction matrix of this size to find and

JE: Personal use is permmed but republication/redistribution requires IEEE permission
m for more

Only recently the training of large DNNs was
development of fast parallel hardware, i.e., GPU

‘While the results that DNNs can achieve ar
sentially remain a black box. An increasing re}
on making the visualization and the analysis of
‘While both, the machine learning and the visu
invested considerable effort in understanding h|
behaves [27,37,50], e.g., by showing the patte}

—— .

Fig. 1. The exploratory interface of LDSScanner, after the analyst has identified structures. (a)The configuration panel. (b) The

identified-structures view. (c) The t-SNE view. (d) The LTSD-GD view. (e) Bar chart of estimated local dimensionality. (f) Scree plot of
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INTRODUCTION

‘We live in a world that routinely produces more textual data on a
daily basis than can be comfortably viewed—let alone analyzed—by

a single person in virtually any given domain: finance, journalism,
medicine, politics, and business, to name just a few. As a result, auto-
matic text analysis methods, such as i analysis [34], d
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What Would a Graph Look Like in This Layout?
A Machine Learning Approach to Large Graph Visualization

JANUARY 2018

Oh-Hyun Kwon, Student Member, IEEE, Tarik Crnovrsanin, and Kwan-Liu Ma, Fellow, IEEE
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Fig. 1. A projection of topological similarities between 8,263 graphs measured by our RW-LOG-LAPLACIAN kernel. Based on the
topological similarity, our approach shows what a graph would look like in different layouts and estimates their corresponding aesthetic
metrics. We clustered the graphs based on their topological similarities for the purpose of the user study. The two graphs in each pair
are the most topologically similar, but not isomorphic, to each other. The projection is computed with t-SNE [83], and the highlighted
graphs are visualized with FM? layout [37]. An ir ive plot is available in the supy itary materials [1].

Abstract—Using different methods for laying out a graph can lead to very different visual appearances, with which the viewer perceives
different information. Selecting a “good” layout method is thus important for visualizing a graph. The selection can be highly subjective
and dependent on the given task. A common approach to selecting a good layout is to use aesthetic criteria and visual inspection.
However, fully calculating various layouts and their associated aesthetic metrics is computationally expensive. In this paper, we present
a machine learning approach to large graph visualization based on computing the topological similarity of graphs using graph kernels.
For a given graph, our approach can show what the graph would look like in different layouts and estimate their corresponding aesthetic
metrics. An |mponanl conmbutlon of our work i s the development of a new framework to design graph kernels. Our experimental study
shows that our 1is cor faster than computing the actual layouts and their aesthetic metrics. Also, our
graph kernels outperform the state-of-the-art ones in both time and accuracy. In addition, we conducted a user study to demonstrate
that the topological similarity computed with our graph kernel matches perceptual similarity assessed by human users.

Index Terms—Giraph visualization, graph layout, aesthetics, machine learning, graph kernel, graphlet
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INTRODUCTION

Graphs are popularly used to represent complex systems, such as social

hetworks, power grids, and biological networks. Visualizing a graph

an help us better understand the structure of the data. Many graph
lization thods have been i duced [36,43, 86], with the most

bopular and intuitive method being the node-link diagram.

Over the last five decades, a multitude of methods have been devel-

* All authors are with the University of California, Davis.
E-mail: kw@ucdavis.edu, tecrnovr @ucdavis.edu, ma@cs.ucdavis.edu.

oped to lay out a node-link diagram. A graph’s layout results can be
greatly different depending on which layout method is used. Because
the layout of a graph significantly influences the user’s understanding
of the graph [36,46, 56, 57], it is important to find a “good” layout
that can effectively depict the structure of the graph. Defining a good
layout can be highly subjective and dependent on the given task. A
suitable starting point for finding a good layout is to use both the aes-
thetic criteria, such as reducing edge crossings, and the user’s visual
inspection.

T ek .

dataset assume that the dataset contains specific structures, e.g.,
rial-and-error process to verify the appropriate model and parameters.
al identification of low-dimensional structures in a high-dimensional
land configurations. Our key idea is to abstract a set of global and
resentation of the latent low-dimensional structure, such as pairwise
pace divergence (LTSD) among pointwise local tangent spaces (LTS).
ing LTSD and GD to the x axis and y axis using 1D multidimensional
methods that preserve various kinds of distances among points, the
and the variation of LTS in structures (the combination of x axis and y
hting and reasoning about intrinsic structures of a high-dimensional
ach.

, subspace, manifold, visual exploration
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Usually, high-dimensional data is composed of several low-dimensional
structures, such as clusters in linear subsp or non-linear ifold

A large number of automatic approaches have been proposed for
detecting the intrinsic low-dimensional structures. However, specifying

i S 121y SRR AP e 012 o L LA AT YR ST L SR ML s 12 summarization [4], and probabilistic topic modeling [3] are becoming
1 o R e | ' oy o * D. Park and N. Elmgvist are with University of Maryland in College Park,  increasingly important. Central in most of these methods is the focus
L o | it ' " e " oo MD, USA. E-mail: {intuinno, elm}@umd.edu. on textual concepts, defined as a set of semantically related keywords

P ey 0 110493 0 1 500000 a0 0 0148 s g v « 8. Kim is with Google Inc. in Mountain View, CA, USA. E-mail: describing a particular object, on, or theme. For I
Duight Howard AL " m|‘w | Y P I ] I L \ JPY 1y seungyeonk@google.com. sentiment ana.lysis. can be viewex! as ana!yzing dqa{ments ac,cord:ing to
Chvis Paul | ™ A ) | . : { ‘ ; | K « J. Lee and J. Choo, the corresponding author; are with Korea University in ~ two concepts: positive and negative sentiment. Similarly, the topics de-
Pl . . : Seoul, Republic of Korea. E-mail: {/unm0301 Jjchoo} @korea.ac.kr. rived in topic modeling can be thought of as document-driven concepts.
omer Odem WP, ) » Ll i ‘ " 1 FERITLE ey : | i Al ad « N. Di is with University in E IL, USA. The benefit of this unified view is that concepts, once created, can

E-mail: nicholas.diakopoulos @gmail.com. then be shared and reused many times, similarly to widely applicable
lexicon sets such as Linguistic Inquiry and Word Count (LIWC) [37]
or General Inquirer (GI) [39].

Generally, building a lexicon for a particular concept requires signif-
icant human effort, and thus only a limited number of human-generated
concepts have been available, usually with a small number of keywords

Figure 1. Analyzing the skyline of NBA statistics using SkyLens: (a) a Projection View showing an overview of clusters and outlief
(b) a Tabular View depicting the attributes of four skyline players and reveals the factors making a player in skyline; (c) a Comparis|
View examining the differences between skyline players from the attribute and domination perspectives; (d) a Control Panel for refinif
skyline queries; (e) a pop-up window showing a detailed comparison between LeBron James and Chris Paul.
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Date of publication 28 Aug. 2017; date of current version 1 Oct. 2017.
For information on obtaining reprints of this article, please send e-mail to:
reprints @ ieee.org, and reference the Digital Object Identifier below.
Abstract— Skyline queries have wide-ranging applications in fields that involve multi-criteria decision making, including tourism, ref Digital Object Identifier no. 10.1109/TVCG.2017.2744478
industry, and human resources. By automatically removing incompetent candidates, skyline queries allow users to focus on a sub:
of superior data items (i.e., the skyline), thus reducing the decision-making overhead. However, users are still required to interp| 1077-2626 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
and compare these superior items manually before making a successful choice. This task is challenging because of two issu Seo hitp/wwwk - lons/i himl for moro i ‘

First, people usually have fuzzy, unstable, and inconsistent preferences when presented with multiple candidates. Second, skylil —
queries do not reveal the reasons for the superiority of certain skyline points in a multi-dimensional space. To address these issues,——

we propose SkyLens, a visual analytic system aiming at revealing the superiority of skyline points from different perspectives and at
different scales to aid users in their decision making. Two scenarios demonstrate the usefulness of SkyLens on two datasets with
a dozen of attributes. A qualitative study is also conducted to show that users can efficiently accomplish skyline understanding and
comparison tasks with SkylLens.

Index Terms—Skyline query, skyline visualization, multi-dimensional data, visual analytics, multi-criteria decision making
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1 INTRODUCTION

Given a multi-dimensional dataset, skyline queries automatically ~ Whichusers need to compare candidates in a multi-dimensional dataset

appropriate models
the intrinsic structu}
propose LDSScann)
provides contextual
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prune the dataset to a subset of superior points that are not dominated
by others: this subset is referred to as skyline [9]. Skyline queries are
important in various fields that involve multi-criteria decision making,
such as tourism [35], retail industry [11], and human resources [39], in

® X. Zhao, Y. Wu, X. Du, Y. Chen, Y. Wang, D. Lee, and H. Qu are with the

and make a decision. For example, a tourist needs to select a vacation
destination from a list of cities on the basis of several attributes, in-
cluding cost, climate, quality of service, and safety. If city A is less
desirable in every attribute than city B (i.e., A is dominated by B),
then skyline queries will remove A from the candidate list because
whenever A is preferred, B is always a better choice under any circum-
stances. Thus, skyline queries may significantly reduce the number of
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Labeling follows the principle of attaching information to some obiject.
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candidates for the tourist without affecting his/her final choice.

However, skyline queries only solve half of the problem, because
users still have to select the most ideal item manually based on their

o W. Cui is with Microsoft Research Asia. E-mail: weiweicu@mic) “om

Date of publication 28 Aug. 2017; date of current version 1 Oct. 2017.
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In the aforementioned example, travel agents
generally cannot decide which city is the best for the tourist. Instead,
the agents can only present all superior cities with their pros and cons
to the tourist to decide. To make a successful decision, users need to
completely understand the semantics of the skyline and compare var- > ¢ I
ious skyline points, which is rather difficult, especially when the data R,

html for more information.

(a) 2D Colormap

(b) Class Coloring

(c) Convex Hulls

(d) Butterfly Plot

Fig. 1: Evaluation of four visualization techniques (a)-(d) that support the visual-interactive labeling process. Our study reveals
that Class Coloring (b) and Convex Hull (c) are the most useful techniques. Both capture characteristics of the input data and the
classification model in an intuitive way. Our study shows that they can compete with and even outperform active learning strategies.

Abstract—Labeling data instances is an important task in machine learning and visual analytics. Both fields provide a broad set
of labeling strategies, whereby machine learning (and in particular active learning) follows a rather model-centered approach and
visual analytics employs rather user-centered approaches (visual-interactive labeling). Both approaches have individual strengths
and weaknesses. In this work, we conduct an experiment with three parts to assess and compare the performance of these different
labeling strategles In our study, we (1) identify different visual labeling strategies for user-centered labeling, (2) |nvest|gate strengths
and of labeling ies for different labeling tasks and task complexities, and (3) shed light on the effect of using different
visual encodings to guide the visual-interactive labeling process. We further compare labeling of single versus multiple instances at
a time, and quantify the impact on efficiency. We systematically compare the performance of visual interactive labeling with that of
active learning. Our main findings are that visual-interactive labeling can outperform active learning, given the condition that dimension
reduction separates well the class distributions. Moreover, using dimension reduction in combination with additional visual encodings
that expose the internal state of the learning model turns out to improve the performance of visual-interactive labeling.

Index Terms—Labeling, Visual-Interactive Labeling, Information Visualization, Visual Analytics, Active Learning, Machine Learning,
Classification, Evaluation, Experiment, Dimensionality Reduction
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INTRODUCTION

neural networks require large amounts of such labeled data to learn
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Fig. 1. An overview of Clustervision on a dataset describing 400 paintings by the “Joy of Painting” artist Bob Ross. (A) Ranked List of
Clustering Results shows 15 different clustering results that are sorted by the aggreg: quality m (B) F ion shows a
selected clustering result (highlighted in yellow in (A)) on a projection of data points colored according to corresponding clusters; (C)
Parallel Trends show the trends of feature values of data points within corresponding clusters in areas across parallel coordinates.
Cluster 1 (Green Color) is highlighted; (D) Cluster Detail shows quality measures of a selected individual cluster (Cluster 1); (E) Data
Point shows the feature value distribution of the selected cluster as well as the selected data point (Data Point 372 within Cluster 2).

Abstract—Clustering, the process of grouping together similar items into distinct partitions, is a common type of unsupervised machine
learning that can be useful for summarizing and aggregating complex multi-dimensional data. However, data can be clustered in
many ways, and there exist a large body of algorithms designed to reveal different patterns. While having access to a wide variety of
algorithms is helpful, in practice, it is quite difficult for data scientists to choose and parameterize algorithms to get the clustering results
relevant for their dataset and analytical tasks. To alleviate this problem, we built Clustervision, a visual analytics tool that helps ensure
data scientists find the right clustering among the large amount of techniques and parameters available. Our system clusters data
using a variety of clustering techniques and parameters and then ranks clustering results utilizing five quality metrics. In addition, users
can guide the system to produce more relevant results by providing task-relevant constraints on the data. Our visual user interface
allows users to find high quality clustering results, explore the clusters using several coordinated visualization techniques, and select
the cluster result that best suits their task. We demonstrate this novel approach using a case study with a team of researchers in the
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» Generally navigation is faster
» QOutlier P4

» not part of the field study
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- Easy to keep track

“I enjoyed analyzing the data.”

“I am eager to start analyzing
my data with CyteGuide.”

“It’s easier [..] to keep the overview

of the different scales and clusters.”

“It is very useful to know whether
a cell cluster still contains variability,

and if drilling is necessary.”
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